KR102322692B1 - 자외선 발광소자 - Google Patents

자외선 발광소자 Download PDF

Info

Publication number
KR102322692B1
KR102322692B1 KR1020150075846A KR20150075846A KR102322692B1 KR 102322692 B1 KR102322692 B1 KR 102322692B1 KR 1020150075846 A KR1020150075846 A KR 1020150075846A KR 20150075846 A KR20150075846 A KR 20150075846A KR 102322692 B1 KR102322692 B1 KR 102322692B1
Authority
KR
South Korea
Prior art keywords
layer
disposed
type semiconductor
ultraviolet light
conductivity
Prior art date
Application number
KR1020150075846A
Other languages
English (en)
Other versions
KR20160139920A (ko
Inventor
장정훈
남승근
임정순
최원희
Original Assignee
쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 filed Critical 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority to KR1020150075846A priority Critical patent/KR102322692B1/ko
Priority to PCT/KR2016/005672 priority patent/WO2016195342A1/ko
Priority to US15/577,609 priority patent/US10263145B2/en
Publication of KR20160139920A publication Critical patent/KR20160139920A/ko
Application granted granted Critical
Publication of KR102322692B1 publication Critical patent/KR102322692B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

실시예에 따른 발광소자는 기판과, 상기 기판 상에 배치된 제1 도전형 반도체층과, 상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층과, 상기 활성층 상에 배치된 제2 도전형 반도체층과, 상기 활성층과 제2 도전형 반도체층 사이에 배치되어 AlxGa1 - xN (0<x≤1)을 포함하는 제1 층과, GaN을 포함하는 제2 층을 포함하는 정공 주입층을 포함할 수 있다.
실시예는 정공 주입층을 다층으로 형성함으로써, 자외선 광이 흡수되는 것을 효과적으로 방지할 수 있는 효과가 있다.

Description

자외선 발광소자{ULTRAVIOLET LIGHT EMITTING DEVICE}
실시예는 광 효율을 향상시키기 위한 자외선 발광소자에 관한 것이다.
일반적으로, 발광소자(Light Emitting Device)는 전기에너지가 빛 에너지로 변환되는 특성의 화합물 반도체로서, 주기율표상에서 Ⅲ족과 Ⅴ족 등의 화합물 반도체로 생성될 수 있고 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
발광소자는 순방향전압 인가 시 n층의 전자와 p층의 정공(hole)이 결합하여 전도대(Conduction band)와 가전대(Valance band)의 밴드갭 에너지에 해당하는 만큼의 에너지를 발산하는데, 이 에너지는 주로 열이나 빛의 형태로 방출되며, 빛의 형태로 발산되면 발광소자가 되는 것이다. 예를 들어, 질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
종래 자외선 발광소자는 기판 상에 제1 도전형 반도체층과, 활성층과 제2 도전형 반도체층이 순차적으로 적층되어 형성되며, 활성층과 제2 도전형 반도체층 사이에는 정공의 흐름을 원활하게 하기 위한 정공 주입층이 형성된다.
정공 주입층은 주로 GaN 재질의 단일층으로 형성하고 있으나, 특정 영역의 자외선 영역 예컨대, 240nm 내지 300nm 파장 대역에서는 정공 주입층이 광 흡수체로 작용하여 광 효율이 저하되는 문제점이 발생된다.
상기와 같은 문제점을 해결하기 위해, 실시예는 광 효율을 향상시키기 위한 발광소자 및 이를 구비하는 조명 시스템을 제공하는 것을 그 목적으로 한다.
상술한 목적을 달성하기 위하여, 실시예에 따른 발광소자는 기판과, 상기 기판 상에 배치된 제1 도전형 반도체층과, 상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층과, 상기 활성층 상에 배치된 제2 도전형 반도체층과, 상기 활성층과 제2 도전형 반도체층 사이에 배치되어 AlxGa1 - xN (0<x≤1)을 포함하는 제1 층과, GaN을 포함하는 제2 층을 포함하는 정공 주입층을 포함할 수 있다.
또한, 상술한 목적을 달성하기 위하여, 실시예에 따른 발광소자는 기판과, 상기 기판 상에 배치된 제1 도전형 반도체층과, 상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층과, 상기 활성층 상에 배치된 제2 도전형 반도체층과, 상기 활성층과 제2 도전형 반도체층 사이에 배치되어 AlxGa1 - xN (0<x≤1)을 포함하는 제1 층과, 상기 제1 층 상에 GaN을 포함하는 제2 층과, 상기 제2 층 상에 AlxGa1 - xN (0<x≤1)을 포함하는 제3층을 포함하는 정공 주입층을 포함할 수 있다.
또한, 상술한 목적을 달성하기 위하여, 실시예에 따른 발광소자는 기판과, 상기 기판 상에 배치된 제1 도전형 반도체층과, 상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층과, 상기 활성층 상에 배치된 제2 도전형 반도체층과, 상기 활성층과 제2 도전형 반도체층 사이에 배치되어 AlxGa1 - xN (0<x≤1)을 포함하는 제1 층과, 상기 제1 층 상에 GaN을 포함하는 제2 층과, 상기 제1 층 아래에 GaN을 포함하는 제3 층을 포함하는 정공 주입층을 포함할 수 있다.
실시예는 정공 주입층을 다층으로 형성함으로써, 자외선 광이 흡수되는 것을 효과적으로 방지할 수 있는 효과가 있다.
또한, 실시예에 따른 정공 주입층은 압축 스트레인을 유도하여 Mg의 효율을 개선시켜 동작 전압을 개선할 수 있는 효과가 있다.
또한, 실시예에 따른 정공 주입층은 Al 조성을 제어함으로써, 보다 효과적으로 출력 전압을 개선시킬 수 있는 효과가 있다.
도 1은 제1 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
도 2는 제1 실시예에 따른 자외선 발광소자의 정공 주입층을 나타낸 단면도이다.
도 3은 제1 실시예에 따른 자외선 발광소자의 동작 전압을 나타낸 그래프이다.
도 4는 제2 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
도 5는 제2 실시예에 따른 자외선 발광소자의 정공 주입층을 나타낸 단면도이다.
도 6은 제3 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
도 7은 제4 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
이하, 도면을 참조하여 실시예를 상세히 설명하기로 한다.
도 1은 제1 실시예에 따른 자외선 발광소자를 나타낸 단면도이고, 도 2는 제1 실시예에 따른 자외선 발광소자의 정공 주입층을 나타낸 단면도이고, 도 3은 제1 실시예에 따른 자외선 발광소자의 동작 전압을 나타낸 그래프이다.
도 1을 참조하면, 제1 실시예에 따른 자외선 발광소자는 기판(110)과, 상기 기판(110) 상에 배치된 버퍼층(181)과, 상기 버퍼층(181) 상에 배치된 제1 도전형 반도체층(120)과, 상기 제1 도전형 반도체층(120) 상에 배치된 전류 확산층(183)과, 상기 전류 확산층(183) 상에 배치된 스트레인 제어층(185)과, 상기 스트레인 제어층(185) 상에 배치되어 자외선 광을 발생시키는 활성층(130)과, 상기 활성층(130) 상에 배치된 전자 차단층(187)과, 상기 전자 차단층(187) 상에 배치된 정공 주입층(140)과, 상기 정공 주입층(140) 상에 배치된 제2 도전형 반도체층(150)과, 상기 제2 도전형 반도체층(150) 상에 배치된 투광성 전극층(189)과, 상기 제1 도전형 반도체층(120) 상에 배치된 제1 전극(160)과, 상기 투광성 전극층(189) 상에 배치된 제2 전극(170)을 포함할 수 있다.
기판(110)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일 수 있다. 예를 들어, 상기 기판(110)은 사파이어(Al2O3) 기판일 수 있다. 그외 기판(110)으로 SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203 중 적어도 하나를 사용할 수 있다.
상기 기판(110) 상에 버퍼층(181)이 배치될 수 있다.
버퍼층(181)은 상기 발광구조물의 재료와 기판(110)의 격자 불일치를 완화시켜 주는 역할을 한다. 버퍼층(181)으로는 3족-5족 화합물 반도체를 포함할 수 있다. 버퍼층(181)은 AlN을 포함하는 재질로 형성될 수 있다. 버퍼층(181)은 AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다.
상기 버퍼층(181) 상에 제1 도전형 반도체층(120)이 형성될 수 있다.
제1 도전형 반도체층(120)은 반도체 화합물 예컨대, 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, n형 도펀트가 도핑될 수 있다. 상기 n형 도펀트로는 Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
이와 달리, 상기 제1 도전형 반도체층(120)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 반도체층(120)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN,AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다.
상기 제1 도전형 반도체층(120) 상에는 전류 확산층(183)이 형성될 수 있다.
상기 전류 확산층(183)은 내부 양자 효율을 향상시켜 광 효율을 증대시킬 수 있으며, 언도프트 질화갈륨층(undoped GaN layer)일 수 있다.
전류 확산층(183) 상에는 전자 주입층(미도시)이 더 형성될 수도 있다. 상기 전자 주입층은 도전형 질화갈륨층일 수 있다. 예를 들어, 상기 전자 주입층은 n형 도핑원소가 6.0x1018atoms/cm3~3.0x1019atoms/cm3의 농도로 도핑 됨으로써 효율적으로 전자주입을 할 수 있다.
상기 전류 확산층(183) 상에는 스트레인 제어층(185)이 형성될 수 있다.
상기 스트레인 제어층(185)은 제1 도전형 반도체층(120)과 활성층(130) 사이의 격자 불일치에 기이한 응력을 효과적으로 완화시키는 역할을 한다. 상기 스트레인 제어층(185)은 다층(multi-layer)으로 형성될 수 있으며, 예컨대, 상기 스트레인 제어층(185)은 AlxInyGa1 -x- yN 및 GaN을 복수의 쌍(pair)으로 구비할 수 있다.
상기 스트레인 제어층(185)의 격자상수는 상기 제1 도전형 반도체층(120)의 격자 상수보다는 크되, 상기 활성층(130)의 격자상수보다는 작을 수 있다. 이에 따라 활성층(130)과 제1 도전형 반도체층(120) 사이에 격자상수 차이에 의한 스트레스를 최소화할 수 있다.
상기 스트레인 제어층(185) 상에는 활성층(130)이 형성될 수 있다.
활성층(130)은 심 자외선 광을 생성할 수 있다. 활성층(130)은 240㎚ 내지 300㎚ 파장의 자외선 광을 생성할 수 있다. 활성층(130)에서 발생되는 자외선 광의 파장은 이에 한정되지 않는다.
상기 활성층(130)은 제1 도전형 반도체층(120)을 통해서 주입되는 전자와 이후 형성되는 제2 도전형 반도체층(150)을 통해서 주입되는 정공이 서로 만나서 활성층(발광층) 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다.
상기 활성층(130)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다. 예를 들어, 상기 활성층(130)은 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자우물구조가 형성될 수 있으나 이에 한정되는 것은 아니다.
상기 활성층(130)의 우물층/장벽층은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 상기 우물층은 상기 장벽층의 밴드 갭보다 낮은 밴드 갭을 갖는 물질로 형성될 수 있다.
상기 활성층(130) 상에는 전자 차단층(187, EBL)이 형성될 수 있다.
상기 전자 차단층(187)은 전자 차단(electron blocking) 및 활성층(130)의 클래딩(MQW cladding) 역할을 하며, 이로 인해 발광 효율을 향상시킬 수 있다. 전자 차단층(187)은 AlxInyGa(1-x-y)N(0≤x≤1,0≤y≤1)계 반도체로 형성될 수 있으며, 상기 활성층(130)의 에너지 밴드 갭보다는 높은 에너지 밴드 갭을 가질 수 있으며, 약 100Å~ 약 600Å의 두께로 형성될 수 있으나 이에 한정되는 것은 아니다. 이와 달리, 상기 전자 차단층(187)은 AlzGa(1-z)N/GaN(0≤z≤1) 초격자(superlattice)로 형성될 수 있다.
상기 전자 차단층(195) 상에는 정공 주입층(140)이 형성될 수 있다.
정공 주입층(140)은 다수의 층을 포함할 수 있다. 정공 주입층(140)은 정공 주입 효율을 높이는 동시에 자외선 광의 흡수를 방지하는 역할을 한다.
도 2에 도시된 바와 같이, 정공 주입층(140)은 제1 층(141)과, 제1 층(141) 상의 제2 층(143)을 포함할 수 있다.
제1 층(141)은 AlxGa1 - xN (0<x≤1)을 포함할 수 있다. 예컨대, 제1 층(141)은 AlGaN 또는 AlN을 포함할 수 있다. 제1 층(141)은 전자 차단층(187)의 상부와 접하도록 배치될 수 있다. 제1 층(141)의 두께(T1)는 5㎚ 내지 30㎚를 포함할 수 있다. Al의 조성은 0.5<Al≤1.0을 포함할 수 있다. Al 조성이 0.5 이하이거나 1.0을 초과하게 되면 출력 전압이 감소하게 된다. 제1 층(141)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 층(143)은 GaN을 포함할 수 있다. 제2 층(143)의 두께(T2)는 5㎚ 내지 20㎚를 포함할 수 있다. 제2 층(143)의 두께는 제1 층(141)의 두께보다 작게 형성될 수 있다. 제2 층(143)은 자외선 광을 흡수하기 때문에 제1 층(141)의 두께보다 작게 형성하게 되면, 자외선 광이 흡수되는 것을 보다 감소시킬 수 있는 효과가 있다. 제2 층(143)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
정공 주입층(140)은 제1 층(141) 및 제2 층(143)으로 형성함으로써, 박막에 압축 스트레인(Compressive strain)을 유도하여 Mg의 주입 효율을 효과적으로 개선시킬 수 있으며, 이로 인해 동작 전압을 낮출 수 있다.
도 3에 도시된 바와 같이, 동작 전압(Vf) 측면에서 살펴보게 되면, 종래 정공 주입층을 단일층으로 형성하게 되면, 동작 전압(Vf)이 8.4V인 반면, 실시예에 따른 정공 주입층 구조에 따른 동작 전압(Vf)은 7.9V로 감소되는 것을 알 수 있다.
도 1로 돌아가서, 정공 주입층(140) 상에는 제2 도전형 반도체층(150)이 형성될 수 있다.
상기 제2 도전형 반도체층(150)은 반도체 화합물로 형성될 수 있다. 3족-5족, 2족-6족 등의 화합물 반도체로 구현될 수 있으며, p형 도펀트가 도핑될 수 있다.
예컨대, 상기 제2 도전형 반도체층(150)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(150)의 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
상기 제2 도전형 반도체층(150) 상에는 투광성 전극층(189)이 형성될 수 있다.
투광성 전극층(189)은 캐리어 주입을 효율적으로 할 수 있도록 단일 금속 또는 금속합금, 금속 산화물 등을 다중으로 적층할 수도 있다. 예컨대, 투광성 전극층(189)은 반도체와 전기적인 접촉이 우수한 물질로 형성될 수 있으며, 투광성 전극층(189)으로는 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되는 않는다.
투광성 전극층(189) 상에는 제2 전극(170)이 형성되며, 상부 일부가 노출된 제1 도전형 반도체층(120) 상에는 제1 전극(160)이 형성된다. 이후, 최종적으로 제1 전극(160) 및 제2 전극(170)이 서로 연결됨으로써 자외선 발광소자의 제작이 완료될 수 있다.
도 4는 제2 실시예에 따른 자외선 발광소자를 나타낸 단면도이고, 도 5는 제2 실시예에 따른 자외선 발광소자의 정공 주입층을 나타낸 단면도이다.
도 4를 참조하면, 제2 실시예에 따른 자외선 발광소자는 기판(110)과, 상기 기판(110) 상에 배치된 버퍼층(181)과, 상기 버퍼층(181) 상에 배치된 제1 도전형 반도체층(120)과, 상기 제1 도전형 반도체층(120) 상에 배치된 전류 확산층(183)과, 상기 전류 확산층(183) 상에 배치된 스트레인 제어층(185)과, 상기 스트레인 제어층(185) 상에 배치되어 자외선 광을 발생시키는 활성층(130)과, 상기 활성층(130) 상에 배치된 전자 차단층(187)과, 상기 전자 차단층(187) 상에 배치된 정공 주입층(240)과, 상기 정공 주입층(240) 상에 배치된 제2 도전형 반도체층(150)과, 상기 제2 도전형 반도체층(150) 상에 배치된 투광성 전극층(189)과, 상기 제1 도전형 반도체층(120) 상에 배치된 제1 전극(160)과, 상기 투광성 전극층(189) 상에 배치된 제2 전극(170)을 포함할 수 있다. 여기서, 정공 주입층(240)을 제외한 구조는 제1 실시예에 따른 자외선 발광소자와 동일하므로 생략한다.
도 5에 도시된 바와 같이, 정공 주입층(240)은 제1 층(241)과, 제2 층(243)이 쌍을 이루는 다수의 층을 포함할 수 있다. 정공 주입층(240)은 제1 층(241)과 제2 층(243)이 1쌍을 이룰 수 있다. 제1 층(241) 상에는 제2 층(243)이 배치될 수 있으며, 제2 층(243) 상에는 제1 층(241)이 배치될 수 있다. 정공 주입층(240)은 제1 층(241) 및 제2 층(243)이 5쌍 내지 20쌍으로 이루어져 순차적으로 적층될 수 있다.
제1 층(241)은 AlxGa1 - xN (0<x≤1)을 포함할 수 있다. 제1 층(241)은 AlGaN 또는 AlN을 포함할 수 있다. 최하층의 제1 층(241)은 전자 차단층(187)의 상부와 접하도록 배치될 수 있다. 제1 층(241)의 두께는 5㎚ 내지 30㎚를 포함할 수 있다. Al의 조성은 0.5<Al≤1.0을 포함할 수 있다. Al 조성이 0.5 이하이거나 1.0을 초과하게 되면 출력 전압이 감소하게 된다. 제1 층(241)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 층(243)은 GaN을 포함할 수 있다. 제2 층(243)의 두께는 5㎚ 내지 20㎚를 포함할 수 있다. 제2 층(243)의 두께는 제1 층(241)의 두께보다 작게 형성될 수 있다. 제2 층(243)은 자외선 광을 흡수하기 때문에 제1 층(241)의 두께보다 작게 형성하게 되면, 자외선 광이 흡수되는 것을 보다 효과적으로 감소시킬 수 있는 효과가 있다. 제2 층(243)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 실시예에 따른 정공 주입층(240)이 다수의 쌍을 이루도록 적층 형성함으로써, 보다 효과적으로, 자외선 광 흡수 방지, 동작 저압 감소 및 정공 효율을 향상시킬 수 있다.
도 6은 제3 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
도 6을 참조하면, 제3 실시예에 따른 자외선 발광소자는 기판(110)과, 상기 기판(110) 상에 배치된 버퍼층(181)과, 상기 버퍼층(181) 상에 배치된 제1 도전형 반도체층(120)과, 상기 제1 도전형 반도체층(120) 상에 배치된 전류 확산층(183)과, 상기 전류 확산층(183) 상에 배치된 스트레인 제어층(185)과, 상기 스트레인 제어층(185) 상에 배치되어 자외선 광을 발생시키는 활성층(130)과, 상기 활성층(130) 상에 배치된 전자 차단층(187)과, 상기 전자 차단층(187) 상에 배치된 정공 주입층(340)과, 상기 정공 주입층(340) 상에 배치된 제2 도전형 반도체층(150)과, 상기 제2 도전형 반도체층(150) 상에 배치된 투광성 전극층(189)과, 상기 제1 도전형 반도체층(120) 상에 배치된 제1 전극(160)과, 상기 투광성 전극층(189) 상에 배치된 제2 전극(170)을 포함할 수 있다. 여기서, 정공 주입층(340)을 제외한 구조는 제1 실시예에 따른 자외선 발광소자와 동일하므로 생략한다.
정공 주입층(340)은 제1 층(341)과, 상기 제1 층(341) 상에 배치된 제2 층(343)과, 상기 제2 층(343) 상에 배치된 제3 층(341)을 포함할 수 있다. 여기서, 제3 층은 제1 층과 동일한 구성이므로 동일한 도면 부호를 부여하기로 한다.
제1 층(341)은 AlxGa1 - xN (0<x≤1)을 포함할 수 있다. 예컨대, 제1 층(341)은 AlGaN 또는 AlN을 포함할 수 있다. 제1 층(341)은 전자 차단층(187)의 상부와 접하도록 배치될 수 있다. 제1 층(341)의 두께는 5㎚ 내지 30㎚를 포함할 수 있다. Al의 조성은 0.5<Al≤1.0을 포함할 수 있다. Al 조성이 0.5 이하이거나 1.0을 초과하게 되면 출력 전압이 감소하게 된다. 제1 층(341)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 층(343)은 GaN을 포함할 수 있다. 제2 층(343)의 두께는 5㎚ 내지 20㎚를 포함할 수 있다. 제2 층(343)의 두께는 제1 층(341)의 두께보다 작게 형성될 수 있다. 제2 층(343)은 자외선 광을 흡수하기 때문에 제1 층(341)의 두께보다 작게 형성하게 되면, 자외선 광이 흡수되는 것을 보다 감소시킬 수 있는 효과가 있다. 제2 층(343)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 층(343) 상에는 제3 층(341)이 배치될 수 있다. 제3 층은 제1 층과 동일한 재질, 동일한 두께로 형성될 수 있다. 예컨대, 제3 층(341)은 AlxGa1 - xN (0<x≤1)을 포함할 수 있다. 제3 층(341)은 AlGaN 또는 AlN을 포함할 수 있다. 제3 층(341)의 두께는 5㎚ 내지 30㎚를 포함할 수 있다. Al의 조성은 0.5<Al≤1.0을 포함할 수 있다. Al 조성이 0.5 이하이거나 1.0을 초과하게 되면 출력 전압이 감소하게 된다. 제3 층(341)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제3 실시예에 따른 자외선 발광소자는 GaN층을 최소화함으로써, 자외선 광이 흡수되는 것을 보다 효과적으로 방지할 수 있는 효과가 있다.
도 7은 제4 실시예에 따른 자외선 발광소자를 나타낸 단면도이다.
도 7을 참조하면, 제4 실시예에 따른 자외선 발광소자는 기판(110)과, 상기 기판(110) 상에 배치된 버퍼층(181)과, 상기 버퍼층(181) 상에 배치된 제1 도전형 반도체층(120)과, 상기 제1 도전형 반도체층(120) 상에 배치된 전류 확산층(183)과, 상기 전류 확산층(183) 상에 배치된 스트레인 제어층(185)과, 상기 스트레인 제어층(185) 상에 배치되어 자외선 광을 발생시키는 활성층(130)과, 상기 활성층(130) 상에 배치된 전자 차단층(187)과, 상기 전자 차단층(187) 상에 배치된 정공 주입층(400)과, 상기 정공 주입층(400) 상에 배치된 제2 도전형 반도체층(150)과, 상기 제2 도전형 반도체층(150) 상에 배치된 투광성 전극층(189)과, 상기 제1 도전형 반도체층(120) 상에 배치된 제1 전극(160)과, 상기 투광성 전극층(189) 상에 배치된 제2 전극(170)을 포함할 수 있다. 여기서, 정공 주입층(400)을 제외한 구조는 제1 실시예에 따른 자외선 발광소자와 동일하므로 생략한다.
정공 주입층(400)은 제1 층(441)과, 상기 제1 층(441) 상에 배치된 제2 층(443)과, 상기 제1 층(441) 아래에 배치된 제3 층(441)을 포함할 수 있다. 여기서, 제3 층은 제2 층의 구성과 동일하므로 동일한 도면 부호를 부여하기로 한다.
제1 층(441)은 AlxGa1 - xN (0<x≤1)을 포함할 수 있다. 예컨대, 제1 층(441)은 AlGaN 또는 AlN을 포함할 수 있다. 제1 층(441)의 두께는 5㎚ 내지 30㎚를 포함할 수 있다. Al의 조성은 0.5<Al≤1.0을 포함할 수 있다. Al 조성이 0.5 이하이거나 1.0을 초과하게 되면 출력 전압이 감소하게 된다. 제1 층(441)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제2 층(443)은 GaN을 포함할 수 있다. 제2 층(443)의 두께는 5㎚ 내지 20㎚를 포함할 수 있다. 제2 층(443)의 두께는 제1 층(441)의 두께보다 작게 형성될 수 있다. 제2 층(443)은 자외선 광을 흡수하기 때문에 제1 층(441)의 두께보다 작게 형성하게 되면, 자외선 광이 흡수되는 것을 보다 감소시킬 수 있는 효과가 있다. 제2 층(343)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제1 층의 아래에는 제3 층이 배치될 수 있다. 제3 층은 제2 층과 동일한 재질, 동일한 두께로 형성될 수 있다. 예컨대, 제3 층(443)은 GaN을 포함할 수 있다. 제3 층(443)의 두께는 5㎚ 내지 20㎚를 포함할 수 있다. 제3 층(443)의 두께는 제1 층(441)의 두께보다 작게 형성될 수 있다. 제3 층(443)은 자외선 광을 흡수하기 때문에 제1 층의 두께보다 작게 형성하게 되면, 자외선 광이 흡수되는 것을 보다 감소시킬 수 있는 효과가 있다. 제3 층(443)은 p형 도펀트가 도핑될 수 있다. p형 도펀트로 마그네슘(Mg)을 포함할 수 있다. 이와 다르게 p형 도펀트로 Zn, Ca, Sr, Be를 포함할 수 있다. Mg의 도펀트 농도는 1.0E19 내지 1.0E20을 포함할 수 있다.
제4 실시예에 따른 자외선 발광소자는 GaN 재질의 제1 층과 제3 층 사이에 AlxGa1-xN (0<x≤1) 재질의 제2 층을 형성함으로써, 종래에 비해 자외선 광의 흡수를 효과적으로 방지할 수 있으며, 동작 전압 감소 및 홀 주입 효율을 개선시킬 수 있는 효과가 있다.
또한, 제4 실시예에 따른 자외선 발광소자는 GaN 재질의 포함하고 있으므로, 박막의 품질이 향상될 수 있다.
상기에서는 도면 및 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 실시예의 기술적 사상으로부터 벗어나지 않는 범위 내에서 실시예는 다양하게 수정 및 변경시킬 수 있음은 이해할 수 있을 것이다.
110: 기판 120: 제1 도전형 반도체층
130: 활성층 140: 정공 주입층
150: 제2 도전형 반도체층 160: 제1 전극
170: 제2 전극 187: 전자 차단층

Claims (15)

  1. 기판;
    상기 기판 상에 배치된 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층;
    상기 활성층 상에 배치된 제2 도전형 반도체층;
    상기 활성층과 상기 제2 도전형 반도체층 사이에 배치되며, AlaInbGa(1-a-b)N (0≤a≤1,0≤b≤1)을 포함하는 전자 차단층;
    상기 전자 차단층과 상기 제2 도전형 반도체층 사이에 배치되어 AlxGa1-xN (0<x≤1)을 포함하는 제1 층과, GaN을 포함하는 제2 층을 포함하는 정공 주입층;을 포함하고,
    상기 전자 차단층은 상기 활성층보다 큰 에너지 밴드갭을 가지고,
    상기 정공 주입층은 상기 제1 및 제2 층이 5쌍 내지 20쌍이 순차적으로 적층 배치되고,
    상기 제1 층의 두께는 상기 제2 층의 두께보다 두껍고,
    상기 정공 주입층에 포함된 복수의 제1 층 중 가장 아래에 배치된 상기 제1 층은 상기 전자 차단층의 상면과 직접 접촉하는 자외선 발광소자.
  2. 제1 항에 있어서,
    상기 전자 차단층의 두께는 100 옴스트롱 내지 600 옴스트롱이고,
    상기 정공 주입층의 상기 제1 층의 두께는 5㎚ 내지 30㎚이고, 상기 제2 층의 두께는 5nm 내지 20nm인 자외선 발광소자.
  3. 삭제
  4. 삭제
  5. 제1 항에 있어서,
    상기 정공 주입층의 제1 층의 Al의 조성은 0.5<Al≤1.0을 포함하는 자외선 발광소자.
  6. 제1 항에 있어서,
    상기 정공 주입층의 제1 및 제2 층은 마그네슘(Mg) 도펀트를 더 포함하고,
    상기 마그네슘의 도펀트 농도는 1.0E19 내지 1.0E20인 자외선 발광소자.
  7. 삭제
  8. 기판;
    상기 기판 상에 배치된 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 배치되어 자외선 광을 발생시키는 활성층;
    상기 활성층 상에 배치된 제2 도전형 반도체층;
    상기 활성층과 상기 제2 도전형 반도체층 사이에 배치되며, AlaInbGa(1-a-b)N (0≤a≤1,0≤b≤1)을 포함하는 전자 차단층;
    상기 전자 차단층과 상기 제2 도전형 반도체층 사이에 배치되어 AlxGa1-xN (0<x≤1)을 포함하는 제1 층과, 상기 제1 층 상에 GaN을 포함하는 제2 층과, 상기 제2 층 상에 상기 제1 층과 동일한 AlxGa1-xN (0<x≤1)을 포함하는 제3 층을 포함하는 정공 주입층;을 포함하고,
    상기 전자 차단층은 상기 활성층보다 큰 에너지 밴드갭을 가지고,
    상기 제1 층의 두께는 상기 제3 층의 두께와 동일하고,
    상기 제1 및 제3 층의 두께는 상기 제2 층의 두께보다 두껍고,
    상기 제1 층은 상기 전자 차단층의 상면과 직접 접촉하는 자외선 발광소자.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
KR1020150075846A 2015-05-29 2015-05-29 자외선 발광소자 KR102322692B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020150075846A KR102322692B1 (ko) 2015-05-29 2015-05-29 자외선 발광소자
PCT/KR2016/005672 WO2016195342A1 (ko) 2015-05-29 2016-05-27 자외선 발광소자
US15/577,609 US10263145B2 (en) 2015-05-29 2016-05-27 Ultraviolet light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150075846A KR102322692B1 (ko) 2015-05-29 2015-05-29 자외선 발광소자

Publications (2)

Publication Number Publication Date
KR20160139920A KR20160139920A (ko) 2016-12-07
KR102322692B1 true KR102322692B1 (ko) 2021-11-05

Family

ID=57440797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150075846A KR102322692B1 (ko) 2015-05-29 2015-05-29 자외선 발광소자

Country Status (3)

Country Link
US (1) US10263145B2 (ko)
KR (1) KR102322692B1 (ko)
WO (1) WO2016195342A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166732B1 (ko) * 2018-06-05 2020-10-16 이석헌 스트레인 정합구조를 가지는 자외선 발광소자
CN110335927B (zh) * 2019-07-11 2020-10-30 马鞍山杰生半导体有限公司 紫外led及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6958497B2 (en) * 2001-05-30 2005-10-25 Cree, Inc. Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures
KR101002271B1 (ko) 2002-07-16 2010-12-20 나이트라이드 세마이컨덕터스 코포레이션, 리미티드 질화갈륨계 화합물 반도체장치
KR100946034B1 (ko) * 2008-02-01 2010-03-09 삼성전기주식회사 질화물 반도체 발광소자
JP4877294B2 (ja) * 2008-08-19 2012-02-15 ソニー株式会社 半導体発光素子の製造方法
KR101018088B1 (ko) 2008-11-07 2011-02-25 삼성엘이디 주식회사 질화물 반도체 소자
KR20100059324A (ko) 2008-11-26 2010-06-04 삼성엘이디 주식회사 질화물 반도체 발광소자
KR101047691B1 (ko) 2008-12-12 2011-07-08 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20100070250A (ko) * 2008-12-17 2010-06-25 삼성엘이디 주식회사 질화물 반도체 발광소자
KR101799451B1 (ko) 2011-06-02 2017-11-20 엘지이노텍 주식회사 발광 소자
KR101201641B1 (ko) 2011-11-02 2012-11-14 주식회사 퀀텀디바이스 투명 박막, 이를 포함하는 발광 소자와 이들의 제조 방법
US9705030B2 (en) * 2012-04-18 2017-07-11 Technische Universität Berlin UV LED with tunnel-injection layer
KR20140001352A (ko) 2012-06-26 2014-01-07 엘지이노텍 주식회사 발광소자
KR101957816B1 (ko) * 2012-08-24 2019-03-13 엘지이노텍 주식회사 발광 소자
KR20150032115A (ko) * 2013-09-17 2015-03-25 엘지이노텍 주식회사 발광소자

Also Published As

Publication number Publication date
KR20160139920A (ko) 2016-12-07
WO2016195342A1 (ko) 2016-12-08
US20180138363A1 (en) 2018-05-17
US10263145B2 (en) 2019-04-16

Similar Documents

Publication Publication Date Title
KR101389348B1 (ko) 질화갈륨계 반도체 발광소자
KR102224116B1 (ko) 발광소자 및 조명시스템
US10177274B2 (en) Red light emitting diode and lighting device
US10069035B2 (en) Light-emitting device and lighting system
KR102322692B1 (ko) 자외선 발광소자
US10535795B2 (en) Ultraviolet light emitting element and lighting system having a quantum barrier structure for improved light emission efficiency
KR102461317B1 (ko) 자외선 발광소자, 발광소자 패키지 및 조명장치
KR102359824B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102212781B1 (ko) 발광소자 및 조명시스템
KR102224164B1 (ko) 발광소자 및 이를 구비하는 조명 시스템
KR102397266B1 (ko) 발광소자 및 조명장치
KR102315594B1 (ko) 발광소자 및 조명시스템
KR102398435B1 (ko) 적색 발광소자 및 조명장치
KR102237120B1 (ko) 발광소자 및 조명시스템
KR101238878B1 (ko) 고효율 무분극 질화갈륨계 발광 소자 및 그 제조 방법
KR102352770B1 (ko) 발광소자 및 조명시스템
KR102212775B1 (ko) 발광소자 및 조명시스템
KR102323706B1 (ko) 발광 소자
KR102212793B1 (ko) 발광소자 및 이를 포함하는 발광소자 패키지
KR102249647B1 (ko) 발광소자 및 조명시스템
KR102181490B1 (ko) 발광소자 및 조명시스템
KR102376672B1 (ko) 발광소자 및 발광소자 패키지
KR102302855B1 (ko) 발광소자 및 조명시스템
KR102432225B1 (ko) 발광소자 및 이를 포함하는 조명시스템
KR102322696B1 (ko) 자외선 발광소자 및 발광소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant