KR102276317B1 - 자가 발전형 페로브스카이트 x선 검출기 - Google Patents
자가 발전형 페로브스카이트 x선 검출기 Download PDFInfo
- Publication number
- KR102276317B1 KR102276317B1 KR1020190088845A KR20190088845A KR102276317B1 KR 102276317 B1 KR102276317 B1 KR 102276317B1 KR 1020190088845 A KR1020190088845 A KR 1020190088845A KR 20190088845 A KR20190088845 A KR 20190088845A KR 102276317 B1 KR102276317 B1 KR 102276317B1
- Authority
- KR
- South Korea
- Prior art keywords
- perovskite
- ray detector
- scintillator
- photodetector
- self
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 claims abstract description 68
- 230000031700 light absorption Effects 0.000 claims abstract description 68
- 239000000758 substrate Substances 0.000 claims abstract description 64
- 150000001768 cations Chemical class 0.000 claims abstract description 33
- 230000005525 hole transport Effects 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 150000001450 anions Chemical class 0.000 claims abstract description 11
- 150000002500 ions Chemical class 0.000 claims abstract description 3
- 238000005424 photoluminescence Methods 0.000 claims description 48
- 230000035945 sensitivity Effects 0.000 claims description 39
- 239000002159 nanocrystal Substances 0.000 claims description 29
- -1 polydimethylsiloxane Polymers 0.000 claims description 28
- 230000009257 reactivity Effects 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 15
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 15
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 14
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 14
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 10
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 10
- 239000004642 Polyimide Substances 0.000 claims description 10
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 10
- 229920001721 polyimide Polymers 0.000 claims description 10
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 230000001052 transient effect Effects 0.000 claims description 7
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 6
- 229920001230 polyarylate Polymers 0.000 claims description 6
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
- ODPYDILFQYARBK-UHFFFAOYSA-N 7-thiabicyclo[4.1.0]hepta-1,3,5-triene Chemical compound C1=CC=C2SC2=C1 ODPYDILFQYARBK-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 135
- 238000005452 bending Methods 0.000 description 25
- 230000004044 response Effects 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 239000011230 binding agent Substances 0.000 description 14
- 230000008859 change Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000010409 thin film Substances 0.000 description 12
- 229910021417 amorphous silicon Inorganic materials 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000011895 specific detection Methods 0.000 description 10
- 238000000151 deposition Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000004734 Polyphenylene sulfide Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 229920000069 polyphenylene sulfide Polymers 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- 229920000144 PEDOT:PSS Polymers 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000004528 spin coating Methods 0.000 description 6
- 238000005507 spraying Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 229910001507 metal halide Inorganic materials 0.000 description 5
- 150000005309 metal halides Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 238000000103 photoluminescence spectrum Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000002207 thermal evaporation Methods 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920005570 flexible polymer Polymers 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001767 cationic compounds Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010549 co-Evaporation Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000001523 electrospinning Methods 0.000 description 3
- 238000007756 gravure coating Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 229910001411 inorganic cation Inorganic materials 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 238000009607 mammography Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 150000002892 organic cations Chemical class 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000007764 slot die coating Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- HPJFXFRNEJHDFR-UHFFFAOYSA-N 22291-04-9 Chemical compound C1=CC(C(N(CCN(C)C)C2=O)=O)=C3C2=CC=C2C(=O)N(CCN(C)C)C(=O)C1=C32 HPJFXFRNEJHDFR-UHFFFAOYSA-N 0.000 description 2
- XQNMSKCVXVXEJT-UHFFFAOYSA-N 7,14,25,32-tetrazaundecacyclo[21.13.2.22,5.03,19.04,16.06,14.08,13.020,37.024,32.026,31.034,38]tetraconta-1(36),2,4,6,8,10,12,16,18,20(37),21,23(38),24,26,28,30,34,39-octadecaene-15,33-dione 7,14,25,32-tetrazaundecacyclo[21.13.2.22,5.03,19.04,16.06,14.08,13.020,37.025,33.026,31.034,38]tetraconta-1(37),2,4,6,8,10,12,16,18,20,22,26,28,30,32,34(38),35,39-octadecaene-15,24-dione Chemical compound O=c1c2ccc3c4ccc5c6nc7ccccc7n6c(=O)c6ccc(c7ccc(c8nc9ccccc9n18)c2c37)c4c56.O=c1c2ccc3c4ccc5c6c(ccc(c7ccc(c8nc9ccccc9n18)c2c37)c46)c1nc2ccccc2n1c5=O XQNMSKCVXVXEJT-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 2
- 229920000280 Poly(3-octylthiophene) Polymers 0.000 description 2
- 229920001167 Poly(triaryl amine) Polymers 0.000 description 2
- 239000004693 Polybenzimidazole Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- NPNMHHNXCILFEF-UHFFFAOYSA-N [F].[Sn]=O Chemical compound [F].[Sn]=O NPNMHHNXCILFEF-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 description 2
- 238000002591 computed tomography Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 229940071870 hydroiodic acid Drugs 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920003936 perfluorinated ionomer Polymers 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002480 polybenzimidazole Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229960002796 polystyrene sulfonate Drugs 0.000 description 2
- 239000011970 polystyrene sulfonate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 2
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- VTJFHMXDKGXZFC-UHFFFAOYSA-N 2,4,6-tris(3-pyrimidin-5-ylphenyl)-1,3,5-triazine Chemical compound c1cc(cc(c1)-c1nc(nc(n1)-c1cccc(c1)-c1cncnc1)-c1cccc(c1)-c1cncnc1)-c1cncnc1 VTJFHMXDKGXZFC-UHFFFAOYSA-N 0.000 description 1
- GTPNJFWMUYHPEP-UHFFFAOYSA-N 2-(4-phenylphenyl)-5-[6-[6-[5-(4-phenylphenyl)-1,3,4-oxadiazol-2-yl]pyridin-2-yl]pyridin-2-yl]-1,3,4-oxadiazole Chemical group C1=CC=CC=C1C1=CC=C(C=2OC(=NN=2)C=2N=C(C=CC=2)C=2N=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GTPNJFWMUYHPEP-UHFFFAOYSA-N 0.000 description 1
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 description 1
- UICMBMCOVLMLIE-UHFFFAOYSA-N 2-[4-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]phenyl]-4,6-diphenyl-1,3,5-triazine Chemical group C1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2N=C(N=C(N=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=N1 UICMBMCOVLMLIE-UHFFFAOYSA-N 0.000 description 1
- RKVIAZWOECXCCM-UHFFFAOYSA-N 2-carbazol-9-yl-n,n-diphenylaniline Chemical compound C1=CC=CC=C1N(C=1C(=CC=CC=1)N1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=CC=C1 RKVIAZWOECXCCM-UHFFFAOYSA-N 0.000 description 1
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- JAYBIBLZTQMCAY-UHFFFAOYSA-N 3-decylthiophene Chemical compound CCCCCCCCCCC=1C=CSC=1 JAYBIBLZTQMCAY-UHFFFAOYSA-N 0.000 description 1
- LBILMILSSHNOHK-UHFFFAOYSA-N 3-hexylthiophene Chemical compound CCCCCCC=1C=[C]SC=1 LBILMILSSHNOHK-UHFFFAOYSA-N 0.000 description 1
- AWXGSYPUMWKTBR-UHFFFAOYSA-N 4-carbazol-9-yl-n,n-bis(4-carbazol-9-ylphenyl)aniline Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(N(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 AWXGSYPUMWKTBR-UHFFFAOYSA-N 0.000 description 1
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 1
- UNANDJIJRBQOOF-UHFFFAOYSA-N 5-(dimethoxymethyl)-1,3-benzodioxole Chemical compound COC(OC)C1=CC=C2OCOC2=C1 UNANDJIJRBQOOF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 101000837344 Homo sapiens T-cell leukemia translocation-altered gene protein Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 102100028692 T-cell leukemia translocation-altered gene protein Human genes 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 229910007717 ZnSnO Inorganic materials 0.000 description 1
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229920000109 alkoxy-substituted poly(p-phenylene vinylene) Polymers 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- FQHFBFXXYOQXMN-UHFFFAOYSA-M lithium;quinolin-8-olate Chemical compound [Li+].C1=CN=C2C([O-])=CC=CC2=C1 FQHFBFXXYOQXMN-UHFFFAOYSA-M 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 238000013160 medical therapy Methods 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920000264 poly(3',7'-dimethyloctyloxy phenylene vinylene) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000003949 trap density measurement Methods 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000005301 willow glass Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
- A61B6/4208—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
- A61B6/4233—Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/42—Arrangements for detecting radiation specially adapted for radiation diagnosis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G21/00—Compounds of lead
- C01G21/006—Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/026—Semiconductor dose-rate meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/161—Applications in the field of nuclear medicine, e.g. in vivo counting
- G01T1/1611—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially
- G01T1/1612—Applications in the field of nuclear medicine, e.g. in vivo counting using both transmission and emission sources sequentially with scintillation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2006—Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/2018—Scintillation-photodiode combinations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
- G01T1/2023—Selection of materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14658—X-ray, gamma-ray or corpuscular radiation imagers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/30—Three-dimensional structures
- C01P2002/34—Three-dimensional structures perovskite-type (ABO3)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Medical Informatics (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Toxicology (AREA)
- Measurement Of Radiation (AREA)
Abstract
본 발명은 자가 발전형 페로브스카이트 X선 검출기를 개시한다. 본 발명의 실시예에 따른 자가 발전형 페로브스카이트 X선 검출기는 입사된 엑스선(X-ray)을 가시광선으로 변환하는 신틸레이터(scintillator)와 페로브스카이트 광 검출기가 결합된 것으로서, 상기 페로브스카이트 광 검출기는, 상기 신틸레이터의 하부에 배치되는 기판; 상기 기판의 하부에 형성되는 제1 전극; 상기 제1 전극의 하부에 형성되는 정공 전달층; 상기 정공 전달층의 하부에 형성되는 페로브스카이트 광흡수층; 상기 페로브스카이트 광흡수층의 하부에 형성되는 전자 전달층; 및 상기 전자 전달층의 하부에 형성되는 제2 전극을 포함하고, 상기 신틸레이터 및 상기 페로브스카이트 광흡수층은 하기의 화학식 1로 표시되는 페로브스카이트 화합물을 포함하는 것을 특징으로 한다.
[화학식 1]
AaMbXc
(상기 화학식 1에서, A는 1가의 양이온, M은 2가의 금속 양이온 또는 3가의 금속 양이온, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=4c이며, a, b, c는 자연수임.)
[화학식 1]
AaMbXc
(상기 화학식 1에서, A는 1가의 양이온, M은 2가의 금속 양이온 또는 3가의 금속 양이온, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=4c이며, a, b, c는 자연수임.)
Description
본 발명은 자가 발전형 페로브스카이트 X선 검출기에 관한 것이다.
빌헬름 뢴트겐(Wilhelm Rφntgen)이 엑스선을 발견한 이후 결정학, 의학 검사 및 치료, 비파괴 산업 검사, 보안 검사 및 우주 탐사와 같은 상업적 응용을 찾기 위해 광범위한 연구가 수행되었다.
5~10keV의 에너지를 가진 경엑스선(hard x-ray)은 긴 침투 깊이로 인해 일반적으로 결정 구조, 유방 조영술, 구내 구조, 컴퓨터 단층 촬영 (CT) 및 공항 보안 스캔의 엑스선 영상을 얻는데 사용되었다.
엑스선 소스의 방출 스펙트럼은 스파이크 모양의 특성 엑스선 및 광범위한 스펙트럼을 가진 제동 복사 엑스선으로 분류할 수 있다.
예를 들어, ~30keV의 에너지를 갖는 특성 엑스선은 유방 엑스선 검사에 사용되며, 제동 복사 엑스선은 흉부 방사선 촬영용으로 사용된다.
엑스선 검출기는 직접형 및 간접형으로 분류할 수 있다.
직접형 엑스선 검출기는 비정질 Se(a-Se)와 같은 엑스선 흡수층에서 생성 된 엑스선 광전자를 직접 인가된 바이어스 전압으로 포착하여 고해상도를 얻을 수 있는 것으로, 유방 엑스선 촬영에 적용될 수 있다.
간접형 엑스선 검출기는 엑스선을 흡수하여 빛을 방출하는 CsI : Tl 및 Gd2O2S : Tb, GOS와 같은 신틸레이터 및 a-Si 광 검출기와 같은 광 검출기를 포함한다.
간접형 엑스선 검출기는 직접형 엑스선 검출기보다 저렴하고 안정적이기 때문에 대부분의 시장을 점유하고 있으나, 환자의 방사선 피폭을 최소화하기 위해 고감도, 고해상도 및 고속 스캔 속도로 엑스선 검출기를 시연하는 것은 매우 어렵다.
또한, 유연한 엑스선 검출기는 곡선 구조를 분석하는데 중요하다.
야쿠닌 등(Yakunin et al.)은 고감도(25μCm/Gyaircm3) 및 고감응도(1.9Х104 carrier/photon)를 갖는 CH3NH3PbI3(MAPbI3) 페로브스카이트 X선 검출기의 직접형을 보고했다.
또한 웨이 등(Wei et al.)은 a-Se 검출기보다 4배 더 높은 감도인 80μCm/Gyaircm3의 감도를 가진 직접형 MAPbBr3 단결정 페로브스카이트 X선 검출기를 보고했다.
또한, 김 등(Kim et al.)은 인쇄 공정에 의해 11μCm/Gyaircm3의 대면적(50Х50cm2) 직접형 페로브스카이트 X선 검출기를 보고했다.
그러나, 직접형 페로브스카이트 X선 검출기는 매우 두꺼운 결정형 페로브스카이트층을 어레이형 박막 트랜지스터(TFT) 상에 증착하여 제조되기 때문에, 유연한 페로브스카이트 X선 검출기를 만드는 것이 본질적으로 어렵다.
최근, CsPbBr3 페로브스카이트 나노 결정(PNCs) 신틸레이터 기반의 간접형 X선 검출기가 보고되었으나, CsPbBr3 PNCs는 신틸레이터용 폴리메틸메타크릴 레이트(PMMA) 매트릭스에 비교적 딱딱하게 분산되어 있었고, 어레이형 광 검출기는 단단한 기판 위에 형성되어 유연성을 갖지 못했다.
본 발명의 실시예는 페로브스카이트 화합물을 포함하는 신틸레이터와 페로브스카이트 광 검출기가 결합되어, 페로브스카이트 화합물로 인한 신틸레이터 및 페로브스카이트 광 검출기의 PL 수명 및 반응 특성이 시너지 효과를 일으켜 페로브스카이트 X선 검출기의 PL 수명 및 반응 특성을 향상시킬 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명의 실시예는 신틸레이터 및 페로브스카이트 광 검출기가 모두 페로브스카이트 화합물로 이루어져, 페로브스카이트 X선 검출기가 높은 반응도 및 비검출률을 가질 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명의 실시예는 신틸레이터 및 페로브스카이트 광 검출기가 모두 페로브스카이트 화합물로 이루어져, 페로브스카이트 X선 검출기가 엑스선을 민감하게 검출할 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명의 실시예는 신틸레이터 및 페로브스카이트 광 검출기가 모두 유연성을 가져, 페로브스카이트 X선 검출기 역시 유연성을 가질 수 있고, 이를 다양한 굴곡을 가지는 구조에 적용시킬 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명의 실시예는 페로브스카이트 X선 검출기가 곡률 반경의 변화와 상관없이 일정한 반응도를 가져, 뛰어난 유연 내구성을 가질 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명의 실시예는 페로브스카이트 X선 검출기가 반복적인 벤딩 횟수에 상관없이 거의 일정한 반응도를 가져, 뛰어난 유연 내구성을 가질 수 있는 자가 발전형 페로브스카이트 X선 검출기를 제공하고자 한다.
본 발명에 따른 페로브스카이트 X선 검출기는 입사된 엑스선(X-ray)을 가시광선으로 변환하는 신틸레이터(scintillator)의 하부에 페로브스카이트 광 검출기가 배치된 것으로서, 상기 페로브스카이트 광 검출기는, 상기 신틸레이터의 하부에 배치되는 기판; 상기 기판의 하부에 형성되는 제1 전극; 상기 제1 전극의 하부에 형성되는 정공 전달층; 상기 정공 전달층의 하부에 형성되는 페로브스카이트 광흡수층; 상기 페로브스카이트 광흡수층의 하부에 형성되는 전자 전달층; 및 상기 전자 전달층의 하부에 형성되는 제2 전극을 포함하고, 상기 신틸레이터 및 상기 페로브스카이트 광흡수층은 하기의 화학식 1로 표시되는 페로브스카이트 화합물을 포함하는 것을 특징으로 한다.
[화학식 1]
AaMbXc
(상기 화학식 1에서, A는 1가의 양이온, M은 2가의 금속 양이온 또는 3가의 금속 양이온, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=4c이며, a, b, c는 자연수임.)
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 유연 페로브스카이트 X선 검출기는 유연소자 또는 비유연 소자일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 신틸레이터는 PDMS(polydimethylsiloxane), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈렌(PEN), 폴리이미드(PI), 트리아세틸셀루로우스(TAC), 폴리아크릴(PA), 폴리우레탄(PU), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP) 중 적어도 어느 하나를 포함할 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 신틸레이터에 포함된 페로브스카이트 화합물은 나노 결정일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 1가의 양이온은, C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬, Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+ 및 Au(I)+으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 2가의 금속 양이온은 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+ 및 Rf2+로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 3가의 금속 양이온은 In3+, Bi3+, Co3+, Sb3+, Ni3+, Al3+, Ga3+, Tl3+, Sc3+, Y3+, La3+, Ce3+, Fe3+, Ru3+, Cr3+, V3+, Ti3+로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 1가의 음이온은 F-, Cl-, Br-, I-, SCN-, BF4 - 및 PF6 -으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 신틸레이터의 순간 광 루미네선스(transient PL) 평균 수명은 0.1ns 내지 1000ns일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 신틸레이터의 두께는 1μm 내지 1.5mm일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 페로브스카이트 광흡수층의 두께는 10nm 내지 200μm 일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 페로브스카이트 광 검출기의 반응도(responsivity, R)는 0.0001A/W 내지 1A/W 일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 페로브스카이트 광 검출기의 비검출률(specific detectivity, D*)은 109cmHz0.5/W 내지 1013cmHz0.5/W 일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 페로브스카이트 광 검출기의 반응 시간은 0.01μs 내지 100μs 일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 유연 페로브스카이트 X선 검출기의 전류밀도는 0.00001mA/cm2 내지 10mA/cm2일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 유연 페로브스카이트 X선 검출기의 엑스선 감도는 활성 영역의 면적을 기준으로 10μCmGyair -1cm-2 내지 1,000μCmGyair -1cm-2 일 수 있다.
본 발명에 따른 페로브스카이트 X선 검출기에 따르면, 상기 페로브스카이트 X선 검출기의 엑스선 감도는 활성 영역의 부피를 기준으로 100μCmGyair -1cm-3 내지 10,000μCmGyair -1cm-3일 수 있다.
본 발명의 실시예에 따르면, 페로브스카이트 화합물을 포함하는 신틸레이터와 페로브스카이트 광 검출기가 결합되어, 페로브스카이트 화합물로 인한 신틸레이터 및 페로브스카이트 광 검출기의 PL 수명 및 반응 특성이 시너지 효과를 일으켜 페로브스카이트 X선 검출기의 PL 수명 및 반응 특성을 향상시킬 수 있다.
본 발명의 실시예에 따르면, 신틸레이터 및 페로브스카이트 광 검출기가 모두 페로브스카이트 화합물로 이루어져, 페로브스카이트 X선 검출기가 높은 반응도 및 비검출률을 가질 수 있다.
본 발명의 실시예에 따르면, 신틸레이터 및 페로브스카이트 광 검출기가 모두 페로브스카이트 화합물로 이루어져, 페로브스카이트 X선 검출기가 엑스선을 민감하게 검출할 수 있다.
본 발명의 실시예에 따르면, 신틸레이터 및 페로브스카이트 광 검출기가 모두 유연성을 가져, 페로브스카이트 X선 검출기 역시 유연성을 가질 수 있고, 이를 다양한 굴곡을 가지는 구조에 적용시킬 수 있다.
본 발명의 실시예에 따르면, 페로브스카이트 X선 검출기는 곡률 반경의 변화와 상관없이 일정한 반응도를 가져, 뛰어난 유연 내구성을 가질 수 있다.
본 발명의 실시예에 따르면, 페로브스카이트 X선 검출기는 반복적인 벤딩 횟수에 상관없이 거의 일정한 반응도를 가져, 뛰어난 유연 내구성을 가질 수 있다.
도 1은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 전체적인 모습을 도시한 모식도이다.
도 2는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 구체적인 모습을 도시한 단면도이다.
도 3은 본 발명의 실시예에 따른 신틸레이터를 도시한 전자투과현미경(transmission electron microscopy, TEM) 이미지 및 조사광에 따른 신틸레이터의 발광 모습을 도시한 이미지이다.
도 4는 본 발명의 실시예에 따른 신틸레이터의 엑스선 회절(X-ray diffraction, XRD) 패턴을 도시한 그래프이다.
도 5는 본 발명의 실시예에 따른 신틸레이터의 자외선-가시광선(UV-visible)과 광 루미네선스(photoluminescence, PL) 스펙트럼을 도시한 그래프이다.
도 6은 본 발명의 실시예에 따른 신틸레이터의 일시적 PL 감소(transient PL decay) 곡선을 도시한 그래프이다.
도 7은 본 발명의 실시예에 따른 신틸레이터의 관 전류에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
도 8은 본 발명의 실시예에 따른 신틸레이터의 관 전압에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
도 9는 본 발명의 실시예에 따른 신틸레이터 및 페로브스카이트 광 검출기의 엑스선 광자 에너지(X-ray photon energy)에 따른 질량 감쇠(mass attenuation)를 도시한 그래프이다.
도 10은 본 발명의 실시예에 따른 신틸레이터의 관 전압이 90keV일 때 관 전류에 따른 PL 스펙트럼을 도시한 그래프이다.
도 11은 본 발명의 실시예에 따른 신틸레이터의 관 전류가 1mA일 때 관 전압에 따른 PL 스펙트럼을 도시한 그래프이다.
도 12는 본 발명의 실시예에 따른 신틸레이터의 곡률 반경에 따른 PL 강도를 도시한 그래프이다.
도 13은 본 발명의 실시예에 따른 신틸레이터의 반복적인 벤딩 횟수에 따른 PL 강도를 도시한 그래프이다.
도 14는 본 발명의 실시예에 따른 신틸레이터의 사용 일수에 대한 PL 강도를 도시한 그래프이다.
도 15는 본 발명의 실시예에 따른 신틸레이터의 엑스선 노출에 따른 PL 강도를 도시한 그래프이다.
도 16은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 단면을 도시한 전자주사현미경(scanning electron microscopy, SEM) 이미지이다.
도 17은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 전류밀도-전압(J-V) 곡선을 도시한 그래프이다.
도 18은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 반응도(responsivity)와 비검출률(specific detectivity)을 도시한 그래프이다.
도 19는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 스펙트럼 잡음 밀도(noise spectral density)를 도시한 그래프이다.
도 20은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 선형 동적 범위(linear dynamic range, LDR)를 도시한 그래프이다.
도 21은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 신호 감쇠를 도시한 그래프이다.
도 22는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 1MHz의 입력 펄스 변조에서 출력 광 전류 신호를 도시한 그래프이다.
도 23은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기를 구부린 모습을 도시한 이미지이다.
도 24는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 곡률 반경에 따른 전류밀도-전압 곡선을 도시한 그래프이다.
도 25는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 전류 밀도를 도시한 그래프이다.
도 26은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 반응도를 도시한 그래프이다.
도 27은 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류밀도를 도시한 그래프이다.
도 28은 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
도 29는 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 50ms 간격으로 엑스선 입력 신호를 가했을 때의 출력 신호를 도시한 그래프이다.
도 30은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류 밀도를 도시한 그래프이다.
도 31은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
도 32a는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 6mm일 때 출력 신호를 도시한 그래프이다.
도 32b는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 4mm일 때 출력 신호를 도시한 그래프이다.
도 32c는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 2mm일 때 출력 신호를 도시한 그래프이다.
도 2는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 구체적인 모습을 도시한 단면도이다.
도 3은 본 발명의 실시예에 따른 신틸레이터를 도시한 전자투과현미경(transmission electron microscopy, TEM) 이미지 및 조사광에 따른 신틸레이터의 발광 모습을 도시한 이미지이다.
도 4는 본 발명의 실시예에 따른 신틸레이터의 엑스선 회절(X-ray diffraction, XRD) 패턴을 도시한 그래프이다.
도 5는 본 발명의 실시예에 따른 신틸레이터의 자외선-가시광선(UV-visible)과 광 루미네선스(photoluminescence, PL) 스펙트럼을 도시한 그래프이다.
도 6은 본 발명의 실시예에 따른 신틸레이터의 일시적 PL 감소(transient PL decay) 곡선을 도시한 그래프이다.
도 7은 본 발명의 실시예에 따른 신틸레이터의 관 전류에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
도 8은 본 발명의 실시예에 따른 신틸레이터의 관 전압에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
도 9는 본 발명의 실시예에 따른 신틸레이터 및 페로브스카이트 광 검출기의 엑스선 광자 에너지(X-ray photon energy)에 따른 질량 감쇠(mass attenuation)를 도시한 그래프이다.
도 10은 본 발명의 실시예에 따른 신틸레이터의 관 전압이 90keV일 때 관 전류에 따른 PL 스펙트럼을 도시한 그래프이다.
도 11은 본 발명의 실시예에 따른 신틸레이터의 관 전류가 1mA일 때 관 전압에 따른 PL 스펙트럼을 도시한 그래프이다.
도 12는 본 발명의 실시예에 따른 신틸레이터의 곡률 반경에 따른 PL 강도를 도시한 그래프이다.
도 13은 본 발명의 실시예에 따른 신틸레이터의 반복적인 벤딩 횟수에 따른 PL 강도를 도시한 그래프이다.
도 14는 본 발명의 실시예에 따른 신틸레이터의 사용 일수에 대한 PL 강도를 도시한 그래프이다.
도 15는 본 발명의 실시예에 따른 신틸레이터의 엑스선 노출에 따른 PL 강도를 도시한 그래프이다.
도 16은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 단면을 도시한 전자주사현미경(scanning electron microscopy, SEM) 이미지이다.
도 17은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 전류밀도-전압(J-V) 곡선을 도시한 그래프이다.
도 18은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 반응도(responsivity)와 비검출률(specific detectivity)을 도시한 그래프이다.
도 19는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 스펙트럼 잡음 밀도(noise spectral density)를 도시한 그래프이다.
도 20은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 선형 동적 범위(linear dynamic range, LDR)를 도시한 그래프이다.
도 21은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 신호 감쇠를 도시한 그래프이다.
도 22는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 1MHz의 입력 펄스 변조에서 출력 광 전류 신호를 도시한 그래프이다.
도 23은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기를 구부린 모습을 도시한 이미지이다.
도 24는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 곡률 반경에 따른 전류밀도-전압 곡선을 도시한 그래프이다.
도 25는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 전류 밀도를 도시한 그래프이다.
도 26은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 반응도를 도시한 그래프이다.
도 27은 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류밀도를 도시한 그래프이다.
도 28은 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
도 29는 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 50ms 간격으로 엑스선 입력 신호를 가했을 때의 출력 신호를 도시한 그래프이다.
도 30은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류 밀도를 도시한 그래프이다.
도 31은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
도 32a는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 6mm일 때 출력 신호를 도시한 그래프이다.
도 32b는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 4mm일 때 출력 신호를 도시한 그래프이다.
도 32c는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 2mm일 때 출력 신호를 도시한 그래프이다.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예에 의해 제한되거나 한정되는 것은 아니다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계는 하나 이상의 다른 구성요소, 단계의 존재 또는 추가를 배제하지 않는다.
본 명세서에서 사용되는 "실시예", "예", "측면", "예시" 등은 기술된 임의의 양상(aspect) 또는 설계가 다른 양상 또는 설계들보다 양호하다거나, 이점이 있는 것으로 해석되어야 하는 것은 아니다.
또한, '또는'이라는 용어는 배타적 논리합 'exclusive or'이기보다는 포함적인 논리합 'inclusive or'를 의미한다. 즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다'라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.
또한, 본 명세서 및 청구항들에서 사용되는 단수 표현("a" 또는 "an")은, 달리 언급하지 않는 한 또는 단수 형태에 관한 것이라고 문맥으로부터 명확하지 않는 한, 일반적으로 "하나 이상"을 의미하는 것으로 해석되어야 한다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
한편, 본 발명의 설명함에 있어서, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 상세한 설명을 생략할 것이다. 그리고, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 전체적인 모습을 도시한 모식도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110)와 페로브스카이트 광 검출기(120)가 결합된 형태를 가진다.
구체적으로 신틸레이터(110)의 하부에 페로브스카이트 광 검출기(120)가 위치할 수 있다.
본 발명의 실시예에 따른 신틸레이터(110)는 입사된 엑스선(X-ray)을 가시광선으로 변환하는 것으로서 CsPbBr3와 같은 페로브스카이트 화합물을 포함할 수 있다.
또한, 신틸레이터(110)는 유연성을 가지기 위해 PDMS(polydimethylsiloxane), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈렌(PEN), 폴리이미드(PI), 트리아세틸셀루로우스(TAC), 폴리아크릴(PA), 폴리우레탄(PU), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP) 또는 이들의 조합과 같은 유연 고분자를 포함할 수 있다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)는 기판(121), 제1 전극(122), 정공 전달층(123), 페로브스카이트 화합물로 이루어진 페로브스카이트 광흡수층(124), 전자 전달층(125), 제2 전극(126)을 포함할 수 있다.
또한, 페로브스카이트 광 검출기(120)는 유연성을 가지기 위해 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈렌(PEN), 폴리이미드(PI), 트리아세틸셀루로우스(TAC), 폴리아크릴(PA), 폴리디메틸실록산(PDMS), 폴리우레탄(PU), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP)와 같은 유연 고분자를 포함하는 유연 기판을 사용할 수 있다.
실시예에 따라서, 페로브스카이트 광 검출기(120)는 윌로우 글래스(willow glass)와 같은 비유연 기판을 사용할 수 있다.
페로브스카이트 광 검출기(120)가 유연 기판을 포함할 경우, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기는 유연소자일 수 있다.
또한, 페로브스카이트 광 검출기(120)가 비유연 기판을 포함할 경우, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기는 비유연 소자일 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110)의 하부에 페로브스카이트 광 검출기(120)의 기판(121)이 맞닿도록 페로브스카이트 광 검출기(120)를 배치할 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 유연한 신틸레이터(110)와 유연한 페로브스카이트 광 검출기(120)가 결합되기 때문에, 페로브스카이트 X선 검출기(100) 역시 유연성을 가질 수 있다.
실시예에 따라서, 신틸레이터(110) 상면에 탄소섬유 강화 폴리머(carbon fiber reinforced polymer, CFRP)층을 형성하여 외부 빛을 차단할 수 있다.
일반적인 광 검출기는 포토컨덕티브(photoconductive) 타입으로 외부에서 전기장을 걸어주면서 전류 신호 값을 입력받기 때문에 외부 전원이 필요하다.
그러나, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110)와 페로브스카이트 광 검출기(120)가 결합되어, 외부 전원 없이 X선 검출이 가능하다.
구체적으로, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 X선 의해 신틸레이터(110)가 빛을 내면 신틸레이터(110)의 하부에 위치한 페로브스카이트 광 검출기(120)가 전기를 생산하여 회로 내부에서 신호로 입력되므로, 외부에 추가적인 전원이 필요 없다.
또한, 페로브스카이트 X선 검출기(100)는 신틸레이터(110)와 페로브스카이트 광 검출기(120)가 모두 페로브스카이트 화합물을 포함하여, 엑스선 감도가 높아 엑스선 검출 효율이 향상될 수 있다.
일반적으로 X선 검출기는 직접방식(직접변환방식) 및 간접방식(간접변환방식)으로 구분될 수 있다.
직접방식의 X선 검출기는 입사된 X선을 가시광선으로의 전환 없이 X선 조사에 의해 바로 전하(전자-정공 쌍)를 발생시키는 포토컨덕터(photoconductor, 광전도체) 및 상기 포토컨덕터로부터 전하를 전달받아 전기적인 신호로 읽기 위한 복수의 픽셀전극을 포함할 수 있다.
반면, 간접방식의 X선 검출기는 X선을 흡수하여 가시광선을 발생시키는 신틸레이터(110)(scintillator, 섬광체) 및 상기 신틸레이터(110)에 의해 발생한 가시광선을 전기적인 신호로 읽기 위한 광전변환소자를 포함하여 구성된다.
즉, 간접방식은 신틸레이터(110)에서 X선을 가시광선으로 변환 후, 변환된 가시광선을 포토다이오드와 같은 광전변환소자를 통해 전하로 변환하는 방식이다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110) 및 페로브스카이트 광 검출기(120)를 포함하므로, 간접형 X선 검출기라 할 수 있다.
이하, 도 2에서 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)의 구성에 대해 구체적으로 설명하도록 한다.
도 2는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 구체적인 모습을 도시한 단면도이다.
도 2를 참조하면, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110) 및 페로브스카이트 광 검출기(120)를 포함한다.
신틸레이터(110)는 외부로부터 입사된 엑스선(X-ray)을 가시광선으로 변환한다.
신틸레이터(110)는 엑스선이 조사되면 여기되었던 전자와 정공이 만나 중성의 쌍을 이뤄 하나의 입자처럼 움직이게 되는 엑시톤을 생성하여 빛을 발생(발광)시킨다. 이로 인해, 신틸레이터(110)는 외부의 인가 전압 없이도 사용이 가능하다. 즉, 신틸레이터(110)는 발광의 역할을 한다.
신틸레이터(110)는 페로브스카이트 화합물을 포함한다. 구체적으로, 신틸레이터(110)는 외부로부터 입사된 엑스선을 흡수하여 가시광선으로 변환할 수 있는 물질로서, 페로브스카이트 구조(perovskite structure)를 갖는 페로브스카이트 화합물을 포함할 수 있다.
신틸레이터(110)는 하기 화학식 1로 표시되는 페로브스카이트 화합물을 포함할 수 있다.
[화학식 1]
AaMbXc
상기 화학식 1에서, A는 1가의 양이온이고, M은 2가의 금속 양이온이며, X는 1가의 음이온이고, a+2b=c이며, a, b, c는 자연수이다.
또는, 상기 화학식 1에서 A는 1가의 양이온이고, M은 3가의 금속 양이온이며, X는 1가의 음이온이고, a+3b=4c이며, a, b, c는 자연수이다.
실시예에 따라서, 신틸레이터(110)에 포함된 페로브스카이트 화합물은 화학식 1로 표시되는 페로브스카이트 중 M이 2가의 금속 양이온인 물질과 3가의 금속 양이온인 물질의 화합물 형태일 수 있다.
상기 1가의 양이온(A)는 1가의 유기 양이온, 1가의 무기 양이온 또는 이들의 조합일 수 있다.
구체적으로, 페로브스카이트 화합물은 상기 화학식 1 중 A의 종류에 따라, 유무기 하이브리드 페로브스카이트 화합물(organic/inorganic hybrid perovskite compound) 또는 무기금속할라이드 페로브스카이트 화합물(inorganic metal halide perovskite compound)일 수 있다.
보다 구체적으로, 상기 화학식 1에서 1가의 양이온이 1가의 유기 양이온일 경우, 페로브스카이트 화합물은 유기물인 A와, 무기물인 M 및 X로 구성되어 유기물과 무기물이 복합 구성된 유무기 하이브리드 페로브스카이트 화합물일 수 있다.
반면, 상기 화학식 1에서 1가의 양이온이 1가의 무기 양이온일 경우, 페로브스카이트 화합물은 무기물인 A, M 및 X로 구성되어 전부 무기물로 구성된 무기금속할라이드 페로브스카이트 화합물일 수 있다.
유무기 하이브리드 페로브스카이트 화합물의 경우, 유기물의 장점과 무기물의 장점을 모두 가져 후막(thick film)으로의 제조가 용이하고 재현성이 높으며 엑스선에 대한 내구성(durability) 및 안정성(stability)을 향상시킬 수 있다.
한편, 페로브스카이트 화합물이 무기금속할라이드 페로브스카이트 화합물일 경우, 유무기 하이브리드 페로브스카이트 화합물과 같이 후막으로의 제조가 용이하고 재현성이 높다.
또한, 무기금속할라이드의 페로브스카이트 화합물의 경우, 유기물을 사용하지 않기 때문에 유무기 하이브리드 페로브스카이트에 비해 내구성 및 안정성이 더 높다는 장점이 있다.
상기 1가의 유기 양이온은 C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬 또는 이들의 조합일 수 있다.
상기 1가의 무기 양이온은 Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+, Au(I)+ 또는 이들의 조합일 수 있다.
상기 2가의 금속 양이온은 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+, Rf2+ 또는 이들의 조합일 수 있다.
실시예에 따라서, 상기 화학식 1의 M이 상기 3가의 금속 양이온일 경우 In3+, Bi3+, Co3+, Sb3+, Ni3+, Al3+, Ga3+, Tl3+, Sc3+, Y3+, La3+, Ce3+, Fe3+, Ru3+, Cr3+, V3+, Ti3+ 또는 이들의 조합일 수 있다.
상기 1가의 음이온은 F-, Cl-, Br-, I-, SCN-, BF4 -, PF6 - 또는 이들의 조합일 수 있다.
상기 화학식 1로 표시되는 페로브스카이트 화합물은 유기물과 무기물이 혼합 구성될 수 있다.
예를 들어, 1가의 양이온은 메틸암모늄(MA, methylammonium)이고, 2가의 금속 양이온은 납(Pb)이며, 1가의 음이온은 요오드(I)일 경우, 페로브스카이트 화합물은 MAPbI3의 화학구조를 가질 수 있다.
또한, 1가의 양이온이 세슘(Cs), 2가의 금속 양이온이 납(Pb), 1가의 음이온이 브롬(Br)일 경우, 페로브스카이트 화합물은 CsPbBr3의 화학구조를 가질 수 있다.
실시예에 따라서, 1가의 음이온이 I 이외에, Br 또는 Cl과 조합될 경우, 페로브스카이트 화합물은 MAPb(I1-xBrx)3 또는 MAPb(I1-xClx)3의 화학구조(x는 0 < x < 1)를 가질 수 있다.
실시예에 따라서, 상기 페로브스카이트 화합물은 복수 개의 나노 결정(nanocrystal)(이하, '페로브스카이트 나노 결정'이라고 함) 형태로 신틸레이터(110)에 포함될 수 있다.
상기 페로브스카이트 나노 결정은 신틸레이터(110)에서 발광체로 사용된다.
상기 페로브스카이트 화합물의 입자 크기, 즉, 페로브스카이트 나노 결정의 직경은 1㎚ 내지 900㎚ 범위일 수 있고, 바람직하게는 1㎚ 내지 500㎚ 범위일 수 있다.
페로브스카이트 나노 결정의 크기가 1㎚ 미만일 경우, 입자 크기에 의해 밴드갭(band gap)이 변하게 되고, 입자 크기의 분포를 조절하기 어려우며, 미세한 조절을 요구하기 때문에 대량 생산에 불리하다는 문제가 있다.
페로브스카이트 나노 결정의 크기가 900㎚를 초과할 경우, 상온에서의 열적 이온화 및 전하 운반체의 비편재화에 의해서 효율이 감소되는 문제가 있다. 또한, 코팅 공정이 힘들어져 제조가 어려우며, 유연한 X선 검출기에 적용이 불가능하다.
본 발명의 실시예에 따른 신틸레이터(110)는 유연성을 갖기 위해 상기 페로브스카이트 화합물에 더하여 PDMS와 같은 유연 고분자를 더 포함할 수 있다.
구체적으로, 신틸레이터(110)는 페로브스카이트 나노 결정, PDMS 및 경화제를 혼합한 후 가스를 제거(degassing)한 다음 질소 분위기 하에 60℃에서 12시간 동안 경화시켜 제조될 수 있다.
신틸레이터(110)를 제조하는 구체적인 방법은 후술할 실시예 및 특성 평가에서 다루기로 하며, 신틸레이터(110)를 제조하는 방법은 상기 기재한 방법에 한정되는 것은 아니다.
실시예에 따라서, 신틸레이터(110)의 가요성(flexibility)을 향상시키기 위해 신틸레이터(110) 제조 시 유기 바인더를 더 포함하여 제조할 수 있다.
상기 유기 바인더는 폴리비닐 부티랄 수지, 폴리비닐 클로라이드 수지, 아크릴 수지, 페녹시 수지, 폴리에스테르 수지, 폴리비닐 포르말 수지, 폴리아미드 수지, 폴리스티렌 수지, 폴리카보네이트 수지, 폴리비닐 아세테이트 수지, 폴리우레탄 수지, 에폭시 수지 또는 이들의 조합일 수 있으며, 상기 물질에 한정되는 것은 아니다.
신틸레이터(110)에는 페로브스카이트 화합물 및 유기 바인더가 90:10 내지 10:90의 중량비로 포함될 수 있다.
신틸레이터(110)에 전술한 중량비 초과로 너무 많이 포함될 경우, 신틸레이터(110)에서 분해능 및 해상도가 떨어지게 되고, 이로 인해 엑스선 검출기의 성능을 저하시킬 수 있다.
실시예에 따라서, 신틸레이터(110)가 페로브스카이트 광 검출기(120)의 기판(121)과 접착이 잘 되도록, 신틸레이터(110) 제조 시 무기 바인더를 더 포함할 수 있다.
구체적으로, 무기 바인더는 페로브스카이트 화합물과 함께 신틸레이터(110)에 포함되어, 신틸레이터(110)의 점착성(adhesion)을 향상시킬 수 있다.
보다 구체적으로, 신틸레이터(110)는 페로브스카이트 화합물과 함께 무기 바인더를 포함함으로써, 페로브스카이트 화합물과 무기 바인더와의 접착력이 향상되어, 증착 기판과의 접착성을 향상시킬 수 있다.
상기 무기 바인더는 TiO2 나노입자, SiO2 나노입자, Al2O3 나노입자, VO2 나노입자, 층상구조 화합물, 금속알콕사이드 및 금속할라이드 등으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함할 수 있다.
신틸레이터(110)에는 페로브스카이트 화합물 및 무기 바인더가 90:10 내지 10:90의 중량비로 포함될 수 있다.
무기 바인더가 신틸레이터(110)에 전술한 중량비 초과로 너무 많이 포함될 경우, 분해능 및 해상도가 떨어지게 되고, 이로 인해 엑스선 검출기의 성능을 저하시킬 수 있다.
무기 바인더의 입자 크기는 1 ㎚ 내지 100 ㎚ 범위일 수 있다. 무기 바인더의 입자 크기가 1 ㎚ 미만일 경우, 균일한 입자를 제어하는데 문제가 있고, 100 ㎚를 초과할 경우, 엑스선의 산란을 크게 만들어 고해상도의 이미지를 구현하는데 어려움이 있다.
신틸레이터(110)는 페로브스카이트 화합물을 용매에 용해시킨 페로브스카이트 화합물 용액을 이용한 용액코팅 방법 또는 증착 방법을 통해 유리 기판 상에 형성한 후 유리 기판으로부터 분리하여 제조될 수 있다.
용액코팅 방법은 예를 들어, 스핀코팅(spin coating), 스프레이코팅(spray coating), 울트라스프레이코팅(ultra-spray coating), 전기방사코팅, 슬롯다이코팅(slot die coating), 그라비아코팅(gravure coating), 바코팅(bar coating), 롤코팅(roll coating), 딥코팅(dip coating), 쉬어코팅(shear coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing) 또는 노즐 프린팅(nozzle printing) 등이 있다.
증착 방법은 예를 들어, 감압, 상압 또는 가압조건에서, 스퍼터링(sputtering), 원자층증착(ALD), 화학기상증착(CVD), 열증착(thermal evaporation), 동시증발법(co-evaporation) 또는 플라즈마 강화 화학기상증착(PECVD) 등이 있다.
바람직하게는 신틸레이터(110)를 용액(solution) 공정으로 형성함으로써, 제조공정을 단순하게 하여, 제조비용을 절감할 수 있다.
신틸레이터(110)는 높은 에너지인 엑스선을 흡수하기 위해, 후막(thick film)으로 제조되는 것이 바람직하다.
실시예에 따라서, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)의 응용 분야에 따라 신틸레이터(110)의 두께를 조절하여 제조할 수 있다.
구체적으로, 신틸레이터(110)는 1μm 내지 1.5mm의 두께로 제조될 수 있다.
신틸레이터(110)의 두께가 1.5mm를 초과하는 경우, 신틸레이터(110)에서 산란되는 빛이 증가하여 요구되는 공간분해능을 만족시킬 수 없다는 단점이 있다.
또한, 신틸레이터(110)가 1μm의 두께 범위 미만의 값을 가지는 경우, 엑스선의 흡수량이 적어 신호가 노이즈 수준으로 약해지는 단점이 있다.
실시예에 따라서, 신틸레이터(110)는 필름 형태로 형성될 수 있다.
구체적으로, 신틸레이터(110)는 나노결정 구조를 가지는 페로브스카이트 나노 결정이 층층이 적층된 필름(film, 박막) 형태로 형성될 수 있다.
또는, 페로브스카이트 나노 결정의 크기가 클 경우, 페로브스카이트 나노 결정 사이를 바인더 물질로 채울 수 있으며, 페로브스카이트 나노 결정의 크기가 작을 경우, 충진율이 높아 페로브스카이트 나노 결정 사이를 바인더로 채우지 않을 수 있다.
본 발명의 실시예에 따른 신틸레이터(110)는 우수한 광 루미네선스(photoluminescence, PL) 수명을 가질 수 있다.
또한, 본 발명의 실시예에 따른 신틸레이터(110)는 나노 결정 형태의 페로브스카이트 화합물을 포함하기 때문에 엑시톤 바인딩 에너지가 커져서 순간(transient) PL 평균 수명이 짧다.
구체적으로, 신틸레이터(110)의 순간(transient) PL 평균 수명은 0.1ns 내지 1000ns일 수 있다.
신틸레이터(110)의 순간 PL 평균 수명이 0.1ns 미만일 경우, 신틸레이터(110) 내의 트랩이 과도하게 많아서 검출 가능한 시간보다 짧게 발광하여 검출이 어려운 단점이 있고, 1000ns 초과일 경우 발광 지속 시간이 길어 동영상과 같은 고속 이미지를 얻고자 할 때 이미지가 겹쳐 응답속도가 떨어지는 단점이 있다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)는 신틸레이터(110)의 하부에 배치되는 것으로서, 신틸레이터(110)에서 변환된 가시광선을 전기적 신호로 변환한다.
실시예에 따라서, 페로브스카이트 광 검출기(120)는 포토다이오드(Photodiode, PD)(미도시)를 포함할 수 있다.
상기 포토다이오드(PD)는 가시광선을 전기적 신호로 변환할 수 있다.
구체적으로, 페로브스카이트 광 검출기(120)는 기판(121) 상에 복수 개의 화소 영역마다 각각 형성되는 포토다이오드(PD)를 포함할 수 있고, 포토다이오드(PD)는 신틸레이터(110)에서 엑스선으로부터 변환된 가시광선을 흡수하여 전기적 신호로 변환시킬 수 있다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)는 입사되는 가시광선의 세기에 대응하는 전기적 신호를 발생시킬 수 있다.
실시예에 따라서, 페로브스카이트 광 검출기(120)는 발생된 전기적 신호를 기판(121)에 배치된 박막트랜지스터(TFT)(미도시) 및 커패시터(미도시)에 제공할 수 있다.
즉, 페로브스카이트 광 검출기(120)에 입사된 가시광선은 페로브스카이트 광 검출기(120) 내부에서 전자 및 정공으로 구성된 전하로 변환되고, 전자 및 정공은 커패시터(미도시)에 의해 형성된 전기장의 방향을 따라 이동하게 되며, 페로브스카이트 광 검출기(120)의 내부에는 전류가 흐르게 된다.
페로브스카이트 광 검출기(120)는 포토다이오드(PD)로서 실리콘 포토다이오드를 포함할 수 있다.
실시예에 따라서, 상기 실리콘 포토다이오드는 비결정질 실리콘(amorphous silicon) 또는 (미세)결정질 실리콘((micro)crystalline silicon)으로 구성될 수 있다.
상기 실리콘 포토다이오드가 결정질 실리콘으로 구성되어 있는 경우에는, 광전 변환 영역이 비결정질 실리콘으로 구성되어 있는 경우에 비하여, 엑스선 검출기에서 얻어진 화상에 포함되는 잔상을 저감시킬 수 있다.
실시예에 따라서, 실리콘 포토다이오드는 P(positive)형 반도체층 및 N(negative)형 반도체층으로 이루어진 PN구조의 PN형 포토다이오드(Positive Negative Photodiode), P형 반도체층, I(intrinsic)형 반도체층 및 N형 반도체층으로 이루어진 PIN 구조의 PIN형 포토다이오드(Positive Intrinsic Negative Photodiode), 쇼트키(schottky)형 포토다이오드 또는 애벌런치(avalanche)형 포토다이오드가 사용될 수 있으며, 바람직하게는 PIN형 포토다이오드가 사용될 수 있다.
실시예에 따라서, 상기 P형, I형 및 N형 반도체층은 비정질 또는 미세결정질 실리콘으로 형성될 수 있고, P형 반도체층은 예를 들어, 붕소(B), 칼륨(K) 등의 p형 불순물이 도핑되어 있는 실리콘 물질로 형성될 수 있으며, I형 반도체층은 불순물을 포함하지 않는 실리콘 물질로 형성될 수 있고, N형 반도체층은 예를 들어, 인(P), 비소(As), 안티몬(Sb) 등의 n형 불순물이 도핑되어 있는 실리콘 물질로 형성될 수 있다.
상기 실리콘 포토다이오드로서 PIN형 포토다이오드가 사용될 경우, 가시광선이 P형 비정질 실리콘층을 투과하여 I형 비정질 실리콘층에 흡수되고, I형 비정질 실리콘층 내에서 비정질 실리콘의 광학적 밴드갭(band gap)보다 큰 에너지를 가지는 가시광선에 의해 전자와 정공이 생성되면, I형 비정질 실리콘층에서 발생된 전자와 정공은 내부 전계에 의해 P형 비정질 실리콘층과 N형 비정질 실리콘층으로 수집될 수 있다. 또한, 전자와 정공들은 전극을 통해 외부회로로 공급될 수 있다.
실시예에 따라서, 상기 실리콘 포토다이오드는 이온 주입(ion implant), 에피택시얼성장(epitaxial growth), 증착(deposition) 또는 용액(solution) 공정으로 형성될 수 있다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)는 신틸레이터(110)의 하부에 배치되는 기판(121), 상기 기판(121)의 하부에 형성되는 제1 전극(122), 상기 제1 전극(122)의 하부에 형성되는 정공 전달층(123), 상기 정공 전달층(123)의 하부에 형성되는 페로브스카이트 광흡수층(124), 상기 페로브스카이트 광흡수층(124)의 하부에 형성되는 전자 전달층(125) 및 상기 전자 전달층(125)의 하부에 형성되는 제2 전극(126)을 포함한다.
페로브스카이트 광 검출기(120)는 기판(121) 상에 제1 전극(122), 제1 전극(122) 상에 정공 전달층(123), 정공 전달층(123) 상에 페로브스카이트 광흡수층(124), 페로브스카이트 광흡수층(124) 상에 전자 전달층(125), 전자 전달층(125) 상에 제2 전극(126)을 형성하여 제조된 후, 신틸레이터(110)의 하부와 기판(121)이 서로 맞닿도록 페로브스카이트 광 검출기(120)를 뒤집어 위치함으로써 신틸레이터(110)와 페로브스카이트 광 검출기(120)를 접촉시키는 것이 일반적이다.
그러나, 본 발명의 설명에서는 설명의 편의상 신틸레이터(110)를 기준으로 신틸레이터(110)의 상부면에서 하부면 방향으로 페로브스카이트 광 검출기(120)의 구성이 순차적으로 적층 형성된다고 가정하도록 한다.
기판(121)은 무기물 기판 또는 유기물 기판이 사용될 수 있으나, 페로브스카이트 광 검출기(120)에 유연성을 부여하기 위해 유기물 기판을 사용하는 것이 바람직하다.
무기물 기판은 유리, 석영(Quartz), Al2O3, SiC, Si, GaAs 또는 InP로 이루어질 수 있으나, 이에 제한되는 것은 아니다.
유기물 기판은 켑톤 호일, 폴리이미드(polyimide, PI), 폴리에테르술폰(polyethersulfone, PES), 폴리아크릴레이트(polyacrylate, PAR), 폴리에테르 이미드(polyetherimide, PEI), 폴리에틸렌 나프탈레이트(polyethylene naphthalate, PEN), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 트리아세테이트(cellulose triacetate, CTA) 및 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP)로부터 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
실시예에 따라서, 기판(121)은 광이 투과되는 투명한 소재로 이루어지는 것이 더욱 바람직하고, 통상적으로 기판(121)은 전면 전극 상에 위치할 수 있는 기판(121)이면 사용 가능하다.
실시예에 따라서, 기판(121)은 상보형금속산화반도체(CMOS, complementary metal-oxide semiconductor), 전하결합소자(CCD, charge coupled device) 또는 박막트랜지스터(TFT, thin film transistor)를 포함하는 어레이(array) 기판일 수 있다.
실시예에 따라서, 상기 어레이 기판은 박막트랜지스터(TFT)(미도시) 및 커패시터(미도시)를 포함할 수 있다.
박막트랜지스터(TFT)(미도시)는 페로브스카이트 광 검출기(120)에서 생성된 전기적 신호를 순차적으로 외부 회로로 출력시키기 위한 스위칭 소자의 역할을 할 수 있다.
또한, 커패시터(미도시)는 페로브스카이트 광 검출기(120)에서 변환된 전기적 신호를 축적하기 위해 기판(121) 상에 위치하거나, 각각의 박막트랜지스터(TFT) 아래에 설치될 수 있으나, 페로브스카이트 광 검출기(120)의 용량에 따라 페로브스카이트 광 검출기(120)가 커패시터(미도시)를 겸할 수도 있다.
실시예에 따라서, 기판(121)은 절연성 물질로 형성될 수 있다.
기판(121)은 예를 들어, 유리(glass), 석영(quartz), 실리콘(silicon) 또는 플라스틱(plastic)으로 형성될 수 있으나, 본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)가 유연성을 갖기 위해서는 실리콘 또는 플라스틱으로 형성되는 것이 바람직하다.
예를 들어, 플라스틱 기판은 플렉서블(flexible) 또는 벤더블(bendable) 엑스선 검출기에 사용될 수 있으며, 실리콘 기판은 두께를 100㎛ 이하로 가공할 경우 벤더블(bendable) 엑스선 검출기에 사용될 수 있다.
제1 전극(122)은 기판(121)의 하부에 형성되며, 특히 광의 투과를 향상시키기 위해 투명 전도성 전극이 바람직하다.
예를 들어, 제1 전극(122)은 광이 수광되는 측에 구비되는 전극인 전면전극에 해당할 수 있다.
제1 전극(122)은 기판(121) 상에 열기상증착(thermal evaporation), 전자빔증착(e-beam evaporation), RF 스퍼터링(Radio Frequency sputtering), 마그네트론 스퍼터링(magnetron sputtering), 진공증착(vacuum deposition) 또는 화학적 증착(chemical vapor deposition) 등의 방법으로 형성될 수 있다.
실시예에 따라서, 제1 전극(122)은 OMO (O = organic (유기물) 또는 metal oxide (금속산화물), M = metal (금속)) 구조의 투명 전도성 전극을 포함할 수 있다.
실시예에 따라서, 제1 전극(122)은 박막트랜지스터(미도시) 및 커패시터(미도시)가 형성된 기판(121)을 컨포멀(conformal)하게 덮도록 형성된 층간 절연층(미도시) 상에 형성될 수 있다.
실시예에 따라서, 제1 전극(122)은 복수 개의 픽셀 전극일 수 있다.
구체적으로, 제1 전극(122)은 기판(121) 상에 복수 개의 픽셀 단위로 형성되어 엑스선(X-ray) 영상을 구성하는 픽셀 어레이를 형성할 수 있다.
실시예에 따라서, 제1 전극(122)은 전기적 특성이 우수한 전도성 물질로 형성될 수 있다.
제1 전극(122)은 예를 들어, 알루미늄(Al), 은(Ag), 금(Au), 구리(Cu), 팔라듐(Pd), 백금(Pt), 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 알루미늄아연산화물(AZO, Aluminum Zinc Oxide), 불소산화주석(FTO, Fluorine Tin Oxide), 탄소나노튜브(CNT, Carbon Nano Tube), 그래핀(graphene) 및 폴리에틸렌디옥시티오펜: 폴리스티렌설포네이트(PEDOT:PSS)으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하도록 형성될 수 있으나, 이에 제한되는 것은 아니다.
정공 전달층(123)은 제1 전극(122)의 하부에 형성되며, 구체적으로 제1 전극(122)과 페로브스카이트 광흡수층(124) 사이에 형성될 수 있다.
정공 전달층(123)은 페로브스카이트 광흡수층(124)에서 생성된 정공이 제1 전극(122) 및/또는 제2 전극(126)으로 원활하게 이동되도록 하고, 암전류를 감소시킬 수 있다.
실시예에 따라서, 정공 전달층(123)은 페로브스카이트 광흡수층(124) 및 제2 전극(126) 사이에 형성되거나, 페로브스카이트 광흡수층(124)의 상부면 및 하부면 모두에 형성될 수 있다.
정공 전달층(123)은 예를 들어, 티오펜계, 파라페닐렌비닐렌계, 카바졸계 또는 트리페닐아민계 물질을 적어도 어느 하나를 포함하여 형성될 수 있으나, 상기 물질에 한정되는 것은 아니다.
또는, 정공 전달층(123)은 P3HT (poly[3-hexylthiophene]), MDMO-PPV (poly[2-methoxy-5-(3',7'-dimethyloctyloxyl)]-1,4-phenylene vinylene), MEH-PPV (poly[2-methoxy-5-(2''-ethylhexyloxy)-p-phenylene vinylene]), P3OT (poly(3-octyl thiophene)), POT( poly(octyl thiophene)), P3DT (poly(3-decyl thiophene)), P3DDT (poly(3-dodecyl thiophene), PPV (poly(p-phenylene vinylene)), TFB (poly(9,9'-dioctylfluorene-co-N-(4-butylphenyl)diphenyl amine), Polyaniline, Spiro-MeOTAD ([2,22′,7,77′-tetrkis (N,N-dipmethoxyphenylamine)-9,9,9′-spirobi fluorine]), CuSCN, CuI, MoOx, VOx, NiOx, CuOx, PCPDTBT (Poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl-4H- cyclopenta [2,1-b:3,4-b']dithiophene-2,6-diyl]], Si-PCPDTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PBDTTPD (poly((4,8-diethylhexyloxyl) benzo([1,2-b:4,5-b']dithiophene)-2,6-diyl)-alt-((5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl)), PFDTBT (poly[2,7-(9-(2-ethylhexyl)-9-hexyl-fluorene)-alt-5,5-(4', 7,-di-2-thienyl-2',1', 3'-benzothiadiazole)]), PFO-DBT (poly[2,7-.9,9-(dioctyl-fluorene)-alt-5,5-(4',7'-di-2-.thienyl-2', 1', 3'-benzothiadiazole)]), PSiFDTBT (poly[(2,7-dioctylsilafluorene)-2,7-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]), PSBTBT (poly[(4,4′'-bis(2-ethylhexyl)dithieno[3,2-b:2′',3′'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]), PCDTBT (Poly [[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PFB (poly(9,9′'-dioctylfluorene-co-bis(N,N′'-(4,butylphenyl))bis(N,N′'-phenyl-1,4-phenylene)diamine), F8BT (poly(9,9′'-dioctylfluorene-cobenzothiadiazole), PEDOT (poly(3,4-ethylenedioxythiophene)), PEDOT:PSS, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), PTAA (poly(triarylamine)), poly(4-butylphenyldiphenyl-amine), 4,4'-bis[N-(1-naphtyl)-N-phenylamino]-biphenyl (NPD), PFI(perfluorinated ionomer)와 혼합된 PEDOT:PSS비스(N-(1-나프틸-n-페닐))벤지딘(α-NPD), N,N'-디(나프탈렌-1-일)-N,N'-디페닐-벤지딘 (NPB), N,N'-디페닐-N,N'-비스(3-메틸페닐)-1,1'-디페닐-4,4'-디아민 (TPD), 구리 프탈로시아닌(CuPc), 4,4',4"-트리스(3-메틸페닐아미노)트리페닐아민(m-MTDATA), 4,4',4"-트리스(3-메틸페닐아미노)페녹시벤젠(m-MTDAPB), 스타버스트(starburst)형 아민류인 4,4',4"-트리(N-카바졸릴)트리페닐아민(TCTA), 4,4',4"-트리스(N-(2-나프틸)-N-페닐아미노)-트리페닐아민(2-TNATA) 및 이들의 공중합체에서 적어도 하나 이상 선택될 수 있으나, 상기 물질들에 한정되는 것은 아니다.
정공 전달층(123)은 용액을 이용하여 다양한 용액코팅 방법 또는 증착 방법을 통해 형성될 수 있다.
용액코팅 방법은 예를 들어, 스핀코팅, 스프레이코팅, 울트라스프레이코팅, 전기방사코팅, 슬롯다이코팅, 그라비아코팅, 바코팅, 롤코팅, 딥코팅, 쉬어코팅, 스크린 프린팅, 잉크젯 프린팅 또는 노즐 프린팅 등이 있다.
증착 방법은 예를 들어, 감압, 상압 또는 가압조건에서, 스퍼터링, 원자층증착, 화학기상증착, 열증착, 동시증발법 또는 플라즈마 강화 화학기상증착 등이 있다.
정공 전달층(123)은 정공을 페로브스카이트 광흡수층(124)으로 이동시키는 층으로서, 정공이 페로브스카이트 광흡수층(124)으로 효과적으로 전달되게 하고, 페로브스카이트 광흡수층(124)에서 정공과 전자의 밀도가 균형을 이루도록 하여 효율을 향상시킬 수 있다.
페로브스카이트 광흡수층(124)은 정공 전달층(123)의 하부에 형성된다.
실시예에 따라서, 정공 전달층(123)이 페로브스카이트 광흡수층(124)과 제2 전극(126) 사이에 형성될 경우, 페로브스카이트 광흡수층(124)은 제1 전극(122)의 하부에 형성될 수 있다.
페로브스카이트 광흡수층(124)은 제1 전극(122)을 통과하여 페로브스카이트 광흡수층(124)에 입사된 가시광선에 의해 전자-정공 쌍(electron-hole pair)을 발생시킨다.
전자-정공 쌍의 양은 페로브스카이트 광흡수층(124)에 흡수되는 가시광선의 에너지 양에 따라 달라질 수 있다.
본 발명의 실시예에 따른 페로브스카이트 광흡수층(124)은 페로브스카이트 화합물을 포함하여 형성될 수 있다.
페로브스카이트 광흡수층(124)에 포함된 페로브스카이트 화합물은 제1 전극(122)을 통과해 입사된 가시광선을 흡수하여 전기적 신호로 변환할 수 있는 물질로서, 페로브스카이트 구조(perovskite structure)를 갖는 페로브스카이트 화합물을 포함할 수 있다.
페로브스카이트 광흡수층(124)은 페로브스카이트 화합물의 구조 및 구성 비율에 따라 빛을 최대로 흡수할 수 있는 영역을 조절할 수 있으며, 빛의 흡수량이 증가하게 되면 변환되는 전자-정공 쌍(electron-hole pair)의 양도 증가하게 된다.
또한, 신틸레이터(110) 및 페로브스카이트 광흡수층(124)을 모두 페로브스카이트 화합물을 사용하면, 발광되는 영역의 빛을 최대한 많이 흡수할 수 있는 페로브스카이트 광 검출기(120)를 제작하여 페로브스카이트 X선 검출기(100)의 고효율을 극대화시킬 수 있다는 장점이 있다.
페로브스카이트 광흡수층(124)에 포함된 페로브스카이트 화합물은 신틸레이터(110)에 포함된 페로브스카이트 화합물과 마찬가지로 상기 화학식 1로 표시될 수 있으며, 페로브스카이트 화합물에 대한 설명은 신틸레이터(110)와 함께 설명하였으므로 중복 설명은 생략하도록 한다.
실시예에 따라서, 페로브스카이트 광흡수층(124)에 포함된 페로브스카이트 화합물은 신틸레이터(110)에 포함된 페로브스카이트 화합물과 동일하거나 상이할 수 있다.
예를 들어, 신틸레이터(110)에 포함된 페로브스카이트 화합물은 CsPbBr3이고, 페로브스카이트 광흡수층(124)에 포함된 페로브스카이트 화합물은 MAPbI3일 수 있다.
또한, 페로브스카이트 광흡수층(124)은 2 이상의 페로브스카이트 화합물을 포함할 수 있어, 다양한 구조 및 구성 비율의 페로브스카이트 화합물에 의해 550㎚의 파장대뿐만 아니라 다른 파장대에서도 효율이 우수한 페로브스카이트 광 검출기(120)를 제조할 수 있다.
실시예에 따라서, 페로브스카이트 광흡수층(124)은 박막(thin film)으로 제조될 수 있다.
구체적으로, 페로브스카이트 광흡수층(124)은 10㎚ 내지 200㎛ 범위의 두께로 형성될 수 있으며, 바람직하게는 100㎚ 내지 1㎛ 범위의 두께로 형성될 수 있다.
페로브스카이트 광흡수층(124)의 두께가 200㎛를 초과할 경우, 페로브스카이트 광흡수층(124)에서 변환된 전자-정공 쌍(electron-hole pair)을 제2 전극(126) 또는 기판(121)으로 도달시키기 위한 전압이 증가하고, 기판(121)과의 접착력 감소로 인한 박리 위험성이 있다.
또한, 페로브스카이트 광흡수층(124)의 두께가 10㎚ 미만일 경우, 신틸레이터(110)에서 발생한 빛의 흡수량이 적어 신호가 노이즈 수준으로 약해지는 단점이 있다.
페로브스카이트 광흡수층(124)은 페로브스카이트 화합물을 포함하여 형성되어 트랩밀도가 작으므로, 페로브스카이트 광흡수층(124)에서 생성된 전하가 트랩에 갇히지 않고 제2 전극(126)으로 원활하게 이동할 수 있는 장점을 가질 수 있다.
전자 전달층(125)은 페로브스카이트 광흡수층(124)의 하부에 형성되며, 구체적으로 페로브스카이트 광흡수층(124) 및 제2 전극(126) 사이에 형성된다.
실시예에 따라서, 제1 전극(122) 및 페로브스카이트 광흡수층(124) 사이에 형성되거나, 제1 전극(122) 및 페로브스카이트 광흡수층(124) 사이와 제2 전극(126) 및 페로브스카이트 광흡수층(124) 사이에 모두 형성될 수 있다.
일례로, 제1 전극(122)및 페로브스카이트 광흡수층(124) 사이에 전자 전달층(125)이 형성될 경우, 페로브스카이트 광흡수층(124) 및 제2 전극(126) 사이에는 정공 전달층(123)이 형성될 수 있다.
이와 반대로, 제1 전극(122) 및 페로브스카이트 광흡수층(124) 사이에 정공 전달층(123)이 형성될 경우, 페로브스카이트 광흡수층(124) 및 제2 전극(126) 사이에는 전자 전달층(125)이 형성될 수 있다.
전자 전달층(125)은 페로브스카이트 광흡수층(124)에서 생성된 전자가 제1 전극(122) 및/또는 제2 전극(126)으로 원활하게 이동되도록 하고, 이로 인해 암전류(dark current)를 감소시킬 수 있다.
전자 전달층(125)은 예를 들어, 티타늄산화물(TiOx), 아연산화물(ZnOx), 인듐산화물(InOx), 주석산화물(SnOx), 텅스텐산화물(WOx), 니오븀산화물(NbOx), 몰리브덴산화물(MoOx), 마그네슘산화물(MgOx), 지르코늄산화물(ZrOx), 스트론튬산화물(SrOx), 란탄산화물(LaOx), 바나듐산화물(VOx), 알루미늄산화물(AlOx), 이트륨산화물(YOx), 스칸듐산화물(ScOx), 갈륨산화물(GaOx), 인듐산화물(InOx), 이들의 혼합물 또는 이들의 복합물을 포함하도록 형성될 수 있다.
또한, 전자 전달층(125)은 플러렌 (fullerene, C60), 플러렌 유도체, 페릴렌 (perylene), TPBi(2,2′,2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)), PBI (polybenzimidazole) 및 PTCBI (3,4,9,10-perylene-tetracarboxylic bis-benzimidazole), NDI (Naphthalene diimide) 및 이들의 유도체, TiO2, SnO2, ZnO, ZnSnO3, 2,4,6-Tris(3-(pyrimidin-5-yl)phenyl)-1,3,5-triazine, 8-Hydroxyquinolinolato-lithium, 1,3,5-Tris(1-phenyl-1Hbenzimidazol- 2-yl)benzene, 6,6'-Bis[5-(biphenyl-4-yl)-1,3,4-oxadiazo-2-yl]-2,2'-bipyridyl, 4,4'-Bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl(BTB), Rb2CO3 (Rubidium carbonate), ReO3(Rhenium(VI) oxide) 중 적어도 어느 하나를 포함할 수 있고, 상기 플러렌 유도체는 PCBM ((6,6)-phenyl-C61-butyric acid-methylester) 또는 PCBCR ((6,6)-phenyl-C61-butyric acid cholesteryl ester)일 수 있으나, 상기 물질들에 한정되는 것은 아니다.
전자 전달층(125)은 용액을 이용하여 다양한 용액코팅 방법 또는 증착 방법을 통해 형성될 수 있다.
용액코팅 방법은 예를 들어, 스핀코팅, 스프레이코팅, 울트라스프레이코팅, 전기방사코팅, 슬롯다이코팅, 그라비아코팅, 바코팅, 롤코팅, 딥코팅, 쉬어코팅, 스크린 프린팅, 잉크젯 프린팅 또는 노즐 프린팅 등이 있다.
증착 방법은 예를 들어, 감압, 상압 또는 가압조건에서, 스퍼터링, 원자층증착, 화학기상증착, 열증착, 동시증발법 또는 플라즈마 강화 화학기상증착 등이 있다.
전자 전달층(125)은 전자를 페로브스카이트 광흡수층(124)으로 이동시키는 층으로서, 전자가 페로브스카이트 광흡수층(124)으로 효과적으로 전달되게 하고, 페로브스카이트 광흡수층(124)에서 정공과 전자의 밀도가 균형을 이루도록 하여 효율을 향상시킬 수 있다.
제2 전극(126)은 전자 전달층(125)의 하부에 형성된다.
실시예에 따라서, 제2 전극(126)은 페로브스카이트 광흡수층(124)과 제2 전극(126) 사이에 정공 전달층(123)이 형성된 경우 정공 전달층(123)의 하부에 형성될 수 있다.
실시예에 따라서, 제2 전극(126)은 전기적 특성이 우수한 전도성 물질로 형성될 수 있다.
제2 전극(126)은 예를 들어, 알루미늄(Al), 은(Ag), 금(Au), 구리(Cu), 팔라듐(Pd), 백금(Pt), 인듐주석산화물(ITO, Indium Tin Oxide), 인듐아연산화물(IZO, Indium Zinc Oxide), 알루미늄아연산화물(AZO, Aluminum Zinc Oxide), 불소산화주석(FTO, Fluorine Tin Oxide), 탄소나노튜브(CNT, Carbon Nano Tube), 그래핀(graphene) 및 폴리에틸렌디옥시티오펜: 폴리스티렌설포네이트(PEDOT:PSS)으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하도록 형성될 수 있다.
또는, 제2 전극(126)은 리튬플로라이드/알루미늄(LiF/Al), 황화코발트(CoS), 황화구리(CuS), 산화니켈(NiO) 또는 이들의 혼합물일 수 있으나, 이에 제한되는 것은 아니다.
제2 전극(126) 또한 제1 전극(122)에서 설명한 방법으로 형성될 수 있으므로 중복 설명은 생략한다.
이하, 본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)를 포함하는 페로브스카이트 X선 검출기(100)의 작동원리를 설명하면 아래와 같다.
외부로부터 신틸레이터(110)에 입사된 엑스선(X-ray)은 신틸레이터(110)에 서 가시광선으로 변환되고, 신틸레이터(110)에서 변환된 가시광선은 페로브스카이트 광 검출기(120)의 제1 전극(122)을 통과한 후, 페로브스카이트 광흡수층(124)에 흡수되어 페로브스카이트 광흡수층(124)에서 전자-정공 쌍(electron-hole pair)을 생성시킨다.
페로브스카이트 광흡수층(124)에서 생성된 전자-정공 쌍은 제1 전극(122) 및 제2 전극(126)에 인가된 전압에 의한 전위차에 의해, 분리되어 각각 제1 전극(122) 및 제2 전극(126)으로 이동한다.
예를 들어, 제1 전극(122)에 음(-)전압이 인가되면, 페로브스카이트 광흡수층(124)에서 생성된 정공(hole)은 제1 전극(122) 쪽으로 이동하게 되고, 전자(electron)는 제2 전극(126) 쪽으로 이동하게 된다.
반면, 제1 전극(122)에 양(+)전압이 인가되면, 페로브스카이트 광흡수층(124)에서 생성된 전자는 제1 전극(122) 쪽으로 이동하게 되고, 정공은 제2 전극(126) 쪽으로 이동하게 된다.
정공 전달층(123) 및 전자 전달층(125)은 페로브스카이트 광흡수층(124)에서 생성된 전자 및 정공을 제1 전극(122) 또는 제2 전극(126)으로 원활히 이동되도록 기여한다.
제1 전극(122)으로 이동한 전하(전자 또는 정공)는 기판(121)에 형성된 커패시터(미도시)에 저장되고, 커패시터에 전하가 저장되어 엑스선 검출 전압을 저장할 수 있다.
즉, 신틸레이터(110)에 엑스선이 조사됨에 따라, 커패시터에 소정의 전압이 형성되고, 커패시터에 걸리는 소정의 전압은 신틸레이터(110)에 조사된 엑스선량에 따라 달라지며, 이러한 소정의 전압은 기판(121)에 형성된 박막트랜지스터(TFT)(미도시)의 동작에 의해 전기적 신호로 읽힐 수 있다.
구체적으로, 기판(121)에 형성된 박막트랜지스터에 전기적 신호를 입력하여 박막트랜지스터가 턴 온(turn-on)되면, 커패시터에 저장된 전하는 박막트랜지스터의 드레인 전극을 통해서 신호처리부(미도시)로 전송되고, 신호처리부는 전하의 양을 가지고 측정 대상 물체의 엑스선 투과도를 측정할 수 있다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)의 페로브스카이트 광흡수층(124)은 페로브스카이트 화합물을 포함하기 때문에, 본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)는 미세한 광 강도에 대하여 매우 민감하게 반응할 수 있어 높은 반응도로 광 검출이 가능하다.
본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)의 민감도를 판단하는 기준으로 반응도(responsivity) 및 비검출률(specific detectivity)을 이용할 수 있는데, 페로브스카이트 광 검출기(120)의 반응도는 아래의 수학식 1을 통해 산출될 수 있다.
[수학식 1]
R=(Jph-Jd)/P
여기서, R은 반응도(responsivity), Jph는 광 전류 밀도, Jd는 암전류 밀도, P는 일시적 광 강도를 의미한다.
상기 수학식 1에 따라 산출된 본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)의 반응도는 0.0001A/W 내지 1A/W일 수 있다.
반응도가 0.0001 A/W 미만일 경우 페로브스카이트 광 검출기(120)에서 생성되는 전하의 개수가 적어 검출이 어려운 단점이 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 외부 전원이 없으므로 페로브스카이트 광 검출기(120)는 최대 1A/W의 반응도를 가질 수 있다.
또한, 페로브스카이트 광 검출기(120)의 비검출률은 아래의 수학식 2를 통해 산출될 수 있다.
[수학식 2]
D*=RA0.5Sn -1
여기서, D*는 비검출률, R은 상기 반응도, A는 광 감지 면적, Sn은 스펙트럼 잡음 밀도(noise spectral density)를 의미한다.
상기 수학식 2에 따라 산출된 본 발명의 실시예에 따른 페로브스카이트 광 검출기(120)의 비검출률은 109cmHz0.5/W 내지 1013cmHz0.5/W일 수 있다.
페로브스카이트 광 검출기(120)에 대한 상기 반응도 및 상기 비검출률을 기반으로 페로브스카이트 광 검출기(120)의 반응 시간을 알 수 있다.
이에 따라, 페로브스카이트 광 검출기(120)의 반응 시간은 0.01μs 내지 100μs일 수 있다.
페로브스카이트 광 검출기(120)의 반응 시간이 100μs 초과일 경우, 응답속도가 빠른 동영상과 같은 이미지를 얻을 경우 신호의 겹침에 의해 잔상이 생기는 단점이 있고, 반응 시간이 0.01μs 미만일 경우, 외부 전원이 필요없는 페로브스카이트 광 검출기(120)에서 생성된 전하를 가속하여 추출할 수 없어 구현하기 어려운 단점이 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 신틸레이터(110)와 페로브스카이트 광 검출기(120)가 결합된 형태이므로, PL 수명이 우수한 신틸레이터(110)와 반응도 및 비검출률이 우수한 페로브스카이트 광 검출기(120)의 장점이 시너지 효과를 일으켜 높은 전류 밀도와 우수한 엑스선 감도를 가질 수 있다.
구체적으로, 페로브스카이트 X선 검출기(100)의 전류 밀도는 0.00001mA/cm2 내지 10mA/cm2일 수 있다.
실시예에 따라서, 페로브스카이트 X선 검출기(100)에 가해지는 관 전류(tube current) 또는 관 전압(tube voltage)에 따라 전류 밀도 및 엑스선 감도의 값이 변할 수 있다.
구체적으로, 페로브스카이트 X선 검출기(100)의 관 전류 값을 고정시킬 때 관 전압에 비례하여 전류 밀도가 증가하고, 관 전압 값을 고정시킬 때 관 전류에 비례하여 전류 밀도가 증가할 수 있다.
보다 구체적으로, 페로브스카이트 X선 검출기(100)는 관 전류가 1mA일 때 관 전압을 30keV 내지 120keV로 변화시키면 0.017mA/cm2 내지 0.199mA/cm2의 전류 밀도를 가질 수 있다.
또한, 페로브스카이트 X선 검출기(100)는 관 전압이 90keV일 때 관 전류를 0.25mA 내지 1mA로 변화시키면 0.041mA/cm2 내지 0.174mA/cm2의 전류 밀도를 가질 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)의 엑스선 감도는 엑스선 방사에 따른 전류 밀도, 엑스선 선량 및 활성 영역의 두께를 기반으로 산출될 수 있으며, 아래의 수학식 3으로 표현될 수 있다.
[수학식 3]
S=[∫Jx-ray(t)-Jdark)dt](DAt)-1
여기서, S는 페로브스카이트 X선 검출기(100)의 엑스선 감도, Jx-ray(t)는 시간 t동안 엑스산 방사에 의해 생성된 전류 밀도, Jdark는 엑스선 방사가 없는 상태의 암전류 밀도, D는 엑스선 선량, At는 활성 영역에서의 두께를 의미한다.
이때, 상기 활성 영역은 엑스선이 방사되는 페로브스카이트 X선 검출기(100)를 의미하는 것으로서, 활성 영역의 두께라 함은 페로브스카이트 X선 검출기(100)의 두께를 의미하고, 활성 영역의 면적이라 함은 페로브스카이트 X선 검출기(100)의 면적을 의미하며, 활성 영역의 부피라 함은 페로브스카이트 X선 검출기(100)의 두께, 즉 페로브스카이트 X선 검출기의 면적과 두께의 곱을 의미한다.
이때, 페로브스카이트 X선 검출기(100)의 엑스선 감도(S)를 산출하기 위해 At를 삭제할 수 있다.
또한, 페로브스카이트 X선 검출기(100)의 엑스선 감도를 산출하기 위해 활성 영역의 두께, 신틸레이터(110)의 두께 및 페로브스카이트 광 검출기(120)의 두께를 특정 수치로 고정시킬 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)의 엑스선 감도는 600μCmGyair -1cm-3 내지 1,270μCmGyair -1cm-3 일 수 있다.
실시예에 따라서, 페로브스카이트 X선 검출기(100)의 관 전류 값을 고정시킬 때 관 전압에 비례하여 엑스선 감도의 값이 증가할 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)에 따르면, 페로브스카이트 X선 검출기(100)의 엑스선 감도는 활성 영역의 면적을 기준으로 10μCmGyair -1cm-2 내지 1,000μCmGyair -1cm-2 일 수 있다.
또한, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기에 따르면, 페로브스카이트 X선 검출기(100)의 엑스선 감도는 활성 영역의 부피를 기준으로 100μCmGyair -1cm-3 내지 10,000μCmGyair -1cm-3일 수 있다.
상기 활성 영역의 부피 기준에 대한 페로브스카이트 X선 검출기(100)의 엑스선 감도 값은 상기 활성 영역의 면적 기준에 대한 페로브스카이트 X선 검출기(100)의 엑스선 감도 값에 상기 활성 영역의 두께(At)를 나누어 산출될 수 있다.
본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 유연 소자인 바, 페로브스카이트 X선 검출기(100)의 반복적인 벤딩(bending)에도 전류 밀도 및 엑스선 감도를 유지할 수 있다.
구체적으로, 페로브스카이트 X선 검출기(100)를 구부렸다 펴는 벤딩 동작을 1000회 반복하여도 성능이 유지될 수 있다.
또한, 본 발명의 실시예에 따른 페로브스카이트 X선 검출기(100)는 곡률 반경(bending radius)에 상관없이 전류 밀도 및 엑스선 감도를 유지할 수 있다.
구체적으로, 페로브스카이트 X선 검출기(100)를 1mm 내지 6mm로 구부려도 성능이 유지될 수 있다.
이하, 본 발명에 따른 신틸레이터(110) 및 페로브스카이트 광 검출기(120)를 제조예에 따라 제조한 후, 비교예 및 실시예를 통하여 페로브스카이트 X선 검출기(100)의 특성 및 효과를 평가하였다.
제조예
1. CsPbBr
3
나노 결정의 제조
질소 분위기 하의 150℃에서 옥타데신(octadecene, ODE, Aldrich, 90) 40mL에 페로브스카이트 화합물인 CsPbBr3 0.814g(Aldrich, 99.9%)과 2.5ml의 올레산(oleic acid, OA, Aldrich 90 %)을 반응시켜 Cs-올레산염 용액(Cs-oleate solution)을 제조하였다.
이후, 0.5mL의 옥타데신에 PbBr2(99.999 %, Aldrich) 0.069g, 올레일아민(oleylamine, OLA, Acros, 80-90%) 0.5 mL, 올레산 0.5 mL를 150℃에서 1시간 동안 질소 분위기 하에 반응시켜 PbBr2 전구체 용액을 제조했다.
이후, PbBr2 전구체 용액에 Cs-올레산염 용액 0.4ml를 빠르게 주입하고, 혼합물을 150℃에서 10초 동안 반응시킨 다음 냉각시켰다.
냉각 후, 원심 분리에 의해 용매로부터 분리된 페로브스카이트 나노 결정인 CsPbBr3 나노 결정은 헥산(Aldrich, 무수물 95 %)에 재분산되어 CsPbBr3 나노 결정 용액을 제조하였다.
2. CsPbBr
3
신틸레이터 제조
PDMS 단량체(SYLGARD 184A, SEWANG HITECH CO. LTD.)와 경화제(SYLGARD 184B, SEWANG HITECH CO. LTD.)를 10:1의 중량비로 혼합했다.
그 후, 1mL의 CsPbBr3 나노 결정 용액(약 0.5g/mL의 CsPbBr3 나노 결정 농도)을 PDMS 단량체/경화제 혼합물에 첨가하였다.
이후, 혼합물을 진공 오븐에서 1시간 동안 기포 및 용매를 제거하였다.
기포 및 용매가 제거된 혼합물을 세정된 유리 기판 상에 부은 다음 500rpm에서 60초 동안 스핀 코팅하였다.
스핀 코팅 공정 후, 질소 조건 하에서 60℃에서 12시간 동안 중합 반응을 수행하여 CsPbBr3 신틸레이터를 제조하였다.
3. MAPbI
3
페로브스카이트 광 검출기 제조
먼저 필터링된 PEDOT:PSS(Clevios, Al4083)/메탄올 혼합물(1:2 부피비)을 ITO(indium tinoxide) PET 기판 상에 3000rpm에서 60초 동안 스핀 코팅한 후 150℃에서 20분 동안 건조시켜 정공 전달층을 형성하였다.
이어서, 요오드화수소산 첨가제를 넣은 40중량%의 MAPbI3/DMF(N,N-dimethylformamide, Aldrich, 99%) 용액(1mL/100μL로 혼합된 DMF 용액/요오드화수소산 중 40중량%의 MAPbI3)을 정공 전달층인 PEDOT:PSS 상에 3000rpm에서 200초 동안 스핀 코팅한 다음 100℃에서 2분 간 핫 플레이트에서 건조시켜 MAPbI3을 포함하는 페로브스카이트 광흡수층을 형성하였다.
페로브스카이트 광흡수층 상에 PCBM(Phenyl-C61-butyricacid methyl ester)/톨루엔(20mg/1mL) 용액을 2000rpm에서 60초 동안 스핀 코팅함으로써, 전자 전달층을 페로브스카이트 광흡수층 상에 증착시켰다.
마지막으로 알루미늄(Al)을 전자 전달층 상에 열 증착하여 형성하였다.
[실시예 1]
제조예에 따른 신틸레이터 하부에 기판이 맞닿도록 페로브스카이트 광 검출기를 위치시켜 제조된 유연 페로브스카이트 X선 검출기.
[실시예 2]
페로브스카이트 광 검출기의 기판이 유리 기판인 것을 제외하고는, 제조예와 동일하게 제조된 신틸레이터와 페로브스카이트 광 검출기를 포함하여 제조된 비유연 페로브스카이트 X선 검출기.
본 발명에 따른 유연 페로브스카이트 X선 검출기는 신틸레이터 및 페로브스카이트 광 검출기를 포함하는 것인 바, 신틸레이터 및 페로브스카이트 광 검출기의 특성을 각각 나타낼 수 있다.
따라서, 신틸레이터 및 페로브스카이트 광 검출기의 특성 평가를 각각 진행한 후, 유연 페로브스카이트 X선 검출기의 특성 평가를 진행하였다.
특성 평가
1. CsPbBr
3
신틸레이터의 특성 평가
도 3은 본 발명의 실시예에 따른 신틸레이터를 도시한 전자투과현미경(transmission electron microscopy, TEM) 이미지 및 조사광에 따른 신틸레이터의 발광 모습을 도시한 이미지이다.
도 3을 참조하면, 합성된 CsPbBr3 페로브스카이트 나노 결정은 ~10nm 크기의 나노 큐브(nano cube) 또는 나노 바(nano bar)를 가지고 균일하게 분산된 것을 확인할 수 있다.
도 3에 삽입된 TEM 이미지를 참조하면, CsPbBr3 페로브스카이트 나노 결정은 {100} 측면(facet)을 노출시키는 입방 결정 구조를 가지는 것을 확인할 수 있다.
도 4는 본 발명의 실시예에 따른 신틸레이터의 엑스선 회절(X-ray diffraction, XRD) 패턴을 도시한 그래프이다.
도 4를 참조하면, 합성된 CsPbBr3 페로브스카이트 나노 결정은 전술한 도 3의 TEM 이미지와 일치하는 입방 위상을 가지는 것을 확인할 수 있다.
도 5는 본 발명의 실시예에 따른 신틸레이터의 자외선-가시광선(UV-visible)과 광 루미네선스(photoluminescence, PL) 스펙트럼을 도시한 그래프이다.
도 5에서 초록색 개형은 자외선-가시광선 흡수 스펙트럼을 나타내고, 주황색 개형은 광 루미네선스 스펙트럼을 나타낸다.
도 5를 참조하면, CsPbBr3 페로브스카이트 나노 결정은 ~510nm 파장에서 온-셋(on-set) 흡수 밴드 엣지를 가지며, ~520nm 파장에서 약 20nm의 선폭을 가진 강한 단일 PL 피크를 가지는 것을 확인할 수 있다.
도 6은 본 발명의 실시예에 따른 신틸레이터의 일시적 PL 감소(transient PL decay) 곡선을 도시한 그래프이다.
도 6에서 IRF 그래프 개형은 본 발명의 실시예에 따른 신틸레이터에 조사한 레이저의 피크를 나타낸다.
도 6을 참조하면, CsPbBr3 페로브스카이트 나노 결정의 평균 PL 수명은 2.81ns(τ1=0.42ns(48.77 %), τ2=5.16ns(51.23 %))인 것을 확인할 수 있다.
이때, τ1은 엑시톤이 직접 발광하는 빠른 디케이(decay)와 관련된 엑시톤 수명, τ2는 느린 디케이와 관련된 엑시톤 수명을 의미한다.
다시 도 3을 참조하면, 실내 조명(Room light) 및 엑스선(90keV, 1mA)을 조사한 CsPbBr3 신틸레이터를 관찰한 결과, 실내 조명의 경우 비교적 약한 PL 방사를 보이나, 엑스선의 경우 강한 청록색의 PL 방사를 보이는 것을 확인할 수 있다.
이는 CsPbBr3 페로브스카이트 나노 결정이 낮은 엑스선 선량으로도 PL을 방출할 수 있음을 보여주며, 이러한 신틸레이터를 포함하는 유연 페로브스카이트 X선 검출기는 엑스선을 매우 민감하게 검출할 수 있다.
이하, 엑스선 관 전류 및 관 전류에 대하여 실시예의 신틸레이터에 대한 응답 특성을 평가하기 위해 엑스선 강도를 측정하였다.
도 7은 본 발명의 실시예에 따른 신틸레이터의 관 전류에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
이때, 투과율은 신틸레이터에 조사된 엑스선과 신틸레이터를 투과한 엑스선의 강도 비율을 의미한다.
도 7을 참조하면, 관 전압을 90keV로 고정시켰을 때, 선량률은 관 전류가 증가함에 따라 선형적으로 증가하였으나, CsPbBr3 신틸레이터의 투과율은 관 전류가 증가함에 따라 미세하게 증가한 것을 확인할 수 있다.
도 8은 본 발명의 실시예에 따른 신틸레이터의 관 전압에 따른 엑스선 선량률 및 투과율을 도시한 그래프이다.
도 8을 참조하면, 관 전류를 1mA로 고정시켰을 때, 선량률은 관 전압의 증가에 따라 급격히 증가하였고, CsPbBr3 신틸레이터의 투과율 또한 관 전압의 증가에 따라 크게 증가한 것을 확인할 수 있다.
전술한 도 7 및 도 8의 대조적인 결과는 고정된 관 전압에 의해 생성된 엑스선이 유사한 엑스선 광자 에너지(X-ray photon energy)를 가지기 때문에 유사한 엑스선 광자 에너지를 가진 엑스선 광자의 수와 관계없이 비슷한 흡광도를 가지기 때문인 것이다.
도 9는 본 발명의 실시예에 따른 신틸레이터 및 페로브스카이트 광 검출기의 엑스선 광자 에너지(X-ray photon energy)에 따른 질량 감쇠(mass attenuation)를 도시한 그래프이다.
도 9를 참조하면, 고정 관 전류에 의해 생성된 엑스선에 대하여 엑스선 광제 에너지에 따른 질량 감쇠 변화를 관찰한 결과, 엑스선 광자 에너지가 증가함에 따라 질량 감쇠는 점차 감소하는 경향을 보이는 것을 확인할 수 있다.
이를 통해 증가하는 관 전압에 대해 점차적으로 더 높은 엑스선 광자 에너지를 갖는 비슷한 수의 엑스선 광자를 방출하여 질량 감쇠가 점차 감소하는 것에 의해 흡광도가 감소하고, 고정 관 전류에 의해 생성된 엑스선은 관 전압이 증가함에 따라 선량률이 급격하게 증가하게 됨을 알 수 있다.
도 10은 본 발명의 실시예에 따른 신틸레이터의 관 전압이 90keV일 때 관 전류에 따른 PL 스펙트럼을 도시한 그래프이다.
도 10을 참조하면, 관 전류가 0.25mA, 0.5mA, 0.75mA 및 1mA일 때 모두 ~533nm 파장에서 녹색 빛이 강한 방출을 가진 것을 확인할 수 있다.
또한, 고정된 관 전압에서 관 전류가 증가함에 따라 신틸레이터의 PL 강도가 증가한 것을 확인할 수 있다.
도 11은 본 발명의 실시예에 따른 신틸레이터의 관 전류가 1mA일 때 관 전압에 따른 PL 스펙트럼을 도시한 그래프이다.
도 11을 참조하면, 관 전류가 30keV, 60keV, 90keV 및 120keV일 때 모두 ~533nm 파장에서 녹색 빛이 강한 방출을 가진 것을 확인할 수 있다.
또한, 고정된 관 전류에서 관 전압이 증가함에 따라 신틸레이터의 PL 강도가 증가한 것을 확인할 수 있다.
전술한 도 10 및 도 11의 결과에 따르면, PL 강도는 신틸레이터에 조사된 엑스선의 선량률에 의존하는 것을 확인할 수 있다.
이는 CsPbBr3 신틸레이터가 넓은 엑스선 광자 에너지 스펙트럼에 반응할 수 있고, 엑스선 선량률에 선형 반응할 수 있음을 의미한다.
이하, 상기 실시예에 따른 신틸레이터의 유연성 및 유연 내구성을 확인하기 위해 신틸레이터를 구부린 상태에서 곡률 반경 및 벤딩 반복 횟수에 따른 PL 강도를 측정하였다.
도 12는 본 발명의 실시예에 따른 신틸레이터의 곡률 반경에 따른 PL 강도를 도시한 그래프이다.
도 12는 엑스선(관 전압=90keV, 관 전류=1mA)에 노출된 상태에서 곡률 반경(R)이 Δ편평한 상태), 6mm, 4mm 및 2mm인 신틸레이터의 PL 강도를 도시한 그래프이다.
이때, 곡률 반경이라 함은 신틸레이터를 구부렸을 때 외주면에 대한 곡률 반경을 의미한다.
실시예에 따른 신틸레이터의 두께가 1.5mm임을 고려하면, 구부러진 신틸레이터의 내주면에 대한 곡률 반경은 외주면에 대한 곡률 반경보다 훨씬 작은 것을 알 수 있다.
도 12를 참조하면, 벤딩된 신틸레이터는 곡률 반경과 관계없이 비슷한 PL 강도를 나타내는 것을 확인할 수 있다.
즉, 실시예의 신틸레이터는 유연한 고분자인 PDMS를 포함하여 제조되기 때문에 구부러져도 일정한 PL 강도를 가질 수 있다.
따라서, 실시예의 신틸레이터는 매우 뛰어난 유연성을 가지는 것을 확인할 수 있다.
도 13은 본 발명의 실시예에 따른 신틸레이터의 반복적인 벤딩 횟수에 따른 PL 강도를 도시한 그래프이다.
이때, 신틸레이터를 구부렸다가 펴는 동작을 벤딩 횟수 1회로 간주한다.
도 13을 참조하면, 곡률 반경(R)이 6mm, 4mm, 2mm일 때 모두 벤딩 횟수에 대한 PL 강도가 거의 유사한 것을 확인할 수 있다.
구체적으로, 실시예의 신틸레이터는 벤딩 횟수가 1000회를 넘어가도 PL 강도를 일정하기 유지시킬 수 있다.
따라서, 실시예의 신틸레이터는 벤딩 동작이 1000회 이상 반복되어도 PL 강도가 감소되지 않고 유지되어, 매우 뛰어난 유연 내구성을 가지는 것을 확인할 수 있다.
상기 실시예의 신틸레이터에 대한 안정성을 확인하기 위해, 15일 동안 대기 조건에 보관하여 매일 PL 강도를 측정하였으며, 그 결과는 아래의 도 14와 같다.
도 14는 본 발명의 실시예에 따른 신틸레이터의 사용 일수에 대한 PL 강도를 도시한 그래프이다.
도 14를 참조하면, 상기 실시예의 신틸레이터는 15일 동안 거의 동일한 PL 강도를 나타내는 것을 확인할 수 있다.
이는 무기물로 이루어진 페로브스카이트 화합물인 CsPbBr3로 이루어진 페로브스카이트 나노 결정은 사슬이 긴 알킬 리간드에 의해 부동화되고, 소수성의 PDMS와 혼합되기 때문이다.
따라서, 상기 실시예의 신틸레이터는 안정성이 매우 뛰어난 것을 확인할 수 있다.
도 15는 본 발명의 실시예에 따른 신틸레이터의 엑스선 노출에 따른 PL 강도를 도시한 그래프이다.
도 15를 참조하면, 상기 실시예의 신틸레이터는 초기 PL 강도를 70Gyair의 엑스선 선량으로 유지하는 것을 확인할 수 있다.
즉, 상기 실시예의 신틸레이터는 엑스선 선량이 증가함에 따라 PL 강도가 거의 일정한 것을 확인할 수 있다.
따라서, 상기 실시예의 신틸레이터는 엑스선의 선량과 관계없이 PL 강도가 거의 일정하게 유지되어 내구성이 뛰어난 것을 확인할 수 있다.
2. MAPbI
3
페로브스카이트 광 검출기의 특성 평가
도 16은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 단면을 도시한 전자주사현미경(scanning electron microscopy, SEM) 이미지이다.
도 16을 참조하면, 비유연 페로브스카이트 광 검출기가 제1 전극인 ITO가 ~150nm, 정공 전달층인 PEDOT:PSS가 ~50nm, MAPbI3을 포함하는 페로브스카이트 광흡수층이 ~400nm, 전자 전달층인 PCBM이 ~50nm, 제2 전극인 Al이 ~50nm의 두께로 형성된 것을 확인할 수 있다.
도 17은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 전류밀도-전압(J-V) 곡선을 도시한 그래프이다.
도 17은 광 강도가 1μW/cm2, 5μW/cm2, 10μW/cm2, 50μW/cm2, 100μW/cm2, 500μW/cm2, 1mW/cm2일 때 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 전류밀도-전압 곡선을 도시한 것이다.
이때, 광 강도는 510nm 파장의 레이저로 1μW/cm2에서 1mW/cm2로 조절되었다.
도 17을 참조하면, 조사된 광의 강도가 증가함에 따라 제로 바이어스 전위에서의 전류 밀도가 점진적으로 증가하는 것을 확인할 수 있다.
도 18은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 광 강도에 따른 반응도(responsivity)와 비검출률(specific detectivity)을 도시한 그래프이다.
도 18을 참조하면, 상기 실시예 2의 비유연 페로브스카이트 광 검출기가 다양한 광 강도를 가지더라도 반응도(R) 및 비검출률(D*)의 값은 소폭 감소하기는 하나 거의 일정한 값을 가지는 것을 확인할 수 있다.
상기 실시예 2의 비유연 페로브스카이트 광 검출기의 반응도 및 비검출률에 대한 구체적인 수치는 후술할 도 19와 함께 설명하도록 한다.
도 19는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 스펙트럼 잡음 밀도(noise spectral density)를 도시한 그래프이다.
도 19를 참조하면, 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 스펙트럼 잡음 밀도(Sn)는 ~4.0Х1012AHz-0.5의 값을 가지는 것을 확인할 수 있다.
전술한 도 17 및 도 19의 결과와 상기 수학식 1 및 수학식 2에 따르면, 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 반응도는 ~0.35A/W, 비검출률은 ~2.4Х1012 cmHz0.5/W의 값을 가지는 것을 확인할 수 있다.
도 20은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 선형 동적 범위(linear dynamic range, LDR)를 도시한 그래프이다.
도 20을 참조하면, 전류 밀도의 로그 값과 광 강도의 로그 값에 대한 플롯은 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 선형 동적 범위(LDR)이 ~158dB임을 확인할 수 있다.
도 21은 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 주파수에 따른 신호 감쇠를 도시한 그래프이다.
이때, 도 21의 y축은 신호 감쇠량(10log(I/I0))을 의미한다.
도 21을 참조하면, 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 3dB 패널티 주파수가 ~5MHz임을 확인할 수 있다.
이는 상기 실시예 2의 비유연 페로브스카이트 광 검출기가 MHz 단위의 주파수 레벨까지 정보를 처리할 수 있음을 의미한다.
상기 실시예 2의 비유연 페로브스카이트 광 검출기가 MHz의 주파수 레벨까지 정보를 처리할 수 있음을 확인하기 위해, 상기 실시예 2의 비유연 페로브스카이트 광 검출기를 통해 1MHz의 신호를 수집하였으며, 이에 대한 설명은 아래의 도 22에서 다루도록 한다.
도 22는 본 발명의 실시예에 따른 비유연 페로브스카이트 광 검출기의 1MHz의 입력 펄스 변조에서 출력 광 전류 신호를 도시한 그래프이다.
도 22에 삽입된 확대된 이미지를 참조하면, 상기 실시예 2의 비유연 페로브스카이트 광 검출기로부터 수집한 신호로부터 상기 실시예 2의 비유연 페로브스카이트 광 검출기의 응답 신호의 상승 시간(tr)과 감쇠 시간(td)이 각각 0.30μs와 0.31μs임을 확인할 수 있다.
따라서, 상기 실시예 2의 비유연 페로브스카이트 광 검출기는 실시간으로 정보를 효과적으로 획득할 수 있다.
지금까지 실시예 2에 따른 비유연 페로브스카이트 광 검출기의 응답 특성 및 신호 검출 특성을 평가하였다.
본 발명에 따른 페로브스카이트 광 검출기는 유연성을 가질 수 있는 바, 비유연 페로브스카이트 광 검출기에서 유연성만 부가된 것일 뿐이어서 비유연 페로브스카이트 광 검출기의 응답 특성 및 신호 검출 특성을 모두 가질 수 있다.
따라서, 전술한 실시예 2의 비유연 페로브스카이트 광 검출기의 특성 평가를 통해 실시예 1에 따른 유연 페로브스카이트 광 검출기 역시 응답 특성 및 신호 검출 특성이 매우 우수함을 알 수 있다.
이하에서는, 실시예 2의 비유연 페로브스카이트 광 검출기와 달리 유연성을 가지는 실시예 1의 유연 페로브스카이트 광 검출기의 유연 특성(유연성, 유연 내구성, 안정성)을 평가하도록 한다.
도 23은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기를 구부린 모습을 도시한 이미지이다.
도 23을 참조하면, 실시예 1의 유연한 페로브스카이트 광 검출기는 상기 제조예에 따라 PET 기판/ITO/PEDOT:PSS/MAPbI3/PCBM/Al로 구성되어, 크기가 2.54Х2.54cm2, 각 활성 영역이 0.16cm2가 되도록 제조된 것을 확인할 수 있다.
또한, 도 23을 통해 실시예 1의 유연한 페로브스카이트 광 검출기는 외력을 가하면 쉽게 구부러질 수 있는 유연성을 가지는 것을 확인할 수 있다.
도 24는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 곡률 반경에 따른 전류밀도-전압 곡선을 도시한 그래프이다.
이때, 도 24는 실시예 1의 유연한 페로브스카이트 광 검출기를 어두운 곳 및 1mW/cm2의 빛이 있는 곳에서 곡률 반경 Δ편평한 상태), 6mm, 4mm 및 2 mm로 구부린 상태에서의 J-V 곡선을 도시한 것이다.
도 24를 참조하면, 실시예 1의 유연한 페로브스카이트 광 검출기의 전류 밀도 및 암전류 밀도는 곡률 반경에 관계없이 거의 일정한 것을 확인할 수 있다.
따라서, 상기 실시예 1의 유연한 페로브스카이트 광 검출기는 외력에 의해 구부러지는 환경에서도 왜곡없이 특정 정보 신호를 수집할 수 있음을 확인할 수 있다.
도 25는 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 전류 밀도를 도시한 그래프이다.
도 25를 참조하면, 반복적으로 벤딩된 실시예 1의 유연한 페로브스카이트 광 검출기의 전류 밀도(Jph)는 벤딩 횟수에 관계없이 거의 일정했지만, 암전류 밀도(Jd)는 벤딩 횟수가 증가할수록 증가된 값을 가지는 것을 확인할 수 있다.
또한, 실시예 1의 유연한 페로브스카이트 광 검출기는 곡률 반경이 감소함에 따라 암전류 밀도의 감소량이 커지는 것을 확인할 수 있다.
도 26은 본 발명의 실시예에 따른 유연한 페로브스카이트 광 검출기의 반복적인 벤딩에 대한 반응도를 도시한 그래프이다.
도 26은 실시예 1의 유연한 페로브스카이트 광 검출기를 곡률 반경 6mm, 4mm, 2mm로 각각 구부렸을 때, 벤딩 횟수에 따른 반응도(R)를 도시한 것이며, 실시예 1의 유연한 페로브스카이트 광 검출기를 구부리는 모습을 도시한 이미지를 도 26 그래프 내에 삽입하였다.
도 26을 참조하면, 동일한 곡률 반경일 때 실시예 1의 유연한 페로브스카이트 광 검출기의 반응도는 벤딩 횟수 1000회까지 거의 일정한 것을 확인할 수 있다.
이는 상기 수학식 1에서 알 수 있듯이 반응도는 전류 밀도, 암전류 밀도 및 일시적 광 강도에 대한 함수이기 때문에, 전술한 도 25에서 벤딩 횟수에 대한 전류 밀도가 거의 일정하므로 반응도 역시 거의 일정한 것이다.
또한, 도 26을 참조하면 동일한 벤딩 횟수에 대하여 실시예 1의 유연한 페로브스카이트 광 검출기의 곡률 반경이 감소되면 반응도도 약간 저하되는 것을 확인할 수 있다.
이는 전술한 도 25에 따른 곡률 반경이 감소할수록 암전류 밀도가 증가하기 때문이다.
즉, 상기 수학식 1에 의하면 암전류 밀도가 증가하기 때문에 실시예 1의 유연한 페로브스카이트 광 검출기의 반응도가 감소하는 것을 알 수 있다.
그러나, 곡률 반경이 감소함에 따라 반응도가 감소하는 것을 감안하더라도 실시예 1의 유연한 페로브스카이트 광 검출기의 반응도는 급격한 변화없이 거의 일정한 수준을 보이고 있기 때문에 유연 내구성 및 안정성이 매우 우수함을 알 수 있다.
따라서, 본 발명의 실시예에 따른 유연 페로브스카이트 광 검출기는 뛰어난 응답 특성 및 신호 검출 특성을 가짐과 동시에 유연성, 유연 내구성 및 안정성을 가지는 것을 알 수 있다.
3. 페로브스카이트 X선 검출기의 특성 평가
도 27은 본 발명의 실시예에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류밀도를 도시한 그래프이다.
도 27은 실시예 2의 비유연 페로브스카이트 X선 검출기에 대하여 전술한 도 7 및 도 8과 동일한 실험을 진행한 결과를 도시한 것이다.
도 27을 참조하면, 실시예 2의 비유연 페로브스카이트 X선 검출기는 도 7 및 도 8의 실험에서 사용된 Si 광 검출기가 페로브스카이트 광 검출기로 대체되었기 때문에 실시예 2의 신틸레이터에서와 동일한 반응을 보였다.
실시예 2의 비유연 페로브스카이트 X선 검출기의 전류 밀도는 관 전류 및 관 전압이 증가함에 따라 선형적으로 증가한 것을 확인할 수 있다.
1mA로 고정된 관 전류에서, 실시예 2의 비유연 페로브스카이트 X선 검출기의 전류 밀도는 관 전압이 30keV에서 120keV로 증가함에 따라 0.017mA/cm2 내지 0.199mA/cm2 로 증가한 것을 확인할 수 있다.
또한, 90keV로 고정된 관 전압에서, 실시예 2의 비유연 페로브스카이트 X선 검출기는 관 전류가 0.25mA에서 1mA로 증가함에 따라 0.041mA/cm2 내지 0.174mA/cm2의 전류 밀도를 나타낸 것을 확인할 수 있다.
도 28은 본 발명의 실시예 2에 따른 비유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
이때, 상기 활성 영역의 면적, 실시예 2의 신틸레이터의 두께 및 실시예 2의 페로브스카이트 광 검출기의 두께를 각각 0.16cm2, 0.15cm 및 4x10-5cm로 고정한 후 상기 수학식 3을 통해 실시예 2의 비유연 페로브스카이트 X선 검출기의 엑스선 감도를 산출하였다.
도 28을 참조하면, 상기 실시예 2의 엑스선 감도는 90keV로 고정된 관 전압에서, 관 전류를 0.25mA 내지 1mA 변화시킬 때 활성 영역을 기준으로 ~140μCm/Gyaircm3, 활성 부피를 기준으로 ~960μCm/Gyaircm3 인 것을 확인할 수 있다.
또한, 1mA의 고정된 관 전류에서 관 전압이 30keV 내지 120keV일 때, 활성 영역을 기준으로 100μCm/Gyaircm3 내지 210μCm/Gyaircm3, 활성 부피를 기준으로 650μCm/Gyaircm3 내지 1370μCm/Gyaircm3인 것을 확인할 수 있다.
실시예 2의 비유연 페로브스카이트 X선 검출기가 관 전류의 변화에 관계없이 고정된 관 전압 하에서 일정한 엑스선 감도를 가지는 것은 전술한 도 7에 도시된 신틸레이터의 일정한 흡수율로 인한 것이다.
반면, 실시예 2의 비유연 페로브스카이트 X선 검출기가 고정된 관 전류 하에서 관 전압 증가에 따른 엑스선 감도의 증가는 선량률에 따른 신틸레이터의 흡수율 증가로 인한 것이다.
도 29는 본 발명의 실시예 2에 따른 비유연 페로브스카이트 X선 검출기의 50ms 간격으로 엑스선 입력 신호를 가했을 때의 출력 신호를 도시한 그래프이다.
도 29를 참조하면, 50ms의 시간 간격을 갖는 X선 입력 신호가 실시예 2의 비유연 페로브스카이트 X선 검출기에 조사될 때, 출력 신호에 시간 지연이 없음을 확인할 수 있다.
이러한 페로브스카이트 X선 검출기의 빠른 반응은 신틸레이터의 매우 짧은 순간 PL 평균 수명(2.81 ns)과 실시예 2의 비유연 페로브스카이트 광 검출기의 빠른 반응 시간 (~0.3μs) 때문이다.
도 30은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 전류 밀도를 도시한 그래프이다.
도 30은 전술한 도 27과 동일한 실험 조건에서 실시예 1의 유연 페로브스카이트 X선 검출기의 전류 밀도를 측정한 결과를 도시한 것이다.
도 30을 참조하면, 전술한 도 27에 언급한 바와 같이 실시예 2의 비유연 페로브스카이트 X선 검출기의 전류 밀도 특성과 동일한 특성을 가지는 것을 확인할 수 있다.
즉, 실시예 1의 유연 페로브스카이트 X선 검출기는 관 전류 및 관 전압이 증가함에 따라 전류 밀도가 선형적으로 증가한 것을 확인할 수 있다.
실시예 1의 유연 페로브스카이트 X선 검출기의 전류 밀도 경향이 실시예 2의 비유연 페로브스카이트 X선 검출기의 전류 밀도 경향과 유사함에 따라, 실시예 1의 유연 페로브스카이트 X선 검출기의 엑스선 감도 경향 역시 상기 실시예 2의 엑스선 감도와 경향이 유사한 것을 확인할 수 있으며, 이에 대한 설명을 도 31과 함께하면 다음과 같다.
도 31은 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 관 전류 및 관 전압 각각의 변화에 따른 엑스선 감도를 도시한 그래프이다.
도 31을 참조하면, 실시예 1의 유연 페로브스카이트 X선 검출기의 엑스선 감도는 상기 실시예 2의 엑스선 감도와 경향이 유사한 것을 확인할 수 있다.
즉, 상기 실시예 1의 엑스선 감도는 90keV로 고정된 관 전압에서, 관 전류를 0.25mA 내지 1mA 변화시킬 때 활성 영역을 기준으로 ~130μCm/Gyaircm3, 활성 부피를 기준으로 ~870μCm/Gyaircm3 인 것을 확인할 수 있다.
또한, 1mA의 고정된 관 전류에서 관 전압이 30keV 내지 120keV일 때, 활성 영역을 기준으로 90μCm/Gyaircm3 내지 190μCm/Gyaircm3, 활성 부피를 기준으로 600μCm/Gyaircm3 내지 1270μCm/Gyaircm3인 것을 확인할 수 있다.
상기 실시예 1 및 실시예 2는 서로 다른 엑스선 감도 값을 가지는데, 신틸레이터에서 발광하는 빛의 세기는 동일하나, 페로브스카이트 광 검출기에 들어가는 빛의 양이 유리 기판(실시예 2)과 플라스틱(PET) 기판(실시예 1)로 서로 상이하기 때문이다.
구체적으로, 실시예 2의 기판 재질인 유리는 굴절률이 1.51이고, 실시예 1의 기판 재질인 PET는 굴절률이 1.7 정도여서, PET 기판에서 반사가 많이 일어나기 때문에 실시예 1의 페로브스카이트 광 검출기에 들어가는 빛의 양이 적어 유리 기판을 사용하는 실시예 2와 대비하여 엑스선 감도가 작다.
상기 실시예 1의 경우에는 AR(anti-reflection)층을 별도로 형성하여 유연 페로브스카이트 광 검출기의 문제점을 해결할 수 있다.
이하, 상기 실시예 1의 유연 페로브스카이트 X선 검출기의 유연 특성을 평가하기 위해 곡률 반경에 따라 엑스선 신호의 왜곡 여부를 평가하였으며, 후술할 도 32a 내지 도 32c와 함께 설명하도록 한다.
도 32a는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 6mm일 때 출력 신호를 도시한 그래프이고, 도 32b는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 4mm일 때 출력 신호를 도시한 그래프이며, 도 32c는 본 발명의 실시예에 따른 유연 페로브스카이트 X선 검출기의 곡률 반경이 2mm일 때 출력 신호를 도시한 그래프이다.
도 32a 내지 도 32c를 참조하면, 50ms의 시간 간격을 갖는 엑스선 신호가 입력될 때, 곡률 반경이 변화에 따라 벤딩된 유연 페로브스카이트 X선 검출기에는 신호 왜곡이 없는 것을 확인할 수 있다.
이는 실시예 1의 유연 페로브스카이트 X선 검출기가 뛰어난 유연성을 가짐으로써 왜곡없이 엑스선 영상을 획득할 수 있음을 의미한다.
이러한 실시예 1의 유연 페로브스카이트 X선 검출기의 유연 특성은 상기 실시예 1의 신틸레이터와 유연한 페로브스카이트 광 검출기가 곡률 반경 변화에 따라 신호 왜곡이 없는 것과 동일하다.
즉, 실시예 1의 유연 페로브스카이트 X선 검출기는 실시예의 신틸레이터와 페로브스카이트 광 검출기의 유연 특성을 포함하는 것을 확인할 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 페로브스카이트 X선 검출기
110: 신틸레이터
120: 페로브스카이트 광 검출기
121: 기판
122: 제1 전극
123: 정공 전달층
124: 페로브스카이트 광흡수층
125: 전자 전달층
126: 제2 전극
110: 신틸레이터
120: 페로브스카이트 광 검출기
121: 기판
122: 제1 전극
123: 정공 전달층
124: 페로브스카이트 광흡수층
125: 전자 전달층
126: 제2 전극
Claims (17)
- 입사된 엑스선(X-ray)을 가시광선으로 변환하는 신틸레이터(scintillator)의 하부에 페로브스카이트 광 검출기의 기판이 맞닿도록 페로브스카이트 광 검출기가 배치된 것으로서,
상기 페로브스카이트 광 검출기는,
상기 신틸레이터의 하부에 배치되는 상기 기판;
상기 기판의 하부에 형성되는 제1 전극;
상기 제1 전극의 하부에 형성되는 정공 전달층;
상기 정공 전달층의 하부에 형성되는 페로브스카이트 광흡수층;
상기 페로브스카이트 광흡수층의 하부에 형성되는 전자 전달층; 및
상기 전자 전달층의 하부에 형성되는 제2 전극을 포함하고,
상기 신틸레이터 및 상기 페로브스카이트 광흡수층은 하기의 화학식 1로 표시되는 페로브스카이트 화합물을 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
[화학식 1]
AaMbXc
(상기 화학식 1에서, A는 1가의 양이온, M은 2가의 금속 양이온 또는 3가의 금속 양이온, X는 1가의 음이온이고, M이 2가의 금속 양이온일 때 a+2b=c, M이 3가의 금속 양이온일 때 a+3b=4c이며, a, b, c는 자연수임.)
- 제1항에 있어서,
상기 페로브스카이트 X선 검출기는 유연소자 또는 비유연 소자인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제2항에 있어서,
상기 신틸레이터는 PDMS(polydimethylsiloxane), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌나프탈렌(PEN), 폴리이미드(PI), 트리아세틸셀루로우스(TAC), 폴리아크릴(PA), 폴리우레탄(PU), 폴리페닐렌 설파이드(polyphenylene sulfide, PPS), 폴리아릴레이트(polyarylate), 폴리카보네이트(polycarbonate, PC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate, CAP) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 신틸레이터에 포함된 페로브스카이트 화합물은 나노 결정인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 1가의 양이온은,
C1~24의 직쇄 또는 측쇄 알킬, 아민기(-NH3), 수산화기(-OH), 시아노기(-CN), 할로겐기, 니트로기(-NO), 메톡시기(-OCH3) 또는 이미다졸리움기가 치환된 C1~24의 직쇄 또는 측쇄 알킬, Li+, Na+, K+, Rb+, Cs+, Fr+, Cu(I) +, Ag(I)+ 및 Au(I)+으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 2가의 금속 양이온은 Pb2+, Sn2+, Ge2+, Cu2+, Co2+, Ni2+, Ti2+, Zr2+, Hf2+ 및 Rf2+로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 3가의 금속 양이온은 In3+, Bi3+, Co3+, Sb3+, Ni3+, Al3+, Ga3+, Tl3+, Sc3+, Y3+, La3+, Ce3+, Fe3+, Ru3+, Cr3+, V3+, Ti3+로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 1가의 음이온은 F-, Cl-, Br-, I-, SCN-, BF4 - 및 PF6 -으로 이루어진 그룹으로부터 선택된 적어도 어느 하나를 포함하는 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 신틸레이터의 순간 광 루미네선스(transient PL) 평균 수명은 0.1ns 내지 1000ns인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 신틸레이터의 두께는 1μm 내지 1.5mm인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 광흡수층의 두께는 10nm 내지 200μm인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 광 검출기의 반응도(responsivity, R)는 0.0001A/W 내지 1A/W인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 광 검출기의 비검출률(specific detectivity, D*)은 109cmHz0.5/W 내지 1013cmHz0.5/W인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 광 검출기의 반응 시간은 0.01μs 내지 100μs인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 X선 검출기의 전류밀도는 0.00001mA/cm2 내지 10mA/cm2인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 X선 검출기의 엑스선 감도는 활성 영역의 면적을 기준으로 10μCmGyair -1cm-2 내지 1,000μCmGyair -1cm-2 인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
- 제1항에 있어서,
상기 페로브스카이트 X선 검출기의 엑스선 감도는 활성 영역의 부피를 기준으로 100μCmGyair -1cm-3 내지 1,000μCmGyair -1cm-3 인 것을 특징으로 하는 자가 발전형 페로브스카이트 X선 검출기.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190088845A KR102276317B1 (ko) | 2019-07-23 | 2019-07-23 | 자가 발전형 페로브스카이트 x선 검출기 |
US17/629,508 US11744090B2 (en) | 2019-07-23 | 2020-07-23 | Self-powered perovskite X-ray detector |
PCT/KR2020/009739 WO2021015578A1 (ko) | 2019-07-23 | 2020-07-23 | 자가 발전형 페로브스카이트 x선 검출기 |
EP20843776.4A EP3988969A4 (en) | 2019-07-23 | 2020-07-23 | SELF-CONTAINED PEROVSKITE X-RAY DETECTOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190088845A KR102276317B1 (ko) | 2019-07-23 | 2019-07-23 | 자가 발전형 페로브스카이트 x선 검출기 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210011667A KR20210011667A (ko) | 2021-02-02 |
KR102276317B1 true KR102276317B1 (ko) | 2021-07-12 |
Family
ID=74192540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190088845A KR102276317B1 (ko) | 2019-07-23 | 2019-07-23 | 자가 발전형 페로브스카이트 x선 검출기 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11744090B2 (ko) |
EP (1) | EP3988969A4 (ko) |
KR (1) | KR102276317B1 (ko) |
WO (1) | WO2021015578A1 (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3785020A4 (en) * | 2018-04-27 | 2022-01-19 | University of Washington | METAL HALIDE SEMICONDUCTOR OPTICAL AND ELECTRONIC DEVICES AND PROCESSES FOR THEIR MANUFACTURE |
WO2024085893A2 (en) * | 2021-10-11 | 2024-04-25 | University Of Kansas | High energy radiation detectors |
KR102702520B1 (ko) * | 2021-11-16 | 2024-09-03 | 가천대학교 산학협력단 | 자가 발전형 할라이드 페로브스카이트 플렉서블 uvc 광 검출기 |
CN114895343A (zh) * | 2022-04-18 | 2022-08-12 | 山东理工大学 | 一种钙钛矿基的x射线辐射剂量仪及其制作方法 |
CN115988888A (zh) * | 2023-02-09 | 2023-04-18 | 深圳先进技术研究院 | 一种基于钙钛矿的同轴纤维状x射线探测器及其制备方法 |
WO2024173868A1 (en) * | 2023-02-16 | 2024-08-22 | The Regents Of The University Of California | Perovskite device for gamma ray detection |
WO2024210241A1 (ko) * | 2023-04-07 | 2024-10-10 | 엘지전자 주식회사 | 비파괴 검사용 엑스선 검출기 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005003444A (ja) * | 2003-06-10 | 2005-01-06 | Canon Inc | 放射線検出装置及び放射線撮像システム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170112563A (ko) * | 2016-03-31 | 2017-10-12 | 성균관대학교산학협력단 | 유무기 복합 페로브스카이트 기반 x-선 검출 디바이스 및 x-선 검출 장치 |
WO2018009712A2 (en) * | 2016-07-06 | 2018-01-11 | Nutech Ventures | Monolithic integration of hybrid perovskite single crystals with silicon for highly sensitive x-ray detectors |
WO2018021975A1 (en) * | 2016-07-28 | 2018-02-01 | Nanyang Technological University | Apparatus for electro-magnetic wave detection |
KR101842785B1 (ko) * | 2016-08-31 | 2018-03-28 | 경희대학교 산학협력단 | 페로브스카이트 화합물을 포함하는 신틸레이터를 구비한 엑스선 검출기 |
KR101839696B1 (ko) | 2016-08-31 | 2018-03-16 | 경희대학교 산학협력단 | 페로브스카이트 화합물을 포함하는 신틸레이터를 구비한 엑스선 검출기 |
KR102506443B1 (ko) | 2017-03-17 | 2023-03-07 | 삼성전자주식회사 | 페로브스카이트 화합물을 포함하는 광전 변환 소자 및 이를 포함하는 촬상 장치 |
US10950902B2 (en) | 2018-01-19 | 2021-03-16 | Myeong-Eun Hwang | Battery management system and battery cell array |
-
2019
- 2019-07-23 KR KR1020190088845A patent/KR102276317B1/ko active IP Right Grant
-
2020
- 2020-07-23 WO PCT/KR2020/009739 patent/WO2021015578A1/ko unknown
- 2020-07-23 EP EP20843776.4A patent/EP3988969A4/en active Pending
- 2020-07-23 US US17/629,508 patent/US11744090B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005003444A (ja) * | 2003-06-10 | 2005-01-06 | Canon Inc | 放射線検出装置及び放射線撮像システム |
Also Published As
Publication number | Publication date |
---|---|
EP3988969A4 (en) | 2023-07-19 |
US11744090B2 (en) | 2023-08-29 |
WO2021015578A1 (ko) | 2021-01-28 |
US20220246873A1 (en) | 2022-08-04 |
KR20210011667A (ko) | 2021-02-02 |
EP3988969A1 (en) | 2022-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102276317B1 (ko) | 자가 발전형 페로브스카이트 x선 검출기 | |
Xu et al. | Photodetectors based on solution-processable semiconductors: Recent advances and perspectives | |
Chow et al. | Organic photodetectors for next‐generation wearable electronics | |
US10651409B2 (en) | Narrowband nanocomposite photodetector | |
Huang et al. | Recent progress in organic phototransistors: Semiconductor materials, device structures and optoelectronic applications | |
Tian et al. | Hybrid organic–inorganic perovskite photodetectors | |
US9685567B2 (en) | Nanocomposite photodetector | |
Al Fattah et al. | Sensing of ultraviolet light: a transition from conventional to self-powered photodetector | |
KR102454412B1 (ko) | 다이렉트 변환 방사선 검출기 | |
Yao et al. | Molecular engineering of perovskite photodetectors: recent advances in materials and devices | |
CN106796301B (zh) | 有机光电二极管、有机x射线检测器和x射线系统 | |
KR20150109450A (ko) | 용액 처리된 pbs 광검출기를 이용한 신규 ir 이미지 센서 | |
KR102149361B1 (ko) | 접착 촉진 중간층 및 소프트-소결된 페로브스카이트 활성 층을 갖는 x선 이미지 센서 | |
US9362341B2 (en) | X ray detection apparatus | |
US20180366519A1 (en) | Photoelectric conversion device and imaging unit | |
Zafar et al. | A MEHPPV/VOPcPhO composite based diode as a photodetector | |
US20140191218A1 (en) | X-ray-sensitive devices and systems using organic pn junction photodiodes | |
Wang et al. | In operando visualization of interfacial band bending in photomultiplying organic photodetectors | |
US20150034910A1 (en) | Organic x-ray detector | |
Seon et al. | Characteristic of an Organic Photodetector fabricated with P3HT: ICBA blending materials for Indirect X-ray Detection | |
An et al. | Spectral response tuning of organic photodetectors using strong microcavity effects for medical X-ray detector application | |
KR101772095B1 (ko) | 광대역 감광 전-고분자 유기광전자소자 | |
Zhang et al. | Quasi-Tandem Photodetector with Tunable Narrowband Response and Submicrosecond Response Time: Charge-Selected Transmitting Narrowing | |
KR102380472B1 (ko) | X-선 검출기 및 그 제조방법 | |
KR102067546B1 (ko) | X-선 검출용 유기소자 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |