KR102211327B1 - 배럴 섹션에 천공을 형성하기 위한 시스템 및 방법 - Google Patents

배럴 섹션에 천공을 형성하기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR102211327B1
KR102211327B1 KR1020140096322A KR20140096322A KR102211327B1 KR 102211327 B1 KR102211327 B1 KR 102211327B1 KR 1020140096322 A KR1020140096322 A KR 1020140096322A KR 20140096322 A KR20140096322 A KR 20140096322A KR 102211327 B1 KR102211327 B1 KR 102211327B1
Authority
KR
South Korea
Prior art keywords
drilling
barrel section
perforations
face sheet
inner face
Prior art date
Application number
KR1020140096322A
Other languages
English (en)
Other versions
KR20150026804A (ko
Inventor
주빈 클라우디오
기빙스 제오프레이
제이. 슈펠트 메튜
시모노빅 댐잰
엠. 페레이라 안토니오
분스트라 데이비드
제이. 라우더 아놀드
에프. 가브리엘 마크
Original Assignee
더 보잉 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 보잉 컴파니 filed Critical 더 보잉 컴파니
Publication of KR20150026804A publication Critical patent/KR20150026804A/ko
Application granted granted Critical
Publication of KR102211327B1 publication Critical patent/KR102211327B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/16Drilling machines with a plurality of working-spindles; Drilling automatons
    • B23B39/20Setting work or tool carrier along a circular index line; Turret head drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/16Drilling machines with a plurality of working-spindles; Drilling automatons
    • B23B39/24Drilling machines with a plurality of working-spindles; Drilling automatons designed for programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B39/00General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines
    • B23B39/14General-purpose boring or drilling machines or devices; Sets of boring and/or drilling machines with special provision to enable the machine or the drilling or boring head to be moved into any desired position, e.g. with respect to immovable work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/045Air intakes for gas-turbine plants or jet-propulsion plants having provisions for noise suppression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2215/00Details of workpieces
    • B23B2215/04Aircraft components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/16Constructions comprising three or more similar components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/20Internally located features, machining or gripping of internal surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2270/00Details of turning, boring or drilling machines, processes or tools not otherwise provided for
    • B23B2270/32Use of electronics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0206Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes comprising noise reduction means, e.g. acoustic liners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0286Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for turbofan engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/03Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T408/00Cutting by use of rotating axially moving tool
    • Y10T408/36Machine including plural tools
    • Y10T408/38Plural, simultaneously operational tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Drilling And Boring (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Manipulator (AREA)

Abstract

드릴링 시스템은 다수의 로봇 드릴링 유닛을 포함한다. 로봇 드릴링 유닛의 각 하나는 배럴 섹션 내측에 위치된 드릴 단부 작동체를 포함한다. 배럴 섹션은 내부 면 시트를 갖는 복합재료 샌드위치 구조로 구성되어 있다. 로봇 드릴링 유닛은 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 방법에서 드릴 단부 작동체를 사용하여 내부 면 시트에 다수의 천공을 구멍 뚫도록 서로 동기화된 이동으로 작동할 수 있다.

Description

배럴 섹션에 천공을 형성하기 위한 시스템 및 방법{SYSTEM AND METHOD FOR FORMING PERFORATIONS IN A BARREL SECTION}
본 발명은 일반적으로 구조물의 흡음 처리(acoustic treatment)의 생성에 관한 것이고, 그리고 좀 더 구체적으로 엔진 흡입구 배럴 섹션(an engine inlet barrel section)에서 음향조절 천공(acoustic perforations)의 형성에 관한 것이다.
상업용 여객기는 이륙 및 착륙 동안과 같이 어떤 소음 표준을 맞추는 것이 요구되고 있다. 이륙 및 착륙 동안에 상업용 여객기에 의해 생산 소음의 큰 부분은 보통 여객기에 사용된 가스 터빈 엔진에 의해 생성되어진다. 가스 터빈 엔진의 소음 레벨을 감소시키기 위해 공지된 방법은 엔진실의 엔진 흡입구를 흡음 처리하는 것을 포함한다. 이 점에서, 가스 터빈 엔진 흡입구의 내부 배럴 섹션이 내부 배럴 섹션의 벽들에 형성된 다수의 비교적 작은 천공들이 제공된다. 천공들은 엔진 흡입구에서 고속으로 회전하는 팬 블레이드들에 의해 생성되는 소음의 일부를 흡수하고, 그리고 그것에 의해 가스 터빈 엔진의 전체 소음 생산량을 감소시킨다.
배럴 섹션과 같은 음향 구조물에서 천공을 형성하게 위한 종래의 방법은 내부 벽에 천공을 형성하는 것에 의해 이어지는, 별도의 구성요소로서 배럴 섹션의 내부 벽을 형성하는 것을 포함한다. 내부 벽은 가스 터빈 엔진실과 그때 조립되는 배럴 섹션을 구성하는 다른 구성요소들과 그 때 조립되어진다. 유감스럽게도 음향 구조물을 형성하기 위한 그런 종래 방법은 천공이 형성되어진 후 천공의 일부를 차단하는 결과가 되는 작업을 포함한다..
음향 구조물을 형성하기 위한 종래 방법은 또한 없어진 천공(missing perforations)의 결과가 된다. 그런 차단된 천공 또는 없어진 천공은 소음을 흡수 또는 약화시키는데 그들의 전체 유효성을 측정하기 위한 음향 구조물의 특성인 내부 벽의 개방 면적 백분율(percent-open-area (POA))(내부 벽의 표면 영역의 백분율로서 천공의 전체 면적)을 감소시킨다. 또한, 음향 구조물에서 천공을 형성하는 종래 방법들은 생산 계획 및 비용을 더하는 시간 소비 공정이다.
알 수 있는 바와 같이, 차단 또는 없어진 천공의 발생을 최소화 또는 없애고, 그리고 시기적절하고 비용 효율적인 방법으로 수행되는 음향적 구조에서 천공을 형성하기 위한 시스템 및 방법을 위한 기술 분야에 대한 요구가 존재한다
엔진 흡입구와 같이 음향 구조물에서 천공을 형성하는 것과 관련된 상기 언급된 요구들이 다수의 로봇 드릴링 유닛을 포함하는 드릴링 시스템을 제공하는 본 발명에 의해 명확하게 특별히 언급되고 완화되어진다. 로봇 드릴링 유닛의 각 하나는 엔진 흡입구의 배럴 섹션 안쪽에 위치된 드릴 단부 작동체를 포함한다. 배럴 섹션은 내부 면 시트(an inner face sheet)를 가지는 복합재료 샌드위치 구조(a composite sandwich structure)로 구성되어 진다. 로봇 드릴링 유닛은 내부 면 시트의 미리 설정된 개방 면적 백분율(a predetermined percent-open-area)을 제공하는 방법으로 드릴 단부 작동체를 사용하여 내부 면 시트로 다수의 천공을 구멍 뚫도록 동기화된 이동으로 작동될 수 있다.
또한 엔진 흡입구를 조립하는 방법이 개시되어 있다. 상기 방법은 내부 면 시트, 코어, 그리고 외부 면 시트를 가지는 복합재료 샌드위치 구조로 구성된 엔진 흡입구 내부 배럴 섹션을 제공하는 것을 포함한다. 상기 방법은 복합재료 샌드위치 구조의 최종 경화 후에 내부 면 시트에서 다수의 천공을 로봇으로 드릴링 하는 것을 더 포함한다. 상기 방법은 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 추가적으로 포함한다.
다른 실시 예에서, 내부 면 시트, 외부 면 시트, 그리고 벌집 코어(a honeycomb core)를 가지는 원피스 복합재료 샌드위치 구조(a one-piece composite sandwich structure)로 구성된 엔진 흡입구 내부 배럴 섹션을 제공하는 단계를 포함하는 엔진 흡입구를 조립하는 방법이 개시되어 있다. 복합재료 샌드위치 구조는 내부 면 시트, 코어, 그리고 외부 면 시트가 단일 작업으로 동시 경화(co-cured) 및/또는 공동 접합(co-bonded)되는 단일 단계 경화(a single stage cure)로 형성되어진다. 상기 방법은 복합재료 샌드위치 구조의 최종 경화 후에 내부 면 시트에서 다수의 천공을 다수의 로봇 드릴링 유닛을 사용하여 드릴링 하는 것을 포함한다. 상기 방법은 다수의 천공을 동시에 구멍 뚫도록 서로 동기화된 이동으로 다수의 로봇 드릴링 유닛을 작동시키는 것을 더 포함한다. 상기 방법은 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 형성하는 것을 또한 포함한다.
요약하면, 발명의 일 측면에 따라 다수의 로봇 드릴링 유닛; 내부 면 시트를 가지는 복합재료 샌드위치 구조로 구성된 배럴 섹션 안쪽에 위치된 드릴 단부 작동체(a drill end effector)를 가지는 로봇 드릴링 유닛의 각 하나; 그리고 상기 로봇 드릴링 유닛이 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 방법으로 드릴 단부 작동체를 사용하여 내부 면 시트에 다수의 천공을 구멍 뚫도록 서로 동기화된 이동으로 작동할 수 있는 것을 포함하는 드릴링 시스템이 제공된다.
유리하게 드릴 단부 작동체가 단일 단계에서 경화된 원피스 엔진 흡입구 내부 배럴 섹션 안쪽에 위치되어 있는 드릴링 시스템이다.
유리하게 로봇 드릴링 유닛이 복합재료 샌드위치 구조의 벌집 코어의 하나 이상의 셀 벽(cell wall)에 천공의 홀 패턴을 색인하도록 구성된 드릴링 시스템이다.
유리하게 천공이 벌집 코어의 셀 벽으로부터 이격된 거리(a spaced distance)에 위치되도록 내부 면 시트에 홀 패턴을 형성하도록 구성된 드릴링 시스템이다.
유리하게 내부 면 시트의 한 섹션에서 개방 영역 백분율이 내부 면 시트의 다른 섹션에서 개방 영역 백분율과 다르게 천공을 구멍 뚫도록 하는 방법으로 작동되어지는 드릴링 시스템이다.
유리하게 다수의 로봇 드릴링 유닛은 적어도 3개의 로봇 드릴링 유닛을 포함하는 드릴링 시스템이다.
유리하게 적어도 하나의 로봇 드릴링 유닛은 적어도 5개 축 주위로 이동가능하게 있는 로봇 아암 어셈블리(a robotic arm assembly)를 가지는 드릴링 시스템이다.
유리하게 로봇 드릴링 유닛 각각은 배럴 섹션 안쪽에 위치된 드릴링 유닛 베이스를 가지는 드릴링 시스템이다.
유리하게 배럴 섹션과 로봇 드릴링 유닛이 배럴 섹션을 지지하는 적어도 하나의 고정 장치(fixture)에 색인되어 있는 드릴링 시스템이다.
본 발명의 다른 측면에 따라 내부 면 시트를 가지는 복합재료 샌드위치 구조로 구성된 엔진 흡입구 내부 배럴 섹션을 제공한 단계; 복합재료 샌드위치 구조의 최종 경화 후에 내부 면 시트에서 다수의 천공을 로봇으로 드릴링 하는 단계; 그리고 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 형성하는 단계를 포함하는 엔진 흡입구를 조립하는 방법이 제공된다.
유리하게 상기 방법은 엔진 흡입구 내부 배럴 섹션을 제공하는 단계는 원피스 복합재료 샌드위치 구조가 단일 단계에서 경화될 때 엔진 흡입구 내부 배럴 섹션을 제공하는 것을 포함한다.
유리하게 상기 방법은 다수의 천공을 로봇으로 드릴링 하는 단계는 복합재료 샌드위치 구조의 벌집 코어의 하나 이상의 셀 벽에 천공의 홀 패턴을 색인하는 것을 포함한다.
유리하게 상기 방법은 홀 패턴을 색인하는 단계는 각 천공이 셀 벽으로부터 이격된 거리에 위치되어지도록 홀 패턴을 위치시키는 것을 포함한다.
유리하게 상기 방법은 다수의 천공을 로봇으로 드릴링 하는 단계는 내부 면 시트의 다른 섹션에서 개방 영역 백분율과 다른 내부 면 시트의 한 섹션에서 개방 영역 백분율을 제공하도록 다수의 천공을 드릴링 하는 것을 포함한다.
유리하게 상기 방법은 다수의 천공을 로봇으로 드릴링 하는 단계는 배럴 섹션 내측에 위치된 다수의 로봇 드릴링 유닛을 사용하여 다수의 천공을 드릴링 하는 것을 포함한다.
유리하게 상기 방법은 다수의 로봇 드릴링 유닛을 사용하여 다수의 천공을 로봇으로 드릴링 하는 단계는 엔진 흡입구 내측 배럴 섹션의 내측에서 서로 동기화된 이동으로 로봇 드릴링 유닛을 작동시키는 것을 포함한다.
유리하게 상기 방법은 서로 동기화된 이동으로 로봇 드릴링 유닛을 작동시키는 단계는 다수의 로봇 드릴링 유닛의 드릴 단부 작동체를 사용하여 내부 면 시트에서 단수의 천공을 동시에 드릴링 하는 것을 포함한다.
유리하게 상기 방법은 엔진 흡입구 내부 배럴 섹션 내측에서 로봇 드릴링 유닛의 드릴링 유닛 베이스를 위치시키는 것을 더 포함한다.
유리하게 상기 방법은 배럴 섹션을 지지하는 적어도 하나의 고정 장치에 엔진 흡입구 내부 배럴 섹션 및 로봇 드릴링 유닛을 색인하는 것을 더 포함한다.
발명의 또 다른 측면에 따라, 내부 면 시트 및 벌집 코어를 가지고 단일 단계에서 경화된 원피스 복합재료 샌드위치 구조로 엔진 흡입구 내부 배럴을 제공하는 단계; 복합재료 샌드위치 구조의 최종 경화 후에 내부 면 시트에 다수의 천공을 다수의 로봇 드릴링 유닛을 사용하여 드릴링 하는 단계; 동시에 다수의 천공을 구멍 뚫도록 서로 동기화된 이동으로 다수의 로봇 드릴링 유닛을 작동시키는 단계; 그리고 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 형성하는 단계를 포함하는, 엔진 흡입구를 조립하는 방법이 제공된다.
논의되어진 특징, 기능 및 이점들은 본 발명의 다양한 실시 예에서 독립적으로 달성되어질 수 있거나 또는 보다 상세한 사항들이 아래의 상세한 설명 및 도면을 참조하여 나타나는 또 다른 실시 예와 결합되어진다.
본 발명은 다수의 로봇 드릴링 유닛; 상기 로봇 드릴링 유닛의 각 하나는 내부 면 시트를 갖는 복합재료 샌드위치 구조로 구성된 배럴 섹션 내측에 위치된 드릴 단부 작동체를 가지며; 그리고 상기 드릴링 유닛은 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 방법으로 드릴 단부 작동체를 사용하여 내부 면 시트에 다수의 천공을 구멍 뚫도록 서로 동기화된 이동으로 작동가능하게 있는 것을 포함하는 드릴링 시스템을 제공한다.
또한, 본 발명은 내부 면 시트 및 벌집 코어를 가지고 단일 단계에서 경화된 원피스 복합재료 샌드위치 구조로 엔진 흡입구 내부 배럴을 제공하는 단계; 복합재료 샌드위치 구조의 최종 경화 후에 내부 면 시트에 다수의 천공을 다수의 로봇 드릴링 유닛을 사용하여 드릴링 하는 단계; 동시에 다수의 천공을 구멍 뚫도록 서로 동기화된 이동으로 다수의 로봇 드릴링 유닛을 작동시키는 단계; 그리고 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 형성하는 단계를 포함하는, 엔진 흡입구를 조립하는 방법을 제공한다.
본 발명의 이들 및 다른 특징들은 전체에 걸쳐서 같은 번호는 같은 부품을 언급하는 도면을 참조하여 보다 분명하게 나타난다.
도 1은 항공기의 사시도이다.
도 2는 도 1의 항공기의 가스 터빈 엔진의 엔진실의 사시도이다.
도 3은 도 2의 가스 터빈 엔진의 엔진 흡입구의 내부 배럴 섹션의 사시도이다.
도 4는 도 2의 가스 터빈 엔진의 엔진 흡입구의 앞 가장자리의 단면도이다.
도 5는 배럴 섹션에서 천공을 형성하기 위한 드릴링 시스템의 실시 예의 사시도이다.
도 6은 드릴링 시스템의 다수의 로봇 드릴링 유닛을 나타내기 위해 팬텀 선으로 도시된 배럴 섹션을 가진 드릴링 시스템의 사시도이다.
도 7은 드릴링 시스템의 측면도이다.
도 8은 드릴링 시스템의 평면도이다.
도 9는 내부 배럴 섹션의 내부 면 시트를 따라 홀 패턴을 형성하는 로봇 드릴링 유닛 중의 하나의 측면도이다.
도 10은 내부 배럴 섹션의 복합재료 샌드위치 구조의 내부 면 시트에서 천공을 형성하는 드릴 단부 작동체의 사시도이다.
도 11은 복합재료 샌드위치 구조의 내부 면 시트에서 천공을 드릴링 하는 드릴 단부 작동체의 드릴 비트(a drill bit)를 나타내고 있는 도 10의 라인 11에 따른 단면도이다.
도 12는 드릴링 시스템의 실시 예의 블록선도이다.
도 13은 엔진 흡입구를 조립하는 방법에서 구현되는 하나 이상의 작업을 포함하는 흐름도의 예시도이다.
도 14는 항공기 제조 및 서비스 방법의 흐름도이다.
도 15는 항공기의 블록선도이다.
지금 도면을 참조하면, 도시되는 것들은 본 발명의 다양한 실시 예들을 나타내기 위한 목적으로 있고, 항공기(100)의 사시도가 도 1에 도시되어 있다. 항공기(100)는 앞부분(nose)에서 꼬리 부분(an empennage)(104)까지 연장되는 동체(a fuselage)(102)를 포함한다. 꼬리 부분(104)은 항공기(100)의 직접적인 제어를 위해 하나 이상의 꼬리 날개면(tail surfaces)을 포함한다. 항공기(100)는 동체(102)로부터 바깥쪽으로 연장하는 한 쌍의 날개(106)를 포함한다.
도 1에서, 항공기(100)는, 하나의 실시 예에서, 날개(106)에 의해 지지되는 하나 이상의 추진 유닛을 포함한다. 추진 유닛들 중의 각 하나는 엔진실(a nacelle)(110)에 의해 둘러싸인 코어 엔진(a core engine)(도시되지 않음)을 갖는 가스 터빈 엔진(108)로 구성되어 있다. 엔진실(110)은 엔진 흡입구(an engine inlet)(114) 및 엔진의 전반 단부(a forward end)(도시되지 않음)에 장착된 하나 이상의 팬(도시되지 않음)을 둘러싸는 엔진 덮개(a fan cowl)(118)를 포함한다. 엔진실(110)은 가스 터빈 엔진(108)의 후방 단부(an aft end)(도시되지 않음)에서 배기 노즐(an exhaust nozzle)(112)(예를 들어, 1차 배기 노즐 및 팬 노즐(a primary exhaust nozzle and a fan nozzle)을 가지고 있다.
도 2는 엔진 흡입구(114)를 갖는 가스 터빈 엔진(108)의 실시 예를 나타내고 있다. 엔진 흡입구(114)는 앞 가장자리(a leading edge)(116) 및 엔진 흡입구(114)의 앞 가장자리(116)의 후방에 위치된 내부 배럴 섹션(120)을 포함한다. 내부 배럴 섹션(120)은 엔진 흡입구(114)로 들어가서 가스 터빈 엔진(108)을 빠져나가는 공기 흐름(airflow)(도시되지 않음)을 안내하기 위한 경계 표면이나 벽을 제공한다. 내부 배럴 섹션(120)은 하나 이상의 팬(도시되지 않음)에 근접하여 상대적으로 가깝게 위치되어 있다. 이 점에서, 내부 배럴 섹션(120)은 또한 회전 팬에 의해 생성된 소음 및/또는 엔진 흡입구(114)로 들어가서 가스 터빈 엔진(108)을 통과하는 공기 흐름에 의해 생성된 소음을 흡수하기 위해 내부 배럴 섹션(120)의 내부 면 시트(134)(도 10)에 다수의 천공(136)(도 9)을 가지는 음향 구조(an acoustic structure)로서 구성되어 있다.
아래에 기재된 바와 같이, 내부 면 시트(134)에서 천공(134)의 전체 면적은 내부 면 시트(134)의 표면 면적의 백분율로서 천공(136)의 전체 면적을 나타내는 개방 영역 백분율(percent-open-area)(144)(도 9)로 표현되어진다. 개방 영역 백분율(144)은 내부 배럴 섹션(120)의 전체 효과 또는 음향-완화 능력을 측정하는 특성이다. 항공기의 설계 및/또는 개발 동안에, 특정, 미리 설정된 개방 영역 백분율(144)(도 9)은 내부 배럴 섹션(120)이 항공기 흡입구(114)의 음향학적 수행 요구사항(acoustic performance requirements)을 만족시키도록 선택되어진다.
도 3은 엔진 흡입구(114)의 내부 배럴 섹션(120)의 실시 예의 사시도이다. 도시된 실시 예에서, 내부 배럴 섹션(120)은 5-8 피트(feet)까지 또는 더 큰 직경(도시되지 않음)을 가지고, 그리고 길이(도시되지 않음)는 2-3 피트까지 또는 더 크게 뒤 가장자리(an aft edge)(126)에서 앞 가장자리(a forward edge)(124)까지 연장한다. 그러나 배럴 섹션(120)은 제한 없이, 어떠한 크기, 형상, 그리고 구성으로도 제공된다. 내부 배럴 섹션(120)은 코어(a core)(128)에 의해 분리된 내부 면 시트(134) 및 외부 면 시트(132)를 갖는 복합재료 샌드위치 구조(122)로 형성되어진다. 내부 면 시트(134) 및/또는 외부 면 시트(132)는 그래파이트 에폭시(graphite-epoxy), 유리 섬유 에폭시(fiberglass-epoxy), 또는 다른 복합재료와 같은 섬유 강화 고분자 매트릭스 재료(fiber-reinforced polymeric matrix material)를 포함하는 복합재료로 형성되어진다. 대안적으로, 내부 면 시트(134) 및/또는 외부 면 시트(132)는 티타늄, 강, 또는 다른 금속 재료 또는 재료들의 조합과 같이 금속재료로 형성되어질 수 있다. 코어(128)는 내부 면 시트(134)와 외부 면 시트(132)에 일반적으로 가로놓이게 향하는 다수의 셀(cells)(130)을 가지는 벌집 코어를 포함한다. 코어(128)는 금속 재료 및/또는 비금속 재료로 형성되고, 알루미늄, 티타늄, 아라미드(aramid), 유리섬유(fiberglass), 또는 다른 코어 재료를 포함한다.
도 3에서, 하나의 실시 예에서, 엔진 흡입구(114)는 원피스 엔진 흡입구(114) 내부 배럴 섹션(120)을 포함한다. 내부 배럴 섹션(120)은 원자재(도시되지 않음)로 제조되어 하나 이상의 단계에서 조립 및 경화되어진다. 예를 들어, 내부 면 시트(134) 및 외부 면 시트(132)는 분리 레이업 맨드릴(separate layup mandrels)(도시되지 않음) 위에 건조 섬유 직물(dry fiber fabric)(도시되지 않음) 또는 수지 함침 플라이 재료(resin-impregnated ply material)(즉, 프리프레그(pre-preg))를 레이업 하는 것에 의해 분리하여 형성되어 경화되고, 코어(128)에 내부 면 시트(134) 및 외부 면 시트(132)를 접착하는 것이 이어진다. 대안적으로, 내부 배럴 섹션(120)은 내부 면 시트(134)가 레이업 맨드릴(도시되지 않음) 위에 레이업 되고, 코어(128)가 내부 면 시트(134) 위에 레이업 되고, 코어(128) 위에 외부 면 시트(132)에 레이업이 계속되진 후, 단일 단계 경화 공정(a single-stage cure process)으로 제조되어진다. 레이업 어셈블리(도시되지 않음)는 여기에 기재된 드릴링 시스템(200)(도 5)이 내부 면 시트(134)에서 천공(136)(도 9)을 형성하기 위해 구현되어진 후 단일 단계로 경화되어진다.
아래에 보다 상세하게 기재된 실시 예에서, 여기에 기재된 드릴링 시스템(200)(도 5)은 조립된 배럴 섹션(120)의 내부 면 시트(134)(도 9)에 다수의 천공(136)(도 9)을 형성하기 위해 구현되어진다. 예를 들어, 여기에 기재된 드릴링 시스템(200)(도 5)은 엔진 내부 배럴 섹션(120)의 복합재료 샌드위치 구조(122)의 최종 경화 후에 내부 면 시트(134)에 다수의 천공(136)을 로봇으로 드릴링하기 위해 배럴 섹션(120) 내측에 위치된 다수의 로봇 드릴링 유닛(208)(도 8)을 포함한다. 천공(136)(도 9)은 내부 배럴 섹션(120)이 엔진 흡입구(114)의 음향학적 수행 요구사항을 만족시키는 것을 허용하도록 내부 배럴 섹션(120)에 대해 미리 설정된 개방 영역 백분율(144)을 제공하는 크기 및 양으로 형성되어진다.
도 3에서, 내부 배럴 섹션(120)은 일반적으로 실린더형 구조를 가진 폐쇄된 형상(a closed shape)을 가진 단일 구조를 포함한다. 그러나 실시 예에서, 내부 배럴 섹션(120)은 폐쇄된 형상을 형성하도록 함께 조립된 다수 세그먼트(multiple segment)(도시되지 않음)로 형성되어진다. 내부 배럴 섹션(120)은 가스 터빈 엔진(108)을 통하여 공기 흐름(도시되지 않음)을 증진시키도록 윤곽이 있는 단면 형상(a contoured cross-sectional shape)(도시되지 않음)으로 제공된다. 이 점에서, 원주방향을 따라 보았을 때, 내부 배럴 섹션(120)은 복잡하게 곡선을 이루고 내부 배럴 섹션(120)의 전방 가장자리(124)에서 엔진 흡입구(114)의 앞 가장자리(116)의 형상에 상호보완적으로 형성되고, 그리고 내부 배럴 섹션(120)의 후방에서 내부 엔진실 표면(도시되지 않음)의 형상에 상호보완적으로 형성된다. 그러나 내부 배럴 섹션(120)은 단순한 실린더 형상 및/또는 원뿐 형상을 포함하는 어떤 형상으로 제공된다.
도 4는 원주방향 내부 면 시트(134), 원주 방향 외부 면 시트(132), 그리고 배럴 섹션(120)의 내부 면 시트(134)와 외부 면 시트(132)를 분리하는 코어(128)를 포함하는 복합재료 샌드위치 구성을 나타내는 엔진 흡입구(114)의 앞 가장자리(116)의 단면도이다. 내부 배럴 섹션(120)의 전방 가장자리(124)는 엔진 흡입구(114) 앞 가장자리(116)와 결합되거나 또는 접속한다. 내부 배럴 섹션(120)의 후방 가장자리(126)는 엔진 실 내부(도시되지 않음)와 결합되거나 또는 접속한다. 도시된 실시 예에서, 내부 면 시트(134), 코어(128), 그리고 외부 면 시트(132)는 엔진 실(110)을 통하여 효율적인 공기 흐름을 증진시키도록 복잡한 곡선 단면 형상을 가진다.
도 5는 가스 터빈 엔진(108)(도 3)의 엔진 흡입구(114)의 내부 배럴 섹션(120)과 같이 배럴 섹션(120)에 천공(136)(도 9)을 형성하기 위하여 구현되어지는 드릴링 시스템(200)의 실시 예의 예시도이다. 그러나 여기에 기재된 드릴링 시스템(200)은 제한 없이, 어떤 적용을 위해 어떠한 타입의 배럴 구조에서도 천공(136)(도 9)을 형성하기 위해 구현되어진다. 예를 들어, 드릴링 시스템(200)은 상업용, 민간용, 그리고 군용 항공기(100)(도 1)의 다양한 다른 타입의 어떤 하나의 배럴 섹션에서 천공(136)(도 9)을 형성하기 위해 구현되어진다. 또한, 드릴링 시스템(200)은 미리 설정된 양의 음향학적 천공(136)(도 9)이 음향 완화 목적을 위해 배럴 섹션(120)에 요구되는 회전 날개 항공기(rotorcraft), 호버크라프트(hovercraft), 또는 어떤 다른 운송체 또는 비운송체 적용에서 가스 터빈 엔진(108)(도 1)의 배럴 섹션(120)에 천공(136)(도 9)을 형성하기 위해 구현되어진다.
도 5에서, 드릴링 시스템(200)은 배럴 섹션(120)의 내부 내에 장착되어 도시되어 있다. 드릴링 시스템(200)은 배럴 섹션(120)의 내부 면 시트(134)의 미리 설정된 개방 영역 백분율(144)(도 9)을 제공하도록 배럴 섹션(120)에 천공(136)(도 9)을 형성하는 것을 유리하게 허용하는 로봇 드릴링 유닛(208)을 포함한다. 위에 나타난 바와 같이, 미리 설정된 개방 영역 백분율(144)은 엔진 흡입구(114)의 음향학적 수행 요구사항을 만족시키도록 항공기(100)(도 1)의 설계 및/또는 개발 동안에 결정되어진다. 여기에 기재된 드릴링 시스템(200)은 내부 면 시트(134)에서 미리 설정된 개방 영역 백분율(144)(도 9)을 제공하도록 복합 재료 샌드위치 구조(122) 배럴 섹션(120)의 내부 면 시트(134)에 천공(136)을 일관되게 유리하게 형성하는 것을 허용한다. 이 점에서, 드릴링 시스템(200)은 종래의 다단계 형성 공정(도시되지 않음)에서 종래의 내부 배럴 섹션(도시되지 않음)의 후속 공정 및/또는 종래의 내부 배럴 섹션의 내판(the inner skin)(도시되지 않음) 종래의 천공하는(도시되지 않음) 동안에 천공(도시되지 않음)을 누락하는 때문에 막힌 천공(blocked perforations)(도시되지 않음)과 관련된 위에 언급된 결점들과 같은 종래 내부 배럴 섹션(도시되지 않음)에서 천공(도시되지 않음)을 형성하는 종래의 방법과 관련된 결점들을 유리하게 극복한다. 그런 막힌 천공 또는 누락한 천공은 엔진 흡입구(114)의 음향학적 수행을 감소시키는 종래의 내부 배럴 섹션의 내판의 미리 설정된 개방 영역 백분율(144)을 감소시킨다.
도 5에서, 다수의 로봇 드릴링 유닛(208)(예를 들어, 두 개의 로봇 드릴링 유닛(208), 세 개의 로봇 드릴링 유닛(208) 등)은 시스템 베이스(a system base)(202) 위에 지지된다. 로봇 드릴링 유닛(208) 중의 각 하나는 드릴 단부 작동체(a drill end effector)(234)를 포함한다. 실시 예에서, 시스템 베이스(202)는 비교적 강성 구조를 포함하고, 다수의 로봇 드릴링 유닛(208)을 지지하도록 구성된 공구 고정 장치(a tooling fixture), 공장 바닥(a shop floor), 또는 테이블을 포함한다. 부가하여, 시스템 베이스(202)는 배럴 섹션(120)을 지지하도록 구성되어 있다. 그러나 드릴링 시스템(200)은 다수의 로봇 드릴링 유닛(208)이 배럴 섹션(120)으로부터 분리되어 위치된 구조에 의해 지지되는 대안적인 실시 예로 제공된다. 예를 들어, 다수의 로봇 드릴링 유닛(208)은 드릴 단부 작동체(234)가 배럴 섹션(120)의 내부 내에 위치되고. 및/또는 다수의 로봇 드릴링 유닛(208)이 배럴 섹션(120)의 내측 또는 외측에 장착되어지는 방법으로 오버헤드 고정 장치(an overhead fixture)(도시되지 않음)에 의해서와 같이 내부 배럴 섹션(120) 위에 매달려 있다.
도 6은 배럴 섹션(120)이 시스템 베이스(202)에 장착될 때 배럴 섹션(120)이 다수의 로봇 드릴링 유닛(208)을 제한하도록 서로 근접하여 비교적 가까운 내에 장착되어 시스템(202) 위에 위치된 다수의 로봇 드릴링 유닛(208)의 사시도이다. 4개의 로봇 드릴링 유닛(208)이 도시되어 있을지라도, 어떤 수라도 제공된다. 실시 예에서, 로봇 드릴링 유닛(208)이 배열(an array)로 장착되어진다. 예를 들어, 로봇 드릴링 유닛(208) 중의 각 하나는 드릴링 유닛 베이스(212)(도 7)를 포함한다. 드릴링 유닛 베이스(212)(도 7)는 배럴 섹션(120)이 시스템 베이스(202)에 장착될 때, 드릴링 유닛 베이스(212)(도 7) 중의 각 하나는 배럴 섹션(120)의 내부 면 시트(134)로부터 실질적으로 같은 거리에 위치되어지게 원형 배열(a circular array)(206)(도 8)에서 시스템 베이스(202)에 장착되어진다.
도 7은 드릴링 시스템(200)의 실시 예의 측면도이다. 팬텀 선으로 도시된, 배럴 섹션(120)은 하나의 고정 장치(204) 또는 다수의 고정 장치(204) 위에 지지되어진다. 고정 장치(204)는 로봇 드릴링 유닛(208)의 드릴 단부 작동체(234)의 이동 능력에 상호 보완적으로 있는 수직 위치에서 배럴 섹션(120)을 위치시키는 크기로 구성된 스페이서(spacers)를 포함한다. 이 점에서, 고정 장치(204)는 드릴 단부 작동체(234)가 배럴 섹션(120)의 전방 가장자리(124)와 배럴 섹션(120)의 후방 가장자리(126) 사이에서 어떤 수직 위치에서 배럴 섹션(120)의 내부 면 시트(134)에서 천공(136)(도 9)을 형성하게 구성되어진다. 고정 장치(204)는 강성 재료로 구성되어지며, 금속 또는 중합체 재료로 형성된 단순 블록(도시되지 않음)으로 구성되어 시스템 베이스(202)에 확고하게 결합어진다. 고정 장치(204)는 배럴 섹션(120)의 높이의 어떤 부분을 따라 수직으로, 배럴 섹션(120)의 원주방향의 어떤 부분을 따라 수평으로 연장한다.
도 8은 로봇 드릴링 유닛(208)의 배치를 나타내는 드릴링 시스템(200)의 평면도이다. 로봇 드릴링 유닛(208) 중의 각 하나는 로봇 아암 어셈블리(a robotic arm assembly)(210)의 단부 위에 장착된 드릴 단부 작동체(234)를 갖는 로봇 아암 어셈블리(210)를 포함한다. 로봇 드릴링 유닛(208)은 드릴링 유닛 베이스(212)가 로봇 드릴링 유닛(208)의 배열의 중심에 인접하여 위치되게 장착되어진다. 실시 예에서, 드릴링 시스템(200)은 단일 로봇 드릴링 유닛(208) 또는 다수의 로봇 드릴링 유닛(208)을 포함한다. 예를 들어, 드릴링 시스템(200)은 서로에 대하여 실질적으로 등각 간격(a substantially equiangular spacing)과 같이, 서로에 대해 미리 설정된 간격으로 배열되는 드릴링 유닛 베이스(212)를 갖는 두 개 또는 그 이상 로봇 드릴링 유닛(208)을 포함한다.
계속하여 도 8을 참조하면, 다수의 로봇 드릴링 유닛(208)은 실질적으로 동등하게 있는 배럴 섹션(120)의 원호 세그먼트(arc segments)(142) 내에 천공(136)(도 9)을 구멍 뚫도록 구성되어 있다(예를 들어, 프로그램 되어 있다). 예를 들어, 도시된 예를 위해, 다수의 로봇 드릴링 유닛(208)이 4개의 로봇 드릴링 유닛(208)을 포함한다. 드릴링 유닛 베이스(212)는 드릴링 유닛 베이스(212)가 서로에 대해 거의 90도의 각 간격으로 위치되어지게 배열되어 있다. 실시 예에서, 로봇 드릴링 유닛(208) 중의 각 하나는 배럴 섹션(120)에서 거의 90도의 원호 세그먼트(142) 내에서 천공(136)(도 9)을 구멍 뚫도록 구성되어진다. 그러나 로봇 드릴링 유닛(208)은 서로에 대해 어떤 위치에서 위치되어지고 어떤 원주 위치 또는 배럴 섹션(120)의 어떤 수직 위치에서 천공(136)(도 9)을 형성하도록 구성되어진다.
도 8에서, 로봇 드릴링 유닛(208) 중의 각 하나의 드릴 단부 작동체(234)는 드릴링 유닛 베이스(212)로부터 벗어나 일반적으로 방사상으로 바깥쪽으로 향하여 있다. 드릴링 유닛 베이스(212)는 드릴링 시스템(200)의 작동 동안에 로봇 아암 어셈블리(210)의 이동을 위한 간격을 제공하도록 위치되어 있다. 이 점에서, 로봇 드릴링 유닛(208)은 배럴 섹션(120)에서 다수의 천공(136)(도 9)을 드릴 단부 작동체(234)가 동시에 구멍 뚫도록 허용하는 방법으로 서로 동기화된 이동으로 동시에 작동할 수 있다. 로봇 드릴링 유닛(208)은 서로 동기화된 이동 동안에 배럴 섹션(120)과 충돌 및 서로 충돌하는 것을 피하도록 프로그램 되어 있다.
도 9는 고정 장치(204) 위에 지지된 배럴 섹션(120)을 도시하고 내부 배럴 섹션(120)의 내부 면 시트(134)를 따라 미리 설정된 홀 패턴에서 천공(136)을 형성하는 드릴 단부 작동체(234) 중의 하나의 드릴 비트(a drill bit)(236)를 나타내는 로봇 드릴링 유닛(208) 중의 하나의 측면도이다. 이 점에서, 하나의 실시 예에서, 로봇 드릴링 유닛(208) 중의 각 하나는 시스템 베이스(202)에 색인되어 있다. 배럴 섹션(120)은 배럴 섹션(120)의 원주 방향(도시되지 않음)과 배럴 섹션(120)의 축 방향(도시되지 않음)에 대해 비교적 작은 위치적 허용오차(a relatively small positional tolerance) 내에서 천공(136)을 형성하도록 드릴 단부 작동체(234)를 위한 수단을 제공하기 위하여 고정 장치(204)를 가지는 것과 같이 시스템 베이스(202)에 색인되어 있다. 그러나 배럴 섹션(120)과 로봇 드릴링 유닛(208)은 다른 수단에 의해 서로에 대해 색인되어 있고, 그리고 시스템 베이스(202)에 색인되어 반드시 제한되지 않는다.
도 9에서, 로봇 드릴링 유닛(208)이 내부 면 시트(134)의 한 섹션에서 개방 영역 백분율(144)이 내부 면 시트(134)의 다른 섹션에서 개방 영역 백분율(144)과 다르게 있도록 내부 면 시트(134)에서 천공(136)을 구멍 뚫도록 하는 방법으로 작동되어진다. 이 점에서, 로봇 드릴링 유닛(208)은 내부 면 시트(134)의 제2 섹션(a second section)(150)에서 하부 개방 영역 백분율(144)을 제공하도록 천공(136)을 드릴링 하는 것에 대해 내부 면 시트(134)의 제1 섹션(a first section)(148)에서 더 큰 개방 영역 백분율(144)을 제공하도록 천공(136)을 구멍 뚫도록 프로그램 되어 있다. 예를 들어, 더 작은 개방 영역 백분율(144)을 가진 제2 섹션(150)은 배럴 섹션의 전방 가장자리(124) 및/또는 후방 가장자리(126)에 인접하여 위치되고, 그리고 더 큰 개방 영역 백분율(144)을 가진 제1 섹션(148)은 전방 가장자리(124)와 후방 가장자리(126) 사이에서 내부 배럴 섹션(120)의 내부 영역(도시되지 않음)에 위치되어 있다. 그러나 로봇 드릴링 유닛(208)은 내부 면 시트(134)에서 개방 영역 백분율(144)이 배럴 섹션(120)의 다른 원주방향 섹션(도시되지 않음)에서 다르거나, 또는 내부 배럴 섹션(120)의 개방 영역 백분율(144)이 위에서 언급된 실시 예들보다 다른 방법으로 변화하게 천공(136)을 구멍 뚫는다.
도 9에서, 하나 이상의 로봇 드릴링 유닛(208)은 내부 면 시트(134)를 따라 어떤 요구된 위치와 방향에서 정확하게 드릴 단부 작동체(234)를 위치시키는 것을 허용하는 6축 로봇 아암 어셈블리(210)를 가지고 있다. 드릴 단부 작동체(234)가 천공(136)의 요구된 위치에 위치되어 향하게 되면, 드릴 단부 작동체(234)는 천공(136)을 형성하도록 내부 면 시트(134) 내로 회전하는 드릴 비트(236)를 구동하도록 축 방향으로 이동되어진다. 대안적으로, 드릴 단부 작동체(234)가 내부 면 시트(134) 위에 천공(136)의 요구된 위치에 위치되고, 그리고 드릴 단부 작동체(234)는 내부 면 시트(134)에서 천공(136)을 구멍 뚫도록 드릴 비트 축(238)의 방향을 따라 회전하는 드릴 비트(236)를 축 방향으로 구동한다. 실시 예에서, 6축 로봇 아암 어셈블리(210)는 어깨 조인트(a shoulder joint)(216)에서 드릴링 유닛 베이스(212)에 부착되어지는 제1 아암(220)을 포함한다. 제1 아암(220)은 팔꿈치 조인트(an elbow joint)(222)에서 제2 아암(226)에 부착되어진다. 제2 아암(226)은 손목 조인트(a wrist joint)(230)에서 드릴 단부 작동체(234)에 부착되어진다.
도 9에서, 드릴링 유닛 베이스(212)는 시스템 베이스(202)에 대해 수직 베이스 축(a vertical base axis)(214) 주위를 회전하도록 구성되어 있다. 제1 아암(220)은 드릴링 유닛 베이스(21)에 제1 아암(220)을 결합하는 어께 조인트(216)의 어께 축(a shoulder axis)(218) 주위를 회전하도록 구성되어 있다. 제2 아암(226)은 제1 아암(220)에 제2 아암(226)을 결합하는 팔꿈치 조인트(222)의 팔꿈치 축(an elbow axis)(224) 주위를 회전하도록 구성되어 있다. 제2 아암(226)의 일부는 팔꿈치 조인트(222)에서 손목 조인트(230)까지 방향을 따라 연장하는 제2 아암 축(a second arm axis)(228) 주위를 회전(swivel)하도록 또한 구성되어 있다. 드릴 단부 작동체(234)는 손목 조인트(230)의 손목 축(a wrist axis)(232) 주위를 회전하도록 구성되어 있다. 부가하여, 드릴 단부 작동체(234)는 드릴 비트 축(a drill bit axis 238)(238)에 일반적으로 평행하게 있는 단부 작동체 축(an end effector axis)(235) 주위를 회전하도록 구성되어 있다. 선택적 실시 예에서, 단부 작동체는 내부 면 시트(134)에서 천공(136)을 구멍 뚫을 때와 같이 드릴 비트 축(238)을 따라 드릴 비트(236)를 선형적으로 병진시키도록 구성되어 있다.
도 9에서, 로봇 아암 어셈블리(210)는 6축 실시 예에 도시되어 있다. 그러나 로봇 아암 어셈블리(210)는 대안적인 배치로 제공되어 진다. 예를 들어, 로봇 아암 어셈블리(210)는 3축 실시 예(도시되지 않음), 4축 실시 예(도시되지 않음), 또는 5축 실시 예(도시되지 않음)로 제공되어 진다. 부가하여, 로봇 아암 어셈블리(210)는 6축 이상을 가지는 실시 예로 제공되어 진다. 또한, 로봇 아암 어셈블리(210)는 운동 제어 시스템(도시되지 않음), 단부 작동체가 이동가능하게 따라가는 선형 축을 가지는 강성 프레임(도시되지 않음), 또는 천공(136)을 드릴링하기 위한 드릴 단부 작동체(234)를 제어하기 위한 다른 타입의 운동 제어 장치로 구성되어 진다. 부가하여, 각 로봇 아암 어셈블리(210)는 드릴 단부 작동체(234) 하나 보다 더 많이 포함한다. 또한, 각 드릴 단부 작동체(234)는 동시에 천공(136)을 형성하기 위하여 드릴 비트(236) 하나 보다 더 많이 가지고 있다.
도 10은 내부 배럴 섹션(120)의 복합재료 샌드위치 구조(122)의 내부 면 시트(134)에서 천공(136)을 형성하는 드릴 단부 작동체(a drill end effector)(234)를 도시하고 있다. 유리하게, 드릴링 시스템(200)은 미리 설정된 홀 패턴(140)(도 9)에서 천공(136)을 드릴링하기 위한 드릴 단부 작동체(234)의 정확하고 빠른 배치를 위한 수단을 제공한다. 예를 들어, 실시 에에서, 로봇 드릴링 유닛(208)의 드릴 단부 작동체(234) 중의 각 하나는 매초, 드릴 단부 작동체(234)마다 3개 이상까지 천공(136)을 형성하도록 구성되어 있다. 실시 예에서, 비록 더 크거나 또는 더 작은 천공(136)이 드릴 비트(236) 직경에 기초하여 가능하여도, 드릴 단부 작동체(234)는 약 0.010에서 0.10인치의 홀 직경을 가지는 음향학적 천공(136)을 형성하도록 구성된 드릴 비트(236)를 가지고 제공되어 진다.
도 10에서, 복합재료 내부 면 시트(134)에서 천공(136)을 형성하기 위해, 비록 더 크거나 또는 더 작은 이동 속도 및 더 크거나 또는 더 작은 회전 속도가 구멍 뚫리는 재료 및 드릴 비트(236)의 구성요소에 기초하여 선택되어지더라도, 드릴 단부 작동체(234)가 분당 약 20-60인치 이동 속도, 그리고 분당 약 20,000에서 40,000rpm 사이의 회전 속도에서 드릴 비트(236)를 구동하도록 구성되어 있다. 드릴 비트(236) 이동 속도 및 드릴 비트(236) 회전 속도는 드릴 비트(236) 마모를 최소화하도록 제어되어지고, 그래서 천공(136)이 원형도(roundness) 및 다른 홀 파라미터에 대한 엄격한 허용오차(tight tolerances)를 만족시킨다. 중요하게, 각 로봇 드릴링 유닛(208)은 약 0.010인 또는 이하의 중심간 위치적 허용오차(a center-to-center positional tolerance)와 같이 비교적 작은 중심간 허용오차(즉, 천공 대 천공)에서 빠르고 정확하게 홀 패턴(140)(도 9)을 형성하도록 구성되어 있다. 그러나 중심간 위치적 허용오차가 약 0.050인치 또는 더 큰 것과 같은, 0.010 인치보다 더 크게 있다.
도 10에서, 하나 이상의 드릴 단부 작동체(234)는 천공(136)의 드릴링 동안에 생성되는 먼지 및 칩(chip)과 같은 잔해(debris)(도시되지 않음)를 제거하기 위한 흡인장치(a vacuum attachment)(240)를 포함한다. 흡인장치(240)는 드릴 비트(236) 주위에 위치되는 중공(도시되지 않음) 또는 개방 부분(도시되지 않음)을 가지고, 드릴 비트(236)가 내부 면 시트(134)와 접촉하여 천공(136)을 구멍 뚫을 때 내부 면 시트(134)에 인접하여 위치되거나 접촉하게 된다. 흡인장치(240)는 천공(136) 주위의 영역으로부터 잔해(도시되지 않음)를 끌어내기 위한 흡인장치(240) 위에 진공(a vacuum)(244)을 끌어내기 위한 진공호스(도시되지 않음)를 사용하여 진공원(a vacuum source)(도시되지 않음)에 연결하기 위한 진공 포트(a vacuum port)(242)를 포함한다.
도 10에서, 또 다른 실시 예에서, 드릴링 시스템(200)은 로봇 제어를 이용하여 드릴 비트(236)를 변경하기 위한 자동 비트 교환기(도시되지 않음)의 설비가 있다. 이 방법에서, 마모된 드릴 비트(236)는 천공(136)의 미리 설정된 양의 드릴링 후에 교체되어진다. 예를 들어, 자동 비트 교환기(도시되지 않음) 약 1,000에서 30,000까지 천공(136)을 어디에나 드릴링 후 각 드릴 비트(236)를 교체하여도, 드릴 비트(236)는 상기 언급된 범위보다 더 작거나 또는 더 큰 양의 천공(136)을 드릴링 후에 교체되어진다. 사용된 내부 배럴 섹션(120)의 크기(예를 들어, 직경 및 높이)와 로봇 드릴링 유닛(208)의 전체 양에 따라, 각 드릴 단부 작동체(234)는 배럴 섹션(120) 당 1 내지 20 또는 더 많은 드릴 비트 교환을 겪는다.
도 9를 간단히 참조하면, 실시 예에서, 드릴 단부 작동체(234)는 배럴 섹션(120)의 높이를 따라 수직 열(vertical rows)(도시되지 않음)의 홀 패턴(140)에서 천공(136)을 구멍 뚫도록 제어된다. 이 점에서, 각 드릴 단부 작동체(234)는 천공(136)의 수직 열을 구멍 뚫고, 그리고 드릴 단부 작동체(234)는 천공(136)의 이미 구멍 뚫린 수직 열에 인접하는 천공(136)의 또 다른 수직 열을 드릴 단부 작동체(234)가 구멍 뚫도록 허용하도록 수직 베이스 축(214) 주위로 회전되어진다. 드릴 단부 작동체(234)는 수평 열(도시되지 않음), 또는 어떤 다른 방향 또는 방향들의 조합에서 천공(136)을 구멍 뚫도록 또한 제어되어진다. 위에 나타난 바와 같이, 로봇 아암 어셈블리(210)는 드릴 단부 작동체(234)가 배럴 섹션(120)의 내부 면 시트(134)에서 천공(136)의 동시 드릴링 동안에 서로로부터 일반적으로 등각 간격(equiangular spacing)에서 유지되도록 동기화된 방법으로 작동되어진다. 예를 들어, 4개의 로봇 드릴링 유닛(208)을 가지는 드릴링 시스템(200)을 위해, 드릴 단부 작동체(234)는 내부 면 시트(134)에서 천공(136)의 동시 드릴링 동안에 서로로부터 약 90도의 각도 분리로 유지되어진다.
도 11은 복합재료 샌드위치 구조(122)의 내부 면 시트(134)에서 천공(136)을 형성하기 우이한 드릴 단부 작동체(234)의 드릴 비트(236)의 단면도이다. 실시 예에서, 드릴 단부 작동체(234)는 드릴 비트(236)가 복합재료 샌드위치 구조(122) 내로 연장하고, 코어(128) 재료내로 드릴 비트(236)의 깊이(138)를 최소화하는 깊이(138)를 제어하는 드릴 멈춤부(a drill stop)(도시되지 않음)를 포함한다. 또한, 드릴 멈춤부(도시되지 않음)는 천공(136)에 대해 드릴 비트(236)의 측면 이동(lateral movement )을 방지하도록 천공(136)을 드릴링 할 때 드릴 단부 작동체(234)를 안정시키고, 그리고 천공(136)의 위치적 허용오차, 원형도 허용오차(roundness tolerance), 다른 허용오차 파라미터에 관한 비일치성(a non-conformance)을 동시에 피한다. 실시 예에서, 각 드릴 단부 작동체(234)는 각 천공(136)이 레이저 장치(도시되지 않음), 초음파 장치(도시되지 않음), 그리고 다른 비접촉 장치를 사용하는 것과 같이 구멍 뚫어지는 깊이(138)를 측정하는 비접촉 방법을 포함한다. 드릴링 깊이(138)는 드릴 단부 작동체(234)를 제어하는 제어기(도시되지 않음)에 의해 또한 제어된다.
도 12는 드릴링 시스템(200)의 실시 예의 블록선도이다. 드릴링 시스템(200)은 다수의 로봇 드릴링 유닛(208)을 포함한다. 로봇 드릴링 유닛(208) 중의 각 하나는 위에 기재된 바와 같이 로봇 아암 어셈블리(210)를 포함한다. 드릴 단부 작동체(234)는 각 로봇 드릴링 유닛(208)의 로봇 아암 어셈블리(210) 중의 각 하나의 단부에 결합되어진다. 로봇 드릴링 유닛(208)은 드릴 단부 작동체(234)가 배럴 섹션(120)에서 다수의 천공(136)을 동시에 구멍 뚫도록 서로 동기화된 이동으로 동시에 작동할 수 있다.
도 12에서, 배럴 섹션(120)은 위에 기재된 바와 같이, 가스터빈 엔진(108)(도 3)과 같이 엔진 흡입구(114)의 내부 배럴 섹션(120)을 포함한다. 실시 에에서, 배럴 섹션(120)은 복합재료 샌드위치 구조(122)로 형성되어진다. 복합재료 샌드위치 구조(122)는 원피스 엔진 흡입구 내부 배럴 섹션(120)을 형성하도록 조립 또는 접착되어지는 외부 면 시트(132), 코어(128), 그리고 내부 면 시트(134)를 가지고 있다. 드릴링 시스템(200)은 음향학적 수행 요구사항을 만족하는 내부 배럴 섹션(120)을 위해 미리 설정된 개방 영역 백분율(144)을 제공하도록 내부 면 시트(134)에 천공(136)의 미리 설정된 홀 패턴(도 9)으로 다수의 천공(136)을 빠르고 정확하게 형성한다.
도 13은 엔진 흡입구(114)(도 13)를 조립하는 방법(300)에 포함되는 하나 이상의 작업을 포함하는 흐름도의 예시도이다. 상기 방법의 단계(302)는 엔진 흡입구(114)(도 3)의 내부 배럴 섹션(120)(도 3)과 같이 배럴 섹션(120)(도 3)을 제공하는 단계를 포함한다. 위에 나타난 바와 같이, 내부 배럴 섹션(120)(도 3)은 원피스 복합재료 샌드위치 구조(122)(도 3)로 제공된다. 그런 복합재료 샌드위치 구조(122)(도 3)에서, 내부 면 시트(134)(도 3)는 복합재료로 형성되고, 그리고 외부 면 시트(132)(도 3)는 복합재료(예를 들어, 섬유 보강 고분자 매트릭스 재료(fiber-reinforced polymeric matrix material)로 형성되어진다. 그러나 내부 면 시트(134)(도 3) 및/또는 외부 면 시트(132)(도 3)는 금속 재료, 또는 금속 재료 및 비금속 재료의 혼합으로 형성되어진다.
위에 나타난 바와 같이, 코어(128)(도 3)는 금속 재료 및/또는 비금속 재료로 형성된 벌집 고어를 포함하고, 그리고 코어는 알루미늄, 티타늄, 아라미드(aramid), 유리섬유(fiberglass), 또는 다른 코어 재료를 포함한다. 엔진 흡입구(114)(도 3) 내부 배럴 섹션(120)(도 3)은 단일 단계 경화로 형성된 원피스 복합재료 샌드위치 구조(122)(도 3)로 제작되어진다. 위에 기재된 바와 같이, 배럴 섹션(120)(도 3)은 내부 면 시트(134)(도 3), 코어(128)(도 3), 그리고 외부 면 시트(132)(도 3)가 레이업 맨드릴(a layup mandrel) 위에 레이업 되고, 열 및/또는 압력이 단일 단계에서 경화를 위해 미리 설정된 시간 동안 레이업(도시되지 않음)에 적용된 후에, 단일 단계 경화(a single-stage cure)로 제공되어 진다.
도 13의 상기 방법의 단계(304)는 시스템 베이스(도 7)에 내부 배럴 섹션(120)(도 7)을 장착하고 색인하는 단계를 포함한다. 이 점에서, 내부 배럴 섹션(120)(도 7)은 시스템 베이스(도 7)에 장착되는 다수의 고정 장치(204)(도 7)에 장착되어진다. 고정 장치(204)(도 7)는 테이블(도시되지 않음), 어셈블리(도시되지 않음), 또는 내부 배럴 섹션(120)(도 7)을 지지하고 내부 배럴 섹션(120)(도 7)에서 천공(136)(도 9)의 드릴링 동안에 그것의 이동을 방지하도록 구성된 다른 비교적 강성 구조를 포함하는 시스템 베이스(202)(도 7) 위에 내부 배럴 섹션(120)(도 7)을 확고하게 위치시킨다.
위에 나타난 바와 같이, 고정 장치(204)는 내부 배럴 섹션(120)의 후방 가장자리(126)(도 9) 또는 전방 가장자리(124)(도 9)를 따르는 것과 같이 내부 배럴 섹션(120)의 경계선(a perimeter)(도시되지 않음) 주위를 이격된 간격으로 위치되어진다. 고정 장치(204)는 고정 장치(204)에 내부 배럴 섹션(120)을 색인하도록 하는 기계적인 색인하는 특징(도시되지 않음)을 포함한다. 레이저 시스템(도시되지 않음)은 고정 장치(204)에 대해 내부 배럴 섹션(120)을 위치시키는 것을 도우도록 구현되어진다. 내부 배럴 섹션(120)은 내부 배럴 섹션(120)을 제자리에 단단하게 클램프 하도록 고정 장치(204)에 기계적으로 결합되어진다.
도 13의 상기 방법의 단계(306)는 도 7에 도시된 바와 같이 시스템 베이스(202)(도 7)에 다수의 로봇 드릴링 유닛을 색인하는 단계를 포함한다. 실시 예에서, 다수의 로봇 드릴링 유닛(208)(도 7) 중의 각 하나는 직접적으로 시스템 베이스(202)에 장착되고 시스템 베이스(202) 및/또는 내부 배럴 섹션(120)(도 7)을 지지하는 고정 장치(204)(도 7)에 색인되어지는 드릴링 유닛 베이스(212)(도 7)를 가지고 있다. 예를 들어, 로봇 드릴링 유닛(208)의 드릴링 유닛 베이스(212)는 시스템 베이스(202)에 장착되고 도 7에 도시된 바와 같이 내부 배럴 섹션(120) 내측에 위치되어진다. 대안적으로, 드릴링 유닛 베이스(212)는 내부 배럴 섹션(120)의 외측으로 위치되고, 로봇 아암 어셈블리(210)(도 7)의 드릴 단부 작동체(234)(도 7)는 천공(136)(도 9)을 구멍 뚫도록 내부 배럴 섹션(120) 내측으로 연장한다. 또 다른 실시 예에서, 로봇 드릴링 유닛(208)은 시스템 베이스(202)와 배럴 섹션(120)으로부터 분리되어 위치되어지는 구조(도시되지 않음)에 의해 지지되어진다. 예를 들어, 로봇 드릴링 유닛(208)의 드릴링 유닛 베이스(212)는 시스템 베이스(202) 및/또는 내부 배럴 섹션(120)을 지지하는 고정 장치(204)에 색인되어지는 오버헤드 고정 장치(an overhead fixture)(도시되지 않음)에 장착되어진다. 드릴 단부 작동체(234)는 천공(136)을 구멍 뚫기 위하여 배럴 섹션(120)의 내측으로 연장한다.
도 13의 상기 방법의 단계(308)는 복합재료 샌드위치 구조(122)의 최종 경화 후와 같이 복합재료 샌드위치 구조(122)(도 9) 엔진 흡입구(114) 내부 배럴 섹션(120)의 내부 면 시트(134)(도 9) 내로 다수의 천공(136)(도 9)을 로봇으로 드릴링 하는 것에 의해 엔진 흡입구(114)(도 9)를 흡음처리(acoustically treating)하는 단계를 포함한다. 예를 들어, 상기 방법(300)은 다수의 로봇 드릴링 유닛(208)(도 9)을 사용하여 내부 배럴 섹션(120)에 다수의 천공(136)을 로봇으로 드릴링 하는 것을 포함한다. 상기 방법(300)은 내부 면 시트(134)의 미리 설정된 개방 영역 백분율(144)을 제공하도록 드릴 단부 작동체(234)를 사용하여 내부 면 시트(134)에서 다수의 천공(136)을 동시에 드릴링 하는 것을 포함한다. 실시 예에서, 로봇 드릴링 유닛(208) 중의 각 하나는 각각 3축, 4축, 5축, 그리고 6축을 각각 가지는 3축, 4축. 5축, 또는 6축 아암 어셈블리로 구성된 로봇 아암 어셈블리(210)(도 9)를 포함한다. 로봇 아암 어셈블리(210)는 비교적 빠른 비율로 천공(136)을 구멍 뚫도록 서로에 대해 동기화된 방법으로 드릴 단부 작동체(234)를 이동하도록 프로그램 되어 있다. 예를 들어, 드릴 단부 작동체(234) 중의 각 하나는 매초 2-3 또는 더 많은 천공(136)을 형성하도록 구성되어 있다.
상기 방법(300)(도 13)은 벌집 코어(128)(도 11)를 가지는 엔진 흡입구(114)(도 9) 내부 배럴 섹션(120)(도 9)에서 미리 설정된 홀 패턴(140)(도 9)에서 천공(136)(도 9)을 드릴링 하는 것을 포함한다. 로봇 드릴링 유닛(208)(도 9)은 내부 면 시트(134)(도 10)에 수직으로(예를 들어, 직교하는) 천공(136)을 구멍 뚫도록 드릴 단부 작동체(234)(도 9)를 제어하도록 구성되어 있다. 부가하여, 로봇 드릴링 유닛(208)은 벌집 코어(128)의 셀 벽(131)(도 11)에 이격된 거리에서 천공(136)을 구멍 뚫도록 구성되어 있다. 이 점에서, 로봇 드릴링 유닛(208)은 셀 벽(131) 내로 드릴링 하는 것을 피하도록 셀 벽(131)으로부터 일정 거리에서 셀(130)의 각각에 하나 이상의 천공(136)을 구멍 뚫도록 구성되어 있다. 로봇 드릴링 유닛(208)은 벌집 코어(128)의 셀(130)의 기하하적 형상과 크기에 대해 상보적으로 구성되는 홀 패턴(140)으로 천공(136)을 구멍 뚫도록 한다. 예를 들어, 홀 패턴(140)(도 9)은 하나의 천공(136)(도 11)이 각 셀(130)의 대략 중심(도시되지 않음)에서와 같이 각 셀(130)(도 11) 내로 구멍 뚫어지게 되어 있다. 그러나 홀 패턴(140)은 두 개 이상의 천공(136)이 벌집 코어(128)(도 11)의 각 셀(130) 내로 구멍 뚫어지게 되어 있다.
로봇 드릴링 유닛(208)(도 9)은 셀(130)(도 11) 중심(도시되지 않음) 또는 벌집 코어(128)의 셀 벽(131)(도 11)에 대해 홀 패턴(140)(도 9)을 색인 또는 위치시키도록 구성되어 있다. 예를 들어, 같은 크기 및 형상의 셀(130)의 일반적인 균일한 배치를 갖는 벌집 코어(128)를 위해, 로봇 드릴링 유닛(208)은 벌집 코어(128)의 셀(130)의 위치에 대해 홀 패턴(140)을 색인하도록 셀 벽(131) 중의 하나의 위치를 설정하도록 구성되어 있다. 하나 이상의 셀 벽(131)의 위치를 설정한 후, 로봇 드릴링 유닛(208)은 각 셀(130)의 중심(도시되지 않음)에서, 또는 각 셀(130)의 셀 벽(131)에 대해 미리 설정된 위치 또는 이격된 거리(146)에서와 같이, 각 천공(136)이 각 셀(130)에서 미리 설정된 위치에서 구멍 뚫어지게 벌집 코어(128)의 내부 면 시트(134)에서 천공(136)의 홀 패턴(140)을 구멍 뚫도록 구성되어 있다. 홀 패턴(140)은 또한 다수의 천공(136)이 각 셀(130) 내로 구멍 뚫어지고 각 셀(130)의 셀 벽(131)으로부터 미리 설정된 거리 또는 이격된 거리(146)에 위치되어 있다.
유리하게, 로봇 드릴링 유닛(208)(도 9)은 구멍 사이 간격(the hole-to-hole spacing)에서 비교적 높은 위치적인 허용오차(예를 들어, 중심에 0.010인치) 내에서 천공(136)(도 9)을 형성하도록 구성되어 있다. 부가하여, 위에 나타난 바와 같이, 드릴 단부 작동체(234)(도 10) 중의 각 하나는 천공(136)의 드릴링 동안에 내부 면 시트에 인접 또는 내부 면 시트에 대해 위치되어지게 구성되어진다. 흡인장치(240)는 천공(136)이 구멍 뚫어지고 있는 위치로부터 떨어져 먼지, 칩, 그리고 다른 잔해를 흡입하기 위한 진공(244)(도 10)을 제공하도록 진공 호스(도시되지 않음)를 통하여 진공원(a vacuum source)(도시되지 않음)에 연결되어지는 진공 포트(242)(도 11)를 포함한다.
도 13의 상기 방법(300)의 단계(310)는 내부 배럴 섹션(120)(도 10)에서 천공(136)(도 10)의 드릴링 고정 동안에 드릴 단부 작동체(234)(도 10)의 드릴 비트(236)(도 10)를 주기적으로 교환하는 단계를 포함한다. 실시 예에서, 상기 방법은 자동 비트 교환기(도시되지 않음)를 사용하여 드릴 비트(236)를 로봇으로 교환하는 것을 포함한다. 드릴 비트(236)는 미리 설정된 양의 천공(136)을 드릴링한 후 교체되어진다. 예를 들어, 각 드릴 비트(236)는 수천 이상의 천공(136)을 드릴링한 후에 교체되어진다. 드릴 비트(236)가 교체되는 빈도는 내부 면 시트(134)(도 11)의 두께, 내부 면 시트(134)의 재료 구성, 드릴 비트(236)의 회전 속도, 드릴 비트(236)의 이동 속도, 드릴 비트(236)의 재료 구성, 그리고 다른 인자들에 의해 영향을 받는다. 도시되지 않은 실시 예에서, 상기 방법은 드릴 비트(236)가 무디게(dull) 될 때를 감지하는 것을 포함하고, 그 때 상기 방법은 새로운 또는 뾰족하게 깍은 드릴 비트(도시되지 않음)를 가지고 무딘 드릴 비트(236)를 교체하는 것을 포함한다.
유리하게, 여기에 기재된 드릴링 시스템(200)(도 12) 및 방법은 고도의 반복성(a high degree of repeatability)을 가진 내부 배럴 섹션(120)의 내부 면 시트(134)(도 12)에서 정확하고 빠르게 천공(136)(도 12)을 형성하도록 동기화된 방법에서 다수의 로봇 드릴링 유닛(208)(도 12)을 작동시키는 것을 제공한다. 부가하여, 드릴링 시스템(200)은 종래의 방법과 보통 관련된 결점 및 재작업에서 상당한 감소를 갖는 천공(136)을 형성하기 위한 수단을 제공한다. 이 점에서, 여기에 기재된 드릴링 시스템(200) 및 방법은 다단계 배럴 섹션 조립 공정(도시되지 않음)에서 후속 처리, 그리고 내부 배럴 섹션(120)의 내부 면 시트(134)에서 개방 영역 백분율(144)(도 9)에 관련된 감소 동안에 누락하는 천공(도시되지 않음) 및/또는 막힌 천공(도시되지 않음)의 상기 언급된 결점들을 회피한다.
상기에 나타난 바와 같이, 내부 면 시트(134)의 개방 영역 백분율(144)(도 9)은 내부 면 시트(134)(도 9)의 표면 영역(도시되지 않음)의 백분율로서 천공(136)(도 9)의 천체 면적이고, 그리고 내부 배럴 섹션(120)(도 9)의 전체 유효성 또는 음향적 완화 능력을 측정하기 위한 특징이다. 도 9에서, 로봇 드릴링 유닛(208)(도 9)은 내부 면 시트(134)의 다른 섹션에서 개방 영역 백분율(144)과 다른 내부 면 시트(134)의 하나의 섹션에서 개방 영역 백분율(144)(도 9)을 제공하도록 천공(136)을 구멍 뚫도록 하는 방법으로 작동되어진다. 예를 들어, 도 9에서, 내부 면 시트(134)에 구멍 뚫린 천공(136)의 제1 섹션(a first section)(148)은 배럴 섹션(120)의 전방 가장자리(124) 및/또는 후방 가장자리(126)에 인접하여 위치되는 천공(136)의 제2 섹션(a second section)(150)에 대해 더 큰 개방 영역 백분율(144)을 가지고 있다. 그러나 위에 나타난 바와 같이, 개방 영역 백분율(144)의 다른 섹션(도시되지 않음)은 내부 배럴 섹션(120)(도 9)의 내부 면 시트(134)를 따라 어떤 방법으로든 배열되어지고, 도 9에 도시된 배치 또는 위에 기재된 배치로 제한되지 않는다.
도 14-15를 참조하면, 본 발명의 실시 예들은 도 14에 도시된 항공기 제조 및 서비스 방법(400)과 도 15에 도시된 항공기(402)의 내용으로 기재되어 있다. 제작 준비 단계 동안에, 제조 및 서비스 방법(400)은 항공기(402)의 사양 및 설계(specification and design)(404)와 자재조달(material procurement)(406)을 포함한다. 생산 동안에, 구성요소 및 하위조립체 제조(component and subassembly manufacturing)(408)와 항공기(402)의 시스템 통합(system integration)(410)이 일어난다. 그 후, 항공기(402)는 서비스 상태(in service)(414)에 놓이도록 인증 및 인도(certification and delivery)(412)를 통과한다. 고객에 의해 서비스 상태에 있는 동안에, 항공기(402)는 일상적 보수 및 점검(routine maintenance and service)(416)이 계획되어 있다(수정(modification), 구조변경(reconfiguration), 개선(refurbishment) 등).
제조 및 서비스 방법(400)의 공정들의 각각은 시스템 통합자(a system integrator), 제3자(a third party), 및/또는 운용자(an operator)(예를 들어, 고객)에 의해 수행 또는 실행되어진다. 이 설명을 목적으로, 시스템 통합자는 제한 없이 많은 항공기 제조업자 및 주-시스템 하도급업자를 포함하고; 제3자는 제한 없이 많은 판매회사, 하도급업자, 그리고 공급자를 포함하고; 그리고 운용자는 항공회사, 리스회사, 군용업체, 서비스기구 등이다.
도 15에 도시된 바와 같이, 제조 및 서비스 방법(400)에 의해 생산된 항공기(402)는 다수의 시스템(420)과 인테리어(an interior)(422)를 포함한다. 고-레벨 시스템(420)의 예들은 하나 이상의 추진 시스템(a propulsion system)(424), 전기 시스템(an electrical system)(426), 유압 시스템(a hydraulic system)(428), 그리고 환경 시스템(an environmental system)(430)을 포함한다. 많은 다른 시스템이 포함되어진다. 항공우주산업의 예가 도시되어 있을지라도, 발명의 원리들은 자동차 산업과 같이, 다른 산업에도 적용되어진다.
여기에 구체화된 장치 및 방법들은 제조 및 서비스 방법(400)의 어떤 하나 이상의 단계 동안에 사용되어진다. 예를 들어, 구성요소 및 하위조립체 제조(component and subassembly manufacturing)(408)에 대응하는 구성요소 또는 하위조립체는 항공기(402)가 서비스 상태(in service)에 있는 동안에 생산된 구성요소 또는 하위조립체와 유사한 방법으로 제작 또는 제조되어진다. 또한, 하나 이상의 장치 실시 예들, 방법 실시 예들, 또는 그들의 조합이, 예를 들어, 실질적으로 항공기(402)의 신속한 조립 또는 비용 저감에 의해, 구성요소 및 하위조립체 제조(408)와 시스템 통합(410) 동안에 이용되어진다. 유사하게, 하나 이상의 장치 실시 예들, 방법 실시 예들, 또는 그들의 조합이, 예를 들어 제한 없이, 항공기(402)가 서비스 상태에 있는 동안에, 보수 및 점검(maintenance and service)(416) 에 사용되어 진다.
본 발명이 많은 수정 및 다른 실시 예들은 본 발명이 관련하는 기술 분야의 통상의 기술자가 앞의 설명 및 관련된 도면에 나타나는 가르침의 이점을 가지는 것을 생각나게 한다. 여기에 기재된 실시 예들은 예시적인 것으로 의도되어지고 제한하거나 또는 완전한 것으로는 의도되어 있지 않다. 특정 용어가 여기에 사용되어 있어도, 그들은 단지 일반적인 기술적인 의미에서 사용되고 제한을 목적으로 하는 것은 아니다.
102: 동체 104: 꼬리 부분
108: 가스 터빈 엔진 110: 엔진실
114: 엔진 흡입구 118: 엔진 덮개
120: 내부 배럴 섹션 122: 복합재료 샌드위치 구조
128: 코어 132: 외부 면 시트
134: 내부 면 시트 136: 천공
200: 드릴링 시스템 202: 시스템 베이스
204: 고정 장치 208: 로봇 드릴링 유닛
210: 로봇 아암 어셈블리 212: 드릴링 유닛 베이스
220: 제1 아암 226: 제2 아암
234: 드릴 단부 작동체 236: 드릴 비트
240: 흡인장치 242: 진공 포트

Claims (15)

  1. 드릴링 시스템에서, 상기 시스템은,
    배열 형태로 장착된 다수의 로봇 드릴링 유닛(208);을 포함하고,
    상기 로봇 드릴링 유닛(208)의 각각은 배럴 섹션(128) 내측에 위치된 드릴링 유닛 베이스(212)를 구비하고, 상기 배럴 섹션(128)은, 내부 면 시트를 갖는 복합재료 샌드위치 구조로 구성된 엔진 흡입구 내부 배럴 섹션이고,
    상기 로봇 드릴링 유닛(208)의 각각은 배럴 섹션 내측에 위치된 드릴 단부 작동체를 가지며;
    상기 로봇 드릴링 유닛(208)은 내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하도록 된 드릴 단부 작동체(234)를 사용하여 내부 면 시트에 다수의 천공 구멍을 동시에 뚫도록 서로 동기화된 이동으로 동시에 작동가능하게 있고,
    상기 로봇 드릴링 유닛(208)은 복합재료 샌드위치 구조의 벌집 코어의 하나 이상의 셀 벽에 천공의 홀 패턴을 색인하도록 구성되어 있고, 상기 로봇 드릴링 유닛(208)은 천공이 벌집 코어의 셀 벽으로부터 이격된 거리에 위치되도록 내부 면 시트에 홀 패턴을 형성하도록 구성되어 있는 드릴링 시스템.
  2. 제 1 항에 있어서,
    상기 드릴 단부 작동체(234)는 단일 단계에서 경화된 원피스 엔진 흡입구 내부 배럴 섹션 내측에 위치되어 있는 드릴링 시스템.
  3. 삭제
  4. 삭제
  5. 삭제
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 배럴 섹션 및 로봇 드릴링 유닛(208)은 배럴 섹션을 지지하는 적어도 하나의 고정 장치(202)에 색인되어지는 드릴링 시스템.
  7. 엔진 흡입구를 조립하는 방법에서, 상기 방법은,
    내부 면 시트를 갖는 복합재료 샌드위치 구조로 구성된 엔진 흡입구 배럴 섹션을 제공하는 단계;
    복합재료 샌드위치 구조의 최종 경화 후에 복수의 로봇 드릴링 유닛(208)의 드릴 단부 작동체(234)를 사용하여, 내부 면 시트에 다수의 천공을 로봇으로 드릴링 하는 단계로서, 상기 로봇 드릴링 유닛(208)의 각각은 배럴 섹션(128) 내측에 위치된 드릴링 유닛 베이스(212)를 구비하고, 상기 로봇 드릴링 유닛(208)은 서로 동기화된 이동으로 동시에 작동가능하게 있는, 다수의 천공을 로봇으로 드릴링 하는 단계; 및
    내부 면 시트의 미리 설정된 개방 영역 백분율을 제공하는 양으로 다수의 천공을 형성하는 단계;를 포함하고,
    상기 다수의 천공을 로봇으로 드릴링 하는 단계는,
    복합재료 샌드위치 구조의 벌집 코어의 하나 이상의 셀 벽에 천공의 홀 패턴을 색인하는 단계를 포함하고,
    상기 홀 패턴을 색인하는 단계는 각 천공이 셀 벽으로부터 이격된 거리에 위치되어지게 홀 패턴을 위치시키는 단계를 포함하는 엔진 흡입구를 조립하는 방법.
  8. 삭제
  9. 삭제
  10. 제 7 항에 있어서,
    다수의 천공을 로봇으로 드릴링 하는 단계는 내부 면 시트의 다른 섹션에서 개방 영역 백분율과 다른 내부 면 시트의 하나의 섹션에 개방 영역 백분율을 제공하도록 다수의 천공을 드릴링 하는 단계를 포함하는 엔진 흡입구를 조립하는 방법.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 제 7 항 또는 제 10 항에 있어서,
    엔진 흡입구 내부 배럴 섹션 및 배럴 섹션을 지지하는 적어도 하나의 고정 장치에 로봇 드릴링 유닛을 색인하는 단계를 더 포함하는 엔진 흡입구를 조립하는 방법.
KR1020140096322A 2013-08-28 2014-07-29 배럴 섹션에 천공을 형성하기 위한 시스템 및 방법 KR102211327B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/012,243 2013-08-28
US14/012,243 US9370827B2 (en) 2013-08-28 2013-08-28 System and method for forming perforations in a barrel section

Publications (2)

Publication Number Publication Date
KR20150026804A KR20150026804A (ko) 2015-03-11
KR102211327B1 true KR102211327B1 (ko) 2021-02-05

Family

ID=51392115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140096322A KR102211327B1 (ko) 2013-08-28 2014-07-29 배럴 섹션에 천공을 형성하기 위한 시스템 및 방법

Country Status (8)

Country Link
US (3) US9370827B2 (ko)
EP (1) EP2842672B1 (ko)
JP (1) JP6762684B2 (ko)
KR (1) KR102211327B1 (ko)
CN (1) CN104417761B (ko)
CA (1) CA2857827C (ko)
ES (1) ES2763385T3 (ko)
PT (1) PT2842672T (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201419182D0 (en) * 2014-10-28 2014-12-10 Nlink As Mobile robotic drilling apparatus and method for drilling ceillings and walls
GB201521075D0 (en) * 2015-11-30 2016-01-13 Short Brothers Plc Methods, precursors and abrasive blasting masks for manufacturing noise attenuating devices
US10533497B2 (en) * 2016-04-18 2020-01-14 United Technologies Corporation Short inlet with integrated liner anti-icing
DE102016216902A1 (de) * 2016-09-06 2018-03-08 Deckel Maho Pfronten Gmbh Werkzeugmaschine zur spanenden Bearbeitung eines Werkstücks sowie Spindelträgerbaugruppe zum Einsatz an einer derartigen Werkzeugmaschine
GB201617840D0 (en) * 2016-10-21 2016-12-07 Rolls Royce Plc Complementary structure
CN106995063B (zh) * 2017-04-26 2019-05-14 浙江大学 一种多功能末端执行器
US20190076932A1 (en) * 2017-09-14 2019-03-14 Spirit Aerosystems, Inc. Apparatus and method for minimizing elongation in drilled holes
US11125157B2 (en) * 2017-09-22 2021-09-21 The Boeing Company Advanced inlet design
US10675768B2 (en) * 2018-03-27 2020-06-09 The Boeing Company Robotic end effector assembly, system, and method of using the same
US11052490B2 (en) 2018-04-27 2021-07-06 The Boeing Company Inner barrel of an engine inlet with laser-machined acoustic perforations
DE102018125085A1 (de) * 2018-10-10 2020-04-16 Bystronic Laser Ag Fixiervorrichtung, Bearbeitungskopf, Werkzeugmaschine und Verfahren zum Fixieren eines Werkstücks
CN110842931B (zh) * 2019-07-30 2022-03-22 南京埃斯顿机器人工程有限公司 一种应用于机器人打孔的工具姿态调整方法
CN110340683A (zh) * 2019-07-31 2019-10-18 成都航空职业技术学院 一种机器人末端钻孔执行器
US11455979B2 (en) 2019-12-19 2022-09-27 The Boeing Company Structural single degree of freedom face sheet acoustic liner
US20210260712A1 (en) * 2020-02-20 2021-08-26 The Boeing Company Methods of ultrasonic drilling for forming perforations in composite materials
US11897074B2 (en) 2020-02-20 2024-02-13 The Boeing Company Needle arrays for forming ultrasonic perforations, and methods of making the same
CN111360293B (zh) * 2020-03-23 2024-04-02 航天科工哈尔滨风华有限公司 一种无人机机身骨架连接框与机翼接头双向钻孔装置
US11970978B2 (en) * 2021-06-25 2024-04-30 Rohr, Inc. Acoustic panel and method of forming same
CN113443166B (zh) * 2021-06-25 2022-06-14 成都飞机工业(集团)有限责任公司 一种飞机前机身部件复杂曲面叠层制孔及柔性装配系统
CN114084375B (zh) * 2021-11-19 2023-04-28 中国直升机设计研究所 一种旋翼系统装试验台耦合固有频率计算方法
CN116931507B (zh) * 2023-09-18 2024-01-12 成都飞机工业(集团)有限责任公司 一种群孔穿孔控制方法、装置、存储介质及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309644A (ja) * 2007-08-06 2007-11-29 Mitsubishi Heavy Ind Ltd ガスタービン用燃焼器
US20090313830A1 (en) * 2006-07-14 2009-12-24 Alenia Aeronautica S.P.A Method, apparatus and plant for manufacturing shell structures
JP2013522511A (ja) * 2010-03-02 2013-06-13 ジーケイエヌ エアロスペース サービシイズ リミテッド シームレス音響ライナー

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2643004B1 (fr) 1989-02-13 1994-06-17 Hurel Dubois Avions Procede de percage d'une plaque a tres grande densite de trous et de configuration quelconque, et produits resultants
US4898501A (en) 1989-06-14 1990-02-06 Tennessee Tool And Engineering, Inc. In line rotary driling machine for producing uniform openings in continuous strip material
JPH07329197A (ja) * 1994-04-13 1995-12-19 Nikkiso Co Ltd 乗り物、ハニカム積層構造体、内装品、建築物およびパネル
JP2651361B2 (ja) * 1994-12-14 1997-09-10 日機装株式会社 セラミックス質耐火保護シート
US5912442A (en) * 1997-07-02 1999-06-15 Trw Inc. Structure having low acoustically-induced vibration response
US5934611A (en) * 1997-10-20 1999-08-10 Northrop Grumman Corporation Low drag inlet design using injected duct flow
JP2008073786A (ja) 2006-09-19 2008-04-03 Toyota Motor Corp 切削加工治具及び切削加工方法
US7979160B2 (en) * 2007-07-31 2011-07-12 Spirit Aerosystems, Inc. System and method for robotic accuracy improvement
FR2926790B1 (fr) * 2008-01-30 2010-02-12 Aircelle Sa Systeme de guidage pour la maintenance d'une nacelle d'aeronef
FR2927271B1 (fr) 2008-02-08 2010-07-30 Aircelle Sa Procede de percage d'une piece acoustique d'une nacelle d'un aeronef.
US20100217437A1 (en) * 2009-02-24 2010-08-26 Branko Sarh Autonomous robotic assembly system
FR2954278B1 (fr) * 2009-12-18 2012-01-20 Aircelle 7303 Structure support pour inverseur de poussee notamment a grilles
US8220588B2 (en) 2010-03-31 2012-07-17 The Boeing Company Unitized engine nacelle structure
FR2959486B1 (fr) * 2010-04-29 2012-04-13 Aircelle Sa Nacelle pour moteur d'aeronef

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090313830A1 (en) * 2006-07-14 2009-12-24 Alenia Aeronautica S.P.A Method, apparatus and plant for manufacturing shell structures
JP2007309644A (ja) * 2007-08-06 2007-11-29 Mitsubishi Heavy Ind Ltd ガスタービン用燃焼器
JP2013522511A (ja) * 2010-03-02 2013-06-13 ジーケイエヌ エアロスペース サービシイズ リミテッド シームレス音響ライナー

Also Published As

Publication number Publication date
EP2842672A1 (en) 2015-03-04
CN104417761A (zh) 2015-03-18
CA2857827C (en) 2016-12-13
EP2842672B1 (en) 2019-10-16
JP6762684B2 (ja) 2020-09-30
CN104417761B (zh) 2018-10-02
US9884370B2 (en) 2018-02-06
JP2015061736A (ja) 2015-04-02
PT2842672T (pt) 2019-12-10
US11059106B2 (en) 2021-07-13
US20180154455A1 (en) 2018-06-07
US9370827B2 (en) 2016-06-21
KR20150026804A (ko) 2015-03-11
CA2857827A1 (en) 2015-02-28
ES2763385T3 (es) 2020-05-28
US20150063932A1 (en) 2015-03-05
US20160256935A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
KR102211327B1 (ko) 배럴 섹션에 천공을 형성하기 위한 시스템 및 방법
US11473479B2 (en) System and method for forming elongated perforations in an inner barrel section of an engine
JP6495275B2 (ja) 制御された繊維配置によって生み出された孔パターンを有する複合材積層板
EP2542401B1 (en) Seamless acoustic liner
JP6539515B2 (ja) セル型コアに対するセプタムの形成
CA2778743C (en) Large area repair of composite aircraft
JP5976800B2 (ja) 複合材部品の迅速製造
JP6025840B2 (ja) 複合材部品を製造するクリーンセクション及びダーティセクションを含むセル
US10675768B2 (en) Robotic end effector assembly, system, and method of using the same
GB2540014A (en) System and method for forming elongated perforations in an inner barrel section of an engine
CN111645337B (zh) 用于制造多孔复合结构的工具组件以及相关的系统和方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right