KR102190050B1 - 정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법 - Google Patents

정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR102190050B1
KR102190050B1 KR1020197006317A KR20197006317A KR102190050B1 KR 102190050 B1 KR102190050 B1 KR 102190050B1 KR 1020197006317 A KR1020197006317 A KR 1020197006317A KR 20197006317 A KR20197006317 A KR 20197006317A KR 102190050 B1 KR102190050 B1 KR 102190050B1
Authority
KR
South Korea
Prior art keywords
forward osmosis
feed
elements
draw solution
solution
Prior art date
Application number
KR1020197006317A
Other languages
English (en)
Other versions
KR20190026955A (ko
Inventor
크리스토퍼 드로버
레아 스타쉬크
에릭 멕스웰
세스 맥퍼딘
Original Assignee
오아시스 워터 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오아시스 워터 엘엘씨 filed Critical 오아시스 워터 엘엘씨
Publication of KR20190026955A publication Critical patent/KR20190026955A/ko
Application granted granted Critical
Publication of KR102190050B1 publication Critical patent/KR102190050B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0021Forward osmosis or direct osmosis comprising multiple forward osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

시스템 피드 유입구가 정삼투(FO)소자 그룹에 연결되고 시스템 피드 수송기가 시스템 피드 유입구를 통해 유체 스트림을 FO소자 그룹에서 시스템 피드 유출구를 통과하여 제2 FO소자 그룹에 안내하며 시스템 유도 수송기가 제2 FO소자 그룹에서 제1 FO소자 그룹으로의 간접적인 유체 유동을 안내한다.

Description

정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법
본원은 PCT 국제 특허 출원으로서 2017년 8월 3일자에 제출하였고, 2016년 8월 4일자에 제출한 출원번호가 62/371,122인 미국 임시 특허 출원을 우선권으로 주장하며, 그 공개 내용을 본원에 원용한다.
정삼투는 탈염, 폐수 처리 및 기타 산업 프로세스에 이용된다. 통상적으로, 정삼투 탈염 프로세스는 반투막에 의해 분리된 두개의 챔버를 가지는 용기와 관련된다. 하나의 챔버에는 바닷물 또는 기타 파괴된 수원이 수용되고 다른 하나의 챔버에는 막간(across the membrane) 농도 구배를 이루는 농축 용액이 수용된다. 이러한 구배 막은 바닷물에서 물을 유도하여 선택적으로 염이 통과하지 못하고 물만 농축 용액에 진입할 수 있도록 허용한다. 점차적으로 농축 용액에 진입한 물에 의해 당해 용액은 희석된다. 희석된 용액에서 용질을 제거하여 음용수를 생성한다.
일 양태에 있어서, 본 발명은 시스템 피드(feed, 공급, 가공원료) 유입구, 당해 시스템 피드 유입구에 연결되고 복수의 제1 급 FO소자를 포함하는 제1 정삼투(FO) 소자 그룹, 복수의 제2 급 FO소자를 포함하는 제2 FO소자 그룹, 유체 스트림을 제1 FO소자 그룹에서 제2 FO소자 그룹으로 안내하도록 배치된 시스템 피드 수송기, 당해 제2 FO소자 그룹에 연결된 시스템 유도 유입구, 당해 제1 FO소자 그룹에 연결된 시스템 유도 유출구, 및 제2 FO소자 그룹에서 제1 FO소자 그룹으로의 간접 유체 유동을 위한 시스템 유도 수송기를 포함하는 정삼투 시스템에 관한 것이다.
본 발명의 여러가지 실시 형태에 있어서, 제1 그룹 및 제2 그룹 중의 FO소자의 수량은 서로 동일하고, 서브 그룹으로 나뉠 수 있으며, 각 그룹 및/또는 서브 그룹에 서로 다른 수량의 소자를 포함하여 특정 응용에 적합하도록 할 수 있다. 예를 들어, 제1 그룹에 비해, 제2 그룹은 더 많은 수량의 막 소자를 포함할 수 있다. 통상적으로 시스템 유도 수송기는 하나 또는 복수의 밸브, 센서 또는 컨트롤러를 포함하여 유도 용액을 각 막 그룹에 안내할 수 있다. 일부 실시 형태에 있어서, 시스템 유도 수송기는 분리 시스템에 유체 연통되어 유도 용질 및/또는 생성물 용매를 유도 용액과 분리시키기 위한 바이패스 탱크를 더 포함할 수 있다. 일부 실시 형태에 있어서, 복수의 제1 급 FO소자는 제1 서브 그룹의 제1 급 FO소자 및 제2 서브 그룹의 제1 급 FO소자를 포함하고, 당해 제2 서브 그룹의 제1 급 FO소자의 수량이 제1 서브 그룹의 제1 급 FO소자의 수량보다 많다. 정삼투 시스템은 제1 서브 그룹의 제1 급 FO소자와 제2 서브 그룹의 제1 급 FO소자를 연결하는 피드 시스템 매니폴드를 포함할 수 있다. 복수의 제2 급 FO소자는 제1 서브 그룹의 제2 급 FO소자와 제2 서브 그룹의 제2 급 FO소자를 더 포함할 수 있다. 일부 실시 형태에 있어서 서브 그룹 중의 소자의 수량은 서로 동일할 수 있다. 시스템 피드 수송기는 제2 서브 그룹의 제1 급 FO소자를 제2 FO소자 그룹에 연결할 수 있고, 매니폴드를 포함할 수 있다. 일부 상황에서 제1 서브 그룹의 제2 급 FO소자 중의 단일 피드 유출구를 제2 서버 그룹의 제2 급 FO소자 중의 단일 FO소자의 피드 유입구에 연결할 수 있다.
다른 양태에 있어서, 본 발명은 제1측 및 이와 반대되는 제2측을 구비하는 정삼투막을 포함하는 복수의 정삼투(FO)소자 그룹, 피드 용액 유입구, 피드 용액 유출구, 피드 용액 유입구에서 정삼투막의 제1측을 거쳐 복수의 FO소자 그룹을 통과하여 피드 용액 유출구로 직접 유체가 연통되도록 배치된 피드 용액 유동 경로, 유도 용액 유입구, 유도 용액 유출구 및 유도 용액 유입구에서 정삼투막의 제2측을 거쳐 복수의 FO소자 그룹을 통과하여 유도 용액 유출구로 간접적으로 유체가 연통되도록 배치된 유도 용액 유동 경로를 포함하는 정삼투 시스템에 관한 것이다.
본 발명에서 상술한 양태에 따른 여러가지 실시 형태에 있어서, 유도 용액 유동 경로는 유도 용액 유동 경로 중의 유도 용액의 적어도 제1 부분을 임시적으로 보유하기 위한 바이패스 탱크를 포함한다. 당해 바이패스 탱크는 바이패스 탱크 중의 유도 용액의 적어도 제2 부분을 예를 들어 분리 시스템에 전이하기 위한 바이패스 라인을 포함할 수 있다. 여러가지 실시 형태에 있어서, 정삼투막이 서로 다른 물리적 배치를 가질 수 있고, 예를 들어 날개 길이 및/또는 간격물 두께가 서로 다를수 있다.
다른 양태에 있어서, 본 발명은 정삼투를 거쳐 피드 스트림을 농축하기 위한 방법에 관한 것이다. 당해 방법은 제1 FO막 소자 그룹을 제공하는 단계, 제2 FO막 소자 그룹을 제공하는 단계, 피드 스트림을 제1 FO막 소자 그룹에 유입시킨 후 제2 FO막 소자 그룹에 유입시키는 단계, 유도 용액을 제2 FO막 소자 그룹에 유입시키는 단계, 제2 FO막 소자 그룹에서 유출된 유도 용액을 바이패스 탱크에 유입시키는 단계, 유도 용액의 적어도 일부분을 바이패스 탱크에서 제1 FO막 소자 그룹으로 유입시키는 단계, 및 용매의 일부분을 피드 스트림에서 막 소자를 통과하여 유도 용액에 진입시키는 단계를 포함한다.
여러가지 실시 형태에 있어서, 당해 방법은 제1 FO막 소자 그룹에서 유출된 유도 용액을 분리 프로세스에 안내하여 유도 용질을 피드 스트림에서 막 그룹을 통과하여 유도 용액에 진입하는 용매와 분리시키는 단계를 포함한다. 또한, 당해 방법은 유도 용액의 제2 부분을 바이패스 탱크로부터 분리 프로세스에 안내하는 단계를 더 포함한다. 일부 실시 형태에 있어서, 피드 스트림 및 유도 용액이 역방향으로 유동하도록 방향을 정하고, 막의 반대측에서 FO막 소자에 유입시킨다. 당해 방법은 막 그룹 사이에서 주기적으로 각 막 소자를 교대(rotate)하는 단계를 더 포함할 수 있다.
아래에서 기타 형태, 실시 형태 및 이러한 예시적인 측면 및 실시 형태의 장점을 구체적으로 설명하도록 한다. 그 외, 상술한 정보 및 이하 구체적인 설명은 모두 각 양태와 실시 형태의 설명을 위한 실시예에 지나지 않고, 보호하고자 하는 양태 및 실시 형태의 본질 및 특성의 개술 또는 구성을 제공하기 위한 것이다. 대응되게 이하 설명과 첨부 도면의 참조를 통해, 본 명세서에서 공개한 본 발명의 이러한 목적, 장점 및 특징 그리고 기타 목적, 장점 및 특징이 명백해질 것이다. 그 외, 본 명세서에서 설명한 여러가지 실시 형태의 특징은 상호 배타적이지 않고 여러가지 조합 또는 교체의 형태로 존재할 수 있다.
첨부된 도면에 있어서, 통상적으로 동일한 부호는 다른 도면에서 동일한 부분을 가리키고, 첨부된 도면은 통상적으로 발명의 원리에 중점을 두며 반드시 비례에 따라 작성되는 것이 아니고 본 발명의 범위를 한정하려는 의도가 아니다. 본 발명을 명백하게 하기 위하여, 각 첨부 도면에서 모든 소자가 동시에 표시되는 것은 아니다. 이하의 설명에서, 첨부 도면을 참조하여 본 발명의 여러가지 실시 형태를 설명한다.
도 1은 용매를 추출하기 위한 정삼투(FO) 시스템을 보여주는 개략도이다.
도 2는 도 1의 시스템의 하나의 응용을 보여주는 개략도이다.
도 3은 정삼투 시스템에 사용되는 피라미드 형상의 막 구성를 보여주는 개략도이다.
도 4 내지 도 6은 정삼투 시스템의 막 구성를 교체하는 실시예를 보여준다.
도 7은 정삼투 시스템과 함께 사용되는 열회수 시스템을 보여주는 개략도이다.
도 8은 본 명세서에서 설명한 여러가지 정삼투 시스템의 성능 데이터를 보여준다.
도 9는 대체 가능한 정삼투막 어레이를 보여주는 개략도이다.
도 10은 막 소자의 교대 프로세스를 보여주는 개략도이다.
통상적으로 수용액에서 물을 추출하기 위한 삼투 방법은 수용액을 정삼투막의 제1 표면에 노출시키고 당해 수용액에 비해 농도가 큰 제2 용액 또는 유도 용액을 정삼투막의 제2 반대표면에 노출시켜, 정삼투막을 통해 수용액에서 수분을 유도하여 제2 용액에 진입시키므로써 정삼투를 통해 수분을 풍부하게 함유한 용액(water-enriched solution)을 형성한다. 이는 농도가 비교적 낮은 용액에서 농도가 비교적 높은 용액으로 이동하는 유체 수송 특성(fluid transfer properties)을 이용하였다. 물을 풍부하게 함유한 용액은 희석된 유도 용액으로도 칭하고, 제1 유출구에 수집되어 분리 프로세스를 더 거쳐 정제수를 형성할 수 있다. 제2 유출구에서 제2 생성물 스트림, 즉 폐기 또는 농축된 수처리 용액을 수집하여 배출 또는 추가 처리한다. 본 명세서에 기재된 여러가지 시스템 및 방법은 비수용액을 이용하여 진행할 수 있다.
정삼투 모듈 또는 소자는 하나 또는 복수의 정삼투막을 포함할 수 있다. 정삼투막은 통상적으로 반투과성막이고, 예를 들어, 물의 통과를 허용하나, 염화나트륨, 탄산암모늄, 탄산수소암모늄 및 카바메이트암모늄과 같은 용액에 용해된 용질의 통과는 허용하지 않는다. 여러 유형의 반투막이 이러한 목적에 적용되는 전제 조건은 물(즉 용매)의 통과를 허용하나, 적어도 거의 모든 용질의 통과를 허용하지 않으며, 용액 중의 용질과 반응하지 않는 것이다. 적어도 하나의 정삼투막은 모듈 또는 소자를 규제하는 케이스 또는 외각 내에 위치하고 케이스의 사이즈와 형상은 통상적으로 내장된 막을 수용할 수 있도록 마련될 수 있다. 예를 들어, 나선형으로 감긴 정삼투막을 수용할 경우, 케이스는 기본적으로 기둥 형상일 수 있다. 모듈의 케이스는 피드 용액과 유도 용액을 모듈에 제공하기 위한 유입구 및 모듈에서 생성물 스트림을 추출하기 위한 유출구를 포함할 수 있다. 일부 실시 형태에 있어서, 케이스는 모듈에 유입되거나 모듈에서 추출될 유체를 유지하거나 저장하기 위한 적어도 하나의 저장부 또는 챔버를 제공할 수 있다. 적어도 하나의 실시 형태에 있어서, 케이스는 단열 기능(insulated)을 가질수 있다.
정삼투 모듈 또는 소자는 통상적으로 제1 용액 및 제2 용액이 각각 반투막의 제1측 및 제2측에 접촉되도록 구성 및 배치될 수 있다. 제1 용액과 제2 용액은 정체를 유지할 수 있으나 바람직하게는 제1 용액 및 제2 용액이 모두 십자 흐름(cross flow, 교차)에 의해 유입된다. 즉 반투막의 표면에 평행하여 유동하는 것이다. 이는 통상적으로, 하나 또는 복수의 유체 유동 경로를 따라 접촉하는 막의 표면적을 증가시킴으로써 정삼투 프로세스의 효율을 향상시킬 수 있다. 일부 실시 형태에 있어서, 당해 제1 용액과 제2 용액은 동일한 방향으로 유동할 수 있다. 기타 실시 형태에 있어서, 상기 제1 용액과 제2 용액은 서로 반대되는 방향으로 유동할 수 있다. 적어도 일부 실시 형태에 있어서, 이와 유사한 유체동력학은 막 표면의 양측에 존재할 수 있다. 이는 하나 또는 복수의 정삼투막을 계획적으로 모듈 또는 케이스에 결합시키는 것을 통해 실현할 수 있다.
통상적으로 FO 모듈에 유체 연통된 분리 시스템을 이용하여 희석된 제2 용액에서 용질을 회수(recover) 및 추출하여 반복적으로 사용하는 것을 기대한다. 분리 시스템은 희석된 유도 용액에서 용질을 분리(strip)함으로 거의 용질을 함유하지 않는 생성물인 물을 형성할 수 있다. 일부 실시 형태에 있어서, 분리 시스템은 증류 칼럼 또는 기타 열회수 기구 또는 기계적 회수기구, 예를 들어 역삼투 모듈 등 여과 시스템을 포함할 수 있다. 유도 용질이 리사이클링 시스템 등을 통해 농축된 유도 용액에 돌아가도록 한다. 기체 상태의 용질은 응축되거나 또는 흡수되어 농축된 유도 용액을 형성할 수 있다. 흡수기(absorber)는 희석된 유도 용액을 흡수제로 사용할 수 있다. 기타 실시 형태에 있어서 생성물인 물을 흡수제로서, 용질 리사이클링 시스템으로부터 전부 또는 일부 기류를 흡수하는데 사용될 수 있다.
도 1은 정삼투 시스템/프로세스(112)를 사용하여 용매를 삼투 추출하기 위한 시스템(100)을 보여주는 개략도이고, 상기 시스템은 하나 또는 복수의 전처리 유닛 작업(114) 및 / 또는 후처리 유닛 작업(116)을 포함한다. 예를 들어 본 명세서 및 미국특허No.6,391,205, No.8,002,989, No.9352281, No.9248,405, No.9266,065 및 No.9,039,899에서 언급된 여러가지 정삼투 시스템 및 프로세스를 사용할 수 있고, 이들의 공개 내용을 전반적으로 본원에 원용한다.
시스템(100)은 하나 또는 복수의 전처리 작업(114)을 포함하여 정삼투 프로세스(112)를 향상시킬 수 있다. 당해 전처리 작업은 제1 용액을 예열하기 위한 열원, 제1 용액의 pH를 조절하기 위한 장치, 소독(예를 들어, 화학 또는 UV) 분리 침전 장치, 필터 또는 제1 용액을 여과하고 열교환하기 위한 기타 장치(예를 들어, 카본 또는 샌드 여과, 나노 여과 또는 역삼투), 폴리머를 첨가하고, 스케일 억제제를 사용하여 이온 교환하기 위한 장치, 또는 제1 용액을 연화(예를 들어, 석회 연화)하기 위한 장치 중 적어도 하나를 포함할 수 있다.
시스템(100)은 하나 또는 복수의 후처리 작업(116)을 포함할 수 있다. 후처리 시스템/작업은 역삼투 시스템, 이온 교환 시스템, 별도의 정삼투 프로세스, 증류 시스템, 투과 증발기(pervaporator), 기계적 증기 재압축 시스템, 열교환 시스템 또는 여과 시스템 중 적어도 하나를 포함할 수 있다. 후처리는 생성물인 물의 염도를 단일 경로(single pass) 정삼투 시스템을 통해 형성된 염도보다 낮게 줄일 수 있다. 기타 실시예에 있어서 후처리는 대체 가능 또는 부가 가능하게 유도용질을 제거함으로써 당해 유도 용질이 생성물 스트림에 존재하는 것을 방지할 수 있다. 이온 교환, 증류, 투과증발, 막증류, 통풍, 생물학적 처리 또는 기타 프로세스를 통해 정삼투 염수 배출에 대하여 후처리를 진행하여, 역방향으로 염수에 확산된 유도 용질을 제거할 수 있다. 별도의 후처리 작업은 결정 및 증발 등을 사용하는 무방류(ZLD)처리를 포함할 수 있다. 하나의 실시 형태에 있어서, 무방류 처리는 예를 들어 정삼투 시스템을 사용하여 증발 시스템을 대체할 수 있다. 다른 실시 형태에 있어서, 당해 시스템은 리사이클링 시스템을 더 포함할 수 있고, 당해 리사이클링 시스템은 유도용질을 용이하게 제2 챔버에 재차 유입시켜 유도 용액을 희망 몰비율로 유지하도록 배치된 흡수기를 포함한다.
도 2는 용매를 삼투 추출하기 위한 시스템(100)의 하나의 가능한 응용을 보여준다. 도 1에 나타낸 바와 같이, 시스템(100)은 정삼투 시스템(112), 하나 또는 복수의 전처리 유닛(114) 및 후처리 유닛(116)을 포함한다. 시스템(100)은 전처리 유닛(114) 및/또는 후처리 유닛(116), 하나 또는 복수의 정삼투 시스템(112)이 결합된 임의의 조합을 포함할 수 있으며, 전처리만 또는 후처리만 포함할 수 있다. 본 명세서에서 설명한 여러가지 시스템/유닛은 전통적인 파이프 기술을 거쳐 상호 연결될 수 있고, 펌프, 밸브, 센서 및 계량기 등 임의의 수량의 부품 및 부품 조합을 포함할 수 있으며, 이에 의해 본 명세서에 기재된 여러가지 시스템과 프로세스의 작동을 모니터링 및 제어할 수 있다. 특정 응용의 요구 또는 희망 사항에 따라 각 부품은 컨트롤러에 결합되어 사용될 수 있다.
도 2에 나타낸 바와 같이, 시스템(100)은 파괴된 수원(118)(예를 들어, 바닷물, 저염수 또는 산업폐수)을 처리하는데 사용된다. 도시된 바와 같이, 피드 스트림(120)은 전처리 유닛(114)에 안내되고 당해 전처리 유닛에서 피드 스트림은 예를 들어 가열된다. 피드 스트림이 전처리되면, 처리된 스트림(122)은 정삼투 시스템(112)에 안내되며, 당해 정삼투 시스템에서 당해 처리된 스트림은 상기 제1 용액을 제공한다. 바람직하게는, 처리된 스트림(122)은 정삼투 시스템(112)에 진입하기 전에 별도의 전처리 유닛에 안내되어 추가 처리(예를 들어, pH조절)를 진행할 수 있다. 일부 실시 형태에 있어서, 전처리 유닛(114)은 역삼투 모듈을 포함함으로써 피드 스트림(120)이 정삼투 시스템에 유입되기 전에 농축되도록 한다. 초기 피드가 저염도일 경우, 이러한 구성은 특히 유용하다. 본 명세서에 기재된 바와 같이, 스트림(124)을 통해 정삼투 시스템(112)에 유도 용액을 제공함으로써 용매의 막간 수송을 촉진하기 위한 필요한 삼투압 구배를 제공한다.
적어도 두개의 스트림이 정삼투 시스템(112)에서 유출되는바, 하나는 용매가 이미 추출된 농축된 피드 스트림 또는 처리된 스트림(126)이고, 다른 하나는 용매가 첨가된 희석된 유도 스트림(128)이다. 당해 농축된 스트림(126)을 후처리 유닛(116)에 안내하여 추가 처리를 진행할 수 있는 바, 예를 들어 제2 정삼투 시스템에 안내하여 다른 용매를 회수한다. 다른 후처리 프로세스, 예를 들어 결정 및 증발을 통해 무방류를 더 제공할 수 있다. 완전히 처리되거나 또는 농축된 피드는 농축물의 특성에 따라 처리, 리사이클링 또는 기타 형태로 회수 재활용될 수 있다(화살표138).
희석된 유도 스트림(128)은 분리 시스템(130)에 안내되며, 당해 분리 시스템(130)에서 용매 및/또는 유도 용질이 회수될 수 있다. 바람직하게는, 희석된 유도 스트림(128)은 수요에 따라 후처리 유닛에 안내되어 다른 처리(스트림(128a))를 진행할 수 있는 바, 예를 들어, 희석된 유도 용액은 분리 시스템(130)에 안내되기 전에 예열(스트림(128b))될 수 있다. 하나 또는 복수의 실시 형태에 있어서, 분리 시스템(130)은 유도 용질을 희석된 유도 스트림(128)과 분리시켜 거의 정화된 용매 스트림(132), 예를 들어 음용수 및 유도 용질 스트림(136)을 형성한다. 하나 또는 복수의 실시 형태에 있어서, 용매 스트림(132)은 용매의 최종 용도에 따라 후처리 유닛에 안내되어 추가 처리(스트림(132a))를 진행할 수 있다. 예를 들어, 증류를 통해 용매를 추가 처리함으로써 용매에 여전히 존재 가능한 다른 유도 용질을 제거할 수 있다. 하나 또는 복수의 실시 형태에 있어서, 유도 용질 스트림(136)은 회수된 유도 용질의 예정 용도에 따라 직접 유도 스트림(124)(스트림(136a))에 돌아오거나, 리사이클링 시스템(134)에 안내되어 다시 유도 스트림(124)(스트림(136b))에 결합되거나 또는 후처리 유닛(스트림(136c))에 안내되어 추가 처리될 수 있다. 하나 또는 복수의 실시 형태에 있어서 리사이클링 시스템(134)은 전처리 유닛(114)에 결합되어 사용될 수 있는 바, 예를 들어, 피드 스트림(120)과 가열된 유도 용액 스트림(140) 사이의 열교환을 제공할 수 있다.
다른 하나의 가능한 응용에 있어서, 시스템(100)은 낮은 염도의 피드(120)를 처리하는데 사용되고, 전처리 시스템(114)은 피드(120)가 정삼투 시스템(112)에 안내되기 전에 당해 피드를 농축시키기 위한 역삼투 유닛일 수 있다. 당해 실시예에 있어서, 전처리 유닛(114)은 정삼투 모듈(112)에 의해 처리되는 용매/침투 스트림(132a) 및 농축된 피드 스트림(122)을 제공한다. 또한, 당해 전처리/역삼투 유닛(114)은 후처리 유닛(116)에 결합하여 사용되거나 또는 당해 후처리 유닛을 대체하여 사용될 수 있고, 당해 후처리 유닛은 분리 시스템(130)에서 제공한 생성물 용매(132)(스트림(132a))를 처리한다. 구체적으로, 생성물 용매 스트림(132b)을 분리 시스템(130)에서 피드(120)에 안내하여 당해 생성물 용매 스트림이 당해 피드 스트림에 합류되어 전처리/역삼투 유닛(114)에 유입되도록 한다. 바람직하게는 또는 별도로, 생성물 스트림(132b)은 직접 유닛(114)에 공급될 수 있다. 통상적으로 필요에 따라, 각 처리유닛(114, 116), 모듈(112) 및 서브 시스템 사이에 각 스트림을 안내하여 프로세스의 작동을 최적화할 수 있다.
도 3은 피라미드 형상의 막 배치를 가지는 정삼투 시스템(300)을 보여주고, 당해 정삼투 시스템은 3단계 또는 세 그룹의 FO소자(309, 314, 318)를 포함한다. 당해 세 그룹(309, 314, 318)은 3: 2: 1의 배치로 배열되고, 이는 피드 용액(피드 시스템 유입구(302)로부터)의 유동 방향에서 피드 용액은 제1 그룹(309)을 통과하고 당해 제1 그룹이 포함하는 FO소자(328)의 수량은 마지막 그룹(318)의 FO소자의 3배인 것을 의미한다. 중간 그룹(314)이 포함하는 FO소자(328)는 마지막 그룹(318)의 FO소자의 2배이다. 이와 같이, 도 3에 나타낸 배치는 전적으로 확장가능하며 다시 말해서 임의의 수량의 막 소자는 모두 예를 들어 제1 그룹에 포함될 수 있고, 기타 그룹은 적당한 비례의 소자를 포함할 수 있다. 따라서, 특정 응용에 요구되거나 또는 필요되는 성능에 따라 특정 유동 속도의 피드 용액 체적 및/또는 특정 유도 용액 농도에 기초하여 FO소자(328)의 수량을 선택할 수 있다. 따라서, 특정 배치에 기초하여 FO소자(328)의 수량을 최적화할 수 있다. 통상적으로, 막의 피라미드 형상의 배치는 피드 용액이 먼저FO소자 수량이 다음 소자 그룹의 FO소자 수량보다 많은 제1 FO소자 그룹(309)을 통과하도록 방향이 정해 질 수 있다. 유동이계속됨에 따라, 제2 FO소자 그룹(314)은 제3 FO소자 그룹(318)보다 더 많은 수량의 FO소자를 가지고, 이러한 방식으로 유추한다. 각 후속 FO소자 그룹 예를 들어, 그룹309 내지 그룹314 및 그룹314 내지 그룹318은 비교적 낮은 피드 용액 유동 속도를 가진다.
도 3은 피드 시스템 유입구(302), 농축 피드 시스템 유출구(304), 농축 유도 시스템 유입구(306) 및 희석 유도 시스템 유출구(308) 중 각 위치에서의 상대적 용액 유동량을 더 보여준다. 시스템(300)은 유도 유동량 대비 피드 유동량이 0.3:1.0이 되도록 배치되었다. 하나의 기본 유닛의 유동량이 피드 시스템 유입구(302)를 통과한다. 피드 용액이 유동하여 시스템(300)을 통과할 때 그 체적 유동량은 감소되지만, 반대되는 유동 방향에서의 농축된 유도 용액의 체적 유동량은 증가된다. 이는 용매가 피드 용액에서 유도 용액으로 정삼투 유동하기 때문이다. 농축된 유도 용액을 농축 유도 시스템 유입구(306)에 펌핑하거나 또는 대체 가능한 실시예에서 희석 유도 시스템 유출구(308)에서 희석된 유도 용액을 유도한다. 유도 시스템은 정압 또는 부압을 물론하고 가능한 한 모두 최고 막간 삼투압을 유지할 수 있기를 바라며 막의 피드측에서 유도측으로의 유동량을 최대화하여 피드측에서 유도측의 막간 압력차가 양의 값으로 되도록 하여 막 분리를 방지한다. 유도측 압력이 100psi미만인 것이 바람직하다는 것을 확인하였다. 따라서 도 3에 나타낸 3: 2: 1의 시스템은 압력 강하가 당해 수치보다 낮게 설정되도록 배치하었다. 기타 압력 강하는 예상 가능하고, 유동속도, 물 및/또는 염수의 농도 등에 의해 결정될 수 있다.
더 구체적으로, 도시된 피라미드 형상의 막 배치(300)는 피드 용액 유입구(302)를 포함하며, 피드 용액은 피드 용액 유입구에서 피드 용액 유입구 매니폴드(310)(예를 들어, 밸브를 구비한 헤더 또는 매니폴드 블록)를 거쳐 제1 FO소자 그룹(309)에 공급된다. 피드 용액은 제1 FO소자 그룹(309)을 경유한 후 제1 피드 시스템 매니폴드(312)를 통과하고 제2 FO소자 그룹(314)에 진입한다. 당해 피드 용액은 시스템의 피드 유출구(320)로부터 시스템에서 유출되기까지, 제2 피드 시스템 매니폴드(316)를 통과하여 제3 FO소자 그룹(318)에 진입하나 유의해야 할 점은 당해 막 배치는 3개 이상의 막 그룹을 포함할 수 있다. 피드 용액에 반대되는 방향의 유동에서, 농축된 유도 용액은 유도 시스템 유입구(306)로부터 시스템에 진입하고, 유도 시스템 유출구 매니폴드(326)를 통해 시스템(300)에서 유출되기까지 순차적으로 제3 FO소자 그룹(318), 제1 유도 시스템 매니폴드(322), 제2 FO소자(314), 제2 유도 시스템 매니폴드(324) 및 제1 FO소자 그룹(309)을 통과한다. 각 매니폴드(312, 316, 322, 324)는 인접한 FO소자 그룹(309, 314, 318) 사이에서 유체 스트림과 직접 연결되고 당해 시스템을 제어하기 위한 임의의 필요한 밸브, 센서 등을 포함할 수 있다.
이러한 3: 2: 1의 피라미드 형상의 막 배치는 각 FO 소자에서 막을 통과하여 물이 피드 용액에서 농축된 유도 용액으로 유도되는데 유리하다. 통상적으로, 제1 FO소자 그룹(309)의 피드 용액 내의 물의 농도는 상대적으로 높다. 그러나, 유도 용액이 이미 복수의 FO소자(즉, 제3FO소자 그룹(318) 및 제2 FO소자 그룹(314))을 통과하였기에, 당해 용액의 물의 농도가 농축 유도 시스템 유입구(306)의 최초 유입될 때의 물의 농도 보다 높다. 이와 같이, 제1 FO소자 그룹(309)에서의 삼투효율이 기대한 농도보다 낮을 수 있다. 비록 3: 2: 1피라미드 형상의 막 배치의 성능을 가지지만, 시스템(300)은 일부 흠결을 나타낼 수 있기에, 이런 흠결은 아래에서 설명하는 구성을 통해 해결된다.
통상적으로, 피드 스트림을 제1 정삼투 모듈/어레이/그룹에 유입하고, 당해 제1 정삼투 모듈/어레이/그룹은 반투막에 의해 제1 챔버 또는 제1 챔버측 및 제2 챔버 또는 제2 챔버측으로 나뉜다. 피드 스트림은 연속되는 각 정삼투 모듈에 안내되고, 농축된 피드 스트림으로 되고나서 마지막 하나의 모듈에서 유출된다. 구체적인 수량 및 배열되는 정삼투 모듈은 특정 응용(예를 들어, 피드 스트림의 초기 농도와 요구되는 최종 농도, 유동량 및 유동속도 등)에 적합하도록 선택되고, 직렬 연결/또는 병렬 연결로 배열된 임의의 수량의 모듈을 포함할 수 있다. 예를 들어, 복수의 병렬 연결된 정삼투 모듈 페어는 직렬 연결로 배열될 수 있고, 대체적으로 도시된 바와 같다. 통상적으로, 농축된 유도 용액을 일련의 정삼투 모듈 중의 마지막 모듈에 유입시키고, 피드 스트림을 막의 반대측에 유입시킴으로써 유도 용액이 연속된 모듈을 통과하도록 안내되어 피드 스트림과 유도 용액 사이에 역방향 유동을 제공한다. 그러나 농축된 유도 용액을 먼저 피드 스트림을 유입하는 모듈에 동일하게 먼저 유입할 수 있거나 및/또는 동시에 여러 단계(즉, 병렬 연결)에 유입하여 특정 응용에 적합하도록 한다. 또한, 필요에 따라 여러가지 스트림/용액을 조절/분배하여 필요한 최적의 삼투압차를 실현하여 희망하는 막간 유동량을 유지할 수 있다.
역방향 유동 배열에서 피드 스트림이 각 정삼투 모듈을 통과함에 따라 점차 농축되고 전술한 농축된 피드 스트림은 최종 정삼투 모듈로부터 배출된다. 용매가 막을 통과하여 피드 스트림에서 유도 용액에 진입하기 때문에, 농축된 유도 용액이 각 연속된 정삼투 모듈을 통과함에 따라 당해 농축된 유도 용액이 희석되고, "제1 " 정삼투 모듈로부터 희석된 유도 용액을 배출한다. 전형적으로, 농축된 피드 스트림을 폐기하거나 추가 처리하는 동시에 희석된 유도 용액을 분리/리사이클링 시스템에 안내하여 유도 용질을 회수하거나 또는 유도 용액을 재농축하여, 생성물 용매(예를 들어 물)를 회수한다. 대체 가능하게 또는 별도로, 각 정삼투 모듈(12)로부터 유출되는 보다 농축된 피드 스트림의 일부분은 다시 초기 피드 스트림에 안내되어 당해 초기 피드 스트림에 합류되고, 필요에 따라 그 다음 정삼투 모듈에 안내하여 막간 최적의 삼투압차를 유지하거나 및/또는 모듈 내에서 재순환 된다. 통상적으로, 직렬 연결로 배열된 막 모듈로 진행할 경우, 도시된 바와 같은 피드 스트림 유동방향 및 유도 용액 역방향 유동 형태로 작업하도록 하고, 피드 스트림 농도는 당해 피드 스트림이 모듈을 통과함에 따라 증가되고, 유도 용액의 농도는 당해 피드 스트림이 모듈을 통과함에 따라 감소되도록 한다. 이러한 배열은 최저 농도의 피드 스트림이 제1 막 모듈의 막을 통과하여 최저 농도의 유도 용액에 대향하고, 최고 농도의 피드 스트림이 "마지막" 막 모듈의 막을 통과하여 최고 농도의 유도 용액에 대향 ,하도록 한다. 이는 모든 모듈을 통과하는 최적의 삼투압차를 형성한다.
전형적인 막 어레이(즉, 하나 또는 복수의 막의 복수 그룹 또는 복수 단계의 모듈을 유지)는 상대적으로 낮은 유동량으로 작동되나 더 높은 유동량이 더 바람직하다. 아쉽게도 어레이에서 더 높은 유동량을 실현하려면 에너지 손실이 상당히 크고 복잡성도 증가된다. 일부 실시 형태에 있어서 피라미드 형상의 막 어레이 배치를 사용하지 않고 역방향 피라미드 또는 심지어 선형에 더 가까운(도 5 및 도 5a에 나타낸 바와 같이, 예를 들어, 막 배치의 전부 또는 일부가 선형일 수 있음)것으로 변하여 유도 용액의 유동량이 대폭 증가되고 막 스테이지 (membrane stage)사이에서 전부 또는 일부 유도 용액에 바이패스를 추가함으로써 최적의 유동속도를 실현하는데 필요한 막간 그룹(across membrane banks)의 압력 강하의 불리한 영향을 줄이거나 해소하였다. 막 배치의 상술한 변화는 유도 용질을 회수하는데 필요한 에너지를 유지하거나 줄이고(예를 들어, 분리 시스템에 비교적 높은 농도의 유도 용액을 제공), 유사 회수 레벨에 필요한 막 소자의 총수를 대폭 줄이고, 이는 또 시스템 거부(rejection)를 개선하였다.
도 4 내지 도 6은 정삼투 시스템에 사용되는 대체 가능한 막 배치의 실시예를 보여준다. 기존의 경로와는 전혀 다르고, 보여준 배치는 유도 용액 시스템에서 바이패스 탱크(또는 기타 장치, 예를 들어 사용자가 일부 유도 용액을 다시 안내하거나 또는 마련하는 것을 허용하는 바이패스 밸브)형태인 중단을 이용하여 시스템을 통과하는 일부 유도 용액을 임시로 보유한다. 이와 같이, 도 4 내지 도 6의 배치에서 유도 용액의 유동 경로는 "간접적인 것"으로 나타낼 수 있고, 피드 용액 유동 경로는 중단되지 않기에 "직접적인 것"으로 나태낼 수 있다. 당해 바이패스 탱크가 마련되어 있기에 더 높은 유동속도를 사용하여도 막이 손상되지 않는다. 이러한 증가된 유동속도는 막간 압력 강하를 증가시켰기에 바이패스 탱크는 각 시스템의 중점에 근사한 위치에서 압력 재설정 용기로 작용한다. 복수의 바이패스 탱크는 시스템 전체에 배치될 수 있고, 예를 들어, 각 그룹 막 사이에 위치하거나 특정 응용에 적합하도록 책략적으로 배치될 수 있다. 또한, 막 그룹에서 유출된 전부 또는 일부 유도 용액은 복수의 또는 인접하지 않는 바이패스 탱크에 안내되거나 심지어 재순환하여 임의의 특정 막 그룹을 통과하는 삼투압차를 최적화하여 시스템의 전체적 성능(예를 들어, 용매의 최고 회수/피드 농도)을 최적화한다. 각 시스템의 증가된 속도에 의해 더 우수한 회수가 가능하고 도 3의 배치와 같이 유도 시스템을 현저히 희석하지는 않는다. 또한, 사용된 바이패스 탱크는 증압 펌프를 포함하여 유도 용액이 특정 막 그룹을 통과하도록 보조적으로 추진한다. 따라서 초기부터 비교적 높은 압력으로 유도 용액을 전체 막 시스템 예를 들어 피라미드 형상의 막 배치를 통과하게 할 필요가 없다.
도 4에 나타낸 실시예에 있어서, 정삼투막 배치(400)는 바이패스 탱크의 위치를 기준으로 3:2의 배치로 구성하고, 여기서 그룹(409)은 인접한 그룹(414) 보다 더 많은 수량의 FO소자(428)를 포함한다. 이러한 3:2 배치는 도시된 바와 같이 5:4:3:3의 배치로 확장될수 있다. 또한, 초기 구성과 비할 시, 차이점은 제1 FO소자 그룹(409)은 막 어레이 서브 그룹(409a, 409b)(추가 단계라고도 함)을 포함하고, 특정 응용(예를 들어, 피드 체적, 희망 회수 등)에 적합하도록 각 서브 그룹에 서로 다른 수량의 FO소자를 포함한다. 도시된 막 어레이 서브 그룹(409a, 409b)은 5: 4로 배열되고, 여기서 제1 서브 그룹(409a)은 5개(또는 그 배수)의 FO소자(428)를 포함하고, 제2 서브 그룹(409b)은 4개(또는 그 배수)의 FO소자(428)를 포함한다. 어레이 서브 그룹 내의 막 소자의 정확한 수량과 배열은 특정 응용에 적합하도록 변경된다. 또한, 제2 그룹(414)은 두개의 서브 그룹(414a, 414b)을 포함하고, 이 두개의 서브 그룹의 막 소자는 임의의 특정 수량일 수 있고, 또한 막 소자는 1: 1 배치 또는 선형적인 배치를 이루며, 예를 들어, 각 서브 그룹(414a, 414b)에 도시된 3개(또는 그 배수)일 수 있다. 본 명세서의 기타 부분에 기재된 바와 같이, 이러한 변경된 피라미드 형상은 서브 그룹(414a, 414b) 내의 인접한 FO소자들이 매니폴드 대신에 전용 덕트(415, 425)에 의해 연결되도록 한다. 또한, 제1 그룹(409)과 같이, 특정 응용에 적합하도록 임의의 수량의 서브 그룹, 독립적인 막 소자 및 그 비율을 선택할 수 있다.
더 구체적으로, 도시된 막 배치 (400)는 피드 시스템 유입구(402), 농축 피드 유출구(404), 농축 유도 시스템 유입구(406) 및 희석 유도 시스템 유출구(408)를 포함하고, 피드 시스템 유입구(402)와 농축 피드 유출구(404) 사이는 피드 용액의 유동 경로이며, 농축 유도 시스템 유입구(406)와 희석 유도 시스템 유출구(408) 사이는 유도 용액의 유동 경로이다. 중요한 것은 당해 피드 시스템 유입구(402)는 제1 FO소자 그룹(409)에 인접하여 설치되고, 피드 유입구 매니폴드(410)를 거쳐 유입된다. 제1 피드 FO소자 그룹(409)은 매니폴드(413)를 거쳐 제2 서브 그룹 FO 소자(409b)에 연결되는 제1 서브 그룹 FO소자(409a)를 포함한다. 피드 용액은 제1 FO소자 그룹(409)에서 유출된 후 제1 피드 시스템 매니폴드(412)를 통과하여 제2 FO소자 그룹(414)에 진입한다. 제1 FO소자 그룹(409)과 유사하게, 제2 FO소자 그룹(414)은 제1 서브 그룹 FO소자 (414a)를 포함하고, 당해 제1 서브 그룹 FO소자의 각 소자는 모두 전용 덕트(415)를 거쳐 제2 서브FO소자(414b) 중 하나에 직접 연결된다. 이와 같이, 제1 서브 그룹 FO소자(414a)와 제2 서브 그룹FO소자(414b) 사이에는 매니폴드를 사용하지 않았다. 피드 용액은 피드 유출구 매니폴드(421)를 통과한 후 시스템 피드 스트림 유출구(420)로부터 시스템에서 유출된다.
피드 용액과 반대되는 유동 방향에서 농축된 유도 용액은 유도 시스템 유입구(406) 및 유도 시스템 유입구 매니폴드(417)로부터 시스템(400)에 진입하고 제2 FO소자 그룹(414)을 통과한다. 피드 용액측과 유사하게, 유도 용액측에서 제2 서브 그룹 FO소자(414b)의 각 소자는 모두 전용 덕트(425)를 통해 제1 서브 그룹 FO소자(414a) 중 하나에 직접 연결된다. 그러나, 상술한 바와 같은 바이패스 매니폴드 및 바이패스 탱크는 제2 막 어레이 서브 그룹(414b)과 제1 막 어레이 서브 그룹(414a) 사이에 마련될 수 있다. 유출구 바이패스 매니폴드(432)를 거쳐 제2 FO소자 그룹(414)에서 유출된 후, 유도 용액은 바이패스 탱크(430)에 배출되고, 당해 바이패스 탱크의 압력은 시스템(400)의 기타 부분의 압력(예를 들어, 대기압)과 서로 다를 수 있다. 유도 용액은 바이패스 탱크(430)에 배출된 후, 유입구 바이패스 매니폴드(434)를 거쳐 예를 들어 펌프와 같은 압력 수송 설비에 의해 제1 FO소자 그룹(409)에 수송되고, 구체적으로 제2 서브 그룹(409b)에 수송된다. 제1 FO소자 그룹(409)의 제2 서브 그룹FO 소자(409b)는 매니폴드(427)를 거쳐 제1 서브 그룹 FO 소자(409a)에 연결된다. 현재 이미 희석된 유도 용액은 제1 FO소자 그룹(409)의 제1 서브 그룹 FO 소자(409a)를 통과한 후, 유도 유출구 매니폴드(426)를 거쳐 시스템(400)에서 유출되고, 여기서 희석된 유도 용액은 본 명세서의 기타 부분에 기재된 바와 같이 추가 처리되도록 안내될 수 있다
도 5 및 도 5a는 대체 가능한 막 배치를 결합한 시스템(500)을 보여준다. 도 3에 나타낸 시스템(300)에 비해, 도 5의 시스템(500)은 역방향 피라미드 형상의 배치를 이용하였다. 도시된 역방향 피라미드 형상의 배치에서, 피드 용액은 제1 FO소자 그룹(509) 으로부터 시스템(500)에 진입하고, 당해 제1 FO소자 그룹은 제2 FO소자 그룹(514)보다 적은 FO소자를 포함한다. 더 구체적으로, 도 5의 시스템(500)은 바이패스회로를 기준으로 한 2: 3 배치에서 확장될 수 있으며, 두개 이상의 막 그룹(예를 들어, 2: 3: 4의 배치일수 있음)을 포함할 수 있다. 기존의 설계와 달리, 예를 들어 도 3의 설계는 피드 용액과 유도 용액 사이의 대체적으로 대칭된 유동속도에 초점을 모은 반면, 시스템(500)의 FO소자 그룹의 수량은 피드 용액과 유도 용액 사이의 상대 유동 속도의 더 큰 가변성을 허용한다. 다시 말해서, 유도 용액이 FO소자 그룹(514)에 진입할 때, 유도 용액의 유동속도는 예를 들어 0.78이고, 유도 용액이 FO소자 그룹(514)에서 유출될 때, 유도 용액의 유동 속도는 1.00이다. FO소자 그룹(509)에서, 유도 용액은 0.45의 유동 속도로 진입하고 0.86의 유동 속도로 유출된다. 이와 같이, 유도 용액이 최고 유동 속도일 경우, 수요되는 FO소자 그룹이 비교적 많다. 이에 비해, 유동 속도가 비교적 낮은 피드 용액이 최저로 마련된 FO소자 그룹(예를 들어, FO소자 그룹(509)이 FO소자 그룹(514)에 비해 최저)을 경유할 경우, 피드 용액의 유동 속도가 최고에 달한다. 이는 이전의 정삼투 시스템에 비해 변화가 어마한 것이다. 도 3에 도시된 피라미드 형상의 배치에 비해 이러한 배치는 유도 용액이 피드 용액으로부터 더 많은 물을 유도받을 수 있도록 허용하는 동시에 비교적 적은 FO소자가 사용된다. 또한, 시스템(500)은 간접적인 유도 용액 유동 배치를 결합하였는바 당해 간접적인 유도 용액 유동 배치는 시스템(500)의 부분 삼투압의 증가를 허용하여 피드 용액과 유도 용액 사이의 삼투유동량을 개선하도록 한다.
더 구체적으로, 도시된 역방향 피라미드 형상의 막 배치 (500)는 피드 시스템 유입구(502), 농축 피드 유출구(504), 농축 유도 시스템 유입구(506) 및 희석 유도 시스템 유출구(508)를 포함하고, 피드 시스템 유입구(502)와 농축 피드 유출구(504) 사이는 피드 용액 유동 경로이며, 농축 유도 시스템 유입구(506)와 희석 유도 시스템 유출구(508) 사이는 유도 용액 유동 경로이다. 피드 시스템 유입구(502)는 피드 용액 유입구 매니폴드(510)를 통해 제1 FO소자 그룹(509)에 연결된다. 제1 FO소자 그룹(509)에서 유출된 후, 피드 용액은 제1 피드 시스템 매니폴드(512)를 통과하여 제2 FO소자 그룹(514)에 진입한다. 피드 유출구 매니폴드(521)를 통과한 후, 피드 용액은 시스템 피드 스트림 유출구(520) 로부터 당해 시스템에서 유출된다. 피드 용액과 반대되는 방향의 유동에서, 농축된 유도 용액은 유도 시스템 유입구(506) 및 유도 시스템 유입구 매니폴드(517) 로부터 시스템(500)에 진입하고, 바이패스 탱크(530)에 배출되기까지 제2 FO소자 그룹(514) 및 유출구 바이패스 매니폴드(532)를 통과하며, 당해 바이패스 탱크의 압력은 시스템(500)의 기타 부분의 압력(예를 들어, 대기압)과 다를 수 있다. 바이패스 탱크(530)에 배출된 후, 유입구 바이패스 매니폴드(534)는 유도 용액을 제1 FO소자 그룹(509)에 수송한 후, 현재 이미 희석된 유도 용액은 유도 유출구 매니폴드(526)를 거쳐 시스템(500)에서 유출된다. 아래 더 구체적인 설명과 같이, 바이패스 탱크(530)는 바이패스 라인(540)에 연결될 수도 있고, 당해 바이패스 라인은 일정한 경로(route)에 따라 열회수 시스템에 진입할 수 있다. 바이패스 라인(540)을 거쳐 열회수 시스템에 전이된 당해 량의 관련부분도 설명하였다. 또한, 바이패스의 사용은 막 소자를 통과하는 유도 용액의 체적을 줄일 수 있어, 막을 통과하여 유출되는 임의의 용매로 인한 유도 용액 체적 과도 증가에 의한 막 파열 위험을 줄이거나 해소할 수 있다.
도 5a는 통상적인 선형 막 배치를 보여주고, 당해 선형 막 배치는 거의 도 5의 간소화된 버전이며, 여기서 각 그룹에는 동일한 수량의 막(막 그룹에 기본적으로 포함되는 임의의 수량의 막)이 존재하고 그룹 사이에는 스테이지 간 바이패스 시스템(inter-stage bypass system)이 마련되어 있다. 두개의 막 그룹(509, 514)이 하나의 바이패스 탱크(530)(즉, 1:1 구조)를 포함하는 것을 보여주나, 하나 또는 복수의 스테이지 간 바이패스 시스템을 포함하는 복수의 선형 막 그룹을 생각해 낼수 있으며 이 또한 본 발명의 범위 내에 있는 것으로 간주한다. 도 5a는 간소화된 분리 시스템(522)을 더 보여주고, 당해 분리 시스템은 부분적으로 희석된 유도 용액의 일부(540)를 접수하며, 당해 부분은 유도 용질을 회수하는 것을 보조하고 유도 용질의 재농축을 최적화하는데 사용될 수 있다. 예를 들어, 바이패스 탱크(530b)로부터 공급받은 부분적으로 희석된 유도 용액의 일부(540a)는 분리 시스템(522)에 안내되어, 막 어레이 말단 위치에서 희석된 유도 용액 탱크(530a)로부터 희석된 유도 용액에 첨가되어, 분리 시스템(522)에 진입된 유도 용액 농도(예를 들어, 유도 용액이 다소 희석됨)를 최적화하여 유도 용액의 회수를 최대화하는데 사용된다. 대체 가능한 형태로, 바이패스 탱크(530b)로부터 공급받은 부분적으로 희석된 유도 용액의 일부(540b)는 분리 시스템(522)내의 임의의 유도 용질 회수 장치의 분리 시스템 하위(예를 들어, 증류 칼럼 또는 여과 유닛)에 안내되고, 적어도 부분적으로 재농축된 유도 용액(506')과 조합하여, 유도 용액을 응축기/흡수기 시스템(536)에 수송할 때 추가로 유도 용액을 농축하는데 유리하다. 예를 들어, 더 희석된 부분(540b)은 더 농축된 유도 용액(506')과 조합하여, 최종적으로 농축되는 유도 용액(506)을 희망 몰비율로 획득하는데 유리하다. 그 외, 희석된 유도 용액의 매니폴드(526)는 희석된 유도 용액을 유지 탱크(530a)에 안내하고, 당해 유지 탱크는 이로부터 분기된 두개의 분기(527a, 527b)를 포함하며, 희석된 유도 용액의 두가지 다른 부분을 분리 시스템(522)(예를 들어, 분기(527b)로부터 열분리 설비, 예를 들어 증류 칼럼의 비교적 큰 일부, 및 분기(527a)로부터 열분리 설비에서 유출되어 회수된 유도 용질에 추가된 비교적 작은 일부)에 제공할 수 있다.
도 6은 피라미드 형상의 배치 및 바이패스 탱크 양자를 이용한 시스템(600)을 보여주고, 도 4에 나타낸 시스템과 유사하다. 도 6에서 사용된 부호는 도 4에서 사용된 부호와 유사하나 이하에서 도 6의 모든 소자에 대해 모두 설명한것은 아니다. 시스템(600)과 도 4의 시스템(400)의 차이점은 상기 시스템(600)이 9:5 배치로 확장될 수 있다. 이와 같이, 도 6에 도시된 복수의 급(609a, 609b, 614a, 614b)에서, 제1 FO소자 그룹(609)은 9개(또는 그 배수)의 FO소자(628)를 포함하나 제2 FO소자 그룹(614)은 5개(또는 그 배수)의 FO소자(628)를 포함한다. 예를 들어, 제1 FO소자 그룹(609)은 5X개의 FO소자(628)를 구비한 제 1급 또는 제1 서브 그룹(609a) 및 4X개의 FO소자(628)를 가지는 제 2급 또는 제2 서브 그룹(609b)을 포함하고, 제2 그룹(614)은 3X개의 FO소자(628)를 구비하는 제 1급 또는 제1 서브 그룹(614a) 및 2X개의 FO소자(628)를 구비하는 제 2급 또는 제2 서브 그룹(614b)을 포함한다. 당해 제1 서브 그룹(614a)과 제2 서브 그룹(614b)은 시스템(600)의 피드 스트림측 및 유도측 양측에서 매니폴드(615), 매니폴드(625)를 거쳐 연결된다. 이러한 구조가 성능에 대한 영향은 아래에서 설명하고, 예를 들어 도 8에서 설명하도록 한다.
도 7은 염수 스트리퍼 칼럼(stripper column)(730) 및 희석된 유도 용액 칼럼(732)을 포함하는 예시적인 열회수 시스템(722)을 보여준다. 참조 문헌에 유사한 시스템이 기재되어 있다. 염수(738) 및 희석된 유도 용액(746)은 열에너지(728, 728')와 함께 대응되는 칼럼에 유입되고 용질 및/또는 물이 증발하여 염수 스트리퍼 칼럼(730)에서 유출된다. 증기(740)는 선택 가능한 압축기(734)에 안내될 수 있고, 당해 압축기의 출력(742)은 유도 용액 칼럼(732)의 입력에 안내될 수 있다. 일부 실시 형태에 있어서 선택 가능한 압축기도 마찬가지로 희석된 유도 용액 칼럼(732)과 함께 사용될 수 있다. 더 한층 농축된 염수(744)는 칼럼(730)의 바닥부로부터 출력되고, 당해 위치에서 한층 더 농축된 염수는 추가 처리되도록 안내되거나 기타 방식으로 폐기될 수 있다. 유도 용액 칼럼(732)에서 증발될 유도 용질(748)은 응축기 시스템(예를 들어, 간단한 응축기 또는 조합된 응축기/흡수기회로)(736)에 안내되고, 당해 응축기 시스템은 농축된 유도 용액(750)을 출력한다. 사용 또는 추가 처리할 수 있도록 캄럼(732)의 바닥부에서 생성물 용매(752)를 회수한다.
도 7은 바이패스 탱크(760)의 위치를 더 보여주고, 예를 들어 도 4 내지 도 6에서 보여준 것과 같다. 전형적으로 전부 또는 적어도 상당한 부분이 희석된 유도 용액을 바이패스 탱크에서 다음 막 그룹으로 안내한다. 그러나, 일부 실시 형태에 있어서, 바이패스 탱크(760)로부터 희석된 유도 용액(762)의 일부는 특정 응용의 요구 또는 필요에 따라 시스템(722)에 안내될 수 있다. 예를 들어, 바이패스 탱크(760)에서 다시 안내되는 희석된 유도 용액(762)의 당해 부분은 응축기의 하위에 유입되어, 증발된 유도 용질을 흡수하는 것을 보조할 수 있다. 일부 실시 형태에 있어서, 바이패스 탱크(760)로부터 공급받은 희석된 유도 용액(762)의 일부는 응축기(736) 상위의 시스템(722)에 진입하여 특정 응용에 적합하도록 한다. 열회수 시스템(722)의 효율은 정삼투 시스템으로부터 접수한 희석된 유도 용액의 몰농도에 관련된다. 예를 들어, 전형적인 피라미드 형상의 막 배치 (300)에서 유출된 희석된 유도 용액에 비해, 바이패스 탭(take-offs)을 가지는 정삼투 시스템(400, 500 및 600)은 희석된 유도 용액의 몰농도를 더 높게 한다. 몰농도를 더 높게 하면 수증기 분수가 낮아지고, 희석된 유도 용액에서 유도 용질을 추출하기 위한 에너지 코스트(즉, 유도 용액을 재농축하여 시스템 내에서 중복하여 사용할 수 있도록 함)를 줄일 수 있다.
도 8은 본 명세서에 기재된 여러가지 정삼투 시스템의 성능 데이터를 보여주고, 특히 도 3 내지 도5에서 시스템의 상대적 성능을 보여주며, 네가지 실시예의 배치를 설명하였다. 실시예 1은 도 3의 3: 2: 1 소자 배치와 일치한 바, 실시예 2도 3: 2: 1의 소자 배치를 나타내고 비교적 적은 총수량의 FO소자를 구비한다. 실시예 3은 도 4의 3: 2의 배치와 일치하고, 실시예 4는 도 5의 2:3 배치와 일치하다. 도 8에 나타낸 비율에 대해, FO회수는 기본적으로 일정하고, 비교적 낮은 상대치는 수요에 더 적합하다는 특징을 보여준다. 모든 실시예에 있어서, 일반적으로 염 누출은 모든 FO 소자에서 발생하기 때문에, FO소자의 수량이 감소됨에 따라, 염 누출도 적어지는 바, 따라서 유도 용질 회수 및/또는 최종 생성물 용매를 형성하기 위한 에너지 요구가 낮아지게 되었다. 유의 해야 할 점은 실시예 1 및 실시예 2 사이의 FO소자 수량의 감소는 FO회수 또는 증기 부하(열부하)에 대한 영향이 가장 작다. 이와 같이, 도 3의 배치의 FO소자의 수량이 감소되어 수요에 적합할 수 있다. 이는 FO소자의 가격에 관련된 자본 지출을 줄이는 동시에 증기 부하에 관련된 작동 비용에 대한 영향이 비교적 작기 때문이다. 그러나, 실시예 3 및 실시예 4는 자본 지출(예를 들어, 더 적은 독립 막 소자) 및 작동 비용(예를 들어, 더 낮은 증기 부하)의 더 큰 절약을 보여준다.
흥미로운 것은 실시예 2에 비해, 실시예 3은 증기 부하에 관련된 코스트가 다소 감소된 것을 나타낸다. 이는 바이패스 탱크를 사용하는 것이 피라미드 형상의 시스템의 전체적인 성능에 유익하다는 것을 보여주고, 이는 직접 유동을 해소하면 시스템의 소자의 수량이 감소되기 때문이다. 실시예 4에서, 역방향 피라미드 시스템에 결합하는 바이패스 탱크를 포함하고, 기타 시스템에 비해 FO소자 수량이 급격히 줄어들며, 정삼투 회수의 감소가 가장 작다. 증기 부하도 다소 감소한다.
도 9는 복수 스테이지(802)를 포함하는 대체 가능한 나선형으로 감긴 FO막 어레이(800)의 개략도이고, 일부 실시 형태에 있어서 멀티 스테이지와는 달리, 막 어레이(800)는 4개 내지 8개의 독립 막 소자(802)인 단일 막을 포함한다. 도 4 내지 도 6의 시스템에서, 각 FO소자 그룹의 각 FO소자는 서로 동일하다. FO소자(800)는 고도로 전용된 배치로 각 FO소자 또는 복수의 FO소자를 배치하여 상술한 시스템의 장점을 실현한다. 이와 같이, FO소자는 일대일의 시스템으로 배열될 수 있으며, 예를 들면 하나의 전용 FO소자 그룹, 그 다음 바이패스를 배치하고, 그 다음 다른 하나의 전용FO소자 그룹을 배치한다. 도 9에 나타낸 FO막 어레이(800)는 기존의 나선형으로 감긴 막 어레이에 비해 그 차이점은 특정 스테이지(1A, 1B, 2A, 2B) 내의 막 또는 막 소자(802)가 다른 것이다. 예를 들어, 전형적인 나선형으로 감긴 FO막은 0.3: 1의 유도 대비 피드 비율 및 3단계 배열을 기반으로 하는 기하학적 형상을 가지고, 각 소자는 실제적으로 서로 동일하다. 도 9에 나타낸 막 어레이는 서로 다른 스테이지에서 서로 다른 유도 날개와 피드 어레미를 구비하는 전용 소자를 포함하고, 상기 소자는 평방 피트 당 최저 활성막 면적의 코스트와 막간 최적 유체속도를 실현하도록 선택된다. 통상적으로, 각 막 스테이지(급(802))는 4개 내지 8개 전용 막 소자 배치를 포함한다. 예를 들어, 하나의 실시 형태에서, 스테이지2A과 스테이지2B 중의 소자는 막 소자와 결합하였고, 당해 막 소자가 구비하는 피드 어레미가 스테이지1A과 스테이지1B 중의 소자보다 좁고, 이에 의해 스테이지2A과 스테이지2B 의 소자를 통과하는 피드 속도 및 상기 스테이지 중의 충전 밀도가 증가되었다. 일부 실시 형태에 있어서, 스테이지 1B 및 스테이지 2B 중의 소자에 비해, 스테이지 1A 및 스테이지 2A 중의 소자는 비교적 짧은 막 유도 날개를 사용하여 스테이지 1A 및 스테이지2A를 통화하는 압력 강하를 한정하고, 스테이지 1B 및 스테이지 2B 중의 소자에 사용된 비교적 긴 날개는 이러한 소자를 제조하는 노동력 코스트를 줄였다. 이러한 FO 막 배치는 상술한 시스템에 사용되어 시스템의 성능과 효율을 더 개선하고, 자금과 작동 비용을 줄일 수 있다. 일부 실시 형태에 있어서, 막내의 각 소자는 상술한 바와 같은 방식으로 변경될 수 있다.
막 성능을 더 한층 개선하고 막의 수명을 더 한층 연장함으로써 추가적인 코스트의 절약을 실현할 수 있다. 예를 들어, 일부 유형의 유도 용액의 증가된 농도 및/또는 높아진 온도에서 FO소자 중의 일부 재료/부품은 용이하게 분해될 수 있다(예를 들어, 인장 강도를 손실). 각 소자가 높아진 막간 압력(예를 들어, 피드 어레미 절곡)에 노출될 경우, 불리한 영향이 발생할 수 있고, 이는 막 케이스 내의 소자의 위치에 따라 변화될 수 있다. 이러한 요소의 노출량을 줄일 수 있으면, 소자의 수명을 연장시킬 수 있다.
막 어레이의 마지막 스테이지/그룹 중의 막 소자를 이용하여 주기적으로 막 어레이의 제1 급 /제1 그룹 중의 막 소자를 교대함으로써 노출을 제한할 수 있다. 도 10에 당해 프로세스의 하나의 실시예를 보여준다. 통상적으로, 하나 또는 복수의 측정 프로세스 조건에 기초하여 소정된 간격으로 랜덤으로 또는 필요하다고 사료될 때, 당해 교대 프로세스를 수행한다. 예를 들어, 도 10에 나타낸 3-2-1 피라미드 배치에서, 소자는 3년 수명으로 예정된 막 소자를 사용한다고 가정할 때, 스테이지 3 중의 소자는 9개월에 한번씩 스테이지 1 중의 하나의 막케이스 중의 소자로 대체될 수 있다. 하나의 실시 형태에서, 물리적으로 케이스 간의 소자를 교환하여 교대를 수행하나 이런 지향적인 변화는 원활한 파이프를 이용하여 실현될 수 있고, 당해 원활한 파이프는 피드 및 유도 스트림을 다시 각 스테이지에 안내한다.
하나 또는 복수의 실시 형태에 의하면, 본 명세서에 기재된 설비, 시스템 및 방법은 통상적으로 설비의 적어도 하나의 작업 파라미터 예를 들어 작동 밸브 및 펌프의 작업 파라미터 또는 시스템의 부재를 조절 또는 제어하기 위한 컨트롤러를 포함할 수 있지만, 이에 한정되지 않고, 특정 시스템의 막 모듈 또는 기타 모듈의 하나 또는 복수의 유체 유동 스트림의 속성 또는 특징을 조절하는데 사용된다. 당해 컨트롤러는 시스템의 적어도 하나의 작동 파라미터, 예를 들어 농도, 유동속도, pH수준 또는 온도를 감지하도록 배치되는 적어도 하나의 센서와 전자 통신을 진행할 수 있다. 당해 컨트롤러는 통상적으로 제어 신호를 생성하여 센서에 의해 생성된 신호에 응답하여 하나 또는 복수의 작동 파라미터를 조절하도록 배치된다. 예를 들어, 당해 컨트롤러는 삼투구동의 막 시스템 및 관련된 전처리 시스템과 후처리 시스템의 임의의 스트림, 부품 또는 서브 시스템의 정황, 성능 또는 속성의 표시를 접수하도록 배치될 수 있다. 컨트롤러는 통상적으로, 적어도 하나의 출력 신호를 생성하는데 유용한 알고리즘을 포함하고, 당해 출력 신호는 통상적으로, 임의의 표시 및 목표 또는 기대치, 예를 들어 설정 포인트에서의 하나 또는 복수를 기반으로 한다. 하나 또는 복수의 특정 양태에 의하면, 당해 컨트롤러는 임의의 스트림의 임의의 측정 속성의 표시를 접수하도록 배치될 수 있고, 임의의 시스템의 부품에 대한 제어 신호, 구동 신호 또는 출력 신호를 생성하여 측정되는 성능과 목표 수치 사이의 임의의 편차를 줄인다.
하나 또는 복수의 실시 형태에 의하면, 프로세스 제어 시스템 및 방법은 검출된 pH와 전도율을 포함하는 파라미터를 기반으로 하여 여러가지 농도 수준을 모니터링할 수 있고, 스트림 유동속도 및 탱크 레벨도 제어 및 처리할 수 있으며, 온도 및 압력을 모니터링할 수 있고, 이온 선택성 탐침, pH계, 탱크 레벨 및 스트림 유동속도를 이용하여 막 누출을 검출할 수 있으며, 기체로 막의 유도 용액측을 가압하고 초음파검측기를 사용하거나 및/또는 육안으로 물 공급측의 누출 여부를 관찰하여 누출을 검출할 수 있고, 기타 작동 파라미터 및 유지 보수 문제를 모니터링할 수 있으며, 여러가지 프로세스 효율, 예를 들어 생성물인 물의 유동속도, 품질, 열유동 및 전기 에너지 소모를 검출할 수 있으며, 생물 오염 감소 배출을 감소하기 위한 청결방안을 제어하여, 예를 들어 검출을 통해 막 시스템 중의 특정 위치의 피드 용액 및 유도 용액의 유동속도에 의해 결정된 유동량이 줄어들고, 염수 스트림상의 센서는 처리 필요 시간을 지시할 수 있고, 예를 들어 증류, 이온 교환, 분기점 염화 처리 또는 유사한 방안을 이용하는바 이는 pH, 이온 선택성 탐침, 푸리에 변환 적외선 분광법(FTIR) 또는 기타 유도 용질의 농도를 감지하는 장치를 이용하여 완성될 수 있다. 유도 용액조건을 모니터링 및 추적하여 용질을 첨가 및/또는 교체하는데 사용할 수 있다. 마찬가지로, 통상 장치 또는 탐침 예를 들어 암모늄 또는 암모니아 탐침을 사용하여 생성물인 물의 품질을 모니터링할 수 있다. FTIR을 실시하여 존재하는 물질을 측정하여, 예를 들어 적당한 공장 작업을 확보하는데 사용하고, 예를 들어 막 이온 교환 효과를 식별하는 행위에 사용되는 정보를 제공할 수 있다.
당업자는 본 명세서에 기재된 파라미터와 배치는 예시적인 것이고, 실제 파라미터 및/또는 배치는 본 발명의 시스템과 기술의 특징을 사용하는 응용에 의해 결정되는 것을 이해한다. 당업자는 통상의 실험을 사용하나 이를 벗어나지 않고 확정한 본 발명의 구체적 실시 형태의 균등물을 확인하거나 사용할 수 있다. 따라서, 본 명세서에 기재된 실시 형태는 예시에 불과하고, 첨부된 특허 청구 범위 및 그 균등물의 범위 내에 있으며, 본 발명은 구체적으로 설명한 방안과 다르게 실천할 수 있는 것으로 이해하여야 한다.
그 외, 본 발명은 본 명세서에서 설명한 각 특징, 시스템, 서브 시스템 또는 기술, 및 본 명세서에 기재된 두개 이상의 임의의 조합 및 특징, 시스템, 서브 시스템 및/또는 방법 중 두개 이상의 임의의 조합을 이해하고 만약 이러한 특징, 시스템, 서브 시스템 및 기술이 서로 모순되지 않으면 이는 특허 청구 범위에 구현된 본 발명의 범위 내에 속하는 것으로 간주된다. 그 외, 하나의 실시 형태만 결합하여 논술한 동작, 소자 및 특징은 기타 실시 형태에서의 유사한 작용에서 제외되는 것은 아니다.

Claims (20)

  1. 시스템 피드 유입구,
    상기 시스템 피드 유입구에 연결되고 복수의 제1 급 FO소자를 포함하는 제1 FO(정삼투) 소자 그룹,
    복수의 제 2급 FO소자를 포함하는 제2 FO소자 그룹,
    유체 스트림을 상기 제1 FO소자 그룹에서 상기 제2 FO소자 그룹으로 안내하도록 배치된 시스템 피드 수송기,
    상기 제2 FO소자 그룹에 연결된 시스템 유도 유입구,
    상기 제1 FO소자 그룹에 연결된 시스템 유도 유출구, 및
    상기 제2 FO소자 그룹에서 상기 제1 FO소자 그룹으로의 간접적인 유체 유동을 위한 시스템 유도 수송기를 포함하고,
    상기 시스템 유도 수송기가 바이패스 탱크를 포함하며, 상기 바이패스 탱크는 증압 펌프를 포함하여 유도용액을 보조적으로 추진하고, 상기 제1 FO소자 그룹 및 상기 제2 FO소자 그룹은 피라미드 형상의 막 배치를 형성하는 것을 특징으로 하는 정삼투 시스템.
  2. 제1항에 있어서,
    상기 바이패스 탱크는 분리 시스템에 연결되도록 배치된 바이패스 유출구를 포함하는 것을 특징으로 하는 정삼투 시스템.
  3. 제1항에 있어서,
    상기 복수의 제2급 FO소자의 수량이 상기 복수의 제1 급 FO소자의 수량보다 큰 것을 특징으로 하는 정삼투 시스템.
  4. 제1항에 있어서,
    상기 복수의 제1 FO소자는 제1 서브 그룹의 제1 급 FO소자 및 수량이 제1 서브 그룹의 제1 급 FO소자의 수량보다 큰 제2 서브 그룹의 제1 급 FO소자를 포함하는 것을 특징으로 하는 정삼투 시스템.
  5. 제4항에 있어서,
    상기 제1 서브 그룹의 제1 급 FO소자와 상기 제2 서브 그룹의 제1 급 FO소자를 연결하는 피드 시스템 매니폴드를 더 포함하는 것을 특징으로 하는 정삼투 시스템.
  6. 제4항에 있어서,
    상기 복수의 제2 급 FO소자는 상기 제1 서브 그룹의 제2 급 FO소자 및 수량이 상기 제1 서브 그룹의 제2 급 FO소자의 수량과 동일한 제2 서브 그룹의 제 2급 FO소자를 포함하는 것을 특징으로 하는 정삼투 시스템.
  7. 제4항에 있어서,
    상기 시스템 피드 수송기가 상기 제2 서브 그룹의 제1 급 FO소자를 상기 제2 FO소자 그룹에 연결되는 것을 특징으로 하는 정삼투 시스템.
  8. 제6항에 있어서,
    상기 제1 서브 그룹의 제2 급 FO소자 중의 단일 FO소자의 피드 유출구가 상기 제2 서브 그룹의 제2 급 FO소자 중의 단일FO소자의 피드 유입구에 연결되는 것을 특징으로 하는 정삼투 시스템.
  9. 제1항에 있어서,
    상기 시스템 피드 수송기가 매니폴드를 포함하는 것을 특징으로 하는 정삼투 시스템.
  10. 제1항에 있어서,
    상기 복수의 제1 급 FO소자의 수량이 상기 복수의 제2 급 FO소자의 수량보다 많은 것을 특징으로 하는 정삼투 시스템.
  11. 제1측 및 이와 반대되는 제2측을 구비하는 정삼투막을 포함하는 복수의 정삼투(FO)소자 그룹,
    피드 용액 유입구,
    피드 용액 유출구,
    상기 피드 용액 유입구에서 상기 정삼투막의 제1측을 거쳐 상기 복수의 FO소자 그룹을 통과하여 상기 피드 용액 유출구로 직접 유체가 연통되도록 배치되는 피드 용액 유동 경로,
    유도 용액 유입구,
    유도 용액 유출구, 및
    상기 유도 용액 유입구에서 상기 정삼투막의 제2측을 거쳐 상기 복수의 FO소자 그룹을 통과하여 상기 유도 용액 유출구로 간접적으로 유체가 연통되도록 배치되는 유도 용액 유동 경로를 포함하고,
    상기 유도 용액 유동 경로는 상기 유도 용액 유동 경로 중의 상기 유도 용액의 적어도 제1 부분을 임시적으로 보유하기 위한 바이패스 탱크를 포함하며, 상기 바이패스 탱크는 증압 펌프를 포함하여 유도 용액을 보조적으로 추진하고, 상기 복수의 정삼투(FO)소자 그룹은 피라미드 형상의 막 배치를 형성하는 것을 특징으로 하는 정삼투 시스템.
  12. 제11항에 있어서,
    상기 바이패스 탱크는 상기 바이패스 탱크 중 상기 유도 용액의 적어도 제2 부분을 전이하기 위한 바이패스 라인을 포함하는 것을 특징으로 하는 정삼투 시스템.
  13. 제11항에 있어서,
    상기 정삼투막이 서로 다른 물리적 배치를 가지는 것을 특징으로 하는 정삼투 시스템.
  14. 제1 FO막 소자 그룹을 제공하는 단계,
    제2 FO막 소자 그룹을 제공하는 단계,
    피드 스트림을 상기 제1 FO막 소자 그룹에 유입시킨 후 상기 제2 FO막 소자 그룹에 유입시키는 단계,
    유도 용액을 상기 제2 FO막 소자 그룹에 유입하는 단계,
    상기 제2 FO막 소자 그룹에서 유출되는 상기 유도 용액을 바이패스 탱크에 유입시키는 단계,
    상기 유도 용액의 적어도 일부분을 상기 바이패스 탱크에서 상기 제1 FO막 소자 그룹에 유입시키는 단계, 및
    용매의 일부분을 상기 피드 스트림에서 막 소자를 통과하여 상기 유도 용액에 진입하도록 하는 단계를 포함하고, 상기 바이패스 탱크는 증압 펌프를 포함하여 유도용액을 보조적으로 추진하며, 상기 제1 FO막 소자 그룹 및 상기 제2 FO막 소자 그룹이 피라미드 형상의 막 배치를 형성하는 것을 특징으로 하는 정삼투를 거쳐 피드 스트림을 농축하기 위한 방법.
  15. 제14항에 있어서,
    상기 방법은 상기 제1 FO막 소자 그룹에서 유출된 상기 유도 용액을 분리 프로세스에 안내하여 유도 용질을 상기 피드 스트림에서 막 그룹을 통과하여 상기 유도 용액에 진입하는 용매와 분리시키는 단계를 더 포함하는 것을 특징으로 하는 방법.
  16. 제15항에 있어서,
    상기 유도 용액의 제2 부분을 상기 바이패스 탱크로부터 상기 분리 프로세스에 안내하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  17. 제14항에 있어서,
    상기 피드 스트림 및 상기 유도 용액이 역방향으로 유동하도록 방향을 정하고, 막의 반대측에서 상기 FO막 소자에 유입시키는 것을 특징으로 하는 방법.
  18. 제15항에 있어서,
    상기 막 그룹 사이에서 주기적으로 각 막 소자를 교체하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  19. 삭제
  20. 삭제
KR1020197006317A 2016-08-04 2017-08-03 정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법 KR102190050B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662371122P 2016-08-04 2016-08-04
US62/371,122 2016-08-04
PCT/US2017/045272 WO2018027019A1 (en) 2016-08-04 2017-08-03 Systems and methods for improving performance of forward osmosis systems

Publications (2)

Publication Number Publication Date
KR20190026955A KR20190026955A (ko) 2019-03-13
KR102190050B1 true KR102190050B1 (ko) 2020-12-14

Family

ID=61073202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197006317A KR102190050B1 (ko) 2016-08-04 2017-08-03 정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법

Country Status (8)

Country Link
US (1) US20190185350A1 (ko)
KR (1) KR102190050B1 (ko)
CN (1) CN109562322A (ko)
AU (1) AU2017305436B2 (ko)
CA (1) CA3032960A1 (ko)
CL (1) CL2019000227A1 (ko)
MX (1) MX2019001463A (ko)
WO (1) WO2018027019A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7238233B2 (ja) * 2018-07-26 2023-03-14 東洋紡株式会社 正浸透処理方法および正浸透処理装置
KR102247791B1 (ko) * 2019-07-18 2021-05-03 주식회사 포스코건설 정삼투공정의 트레인 장치
WO2021030205A1 (en) * 2019-08-09 2021-02-18 Trevi Systems, Inc. Stackable forward osmosis membrane vessel with side ports
US10940439B1 (en) 2019-12-10 2021-03-09 Kuwait Institute For Scientific Research High water recovery hybrid membrane system for desalination and brine concentration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157031A1 (en) * 2014-04-08 2015-10-15 Oasys Water, Inc. Osmotic separation systems and methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083942B2 (en) * 2004-12-06 2011-12-27 Board of Regents of the Nevada System of Higher Education, on Behalf of the Universary of Nevada, Reno Systems and methods for purification of liquids
AU2007258574B2 (en) * 2006-06-08 2012-02-02 Yale University Multi stage column distillation (MSCD) method for osmotic solute recovery
WO2007147013A1 (en) * 2006-06-13 2007-12-21 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Combined membrane-distillation-forward-osmosis systems and methods of use
US9044711B2 (en) * 2009-10-28 2015-06-02 Oasys Water, Inc. Osmotically driven membrane processes and systems and methods for draw solute recovery
CA2831750A1 (en) * 2011-03-30 2012-10-04 Toray Industries, Inc. Concentration difference power generation device and method for operating same
CN105439246A (zh) * 2011-04-25 2016-03-30 Oasys水有限公司 渗透分离系统和方法
JP5923294B2 (ja) * 2011-12-19 2016-05-24 株式会社日立製作所 逆浸透処理装置
PE20150972A1 (es) * 2012-11-16 2015-07-09 Oasys Water Inc Soluciones de extraccion y recuperacion de soluto de extraccion para procesos de membrana impulsada osmoticamente
US20140224718A1 (en) * 2013-02-08 2014-08-14 Oasys Water, Inc. Osmotic separation systems and methods
EP2969145A4 (en) * 2013-03-15 2017-01-25 Porifera Inc. Advancements in osmotically driven membrane systems including multi-stage purification
JP6269241B2 (ja) * 2014-03-27 2018-01-31 東洋紡株式会社 正浸透処理システム
CN105800851A (zh) * 2016-05-23 2016-07-27 海博伦(苏州)环境科技股份有限公司 正渗透汲取液及其循环再生方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157031A1 (en) * 2014-04-08 2015-10-15 Oasys Water, Inc. Osmotic separation systems and methods

Also Published As

Publication number Publication date
WO2018027019A1 (en) 2018-02-08
CL2019000227A1 (es) 2019-05-17
AU2017305436A1 (en) 2019-03-21
CN109562322A (zh) 2019-04-02
AU2017305436B2 (en) 2019-11-28
CA3032960A1 (en) 2018-02-08
US20190185350A1 (en) 2019-06-20
MX2019001463A (es) 2019-05-30
KR20190026955A (ko) 2019-03-13

Similar Documents

Publication Publication Date Title
US10427957B2 (en) Osmotic separation systems and methods
KR102190050B1 (ko) 정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법
US7914680B2 (en) Systems and methods for purification of liquids
KR101943421B1 (ko) 삼투압 분리 시스템 및 방법
JP5887273B2 (ja) 浸透分離システム及び方法
KR101577769B1 (ko) 정삼투 분리 방법
KR20160140761A (ko) 삼투 분리 시스템 및 방법
US20170369337A1 (en) Enhanced brine concentration with osmotically driven membrane systems and processes
KR101924531B1 (ko) 삼투압 구동 멤브레인 공정들, 시스템들 및 유도 용질 복구 방법들
JP5988032B2 (ja) 淡水製造装置およびその運転方法
Jeon et al. Effect of transmembrane pressure on draw solution channel height and water flux in spiral wound forward osmosis module
US20240058757A1 (en) Multi-stage sweeping gas membrane distillation system and process
US20240058760A1 (en) Multi-stage vacuum membrane distillation system and process
JP2022186382A (ja) 水処理方法および水処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant