KR102167223B1 - 블록 공중합체 - Google Patents

블록 공중합체 Download PDF

Info

Publication number
KR102167223B1
KR102167223B1 KR1020160162131A KR20160162131A KR102167223B1 KR 102167223 B1 KR102167223 B1 KR 102167223B1 KR 1020160162131 A KR1020160162131 A KR 1020160162131A KR 20160162131 A KR20160162131 A KR 20160162131A KR 102167223 B1 KR102167223 B1 KR 102167223B1
Authority
KR
South Korea
Prior art keywords
block copolymer
group
formula
chain
carbon atoms
Prior art date
Application number
KR1020160162131A
Other languages
English (en)
Other versions
KR20180062161A (ko
Inventor
최은영
박노진
김정근
이제권
구세진
이미숙
유형주
윤성수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160162131A priority Critical patent/KR102167223B1/ko
Publication of KR20180062161A publication Critical patent/KR20180062161A/ko
Application granted granted Critical
Publication of KR102167223B1 publication Critical patent/KR102167223B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 에칭 선택성이 우수하고, 기타 요구되는 다양한 기능도 자유롭게 부여될 수 있다.

Description

블록 공중합체{BLOCK COPOLYMER}
본 출원은, 블록 공중합체에 관한 것이다.
블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 고분자 세그먼트들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해서 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 크기는 광범위하게 조절될 수 있으며, 다양한 형태의 구조의 제작이 가능하여 고밀도 자기저장매체, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자나 자기 기록 매체 또는 리소그라피 등에 의한 패턴 형성 등에 응용될 수 있다.
본 출원은, 블록 공중합체 및 그 용도를 제공한다.
본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 의미할 수 있다. 상기 알킬기는 직쇄형, 분지형 또는 고리형 알킬기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알콕시기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알콕시기를 의미할 수 있다. 상기 알콕시기는 직쇄형, 분지형 또는 고리형 알콕시기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐기 또는 알키닐기를 의미할 수 있다. 상기 알케닐기 또는 알키닐기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬렌기를 의미할 수 있다. 상기 알킬렌기는 직쇄형, 분지형 또는 고리형 알킬렌기일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 알케닐렌기 또는 알키닐렌기를 의미할 수 있다. 상기 알케닐렌기 또는 알키닐렌기는 직쇄형, 분지형 또는 고리형일 수 있으며, 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.
본 명세서에서 용어 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 하나의 벤젠 고리 구조, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 1가 또는 2가 잔기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다.
본 출원에서 용어 방향족 구조는 상기 아릴기 또는 아릴렌기를 의미할 수 있다.
본 명세서에서 용어 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 방향족 고리 구조가 아닌 고리형 탄화수소 구조를 의미한다. 상기 지환족 고리 구조는, 특별히 달리 규정하지 않는 한, 예를 들면, 탄소수 3 내지 30, 탄소수 3 내지 25, 탄소수 3 내지 21, 탄소수 3 내지 18 또는 탄소수 3 내지 13의 지환족 고리 구조일 수 있다.
본 출원에서 용어 단일 결합은 해당 부위에 별도의 원자가 존재하지 않는 경우를 의미할 수 있다. 예를 들어, A-B-C로 표시된 구조에서 B가 단일 결합인 경우에 B로 표시되는 부위에 별도의 원자가 존재하지 않고, A와 C가 직접 연결되어 A-C로 표시되는 구조를 형성하는 것을 의미할 수 있다.
본 출원에서 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기, 아릴기, 아릴렌기, 사슬 또는 방향족 구조 등에 임의로 치환되어 있을 수 있는 치환기로는, 히드록시기, 할로겐 원자, 카복실기, 글리시딜기, 아크릴로일기, 메타크릴로일기, 아크릴로일기옥시, 메타크릴로일기옥시기, 티올기, 알킬기, 알케닐기, 알키닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, 알콕시기 또는 아릴기 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
본 출원의 하나의 측면에서는, 블록 공중합체는 하기 화학식 1로 표시되는 단위를 포함하는 고분자 세그먼트(이하, 고분자 세그먼트 A로 호칭될 수 있다.)를 포함한다. 고분자 세그먼트 A는 하기 화학식 1의 단위를 주성분으로 포함할 수 있다. 본 명세서에서 고분자 세그먼트가 어떤 단위를 주성분으로 포함한다는 것은, 해당 고분자 세그먼트가 그 단위를 중량을 기준으로 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상 또는 90% 이상 포함하고, 100% 이하로 포함하는 경우를 의미한다.
[화학식 1]
Figure 112016117768292-pat00001
화학식 1에서 R1은 수소 또는 탄소수 1 내지 4의 알킬기이고, R2는 적어도 하나의 할로겐 원자를 포함하는 사슬일 수 있다.
화학식 1에서 R1은 다른 예시에서 수소 또는 탄소수 1 내지 4의 알킬기; 수소 또는 메틸기; 또는 메틸기일 수 있다.
화학식 1에서 R2는 적어도 하나의 할로겐 원자를 포함하는 사슬로서, 예를 들면, 할로알킬기, 할로알케닐기 또는 할로알키닐기일 수 있다.
상기에서 할로알킬기는, 예를 들면, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 할로알킬기이고, 할로알케닐기 또는 할로알키닐기는, 예를 들면, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 할로알케닐기 또는 할로알키닐기일 수 있다.
상기와 같은 할로알킬기, 할로알케닐기 또는 할로알키닐기는 직쇄 또는 분지쇄 형태일 수 있다.
상기 할로알킬기 등에 포함되어 있는 할로겐 원자의 수는 특별히 제한되지 않지만, 후술하는 고분자 세그먼트 B와의 에칭 선택성 등을 고려하여, 예를 들면, 1개 내지 10개, 1개 내지 9개, 1개 내지 8개, 1개 내지 6개, 1개 내지 5개, 1개 내지 4개, 2개 내지 10개, 2개 내지 9개, 2개 내지 8개, 2개 내지 6개, 2개 내지 5개 또는 2개 내지 4개의 할로겐 원자가 존재하도록 할 수 있다.
이러한 할로겐 원자로는, 불소 원자 또는 염소 원자 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
블록 공중합체는 상기 고분자 세그먼트 A와 함께 상기 고분자 세그먼트 A와는 다른 고분자 세그먼트 B를 포함한다.
본 출원에서 어떤 2종의 고분자 세그먼트가 동일하다는 것은, 어떤 2종의 고분자 세그먼트가 주성분으로 포함하는 단량체 단위의 종류가 서로 동일한 경우 또는 어떤 2종의 고분자 세그먼트가 포함하는 단량체 단위의 종류가 50% 이상, 55% 이상, 60% 이상, 65% 이상, 70% 이상, 75% 이상, 80% 이상, 85% 이상 또는 90% 이상 공통되고, 각 고분자 세그먼트의 상기 공통 단량체 단위의 중량 비율의 편차가 30% 이내, 25% 이내, 20% 이내, 20% 이내, 15% 이내, 10% 이내 또는 5% 이내인 경우 중 어느 하나의 경우이다. 양 고분자 세그먼트가 상기 두 경우를 모두 만족하지 않는 경우, 이들은 서로 상이한 고분자 세그먼트이다. 상기에서 공통되는 단량체 단위의 비율은, 양 고분자 세그먼트 모드에 대해서 만족하는 것이 적절할 수 있다. 예를 들어, 어떤 고분자 세그먼트 1이 A, B, C, D 및 F의 단량체 단위를 가지고, 다른 고분자 세그먼트 2가 D, F, G 및 H의 단량체 단위를 가질 경우에는, 고분자 세그먼트 1과 2에서 공통되는 단량체 단위는 D 및 F인데, 고분자 세그먼트 1의 입장에서는 전체 5종의 단량체 중 2종이 공통되기 때문에 공통 비율은 40%(=100×2/5)이나, 고분자 세그먼트 2의 입장에서는 상기 비율은 50%(=100×2/5)이다. 따라서, 이러한 경우에는 공통 비율이 고분자 세그먼트 2에서만 50% 이상이기 때문에, 양 고분자 세그먼트는 동일하지 않은 것으로 인정될 수 있다. 한편, 상기에서 공통 단량체의 중량 비율의 편차는, 큰 중량 비율에서 작은 중량 비율을 뺀 수치를 작은 중량 비율로 나눈 수치의 백분율이다. 예를 들어, 상기 경우에서 세그먼트 1의 D 단량체 단위의 중량 비율이 세그먼트 1의 전체 단량체 단위의 중량 비율 합계 100% 기준으로 약 40%이고, 세그먼트 2의 D 단량체 단위의 중량 비율이 세그먼트 2의 전체 단량체 단위의 중량 비율 합계 100% 기준으로 약 30%라면, 상기 중량 비율 편차는 약 33%(=100×(40-30)/30) 정도가 될 수 있다. 2개의 세그먼트 내에 공통되는 단량체 단위가 2종 이상이라면, 동일한 세그먼트라고 하기 위해서는, 상기 중량 비율 편차 30% 이내가 모든 공통되는 단량체에 대하여 만족되거나, 혹은 주성분인 단량체 단위에 대하여 만족되면 공통되는 단량체로 여겨질 수 있다. 상기와 같은 기준에 의해 동일한 것으로 인정되는 각 고분자 세그먼트는 서로 다른 형태의 중합체일 수 있으나(예를 들면, 어느 하나의 세그먼트는 블록 공중합체 형태이고, 다른 하나의 세그먼트는 랜덤 공중합체의 형태), 적절하게는 같은 형태의 중합체일 수 있다.
본 출원의 블록 공중합체는, 상기와 같은 고분자 세그먼트 A의 말단에 상기 고분자 세그먼트 B가 연결되어 있는 디블록 형태이거나, 혹은 그 이상의 멀티 블록 공중합체일 수도 있다.
일 예시에서 상기 고분자 세그먼트 B는 하기 화학식 2로 표시되는 단위를 포함하는 고분자 세그먼트일 수 있다. 상기 고분자 세그먼트는 상기 화학식 2의 단위를 주성분으로 포함할 수 있다.
[화학식 2]
Figure 112016117768292-pat00002
화학식 1에서 R1은 수소 또는 탄소수 1 내지 4의 알킬기이고, R2는 적어도 하나의 할로겐 원자를 포함하는 사슬이며, 화학식 2에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X2는 단일 결합, 산소 원자, 황 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이며, R1 내지 R5는 각각 독립적으로 각각 독립적으로 수소, 알킬기 또는 하기 화학식 3의 치환기이되, R1 내지 R5 중 적어도 하나는 하기 화학식 3의 치환기이다:
[화학식 3]
Figure 112016117768292-pat00003
화학식 3에서 L은, 산소 원자, 황 원자, 알킬렌기, 알킬렌옥시기, 카보닐기, -C(=O)-O-, -O-C(=O)-, -NR6-, -C(=O)-NR6- 또는 -NR6-C(=O)-이고, Y는, 8개 이상의 사슬 형성 원자를 가지는 사슬이며, R6는 수소 또는 알킬기이다.
화학식 3에서 X2는 다른 예시에서 단일 결합, 산소 원자, 카보닐기, -C(=O)-O- 또는 -O-C(=O)-이거나, -C(=O)-O-일 수 있지만, 이에 제한되는 것은 아니다.
화학식 3에서 R1 내지 R5는 각각 독립적으로 수소, 알킬기 또는 하기 화학식 3의 치환기일 수 있다. 상기에서 R1 내지 R5에는 할로겐 원자는 포함되어 있지 않을 수 있다.
화학식 3에서 Y는, 적어도 8개의 사슬 형성 원자로 형성되는 사슬 구조를 포함한다.
본 출원에서 용어 사슬 형성 원자는, 소정 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 사슬은 직쇄형이거나, 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 또한, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬을 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 상기 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 상기 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.
화학식 1의 화합물은 상기 사슬의 존재로 인하여 후술하는 블록 공중합체를 형성하였을 때에 그 블록 공중합체가 우수한 자기 조립 특성을 나타내도록 할 수 있다. 또한, 그 사슬에 치환되어 있는 철 또는 규소를 포함하는 관능기로 인하여 자기 조립 구조의 형성 후에 우수한 에칭 선택성을 나타낼 수 있다.
하나의 예시에서 상기 사슬은, 직쇄 알킬기와 같은 직쇄 탄화수소 사슬일 수 있다. 이러한 경우에 알킬기는, 탄소수 8 이상, 탄소수 8 내지 30, 탄소수 8 내지 25, 탄소수 8 내지 20 또는 탄소수 8 내지 16의 알킬기일 수 있다. 상기 알킬기의 탄소 원자 중 하나 이상은 임의로 산소 원자로 치환되어 있을 수 있고, 상기 알킬기의 적어도 하나의 수소 원자는 임의적으로 다른 치환기에 의해 치환되어 있을 수 있다. 상기 직쇄 탄화수소 사슬은 할로겐 원자는 포함하지 않을 수 있다.
본 출원의 상기와 같은 블록 공중합체는, 기본적으로 우수한 상분리 내지는 자기 조립 특성을 나타낼 수 있고, 또한 에칭 선택성이 우수하다.
상기와 같은 블록 공중합체에서 상기 고분자 세그먼트 A의 부피 분율은, 0.1 내지 0.9의 범위 내에 있고, 고분자 세그먼트 A 및 B의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 고분자 세그먼트를 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 고분자 세그먼트의 부피 분율은 각 고분자 세그먼트의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다.
블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.
이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다.
블록 공중합체가 상기 고분자 세그먼트 A, B 및 C를 적어도 포함할 경우에 상기 블록 공중합체 내에서 고분자 세그먼트 A, 예를 들면, 전술한 상기 사슬을 포함하는 고분자 세그먼트의 비율은 10몰% 내지 90몰%의 범위 내에 있을 수 있다.
이러한 블록 공중합체는 공지의 방식으로 제조할 수 있다. 예를 들면, 블록 공중합체는 각 고분자 세그먼트의 단위를 형성하는 단량체를 사용한 LRP(Living Radical Polymerization) 방식으로 제조할 있다. 예를 들면, 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다.
예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 고분자 세그먼트를 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다.
블록 공중합체의 제조 시에 상기 단량체를 사용하여 형성하는 고분자 세그먼트와 함께 상기 공중합체에 포함되는 다른 고분자 세그먼트를 형성하는 방식은 특별히 제한되지 않고, 목적하는 고분자 세그먼트의 종류를 고려하여 적절한 단량체를 선택하여 상기 다른 고분자 세그먼트를 형성할 수 있다.
고분자 세그먼트공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다.
라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2’-아조비스-2,4-디메틸발레로니트릴(2,2’-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.
리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.
비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.
본 출원은 또한 상기 블록 공중합체를 포함하는 고분자 막에 대한 것이다. 상기 고분자 막은 다양한 용도에 사용될 수 있으며, 예를 들면, 다양한 전자 또는 전자 소자, 상기 패턴의 형성 공정 또는 자기 저장 기록 매체, 플래쉬 메모리 등의 기록 매체 또는 바이오 센서 등에 사용될 수 있다.
하나의 예시에서 상기 고분자 막에서 상기 블록 공중합체는, 자기 조립을 통해 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등을 포함하는 주기적 구조를 구현하고 있을 수 있다.
예를 들면, 블록 공중합체에서 고분자 세그먼트 A 내지 C 또는 그와 공유 결합된 다른 고분자 세그먼트의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있다.
본 출원은 또한 상기 블록 공중합체를 사용하여 고분자 막을 형성하는 방법에 대한 것이다. 상기 방법은 상기 블록 공중합체를 포함하는 고분자막을 자기 조립된 상태로 기판상에 형성하는 것을 포함할 수 있다. 예를 들면, 상기 방법은 상기 블록 공중합체 또는 그를 적정한 용매에 희석한 코팅액의 층을 도포 등에 의해 기판 상에 형성하고, 필요하다면, 상기 층을 숙성하거나 열처리하는 과정을 포함할 수 있다.
상기 숙성 또는 열처리는, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리 전이 온도 또는 상전이 온도 이상의 온도에서 수행될 수 있다. 이러한 열처리가 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 또한, 고분자 박막의 열처리 온도는, 예를 들면, 100°C 내지 250°C 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.
상기 형성된 층은, 다른 예시에서는 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 용매 숙성될 수도 있다.
본 출원은 또한 패턴 형성 방법에 대한 것이다. 상기 방법은, 예를 들면, 기판 및 상기 기판의 표면에 형성되어 있고, 자기 조립된 상기 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 고분자 세그먼트 A 및/또는 B를 선택적으로 제거하는 과정을 포함할 수 있다. 상기 방법은 상기 기판에 패턴을 형성하는 방법일 수 있다. 예를 들면 상기 방법은, 상기 블록 공중합체를 포함하는 고분자 막을 기판에 형성하고, 상기 막 내에 존재하는 블록 공중합체의 어느 하나 또는 그 이상의 고분자 세그먼트를 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다. 이러한 방식으로, 예를 들면, 나노 스케일의 미세 패턴의 형성이 가능하다. 또한, 고분자 막 내의 블록 공중합체의 형태에 따라서 상기 방식을 통하여 나노 로드 또는 나노 홀 등과 같은 다양한 형태의 패턴을 형성할 수 있다. 필요하다면, 패턴 형성을 위해서 상기 블록 공중합체와 다른 공중합체 혹은 단독 중합체 등이 혼합될 수 있다. 이러한 방식에 적용되는 상기 기판의 종류는 특별히 제한되지 않고, 필요에 따라서 선택될 수 있으며, 예를 들면, 산화 규소 등이 적용될 수 있다.
예를 들면, 상기 방식은 높은 종횡비를 나타내는 산화 규소의 나노 스케일의 패턴을 형성할 수 있다. 예를 들면, 산화 규소 상에 상기 고분자막을 형성하고, 상기 고분자막 내의 블록 공중합체가 소정 구조를 형성하고 있는 상태에서 블록 공중합체의 어느 한 고분자 세그먼트를 선택적으로 제거한 후에 산화 규소를 다양한 방식, 예를 들면, 반응성 이온 식각 등으로 에칭하여 나노로드 또는 나노 홀의 패턴 등을 포함한 다양한 형태를 구현할 수 있다. 또한, 이러한 방법을 통하여 종횡비가 큰 나노 패턴의 구현이 가능할 수 있다.
예를 들면, 상기 패턴은, 수십 나노미터의 스케일에서 구현될 수 있으며, 이러한 패턴은, 예를 들면, 차세대 정보전자용 자기 기록 매체 등을 포함한 다양한 용도에 활용될 수 있다.
상기 방법에서 블록 공중합체의 어느 한 고분자 세그먼트를 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 고분자 세그먼트를 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 고분자 세그먼트의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.
또한, 자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.
또한, 선택적으로 고분자 세그먼트가 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.
본 출원은, 블록 공중합체 및 그 용도가 제공될 수 있다. 본 출원의 블록 공중합체는, 우수한 자기 조립 특성 내지는 상분리 특성을 가지며, 에칭 선택성이 우수하고, 기타 요구되는 다양한 기능도 자유롭게 부여될 수 있다.
도 1 내지 3은 각각 실시예 1 내지 3의 블록 공중합체에 의해 형성된 고분자막의 SEM 사진이다.
도 4는 실시예 1, 3과 비교예 1에서 적용된 각 블록의 에칭 선택성을 비교한 도면이다.
이하 본 출원에 따르는 실시예 및 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
1. NMR 측정
NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다.
<적용 약어>
br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
2. GPC(Gel Permeation Chromatograph)
수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 μm)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다.
<GPC 측정 조건>
기기 : Agilent technologies 사의 1200 series
컬럼 : Polymer laboratories 사의 PLgel mixed B 2개 사용
용매 : THF
컬럼온도 : 35°C
샘플 농도 : 1mg/mL, 200L 주입
표준 시료 : 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
제조예 1.
하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate)를 첨가하고, 75oC에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트 및 반응에 사용한 아세토니트릴도 제거하였다. DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업(work up)하고, 분리된 유기층을 MgSO4로 탈수하였다. 이어서, CC(Column Chromatography)에서 DCM(dichloromethane)으로 정제하여 흰색 고체상의 중간체를 약 37%의 수득률로 얻었다.
<중간체에 대한 NMR 분석 결과>
1H-NMR(CDCl3): δ6.77(dd, 4H); δ4.45(s, 1H); δ3.89(t, 2H); δ1.75(p, 2H); δ1.43(p, 2H); δ1.33-1.26(m, 16H); δ0.88(t, 3H).
플라스크에 합성된 중간체(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 상온의 질소 분위기에서 24시간 동안 반응시켰다. 반응 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. CC(Column Chromatography)에서 헥산과 DCM(dichloromethane)을 이동상으로 하여 불순물을 제거하고, 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 중량 비율로 혼합)에서 재결정시켜 흰색 고체상의 목적물(DPM-C12)(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.
<DPM-C12 NMR 분석 결과>
1H-NMR(CDCl3): δ7.02(dd, 2H); δ6.89(dd, 2H); δ6.32(dt, 1H); δ5.73(dt, 1H); δ3.94(t, 2H); δ2.05(dd, 3H); δ1.76(p, 2H); δ1.43(p, 2H); 1.34-1.27(m, 16H); δ0.88(t, 3H).
[화학식 A]
Figure 112016117768292-pat00004
화학식 A에서 R은 탄소수 12의 직쇄상 알킬기이다.
제조예 2.
하기 화학식 B의 화합물(DVPA-C12)은 다음의 방식으로 합성하였다. 플라스크에 300 mL의 물을 넣고, 포타슘 히드록시드(21.6g, 385mmol)을 첨가하여 교반하면서 용해시켰다. 플라스크를 아이스 배스에 넣어 냉각시키고, 4-비닐페닐 아세테이트(25.0 g, 154 mmol)를 넣은 후에 플라스크를 상온에서 꺼내어 반응 용액이 투명하게 될 때까지 반응시켰다. 반응 용액에 아세트산을 넣어 산성화하고, 생성된 흰색 침전을 필터링하여 얻은 후에 물로 씻어 주었다. 진공에서 수분을 제거하고, 흰색 고체인 4-히드록시스티렌(HOST, 15.3 g, 127 mmol)을 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ 7.30(d, 2H), δ 6.79(d, 2H), δ 6.65(dd, 1H), δ 5.60(d, 1H), δ 5.12(d, 1H), δ 4.81(s, 1H)
플라스크에 도데실아민(15.0g, 80.9mmol)을 넣고, MC(메틸렌클로라이드)(200 mL)에 녹인 후에 아이스 배스에 담가 냉각시켰다. 반응 용액에 클로로아세틸 클로라이드(13.7 g, 121.4mmol)를 천천히 첨가하고, TEA(thioethyl acetamide)(12.3g, 121.4mmol)를 천천히 첨가한 다음 플라스크를 상온으로 꺼내어 밤새 반응시켰다. 반응 완료 후에 EA(ethyl acetate)와 헥산을 첨가하고, 필터링하여 침전된 염을 제거하였다. 유기층을 모아서 용매를 제거한 후 얻은 crude 결과물을 메탄올에 녹여 재결정하여 흰색 고체인 2-클로로-N-도데실아세트아미드(14.9 g, 56.9 mmol)를 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ 6.57(s, 1H), δ 4.05(s, 2H), δ3.30(dt, 2H), δ1.54(tt, 2H), δ1.25(m, 18H), δ0.88(t, 3H)
플라스크에 상기 4-히드록시스티렌(8.8 g, 74.0 mmol)과 2-클로로-N-도데실아세트아미드(14.9 g, 56.9 mmol)을 넣고, DMF(디메틸포름아미드)(200 mL)에 녹인 다음, 포타슘 카보네이트(15.7 g, 113.8 mmol)와 포타슘 아이오다이드(1.0 g, 5.69 mmol)를 첨가하고, 80℃에서 3 시간 동안 반응시켰다. 반응 용액을 과량의 얼음물에 부어서 생성된 흰색 침전을 필터링하여 수득하였다. 얻은 고형분을 EA(에틸 아세테이트)/헥산의 1:3 혼합 용액(EA:헥산)으로 컬럼하여 crude 결과물을 얻었고, 이를 메탄올에서 재결정하였다. 흰색 고체상의 DVPA(12.0g, 34.7mmol)(하기 화학식 B)를 수득하였다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ7.37(d, 2H), δ 6.88(d, 2H), δ 6.66(dd, 1H), δ 6.54(br, 1H), δ 5.64(d, 1H), δ 5.17(d, 1H), δ 4.49(s, 2H), δ 3.34(q, 2H), δ 1.53(tt, 2H), δ 1.25(m, 18H), δ 0.88(t, 3H)
[화학식 B]
Figure 112016117768292-pat00005
화학식 B에서 R은 탄소수 12의 직쇄상 알킬기이다.
제조예 3.
하기 화학식 C의 화합물(AS-C16)은 다음의 방식으로 합성하였다. 500 mL 플라스크에 4-클로로메틸스티렌(22.1 g, 144.8 mmol)과 1-헥사데카놀(30.0 g, 160.1 mmol)을 넣고, 200 mL의 테트라히드로푸란에 녹이고, 0℃로 온도를 낮추었다. 상기 온도를 유지한 상태에서 소듐 하이드라이드(7.7 g, 320.8 mmol)를 소량씩 천천히 가해주고, 2 시간 동안 교반한 후에 온도를 70℃로 올려서 약 24 시간 동안 반응시켰다. 반응 종료 후에 다시 아이스 배스에 넣고, 소량의 물을 가해서, 남아있는 소듐 하이드라이드와 반응시켜서 반응을 종결하고, 필터를 통해 반응 용액 내의 염을 제거하였다. 반응 용매인 테트라히드로푸란을 제거하고, 디클로로메탄과 물을 가해서 work up하여 유기층을 모은 다음 얻어진 crude product를 컬럼 크로마토그래피를 통해 헥산/디클로로메탄 혼합 용액을 eluent로 사용하여 투명한 액상의 하기 화학식 C의 화합물(AS-C16)(23.9 g, 79.0 mmol)을 얻었다.
<NMR 분석 결과>
1H-NMR(CDCl3): δ7.38(dd, 2H), δ 7.30(dd, 2H), δ 6.72(dt, 1H), δ 5.72(dd, 2H), δ 5.22(dt, 1H), δ 4.49(s, 2H), δ 3.45(t, 23H), δ 162-1.22(m, 28H), δ 0.88 (t, 3H)
[화학식 C]
Figure 112016117768292-pat00006
화학식 C에서 R은 탄소수 16의 직쇄상 알킬기이다.
실시예 1.
제조예 1의 화합물(DPM) 2.0 g과 RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(4-cyano-4-(phenylcarbonothioylthio)pentanoic acid) 8.1 mg, AIBN(Azobisisobutyronitrile) 2.4 mg 및 anisole 4.69 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 35,300 및 1.20이었다. 상기 거대개시제 0.3 g, 테트라플루오로프로필메타크릴레이트 0.68 g, AIBN(Azobisisobutyronitrile) 0.7 mg 및 anisole 0.98 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 3시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록 공중합체를 제조하였다. 상기 블록 공중합체의 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 49,900 및 1.36였다. 상기 블록 공중합체는 제조예 1의 DPM에서 유래된 고분자 세그먼트 A와 상기 테트라플루오로프로필메타크릴레이트에서 유래된 고분자 세그먼트 B를 포함한다.
상기 블록 공중합체를 플루오로벤젠에 약 1.6 중량%의 농도로 희석하고, 실리콘 웨이퍼 상에 3000 rpm의 속도로 약 60초 정도 스핀 코팅하여 고분자막을 형성하였다. 이어서 상기 막을 약 160℃에서 1 시간 동안 열적 숙성하여 자기 조립 구조를 유도하였다. 도 1은 상기 유도된 자기 조립 구조의 SEM 사진이다.
실시예 2.
테트라플루오로프로필메타크릴레이트 4g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약인 CPBD(2-Cyano-2-propyl benzodithioate) 44.2 mg, AIBN(Azobisisobutyronitrile) 3.3 mg 및 anisole 4.7 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 60℃에서 15시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 헥산 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 15,300 및 1.25이었다. 상기 거대개시제 0.3 g, 제조예 2의 화합물(DVPA-C12) 2.03 g, AIBN(Azobisisobutyronitrile) 1.6 mg 및 아니솔(anisole)과 플루오로벤젠의 혼합 용액 7.026 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록 공중합체를 제조하였다. 상기 블록 공중합체의 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 42,500 및 1.26이였다.
상기 블록 공중합체를 플루오로벤젠에 약 1.6 중량%의 농도로 희석하고, 실리콘 웨이퍼 상에 3000 rpm의 속도로 약 60초 정도 스핀 코팅하여 고분자막을 형성하였다. 이어서 상기 막을 약 160℃에서 1 시간 동안 열적 숙성하여 자기 조립 구조를 유도하였다. 도 2는 상기 유도된 자기 조립 구조의 SEM 사진이다.
실시예 3.
테트라플루오로에틸메타크릴레이트 4g, RAFT(Reversible Addition-Fragmentation chain Transfer) 시약인 CPBD(2-Cyano-2-propyl benzodithioate) 42.1 mg, AIBN(Azobisisobutyronitrile) 15.6 mg 및 anisole 4.1 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 60℃에서 3시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 헥산 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 12,300 및 1.30이었다. 상기 거대개시제 0.3 g, 제조예 3의 화합물(AS-C16) 0.87 g, AIBN(Azobisisobutyronitrile) 1.0 mg 및 아니솔(anisole) 2.74 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록 공중합체를 제조하였다. 상기 블록 공중합체의 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 22,300 및 1.26이였다.
상기 블록 공중합체를 플루오로벤젠에 약 1.6 중량%의 농도로 희석하고, 실리콘 웨이퍼 상에 3000 rpm의 속도로 약 60초 정도 스핀 코팅하여 고분자막을 형성하였다. 이어서 상기 막을 약 160℃에서 1 시간 동안 열적 숙성하여 자기 조립 구조를 유도하였다. 도 3은 상기 유도된 자기 조립 구조의 SEM 사진이다.
비교예 1.
제조예 1의 화합물(DPM-C12) 2.0 g 및 RAFT(Reversible Addition-Fragmentation chain Transfer) 시약(cyanoisopropyl dithiobenzoate) 66.4 mg, AIBN(Azobisisobutyronitrile) 3.2 mg 및 아니솔 4.8 mL를 25 mL 플라스트(Schlenk flask)에 넣고 질소 분위기 하 상온에서 30분 동안 교반한 후, 70℃에서 4시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL에 침전시킨 후, 감압 여과 후 건조시켜, 분홍색의 거대 개시제를 제조하였다. 거대 개시제의 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 12,600 및 1.18였다.
상기 거대개시제 0.3 g, 펜타플루오로스티렌 4.8 g, AIBN(Azobisisobutyronitrile) 0.8mg 및 아니솔 1.8 mL를 10 mL 플라스크(Schlenk flask)에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후, 70℃에서 7시간 동안 RAFT(Reversible Addition-Fragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 노란색의 블록 공중합체를 제조하였다. 블록 공중합체의 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 45,300 및 1.24이었다.
시험예 1.
실시예 1과 3, 그리고 상기 비교예 1의 블록 공중합체의 에칭 선택성을 평가하였다. 구체적으로는 에칭 기기(Plasmalab system 100)을 사용하여 동일 조건(RF 출려기 25W, 압력 10mTorr)에서 에칭을 수행하면서, 각 블록의 에칭 선택성을 비교하였다. 그 결과는 도 4에 나타나 있다. 도 4에서 X축은 에칭 시간이고, Y축은 에칭 과정에서 잔존하는 막의 두께를 백분율로 나타낸 것이다. 도 4에서 hPDPM은 제조예 1의 화합물로 제조된 단독 중합체에 대한 결과이고, hPPFS는 비교예에서 적용된 펜타플루오로스티렌 유래의 단독 중합체에 대한 결과이며, hPHOS는 제조예 3의 화합물(AS-C16) 유래의 단독 중합체에 대한 결과이고, hPTFPMA는 실시예 1의 테트라플루오로프로필메타크릴레이트 유래의 단독 중합체에 대한 결과이다.

Claims (13)

  1. 하기 화학식 1로 표시되는 단위를 가지는 고분자 세그먼트 A 및 하기 화학식 2의 단위를 가지는 B를 포함하는 블록 공중합체:
    [화학식 1]
    Figure 112020029558982-pat00007

    [화학식 2]
    Figure 112020029558982-pat00008

    화학식 1에서 R1은 수소 또는 탄소수 1 내지 4의 알킬기이고, R2는 적어도 하나의 할로겐 원자를 포함하는 사슬이며, 화학식 2에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X2는 -C(=O)-O-이며 , R1 내지 R5는 각각 독립적으로 각각 독립적으로 수소, 알킬기 또는 하기 화학식 3의 치환기이되, R1 내지 R5 중 적어도 하나는 하기 화학식 3의 치환기이다:
    [화학식 3]
    Figure 112020029558982-pat00009

    화학식 3에서 L은, 산소 원자, 황 원자, 알킬렌기, 알킬렌옥시기, 카보닐기, -C(=O)-O-, -O-C(=O)-, -NR6-, -C(=O)-NR6- 또는 -NR6-C(=O)-이고, Y는, 8개 이상의 사슬 형성 원자를 가지는 사슬이며, R6는 수소 또는 알킬기이다.
  2. 제 1 항에 있어서, 화학식 1의 R2는, 할로알킬기, 할로알케닐기 또는 할로알키닐기인 블록 공중합체.
  3. 제 2 항에 있어서, 할로알킬기는 탄소수 1 내지 20의 할로알킬기이고, 할로알케닐기 또는 할로알키닐기는 탄소수 2 내지 20의 할로알케닐기 또는 할로알키닐기인 블록 공중합체.
  4. 제 1 항에 있어서, 화학식 1의 R2는, 1개 내지 10개의 할로겐 원자를 포함하는 블록 공중합체.
  5. 제 1 항에 있어서, 할로겐 원자는 불소 원자인 블록 공중합체.
  6. 삭제
  7. 제 1 항에 있어서, 화학식 2의 사슬은 8개 내지 20개의 사슬 형성 원자를 포함하는 블록 공중합체.
  8. 제 1 항에 있어서, 화학식 2의 사슬 형성 원자는 탄소, 산소, 질소 또는 황인 블록 공중합체.
  9. 제 1 항에 있어서, 화학식 2의 사슬 형성 원자는 탄소 또는 산소인 블록 공중합체.
  10. 제 1 항에 있어서, 화학식 2의 사슬은 할로겐 원자를 가지지 않는 탄화수소 사슬인 블록 공중합체.
  11. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막.
  12. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 기판상에 형성하는 것을 포함하는 고분자막의 형성 방법.
  13. 기판 및 상기 기판상에 형성되어 있고, 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 고분자 세그먼트 중에서 어느 하나를 선택적으로 제거하는 과정을 포함하는 패턴 형성 방법.
KR1020160162131A 2016-11-30 2016-11-30 블록 공중합체 KR102167223B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160162131A KR102167223B1 (ko) 2016-11-30 2016-11-30 블록 공중합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160162131A KR102167223B1 (ko) 2016-11-30 2016-11-30 블록 공중합체

Publications (2)

Publication Number Publication Date
KR20180062161A KR20180062161A (ko) 2018-06-08
KR102167223B1 true KR102167223B1 (ko) 2020-10-19

Family

ID=62600683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160162131A KR102167223B1 (ko) 2016-11-30 2016-11-30 블록 공중합체

Country Status (1)

Country Link
KR (1) KR102167223B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070453A (ja) 2005-09-06 2007-03-22 Nippon Soda Co Ltd ブロック共重合体の製造方法
JP2010202723A (ja) * 2009-03-02 2010-09-16 Tosoh Corp ブロック共重合体及びその製造方法
WO2015084128A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132901A1 (ja) * 2006-05-16 2007-11-22 Nippon Soda Co., Ltd. ブロックコポリマー
JP5477593B2 (ja) * 2008-12-26 2014-04-23 日産化学工業株式会社 レジスト下層膜形成組成物用添加剤及びそれを含むレジスト下層膜形成用組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070453A (ja) 2005-09-06 2007-03-22 Nippon Soda Co Ltd ブロック共重合体の製造方法
JP2010202723A (ja) * 2009-03-02 2010-09-16 Tosoh Corp ブロック共重合体及びその製造方法
WO2015084128A1 (ko) * 2013-12-06 2015-06-11 주식회사 엘지화학 블록 공중합체

Also Published As

Publication number Publication date
KR20180062161A (ko) 2018-06-08

Similar Documents

Publication Publication Date Title
KR101768289B1 (ko) 블록 공중합체
US10227438B2 (en) Block copolymer
EP3078691B1 (en) Block copolymer
US10081698B2 (en) Block copolymer
US11078318B2 (en) Block copolymer
KR102167223B1 (ko) 블록 공중합체
KR102096272B1 (ko) 블록 공중합체
KR102069485B1 (ko) 블록 공중합체
KR20200021061A (ko) 중성층 조성물
KR102096271B1 (ko) 블록 공중합체
KR102159495B1 (ko) 블록 공중합체
KR102096274B1 (ko) 블록 공중합체
KR102097819B1 (ko) 블록 공중합체
KR102484629B1 (ko) 중성층 조성물
KR102484628B1 (ko) 중성층 조성물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant