KR102162974B1 - Method for synthesizing metal ion-doped ceria using solvothermal synthesis - Google Patents

Method for synthesizing metal ion-doped ceria using solvothermal synthesis Download PDF

Info

Publication number
KR102162974B1
KR102162974B1 KR1020180123648A KR20180123648A KR102162974B1 KR 102162974 B1 KR102162974 B1 KR 102162974B1 KR 1020180123648 A KR1020180123648 A KR 1020180123648A KR 20180123648 A KR20180123648 A KR 20180123648A KR 102162974 B1 KR102162974 B1 KR 102162974B1
Authority
KR
South Korea
Prior art keywords
metal ion
precursor
doped ceria
ceria
doped
Prior art date
Application number
KR1020180123648A
Other languages
Korean (ko)
Other versions
KR20200043060A (en
Inventor
정연길
손정훈
최연빈
옥지영
이재현
김봉구
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020180123648A priority Critical patent/KR102162974B1/en
Priority to PCT/KR2019/002794 priority patent/WO2020080620A1/en
Publication of KR20200043060A publication Critical patent/KR20200043060A/en
Application granted granted Critical
Publication of KR102162974B1 publication Critical patent/KR102162974B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및 (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계; 를 포함하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법에 대한 것으로서, 본 발명에 의하면, 계면활성제나 추가 열처리 없이 용매열 합성법을 통해 고비표면적 및 결정성을 가지는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있으며, 특히, 세륨 전구체로서 세륨 아세테이트(cerium acetate)를 사용함으로써 금속이온 도핑 세리아의 비표면적을 획기적으로 향상시킬 수 있다. The present invention comprises the steps of: (a) adjusting the pH by adding a basic substance to the cerium acetate solution; (b) adjusting the pH by adding a basic substance to the metal ion precursor solution; And (c) dispersing the solution obtained in each of the steps (a) and (b) in a solvent, followed by a solvent heat reaction at a temperature of 90 to 160° C. to form a metal ion-doped ceria. As for a method for producing a metal ion-doped ceria using a solvent heat synthesis method comprising, according to the present invention, conventional hydrothermal synthesis of a metal ion doped ceria having a high specific surface area and crystallinity through a solvent heat synthesis method without a surfactant or additional heat treatment It can be economically synthesized at a temperature lower than the temperature (90 to 160°C), and in particular, by using cerium acetate as a cerium precursor, the specific surface area of the metal ion-doped ceria can be dramatically improved.

Description

용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법{METHOD FOR SYNTHESIZING METAL ION-DOPED CERIA USING SOLVOTHERMAL SYNTHESIS}Manufacturing method of metal ion-doped ceria using solvent heat synthesis method {METHOD FOR SYNTHESIZING METAL ION-DOPED CERIA USING SOLVOTHERMAL SYNTHESIS}

본 발명은 금속이온이 도핑된 세리아의 제조방법에 대한 것으로서, 보다 상세하게는 용매열 합성법을 이용해 금속이온 도핑 세리아를 제조하는 방법에 대한 것이다.The present invention relates to a method of preparing ceria doped with metal ions, and more particularly, to a method of preparing ceria doped with metal ions using a solvent heat synthesis method.

산화세륨(Cerium oxide) 즉, 세리아(ceria)는 특유의 물리, 화학적 성질에 의해 고체산화물 연료전지(SOFC), 산소가스센서, 자외선 흡수제(UV absorbent), 연마제 등 매우 광범위한 분야로 응용되어 사용된다. 세리아는 주위의 산소 농도에 따라 산화/환원 작용을 하며 우수한 산소 저장 능력을 가지고 있으며, 특히 자동차의 배기 가스를 분해하여 무독성의 가스로 변환하는 촉매로써 널리 응용되고 있다. 이 때 촉매의 활동도는 표면 면적에 의존하므로, 높은 값의 비표면적을 얻는 것이 핵심이다. 나노 크기의 세리아는 벌크 상태의 분말과 비교했을 때 더 우수한 성능의 산화/환원 작용 및 산소저장능력(OSC) 성능을 가지므로 꾸준히 관심을 가지고 연구되어 왔다. Cerium oxide, that is, ceria, is applied and used in a very wide range of fields such as solid oxide fuel cells (SOFC), oxygen gas sensors, UV absorbents, abrasives, etc. due to its unique physical and chemical properties. . Ceria acts as an oxidation/reduction function depending on the surrounding oxygen concentration and has excellent oxygen storage capacity. In particular, ceria is widely applied as a catalyst that decomposes the exhaust gas of automobiles and converts them into non-toxic gases. At this time, the activity of the catalyst depends on the surface area, so obtaining a high specific surface area is the key. Nano-sized ceria has a better oxidation/reduction function and oxygen storage capacity (OSC) performance than that of a bulk powder, so it has been studied with constant interest.

한편, 세리아 나노 입자를 합성하는 방법으로는 대표적으로 침전법, 졸겔법 등이 알려져 있으나, 침전법과 졸겔법은 높은 결정성을 가지는 분말을 만들기 위해 추가적인 고온 반응 공정을 필요로 한다. 이 과정에서 입자들은 표면 에너지를 낮추기 위해 응집이 되며, 불규칙한 모양을 형성한다. 이를 제어하기 위해 계면활성제를 첨가하며, 계면활성제를 제거하기 위한 공정을 필요로 한다.On the other hand, as a method for synthesizing ceria nanoparticles, a precipitation method and a sol-gel method are typically known, but the precipitation method and the sol-gel method require an additional high-temperature reaction process to produce a powder having high crystallinity. In this process, the particles aggregate to lower the surface energy and form an irregular shape. To control this, a surfactant is added, and a process for removing the surfactant is required.

한국공개특허 제10-2010-0108957호 (공개일: 2010.10.08.)Korean Patent Publication No. 10-2010-0108957 (Publication date: 2010.10.08.) 한국공개특허 제10-2016-0121229호 (공개일: 2016.10.19.)Korean Patent Publication No. 10-2016-0121229 (Publication date: 2016.10.19.) 일본공개특허 특개 2004-43226 (공개일: 2004.02.12.)Japanese Unexamined Patent Publication 2004-43226 (Publication date: 2004.02.12.)

본 발명이 해결하고자 하는 기술적 과제는, 금속이온이 도핑되어 고온에서의 열적 안정성이 뛰어나고 큰 비표면적, 고순도 및 결정성을 가지는 금속이온 도핑 세리아를 종래 기술과 달리 계면활성제나 추가 열처리 필요 없이 상대적으로 낮은 온도에서 제조하는 방법을 제공하는 것이다.The technical problem to be solved by the present invention is that metal ion-doped ceria, which is doped with metal ions, has excellent thermal stability at high temperatures, and has a large specific surface area, high purity, and crystallinity, without the need for a surfactant or additional heat treatment. It is to provide a method of manufacturing at a low temperature.

상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및 (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계;를 포함하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In order to achieve the above technical problem, the present invention includes the steps of: (a) adjusting the pH by adding a basic substance to a cerium acetate solution; (b) adjusting the pH by adding a basic substance to the metal ion precursor solution; And (c) dispersing the solution obtained in each of the steps (a) and (b) in a solvent, and then reacting with a solvent heat at a temperature of 90 to 160° C. to form metal ion-doped ceria; A method for producing metal ion-doped ceria using a synthetic method is proposed.

또한, 상기 단계 (b)에서 상기 금속이온 전구체는, 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the metal ion precursor in the step (b) is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor. (Nitrate based) We propose a method for producing metal ion-doped ceria using a solvent heat synthesis method characterized by being a precursor.

또한, 상기 용매는 물 또는 물과 알코올의 혼합용매인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, it is proposed a method for producing a metal ion-doped ceria using a solvent heat synthesis method, characterized in that the solvent is water or a mixed solvent of water and alcohol.

또한, 상기 혼합용매는 75 부피% 이하의 에탄올(EtOH)을 포함하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the mixed solvent proposes a method for producing a metal ion-doped ceria using a solvent heat synthesis method, characterized in that it contains not more than 75% by volume of ethanol (EtOH).

또한, 상기 염기성 물질은 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH), or potassium hydroxide (KOH) proposes a method for producing a metal ion-doped ceria using a solvent heat synthesis method.

또한, 상기 용매열 반응은 2 내지 10 시간 동안 실시하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, it is proposed a method for producing a metal ion-doped ceria using a solvothermal synthesis method characterized in that the solvate reaction is carried out for 2 to 10 hours.

그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 금속이온 도핑 세리아를 제안한다.Further, the present invention proposes a metal ion-doped ceria prepared by the above manufacturing method in another aspect of the present invention.

나아가. 본 발명은 발명의 또 다른 측면에서 상기 금속이온 도핑 세리아를 산소저장능력(oxygen storage capacity, OSC) 물질로 포함하는 배기가스 정화용 촉매를 제안한다.Furthermore. In another aspect of the present invention, the present invention proposes a catalyst for purifying exhaust gas comprising the metal ion-doped ceria as an oxygen storage capacity (OSC) material.

본 발명에 따르면, 계면활성제나 추가 열처리 없이 용매열 합성법을 통해 고비표면적 및 결정성을 가지는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있으며, 특히, 세륨 전구체로서 세륨 아세테이트(cerium acetate)를 사용함으로써 금속이온 도핑 세리아의 비표면적을 획기적으로 향상시킬 수 있다.According to the present invention, metal ion-doped ceria having a high specific surface area and crystallinity can be economically synthesized at a temperature lower than the conventional hydrothermal synthesis temperature (90 to 160°C) through a solvent heat synthesis method without a surfactant or additional heat treatment. , By using cerium acetate as a cerium precursor, the specific surface area of the metal ion-doped ceria can be dramatically improved.

또한, 본 발명에 의하면, 도핑되는 금속 이온의 종류, 혼합용매의 용매간 혼합 비율, pH, 반응시간 등의 공정 변수의 제어를 통해 다양한 입도 및 비표면적을 가지며 순수 세리아보다 높은 OSC 촉매특성을 나타내는 금속이온 도핑 세리아를 합성할 수 있다.In addition, according to the present invention, it has various particle sizes and specific surface areas through control of process variables such as the type of metal ions to be doped, the mixing ratio between solvents of the mixed solvent, pH, and reaction time, and exhibits higher OSC catalyst characteristics than pure ceria. Metal ion-doped ceria can be synthesized.

도 1은 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법의 공정 흐름도이다.
도 2는 본원 실시예에서 용매열 합성법을 이용한 금속이온 도핑 세리아 합성의 각 세부 공정을 나타낸 공정 흐름도이다.
도 3은 본원 실시예에서 합성된 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말에 대한 X-선 회절분석(XRD) 결과이다.
도 4는 본원 실시예에서 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말의 Ru 도핑량에 따른 미세구조 변화를 보여주는 FE-TEM 사진이다.
1 is a flowchart of a method of manufacturing a metal ion-doped ceria using a solvent heat synthesis method according to the present invention.
Figure 2 is a process flow diagram showing each detailed process of the metal ion-doped ceria synthesis using a solvent heat synthesis method in the present embodiment.
3 is an X-ray diffraction analysis (XRD) result of the synthesized ruthenium-doped ceria (Ru-doped CeO 2 ) nanopowder synthesized in the present example.
4 is an FE-TEM photograph showing a change in the microstructure according to the amount of Ru doping of the ruthenium-doped ceria (Ru-doped CeO 2 ) nanopowder synthesized in the present example.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.

이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.

본 발명은, 기존의 합성방법에 비해 보다 경제적이고 간단한 공정을 통해 고비표면적을 가지는 금속이온 도핑 세리아를 제조할 수 있는 신규한 방법에 대한 것이다.The present invention relates to a novel method capable of producing a metal ion-doped ceria having a high specific surface area through a more economical and simple process compared to the conventional synthesis method.

구체적으로, 도 1에 도시한 바와 같이 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법은, (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및 (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계를 포함한다.Specifically, as shown in FIG. 1, a method for preparing a metal ion-doped ceria using a solvent heat synthesis method according to the present invention includes the steps of: (a) adjusting a pH by adding a basic substance to a cerium acetate solution; (b) adjusting the pH by adding a basic substance to the metal ion precursor solution; And (c) dispersing the solution obtained in each of the steps (a) and (b) in a solvent, followed by a solvent heat reaction at a temperature of 90 to 160° C. to form metal ion-doped ceria.

상기 단계 (a)에서는 세륨 전구체로서 세륨 아세테이트(cerium acetate) 용액을 준비한 후, 상기 용액에 염기성 물질을 가해 pH를 7 내지 11로 조절한다.In the step (a), after preparing a cerium acetate solution as a cerium precursor, a basic substance is added to the solution to adjust the pH to 7 to 11.

본 발명에서는 세륨 전구체로서 상기와 같이 세륨 아세테이트를 사용함으로써 세륨 아세테이트(cerium nitrate) 등 다른 전구체를 사용하는 경우에 비해 비표면적이 현저히 증가된 금속이온 도핑 세리아를 제조할 수 있다.In the present invention, by using cerium acetate as the cerium precursor as described above, it is possible to prepare a metal ion-doped ceria having a significantly increased specific surface area compared to the case of using other precursors such as cerium nitrate.

특히, 후술할 단계 (c)에서 분산매로서 물을 사용할 경우에 세륨 아세테이트를 세륨 전구체로 사용함에 따른 금속이온 도핑 세리아의 비표면적 증가 효과가 극대화되는데, 이는 세륨 아세테이트의 단위체가 긴 유기 고분자로 물에서 유전율에 의해 분산이 크게 일어나고 세륨 하이드록사이드(cerium hydroxide) 사이에 사슬들이 가로막고 있어 입체 효과(steric effect)에 의해 입자 성장 및 분말의 응집이 효과적으로 억제되어 전체적인 입자 크기가 감소하기 때문이다.In particular, when water is used as a dispersion medium in step (c) to be described later, the effect of increasing the specific surface area of metal ion-doped ceria by using cerium acetate as a cerium precursor is maximized, which is an organic polymer with a long unit of cerium acetate. This is because dispersion occurs largely by the dielectric constant and chains are intercepted between cerium hydroxide, so that particle growth and agglomeration of the powder are effectively suppressed by a steric effect, thereby reducing the overall particle size.

다음으로, 상기 단계 (b)에서는 세리아에 도핑되는 금속이온의 전구체 용액을 준비한 후, 상기 용액에 염기성 물질을 가해 pH를 7 내지 11로 조절한다. Next, in step (b), a precursor solution of a metal ion doped to ceria is prepared, and then a basic substance is added to the solution to adjust the pH to 7 to 11.

상기 금속이온 전구체 종류는 세리아에 도핑하고자 하는 금속의 종류에 따라 적절히 선택할 수 있으며, 예를 들면, 도핑하고자 하는 금속이온을 포함하는 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체일 수 있다.The type of metal ion precursor can be appropriately selected according to the type of metal to be doped into ceria, for example, an acetate based precursor containing a metal ion to be doped, an alkoxide based precursor, and halogenation. It may be a water-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor.

상기 금속이온 전구체는 세리아에 도핑하고자 하는 금속이온의 종류에 따라 해당 금속이온을 포함하는 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체 등에서 선택할 수 있다.The metal ion precursor may be an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, or an oxyhalide-based precursor containing the metal ion depending on the type of metal ion to be doped on ceria ( It can be selected from oxyhalide based) precursors or nitrate based precursors.

하지만, 산화수가 +2인 금속 이온(Ru, Zn, Cu, Ag, Ba, Sr, Sn 등)을 도핑할 경우 순수 세리아보다 촉매 특성보다 우수한 금속이온 도핑 세리아 합성이 가능하며, 또한, 순수 세리아의 이온반경보다 도핑되는 금속이온의 이온반경이 더 작을수록 격자의 축소 정도가 증가하여 입자크기를 감소시키고 비표면적을 증가시켜 결과적으로 촉매반응성을 보다 증대시킬 수 있으므로, 이에 해당되는 금속이온을 포함하는 전구체를 사용하는 것이 보다 바람직하다.However, when doping metal ions (Ru, Zn, Cu, Ag, Ba, Sr, Sn, etc.) with an oxidation number of +2, it is possible to synthesize metal ion-doped ceria that is superior to catalytic properties than pure ceria. As the ionic radius of the doped metal ions is smaller than the ionic radius, the degree of reduction of the lattice increases, reducing the particle size and increasing the specific surface area, thereby increasing the catalytic reactivity. It is more preferable to use a precursor.

한편, 상기 단계 (a) 및 (b)에서 각 용액의 pH 조절을 위해 첨가되는 염기성 물질로는 그 종류가 특별히 제한되지 않으며, 일례로 수산화암모늄(NH4OH), 수산화칼륨(KOH), 수산화나트륨(NaOH) 등을 사용할 수 있다.On the other hand, the type of basic substance added to adjust the pH of each solution in steps (a) and (b) is not particularly limited, and examples include ammonium hydroxide (NH 4 OH), potassium hydroxide (KOH), and hydroxide. Sodium (NaOH) or the like can be used.

다음으로, 상기 단계 (c)에서는 상기 단계 (a)에서 얻어진 pH 조절된 세륨 아세테이트 용액과 상기 단계 (b)에서 pH 조절된 금속이온 전구체 용액 모두를 용매에 넣고 혼합 및 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 합성한다.Next, in step (c), both the pH-adjusted cerium acetate solution obtained in step (a) and the pH-adjusted metal ion precursor solution in step (b) are mixed and dispersed in a solvent, and then 90 to 160 Ceria doped with metal ions is synthesized by performing a solvent heat reaction at a temperature of °C.

본 단계 (c)에서 용매가열 공정에 앞서 세륨 아세테이트 용액과 금속이온 전구체 용액을 분산시키기 위한 용매는 물, 또는 물과 알코올의 혼합용매를 사용할 수 있으며, 이때, 상기 알코올로는 메탄올, 에탄올, 프로판올, 부탄올, 에틸렌글리콜 등의 공지의 알코올 중에서 1종 또는 2종 이상을 혼합한 것을 사용할 수 있다.In this step (c), the solvent for dispersing the cerium acetate solution and the metal ion precursor solution prior to the solvent heating process may be water or a mixed solvent of water and alcohol, and the alcohol may be methanol, ethanol, or propanol. , Butanol, or a mixture of two or more of known alcohols such as ethylene glycol may be used.

또한, 본 단계 (c)에서 용매에 분산되는 세륨 아세테이트 용액 및 금속이온 전구체 용액의 함량비는 원하는 금속이온 도핑량에 맞춰 적절히 조절할 수 있다.In addition, the content ratio of the cerium acetate solution and the metal ion precursor solution dispersed in the solvent in step (c) may be appropriately adjusted according to the desired metal ion doping amount.

그리고, 본 단계 (c)에서 이루어지는 용매열 반응의 반응온도가 90 ℃ 미만인 경우에는 용매열 반응이 일어나기 어려운 문제가 있으며, 160 ℃를 초과하는 경우에는 과도한 열로 인해 용매열 반응속도가 급격히 증가하여 입자의 안정성이 저하되는 문제가 있다.In addition, when the reaction temperature of the solvate reaction performed in this step (c) is less than 90 ℃, there is a problem that the solvate reaction is difficult to occur. If the reaction temperature exceeds 160 ℃, the reaction rate of the solvent heat rapidly increases due to excessive heat There is a problem of deteriorating the stability of.

또한, 상기 용매열 반응의 반응 시간이 2 시간 미만인 경우에는 충분한 반응이 일어나지 않아 입자형성이 어려운 문제가 있으며, 10 시간을 초과하는 경우에는 입자의 크기가 과도하게 커지고 입자의 안정성도 저하되는 문제가 발생할 수 있다.In addition, when the reaction time of the solvate reaction is less than 2 hours, there is a problem that sufficient reaction does not occur, and thus particle formation is difficult, and when it exceeds 10 hours, the size of the particles becomes excessively large and the stability of the particles is also reduced. Can occur.

전술한 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법에 의하면, 계면활성제나 추가 열처리 없이 용매열 합성법을 통해 고비표면적 및 결정성을 가지는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있으며, 특히, 세륨 전구체로서 세륨 아세테이트(cerium acetate)를 사용함으로써 금속이온 도핑 세리아의 비표면적을 획기적으로 향상시킬 수 있으며, 또한, 도핑되는 금속 이온의 종류, 혼합용매의 용매간 혼합 비율, pH, 반응시간 등의 공정 변수의 제어를 통해 다양한 입도 및 비표면적을 가지며 순수 세리아보다 높은 OSC 촉매특성을 나타내는 금속이온 도핑 세리아를 합성할 수 있다.According to the method for producing a metal ion-doped ceria using the solvent heat synthesis method according to the present invention described above, a metal ion doped ceria having a high specific surface area and crystallinity through a solvent heat synthesis method without a surfactant or additional heat treatment is lower than the conventional hydrothermal synthesis temperature. It can be economically synthesized at a temperature (90~160℃), and in particular, by using cerium acetate as a cerium precursor, the specific surface area of the metal ion-doped ceria can be dramatically improved, and the doped metal ion Metal ion-doped ceria having various particle sizes and specific surface areas and exhibiting higher OSC catalytic properties than pure ceria can be synthesized by controlling process variables such as the type of, the mixing ratio between solvents of the mixed solvent, pH, and reaction time.

이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to examples.

본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.The embodiments according to the present specification may be modified in various forms, and the scope of the present specification is not construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely describe the present specification to those of ordinary skill in the art.

<실시예><Example>

본 실시예에서는 도 2에 도시된 공정 흐름도에 따라 루테늄(Ru) 이온이 도핑된 세리아 나노분말을 합성하였다.In this example, a ceria nanopowder doped with ruthenium (Ru) ions was synthesized according to the process flow diagram shown in FIG. 2.

세륨 전구체(cerium precursor)로서 Cerium(Ⅲ) acetate hy-drate [Ce(CH3CO2)3·xH2O]를, 루테늄 이온 전구체로는 Ruthenium(Ⅲ) chloride [RuCl3·nH2O]를 사용하였으며, 물은 2차 증류수를 사용하였다. Cerium(III) acetate hy-drate [Ce(CH 3 CO 2 ) 3 ·xH 2 O] as a cerium precursor, and Ruthenium(III) chloride [RuCl 3 ·nH 2 O] as a ruthenium ion precursor. Was used, and secondary distilled water was used as water.

먼저, 세륨 전구체 수용액 및 루테늄 이온 전구체 수용액을 준비한 후 NH4OH를 이용하여 각 용액의 pH를 11로 맞췄다. 이어서, 세륨 전구체 수용액과 루테늄 이온 전구체 수용액을 Ce와 Ru의 몰 비가 95:5, 90:10, 85:15, 80:20 또는 75:25가 되도록 용매(물)에 재분산시키고 교반한 후에 테플론 용기에 넣고 120℃에서 2시간 동안 용매열 반응을 실시하였다. 그 후 물과 에탄올을 이용하여 5회 세척하고 건조기에서 24시간동안 건조를 실시하여 루테늄 이온이 도핑된 세리아 나노 분말을 회수하였다.First, after preparing an aqueous solution of a cerium precursor and an aqueous ruthenium ion precursor, the pH of each solution was adjusted to 11 using NH 4 OH. Subsequently, the cerium precursor aqueous solution and the ruthenium ion precursor aqueous solution were redispersed in a solvent (water) so that the molar ratio of Ce and Ru was 95:5, 90:10, 85:15, 80:20, or 75:25, and stirred, and then Teflon Put into a container and subjected to a solvent heat reaction at 120 ℃ for 2 hours. Thereafter, washed 5 times with water and ethanol and dried for 24 hours in a dryer to recover the ceria nanopowder doped with ruthenium ions.

Zn, Cu 또는 Ag이 도핑된 세리아는 금속이온 전구체로서 각각 Zinc nitrate hexahydrate [Zn(NO3)2·6H2O], Copper nitrate [Cu(NO3)2] 또는 Silver nitrate hexahydrate [Ag(NO3)2·6H2O]를 사용해 상기와 동일한 합성방법에 따라 제조하였다.Ceria doped with Zn, Cu, or Ag is a metal ion precursor, respectively Zinc nitrate hexahydrate [Zn(NO 3 ) 2 ·6H 2 O], Copper nitrate [Cu(NO 3 ) 2 ] or Silver nitrate hexahydrate [Ag(NO 3) ) 2 · 6H 2 O] was prepared according to the same synthesis method as above.

도 3은 상기와 같이 Ce에 대한 Ru의 몰비를 각각 95:5, 90:10, 85:15, 80:20, 75:25의 조건으로 합성한 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말에 대한 X-선 회절분석(XRD) 결과이다. 관측된 XRD 상을 ICSD 98-005-3995와 대조했을 때 모든 위치에서 동일한 피크가 나타났으므로, 이차상이 없는 형석 구조(Fluorite structure)의 세리아가 합성된 것으로 확인되었다.3 is a synthesized ruthenium-doped ceria (Ru-doped CeO 2 ) synthesized under the conditions of 95:5, 90:10, 85:15, 80:20, and 75:25 of the molar ratio of Ru to Ce as described above. This is the result of X-ray diffraction analysis (XRD) for the nano powder. When the observed XRD phase was compared with ICSD 98-005-3995, the same peak appeared at all positions, so it was confirmed that ceria having a fluorite structure without a secondary phase was synthesized.

아래 표 1(Ru-doped CeO2 나노 분말의 비표면적 및 촉매 특성분석 결과)에는 Scherrer 공식을 이용하여 계산한 입자의 크기, 비표면적 및 H2-TPR 촉매 특성분석 결과를 나타내었다. 제조된 루테늄 도핑 세리아(Ru-doped CeO2)의 평균 입자 크기는 9nm 미만으로서 순수 세리아와 비교했을 때보다 크기가 작아진 것을 확인하였다. Ce4+와 Ce3+의 이온 반지름은 8 배위에 각각 111 와 128.3Å 이며, Ru4+와 Ru3+는 6 배위에 76Å 과 82Å으로 나타난다. 이온 반경을 고려했을 때, 세리아 격자 내에 상대적으로 작은 크기의 Ru 이온이 치환되어서 격자 수축이 발생하여 Ru 도핑량이 늘어날수록 입자 크기가 작아진 것으로 보인다. Table 1 below (specific surface area and catalyst characterization results of Ru-doped CeO 2 nanopowder) shows the particle size, specific surface area, and H 2 -TPR catalyst characterization results calculated using the Scherrer formula. It was confirmed that the average particle size of the prepared ruthenium-doped ceria (Ru-doped CeO 2 ) was less than 9 nm, which was smaller than that of pure ceria. The ionic radii of Ce 4+ and Ce 3+ are 111 and 128.3Å in 8 coordination, respectively, and Ru 4+ and Ru 3+ appear as 76Å and 82Å in 6 coordination. Considering the ionic radius, it appears that the particle size decreases as the amount of Ru doping increases due to lattice shrinkage due to the substitution of relatively small Ru ions in the ceria lattice.

세리아에 Ru 도핑량이 20 mol%까지 증가할수록 비표면적이 135.56m2/g 에서 209.73m2/g 로 증가하였으나, Ru 도핑량이 25 mol%에서는 20mol%에 비교했을 때 입자 크기가 8.76nm 로 증가하며 비표면적이 157.72m2/g 으로 감소하였다. 그럼에도 불구하고, 기존 순수 세리아의 비표면적(90~100m2/g)보다 훨씬 높은 비표면적을 가지는 것으로 확인되었다.As the amount of Ru doping in ceria increased to 20 mol%, the specific surface area increased from 135.56 m 2 /g to 209.73 m 2 /g, but at 25 mol% of Ru doping, the particle size increased to 8.76 nm when compared to 20 mol%. The specific surface area was reduced to 157.72m 2 /g. Nevertheless, it was found to have a much higher specific surface area than that of the existing pure ceria (90-100m 2 /g).

또한, Ru 도핑량이 15mol% 이하인 루테늄 도핑 세리아(Ru-doped CeO2)의 촉매특성은 기존 순수 세리아의 촉매특성(H2 소비량: 243.27 umol/g)보다 2~3배 이상 우수한 것으로 확인되었다.In addition, it was confirmed that the catalytic properties of ruthenium-doped ceria (Ru-doped CeO 2 ) having a Ru doping amount of 15 mol% or less are 2 to 3 times better than that of conventional pure ceria (H 2 consumption: 243.27 umol/g).

Figure 112018102210212-pat00001
Figure 112018102210212-pat00001

도 4는 루테늄 도핑 세리아(Ru-doped CeO2)의 FE-TEM 측정 결과로서, Ru 함량이 늘어남에 따라 로드(rod) 상의 발생이 증가하는 것이 확인되었다. EDS 측정 결과 로드 상은 순수 세리아 상으로 관측되었다.4 is a result of FE-TEM measurement of ruthenium-doped ceria (Ru-doped CeO 2 ), and it was confirmed that the occurrence of a rod phase increased as the Ru content increased. As a result of EDS measurement, the rod phase was observed as a pure ceria phase.

아래 표 2(금속(Ru, Zn, Cu 또는 Ag)이온 도핑 세리아 나노 분말 및 순수 세리아 나노 분말의 비표면적 및 촉매특성 분석결과)에는 금속(Ru, Zn, Cu 또는 Ag)이온이 15mol% 도핑된 세리아 나노 분말 및 순수 세리아 나노 분말에 대해 계산된 입자 크기, 비표면적 및 H2-TPR 촉매 특성분석 결과를 나타내었다. 이에 따르면, 금속이온 도핑 세리아 간에는 도핑된 금속 이온의 종류에 따라 비표면적 및 촉매 특성의 차이가 크긴 하지만, 모든 금속이온 도핑 세리아가 순수한 세리아에 비해 높은 비표면적 및 촉매 특성을 가지는 것으로 확인되었다.Table 2 (specific surface area and catalytic properties analysis results of metal (Ru, Zn, Cu or Ag) ion doped ceria nanopowder and pure ceria nanopowder) contains 15 mol% of metal (Ru, Zn, Cu or Ag) ions. The particle size, specific surface area, and H 2 -TPR catalyst characterization results calculated for the ceria nano powder and pure ceria nano powder are shown. According to this, although the difference in specific surface area and catalytic properties between metal ion-doped cerias is large depending on the type of doped metal ions, it was confirmed that all metal ion-doped cerias have higher specific surface area and catalytic properties than pure cerias.

Figure 112018102210212-pat00002
Figure 112018102210212-pat00002

Claims (8)

(a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계;
(b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및
(c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계;를 포함하되,
상기 금속이온 전구체는 루테늄 이온 전구체이고,
상기 단계 (c)에서 세륨 아세테이트 수용액과 루테늄 이온 전구체 수용액을, 세륨과 루테늄의 몰 비가 95 : 5 ~ 85 : 15가 되도록 물에 분산시키는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.
(a) adjusting the pH by adding a basic substance to the cerium acetate solution;
(b) adjusting the pH by adding a basic substance to the metal ion precursor solution; And
(c) dispersing the solution obtained in each of the steps (a) and (b) in a solvent, and then performing a solvent heat reaction at a temperature of 90 to 160° C. to form metal ion-doped ceria; including,
The metal ion precursor is a ruthenium ion precursor,
In the step (c), the cerium acetate aqueous solution and the ruthenium ion precursor aqueous solution are dispersed in water so that the molar ratio of cerium and ruthenium is 95: 5 to 85: 15. Way.
제1항에 있어서,
상기 단계 (b)에서 상기 금속이온 전구체는,
아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.
The method of claim 1,
In the step (b), the metal ion precursor,
Solvent heat synthesis method characterized in that it is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor. Method for producing metal ion-doped ceria using.
삭제delete 삭제delete 제1항에 있어서,
상기 염기성 물질은 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.
The method of claim 1,
The basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH), or potassium hydroxide (KOH). Method for producing a metal ion-doped ceria using a solvent heat synthesis method.
제1항에 있어서,
상기 용매열 반응은 2 내지 10 시간 동안 실시하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.
The method of claim 1,
The method for producing a metal ion-doped ceria using a solvothermal synthesis method, characterized in that the solvate reaction is carried out for 2 to 10 hours.
제1항, 제2항, 제5항 및 제6항 중 어느 한 항에 기재된 방법에 의해 제조된 금속이온 도핑 세리아.A metal ion-doped ceria produced by the method according to any one of claims 1, 2, 5, and 6. 제7항의 금속이온 도핑 세리아를 산소저장능력(oxygen storage capacity, OSC) 물질로 포함하는 배기가스 정화용 촉매.A catalyst for purifying exhaust gas comprising the metal ion-doped ceria of claim 7 as an oxygen storage capacity (OSC) material.
KR1020180123648A 2018-10-17 2018-10-17 Method for synthesizing metal ion-doped ceria using solvothermal synthesis KR102162974B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180123648A KR102162974B1 (en) 2018-10-17 2018-10-17 Method for synthesizing metal ion-doped ceria using solvothermal synthesis
PCT/KR2019/002794 WO2020080620A1 (en) 2018-10-17 2019-03-11 Preparation method of metal ion-doped ceria using solvothermal synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180123648A KR102162974B1 (en) 2018-10-17 2018-10-17 Method for synthesizing metal ion-doped ceria using solvothermal synthesis

Publications (2)

Publication Number Publication Date
KR20200043060A KR20200043060A (en) 2020-04-27
KR102162974B1 true KR102162974B1 (en) 2020-10-07

Family

ID=70283099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180123648A KR102162974B1 (en) 2018-10-17 2018-10-17 Method for synthesizing metal ion-doped ceria using solvothermal synthesis

Country Status (2)

Country Link
KR (1) KR102162974B1 (en)
WO (1) WO2020080620A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067607B (en) * 2020-09-09 2022-04-15 深圳九星印刷包装集团有限公司 Carbon monoxide indicating device
KR102566384B1 (en) * 2021-02-03 2023-08-10 성균관대학교산학협력단 Cmp slurry composition and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272943A1 (en) 2006-11-08 2009-11-05 L Air Liquide Societe Anonyme Pour L Etude Et L Exploitation Des Procedes Georges Claude Supported Noble Metal Catalyst And Its Use In Synthesis Gas Production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617154B1 (en) * 1987-06-29 1990-11-30 Rhone Poulenc Chimie PROCESS FOR OBTAINING CERIC OXIDE AND CERIC OXIDE WITH NEW MORPHOLOGICAL CHARACTERISTICS
JP2004043226A (en) 2002-07-10 2004-02-12 Toyota Motor Corp METHOD OF MANUFACTURING CeO2-ZrO2 COMPOUND OXIDE AND CATALYST FOR PURIFYING EXHAUST GAS
US7959885B2 (en) * 2008-02-15 2011-06-14 Nitto Denko Corporation Nanoparticle synthesis by solvothermal process
KR101117351B1 (en) 2009-03-31 2012-03-07 한국생산기술연구원 Electrolyte for solid oxide fuel cell and manufacturing method of the electrolyte and cell having the electrolyte and manufacturing method of the cell
CN104628025B (en) * 2015-02-15 2016-06-08 渤海大学 Silicon face vertically assembles CeO2The solvothermal preparation method of nano-rod film
KR20160121229A (en) 2015-04-10 2016-10-19 주식회사 케이씨텍 Metal-substituted abrasive, method of preparing the same and polishing slurry composition comprising the metal-substituted abrasive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272943A1 (en) 2006-11-08 2009-11-05 L Air Liquide Societe Anonyme Pour L Etude Et L Exploitation Des Procedes Georges Claude Supported Noble Metal Catalyst And Its Use In Synthesis Gas Production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Materials Science Forum. 2016, Vol. 868, pp. 84-88 (2016.08.22.)*

Also Published As

Publication number Publication date
WO2020080620A1 (en) 2020-04-23
KR20200043060A (en) 2020-04-27

Similar Documents

Publication Publication Date Title
Chen et al. Combustion synthesis and characterization of nanocrystalline CeO2-based powders via ethylene glycol–nitrate process
Huang et al. Wet chemical synthesis of Sr-and Mg-doped LaGaO3, a perovskite-type oxide-ion conductor
JP4755988B2 (en) Metal oxide solid solution, its production and use
CN101565194B (en) Method for preparing superfine mesoporous magnesium aluminate spinel
JP2651993B2 (en) Compositions, processes and uses based on ceric oxide
Pal et al. CeO 2 nanowires with high aspect ratio and excellent catalytic activity for selective oxidation of styrene by molecular oxygen
KR20160133490A (en) Yttrium-containing catalyst for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration, and reforming and/or reforming, and a method for high-temperature carbon dioxide hydration, combined high-temperature carbon dioxide hydration, and reforming and/or reforming
JP2008081392A (en) Porous zirconia-based powder and its manufacture method
Eslami et al. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate
KR102162974B1 (en) Method for synthesizing metal ion-doped ceria using solvothermal synthesis
Liang et al. Mixed lanthana/ceria nanorod-supported gold catalysts for water–gas-shift
JP2002537204A (en) Settling process
Priya et al. Synthesis and characterization of Nd 3+-doped Ce 0.6 Zr 0.4 O 2 and its doping significance on oxygen storage capacity
EP3110549B1 (en) Methods of preparing metal / metal oxide materials from nanostructured substrates and uses thereof
Teraoka et al. Synthesis of manganite perovskites by reverse homogeneous precipitation method in the presence of alkylammonium cations
JP3951127B2 (en) Dimethyl ether steam reforming catalyst and method for producing the same
Radhika et al. Chemical Precipitation and Characterization of Multicomponent Perovskite Oxide Nanoparticles-Possible Cathode Materials for Low Temperature Solid Oxide Fuel Cell
Abu-Zied et al. Effect of thermal treatment on the formation, textural and electrical conductivity properties of nanocrystalline Tb4O7
JP3707641B2 (en) Complex oxide promoter
Gu et al. Powder synthesis and characterization of nanocrystalline CeO2 via the combustion processes
RU2506228C1 (en) Method of obtaining mesoporous nanosized cerium dioxide powder (versions)
Liu et al. Low‐Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine
Nusrath et al. Effect of nano-transition metal oxides of Fe, Co and Ni and ferrites of Co and Ni on the multistage thermal decomposition of oxalates of Ce (III)
KR102078632B1 (en) Method for producing nano-ceria powder using precipitation process at low temperature
Djuričić et al. Preparation and properties of alumina-ceria nano-nano composites

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant