JP2008081392A - Porous zirconia-based powder and its manufacture method - Google Patents

Porous zirconia-based powder and its manufacture method Download PDF

Info

Publication number
JP2008081392A
JP2008081392A JP2007211368A JP2007211368A JP2008081392A JP 2008081392 A JP2008081392 A JP 2008081392A JP 2007211368 A JP2007211368 A JP 2007211368A JP 2007211368 A JP2007211368 A JP 2007211368A JP 2008081392 A JP2008081392 A JP 2008081392A
Authority
JP
Japan
Prior art keywords
zirconium
porous zirconia
hours
pore volume
based powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007211368A
Other languages
Japanese (ja)
Other versions
JP5063252B2 (en
Inventor
Hiroshi Okamoto
博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Kigenso Kagaku Kogyo Co Ltd
Original Assignee
Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Kigenso Kagaku Kogyo Co Ltd filed Critical Daiichi Kigenso Kagaku Kogyo Co Ltd
Priority to JP2007211368A priority Critical patent/JP5063252B2/en
Publication of JP2008081392A publication Critical patent/JP2008081392A/en
Application granted granted Critical
Publication of JP5063252B2 publication Critical patent/JP5063252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/22

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous zirconia-based powder improved in the heat resistance of a total pore volume and a simple method for its manufacture. <P>SOLUTION: (1) In the porous zirconia-based powder, the total pore volume after heat treating at 1,000°C for 3 hours is at least 0.75 mL/g and the sum of volumes of pores having a diameter of 10-100 nm after heat-treating at 1,000°C for 3 hours is at least 30% of the total pores; and (2) the manufacturing method of the porous zirconia-base powder in which a basic zirconium sulfate is produced by adding a sulfatizing agent to a zirconate solution, then producing zirconium hydroxide by neutralizing the basic zirconium sulfate, then heat-treating the zirconium hydroxide to produce the porous zirconia powder, is characterised by adding the sulfatizing agent to the zirconate solution at a temperature of 100°C or higher in an autoclave, when adding the sulfatizing agent to the zirconate solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、多孔質ジルコニア系粉末及びその製造方法に関する。   The present invention relates to a porous zirconia powder and a method for producing the same.

従来、触媒担体として用いられているジルコニア単体の400℃における比表面積は、せいぜい100m/g程度である。また、それ以上の比表面積のジルコニア単体は、一般的には一定の構造を有しない非晶質である。このため、ジルコニア単体を触媒担体として用いる場合には、400℃以上の高温では比表面積が小さくなる結果、高温下で安定した性能を得ることができない。従って、触媒担体として用いるためには、更なる耐熱性(熱安定性)の改善が必要である。 Conventionally, the specific surface area at 400 ° C. of zirconia alone used as a catalyst support is at most about 100 m 2 / g. Further, zirconia alone having a specific surface area larger than that is generally amorphous with no fixed structure. For this reason, when using a zirconia simple substance as a catalyst support | carrier, as a result of a specific surface area becoming small at high temperature of 400 degreeC or more, the performance stable at high temperature cannot be obtained. Therefore, in order to use it as a catalyst carrier, further improvement in heat resistance (thermal stability) is necessary.

これに対して、酸化ジルコニウムと酸化セリウムからなるジルコニア−セリア組成物は、1000℃の高温においても比較的大きな比表面積を確保できる点でジルコニアと比べて耐熱性が高い。   In contrast, a zirconia-ceria composition composed of zirconium oxide and cerium oxide has higher heat resistance than zirconia in that a relatively large specific surface area can be secured even at a high temperature of 1000 ° C.

最近では、触媒担体の比表面積の耐熱性に加えて、細孔容積の耐熱性が求められている。触媒担体に活性種である貴金属(活性貴金属)を担持する場合には、貴金属は10〜100nmの直径を有する細孔に分散性良く担持される。従って、高温でも10〜100nmの直径を有する細孔の容積が大きいものが望ましい。即ち、直径が10〜100nmの細孔の高温での耐熱性が求められている。   Recently, in addition to the heat resistance of the specific surface area of the catalyst carrier, the heat resistance of the pore volume is required. When a noble metal that is an active species (active noble metal) is supported on the catalyst support, the noble metal is supported with good dispersibility in pores having a diameter of 10 to 100 nm. Accordingly, it is desirable that the pore volume having a diameter of 10 to 100 nm is large even at a high temperature. That is, heat resistance at a high temperature of pores having a diameter of 10 to 100 nm is required.

特許文献1には、「約500℃の空気中での2時間にわたる仮焼の後に、約0.8ml/gを上回る全気孔体積を有する酸化セリウム、酸化ジルコニウム、(Ce,Zr)O複合酸化物、(Ce,Zr)O固溶体」が記載されている。 In Patent Document 1, “cerium oxide, zirconium oxide, (Ce, Zr) O 2 composite having a total pore volume exceeding about 0.8 ml / g after calcination for 2 hours in air at about 500 ° C. Oxide, (Ce, Zr) O 2 solid solution ”.

特許文献2には、「少なくとも0.6cm/gの全気孔容量を有し、しかも全気孔容量の少なくとも50%が10〜100nmの直径を有する気孔からなる、混合セリウム又はジルコニウム酸化物」が記載されている。また、その実施例では、800℃で6時間焼成した後に、約0.8cm/gの気孔容量を有する複合酸化物が記載されている。 Patent Document 2 describes “a mixed cerium or zirconium oxide having a total pore volume of at least 0.6 cm 3 / g, and at least 50% of the total pore volume is composed of pores having a diameter of 10 to 100 nm”. Are listed. The example also describes a composite oxide having a pore volume of about 0.8 cm 3 / g after firing at 800 ° C. for 6 hours.

しかしながら、自動車用触媒の実際の使用温度が1000℃以上であることを考慮すると、上記2つの文献に記載された複合酸化物は、高温での耐熱性を十分有しているとは言い難い。   However, considering that the actual use temperature of the catalyst for automobiles is 1000 ° C. or higher, it is difficult to say that the composite oxides described in the above two documents have sufficient heat resistance at high temperatures.

他方、特許文献3には、ジルコニア系多孔質体及びその製造方法が記載されている。具体的には、「BJH法に基づく細孔分布において、20〜110nmの気孔径にピークを有し、且つ、全気孔容量が0.4cc/g以上で、10〜100nmの直径を有する気孔の合計容積が全気孔容量の50%以上を占めるジルコニア系多孔質体」が記載されている。   On the other hand, Patent Document 3 describes a zirconia porous body and a method for producing the same. Specifically, “in the pore distribution based on the BJH method, the pore size of 20 to 110 nm has a peak, the total pore volume is 0.4 cc / g or more, and the pore size has a diameter of 10 to 100 nm. "Zirconia-based porous body whose total volume occupies 50% or more of the total pore volume" is described.

また、製造方法としては、「ジルコニア系多孔質体を製造する方法であって、(1)80℃以上95℃未満の硫酸塩化剤(硫酸塩を生成させる試薬)と80℃以上95℃未満のジルコニウム塩溶液とを混合することにより調製された塩基性硫酸ジルコニウム含有反応液Aと、65℃以上80℃未満の硫酸塩化剤と65℃以上80℃未満のジルコニウム塩溶液とを混合することにより調製された塩基性硫酸ジルコニウム含有反応液Bとを混合する第1工程、(2)第1工程で得られる反応液を95℃以上で熟成する第2工程、(3)第2工程で得られる混合液にアルカリを添加して前記塩基性硫酸ジルコニウムを中和することにより、水酸化ジルコニウムを生成させる第3工程、及び(4)前記水酸化ジルコニウムを熱処理することにより、ジルコニア系多孔質体を得る第4工程、を有するジルコニア系多孔質体の製造方法」が記載されている。   The production method is “a method for producing a zirconia-based porous material, (1) a sulfating agent (a reagent for producing a sulfate) at 80 ° C. or higher and lower than 95 ° C. and 80 ° C. or higher and lower than 95 ° C. Prepared by mixing a basic zirconium sulfate-containing reaction solution A prepared by mixing a zirconium salt solution, a sulfating agent of 65 to 80 ° C., and a zirconium salt solution of 65 to 80 ° C. A first step of mixing with the basic zirconium sulfate-containing reaction solution B, (2) a second step of aging the reaction solution obtained in the first step at 95 ° C. or higher, and (3) mixing obtained in the second step. A third step of neutralizing the basic zirconium sulfate by adding an alkali to the solution to form zirconium hydroxide, and (4) heat-treating the zirconium hydroxide, The fourth step of obtaining a Konia based porous body, describes a method for producing a zirconia porous body "having a.

特許文献3の実施例には、1000℃で3時間熱処理後の全気孔容量の最大値が0.7cc/gであると記載されている。このように、全気孔容量の耐熱性は改善されてきているが、一層の改善が求められている。
特表2001−524918号公報 特許第3016865号公報 特開2006−36576号公報
In the Example of Patent Document 3, it is described that the maximum value of the total pore volume after heat treatment at 1000 ° C. for 3 hours is 0.7 cc / g. Thus, although the heat resistance of the total pore volume has been improved, further improvement is required.
JP-T-2001-524918 Japanese Patent No. 3016865 JP 2006-36576 A

本発明は、1000℃で3時間熱処理後の全細孔容積が少なくとも0.75ml/gであり、且つ、1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の少なくとも30%である、全細孔容積の耐熱性が改善された多孔質ジルコニア系粉末を提供することを目的とする。また、当該粉末を簡便に得るための製造方法を提供することを目的とする。   In the present invention, the total pore volume after heat treatment at 1000 ° C. for 3 hours is at least 0.75 ml / g, and the total volume of pores having a diameter of 10 to 100 nm after heat treatment at 1000 ° C. for 3 hours is An object of the present invention is to provide a porous zirconia-based powder having an improved heat resistance of the total pore volume, which is at least 30% of the pore volume. Moreover, it aims at providing the manufacturing method for obtaining the said powder simply.

本発明者は、上記目的を達成するために鋭意研究した結果、特定の製造方法を採用する場合には、全細孔容積の耐熱性が改善された多孔質ジルコニア系粉末が簡便に得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor can easily obtain a porous zirconia-based powder having improved heat resistance of the total pore volume when a specific production method is adopted. As a result, the present invention has been completed.

即ち、本発明は下記の多孔質ジルコニア系粉末及びその製造方法に関する。
1. 1000℃で3時間熱処理後の全細孔容積が少なくとも0.75ml/gであり、且つ、1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の少なくとも30%であることを特徴とする多孔質ジルコニア系粉末。
2. 1000℃で3時間熱処理後の比表面積が少なくとも35m/gである、上記項1に記載の多孔質ジルコニア系粉末。
3. 1100℃で3時間熱処理後の比表面積が少なくとも10m/gである、上記項1又は2に記載の多孔質ジルコニア系粉末。
4. Y、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種以上の金属の酸化物を1〜60%含有する、上記項1〜3のいずれかに記載の多孔質ジルコニア系粉末。
5. ジルコニウム塩溶液に硫酸塩化剤を添加することにより塩基性硫酸ジルコニウムを生成させ、次に前記塩基性硫酸ジルコニウムを中和することにより水酸化ジルコニウムを生成させ、次に前記水酸化ジルコニウムを熱処理することにより多孔質ジルコニア系粉末を製造する方法であって、前記ジルコニウム塩溶液に前記硫酸塩化剤を添加する際に、オートクレーブ中で、温度100℃以上の前記ジルコニウム塩溶液に前記硫酸塩化剤を添加することを特徴とする多孔質ジルコニア系粉末の製造方法。
6. 前記塩基性硫酸ジルコニウムを生成させた後であって前記塩基性硫酸ジルコニウムを中和する前に、Y、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種以上の金属の塩を添加する、上記項5に記載の製造方法。
That is, the present invention relates to the following porous zirconia powder and a method for producing the same.
1. The total pore volume after heat treatment at 1000 ° C. for 3 hours is at least 0.75 ml / g, and the total volume of pores having a diameter of 10 to 100 nm after heat treatment at 1000 ° C. for 3 hours is the total pore volume A porous zirconia-based powder characterized by being at least 30%.
2. Item 2. The porous zirconia powder according to Item 1, wherein the specific surface area after heat treatment at 1000 ° C for 3 hours is at least 35 m 2 / g.
3. Item 3. The porous zirconia powder according to Item 1 or 2, wherein the specific surface area after heat treatment at 1100 ° C for 3 hours is at least 10 m 2 / g.
4). 1 to 60% of an oxide of one or more metals selected from the group consisting of Y, Sc, rare earth metals, transition metal elements, alkaline earth metals, Al, In, Si, Sn, Bi and Zn, Item 4. The porous zirconia-based powder according to any one of Items 1 to 3.
5. Adding a sulfating agent to a zirconium salt solution to form basic zirconium sulfate, then neutralizing the basic zirconium sulfate to form zirconium hydroxide, and then heat treating the zirconium hydroxide; The porous zirconia-based powder is produced by adding the sulfating agent to the zirconium salt solution at a temperature of 100 ° C. or higher in an autoclave when the sulfating agent is added to the zirconium salt solution. A method for producing a porous zirconia-based powder.
6). After forming the basic zirconium sulfate and before neutralizing the basic zirconium sulfate, Y, Sc, rare earth metal, transition metal element, alkaline earth metal, Al, In, Si, Sn, Bi 6. The method according to Item 5, wherein one or more metal salts selected from the group consisting of Zn and Zn are added.

本発明の多孔質ジルコニア系粉末は、1000℃で3時間熱処理後の全細孔容積が少なくとも0.75ml/gであり、且つ、1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の少なくとも30%であり、全細孔容積の耐熱性が改善されている。かかる多孔質ジルコニア系粉末は、高温条件下で使用する自動車用の三元触媒の助触媒又は触媒担体として有用である。本発明の製造方法によれば、上記粉末を簡便に製造できる。   The porous zirconia-based powder of the present invention has a total pore volume of at least 0.75 ml / g after heat treatment at 1000 ° C. for 3 hours and a diameter of 10 to 100 nm after heat treatment at 1000 ° C. for 3 hours. The total volume of the pores is at least 30% of the total pore volume, improving the heat resistance of the total pore volume. Such porous zirconia-based powder is useful as a promoter or catalyst support for a three-way catalyst for automobiles used under high temperature conditions. According to the production method of the present invention, the powder can be produced easily.

本発明の多孔質ジルコニア系粉末及び製造方法について詳細に説明する。   The porous zirconia-based powder and production method of the present invention will be described in detail.

なお、本発明におけるジルコニアは一般的なものであり、ハフニア等の10%以下の不純物金属化合物を含み得る。   In addition, the zirconia in this invention is common, and can contain 10% or less of impurity metal compounds, such as hafnia.

本発明において、「%」は、特に断らない限り、重量%(=質量%)を示す。
1.多孔質ジルコニア系粉末
本発明の多孔質ジルコニア系粉末は、1000℃で3時間熱処理後の全細孔容積が少なくとも0.75ml/g(好ましくは少なくとも0.79ml/g)であり、且つ、1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の少なくとも30%(好ましくは少なくとも33%)であることを特徴とする。
In the present invention, “%” indicates wt% (= mass%) unless otherwise specified.
1. Porous zirconia powder The porous zirconia powder of the present invention has a total pore volume of at least 0.75 ml / g (preferably at least 0.79 ml / g) after heat treatment at 1000 ° C. for 3 hours, and 1000 The total volume of pores having a diameter of 10 to 100 nm after heat treatment at 3 ° C. for 3 hours is at least 30% (preferably at least 33%) of the total pore volume.

前記熱処理後の全細孔容積が0.75ml/g未満である場合や前記熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の30%未満である場合には、貴金属粒子を担持する触媒担体として用いる際に、貴金属粒子の分散性を維持し難く、触媒活性が低下し易い。   When the total pore volume after the heat treatment is less than 0.75 ml / g or the total volume of pores having a diameter of 10 to 100 nm after the heat treatment is less than 30% of the total pore volume, When used as a catalyst carrier for supporting noble metal particles, it is difficult to maintain the dispersibility of the noble metal particles, and the catalyst activity tends to decrease.

本発明の多孔質ジルコニア系粉末は、1000℃で3時間熱処理後の比表面積が少なくとも35m/gであることが好ましい。この中でも、少なくとも40m/gであることがより好ましい。 The porous zirconia-based powder of the present invention preferably has a specific surface area of at least 35 m 2 / g after heat treatment at 1000 ° C. for 3 hours. Among these, it is more preferable that it is at least 40 m 2 / g.

前記熱処理後の比表面積が35m/g未満である場合には、比表面積の減少に基づく貴金属粒子の焼結促進により、触媒活性が低下し易い。 When the specific surface area after the heat treatment is less than 35 m 2 / g, the catalytic activity tends to be lowered due to the promotion of sintering of the noble metal particles based on the decrease in the specific surface area.

なお、本発明の多孔質ジルコニア系粉末は、1100℃で3時間熱処理後の比表面積が少なくとも10m/gであることが好ましい。この中でも、少なくとも20m/gであることがより好ましい。 The porous zirconia-based powder of the present invention preferably has a specific surface area of at least 10 m 2 / g after heat treatment at 1100 ° C. for 3 hours. Among these, it is more preferable that it is at least 20 m 2 / g.

本発明の多孔質ジルコニア系粉末は、Y、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種以上の金属の酸化物を1〜60%含有することが好ましい。この中でも、金属の酸化物を5〜55%含有することがより好ましい。   The porous zirconia-based powder of the present invention is an oxidation of one or more metals selected from the group consisting of Y, Sc, rare earth metals, transition metal elements, alkaline earth metals, Al, In, Si, Sn, Bi, and Zn. It is preferable to contain 1 to 60% of the product. Among these, it is more preferable to contain 5-55% of metal oxides.

希土類金属としては、例えば、La、Ce、Pr、Nd等のランタノイド元素が挙げられる。   Examples of rare earth metals include lanthanoid elements such as La, Ce, Pr, and Nd.

遷移金属元素としては、例えば、Ti、Cr、Mn、Fe、Co、Ni、Cu、Mo、W等が挙げられる。   Examples of the transition metal element include Ti, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W.

アルカリ土類金属としては、例えば、Mg、Ca、Sr、Ba等が挙げられる。   Examples of the alkaline earth metal include Mg, Ca, Sr, Ba and the like.

これらの金属の中でも、特にSc、Y、希土類金属は、酸化ジルコニウム(ジルコニア)と安定な複合酸化物を形成する点で好ましい。   Among these metals, Sc, Y, and rare earth metals are particularly preferable because they form a stable composite oxide with zirconium oxide (zirconia).

上記含有量が1%未満の場合には、添加による効果が発揮され難い。他方、含有量が60%を超える場合には、全細孔容積の耐熱性が不十分となり易い。   When the content is less than 1%, the effect of addition is hardly exhibited. On the other hand, if the content exceeds 60%, the heat resistance of the total pore volume tends to be insufficient.

図1、図2は、実施例1、比較例1で得られたジルコニア系粉末のTEM写真を示している。図1から明らかなように、本発明のジルコニア系粉末は、凝集が非常に弱い凝集粒子であることが分かる。他方、図2(比較例1)は凝集が強い。   1 and 2 show TEM photographs of the zirconia-based powders obtained in Example 1 and Comparative Example 1. FIG. As is clear from FIG. 1, it can be seen that the zirconia-based powder of the present invention is agglomerated particles having very weak agglomeration. On the other hand, FIG. 2 (Comparative Example 1) has strong aggregation.

このように、凝集が非常に弱いことにより、高温(1000℃以上)において粒子同士の焼結が起こらず、初期状態の全細孔容積、その分布並びに比表面積を保持させることができるものと考えられる。
2.多孔質ジルコニア系粉末の製造方法
本発明の製造方法は、ジルコニウム塩溶液に硫酸塩化剤(硫酸塩を生成させる試薬であって、本発明ではジルコニウムイオンと反応して塩基性硫酸ジルコニウムを生成させる)を添加することにより塩基性硫酸ジルコニウムを生成させ、次に前記塩基性硫酸ジルコニウムを中和することにより水酸化ジルコニウムを生成させ、次に前記水酸化ジルコニウムを熱処理することにより多孔質ジルコニア系粉末を製造する方法であって、前記ジルコニウム塩溶液に前記硫酸塩化剤を添加する際に、オートクレーブ中で、温度100℃以上の前記ジルコニウム塩溶液に前記硫酸塩化剤を添加することを特徴とする。
Thus, it is considered that the aggregation is very weak, so that the particles do not sinter at a high temperature (1000 ° C. or higher), and the total pore volume in the initial state, its distribution and specific surface area can be maintained. It is done.
2. Method for Producing Porous Zirconia Powder The production method of the present invention is a sulfating agent in a zirconium salt solution (a reagent for producing a sulfate, which reacts with zirconium ions in the present invention to produce basic zirconium sulfate). To form a basic zirconium sulfate, then neutralize the basic zirconium sulfate to produce zirconium hydroxide, and then heat-treat the zirconium hydroxide to obtain a porous zirconia-based powder. In the production method, when the sulfating agent is added to the zirconium salt solution, the sulfating agent is added to the zirconium salt solution at a temperature of 100 ° C. or higher in an autoclave.

ジルコニウム塩としては、ジルコニウムイオンを供給するものであればよく、例えば、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウム、硝酸ジルコニウム等を使用できる。これらは1種又は2種以上で使用できる。この中でも、工業的規模での生産性が高い点でオキシ塩化ジルコニウムが好ましい。   Any zirconium salt may be used as long as it supplies zirconium ions. For example, zirconium oxynitrate, zirconium oxychloride, zirconium nitrate or the like can be used. These can be used alone or in combination of two or more. Among these, zirconium oxychloride is preferable in terms of high productivity on an industrial scale.

ジルコニウム塩溶液を作るための溶媒としては、ジルコニウム塩の種類に応じて選択すればよい。通常は水(純水、イオン交換水、以下同様)が好ましい。   What is necessary is just to select as a solvent for making a zirconium salt solution according to the kind of zirconium salt. Usually, water (pure water, ion-exchanged water, the same applies hereinafter) is preferable.

ジルコニウム塩溶液の濃度は特に制限されないが、一般的には溶媒1000g中に酸化ジルコニウム(ZrO)として5〜250g(特に20〜150g)含有されることが望ましい。 The concentration of the zirconium salt solution is not particularly limited, but it is generally desirable that 5-250 g (particularly 20-150 g) of zirconium oxide (ZrO 2 ) is contained in 1000 g of the solvent.

硫酸塩化剤としては、ジルコニウムイオンと反応して硫酸塩を生成させるもの(即ち、硫酸塩化させる試薬)であれば限定されず、例えば、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム等が例示される。硫酸塩化剤は、粉末状、溶液状等のいずれの形態でもよいが、溶液(特に水溶液)が好ましい。溶液を用いる場合の溶液の濃度は適宜設定できる。   The sulfating agent is not limited as long as it reacts with zirconium ions to generate a sulfate (that is, a reagent for sulfating), and examples thereof include sodium sulfate, potassium sulfate, and ammonium sulfate. The sulfating agent may be in any form such as powder or solution, but is preferably a solution (particularly an aqueous solution). When using a solution, the concentration of the solution can be set as appropriate.

硫酸塩化剤は、硫酸根(SO 2−)/ZrOの重量比が0.3〜0.6となるように添加することが好ましい。また、混合液のフリーの酸濃度は、0.2〜2.2N(規定)とすることが好ましい。フリーの酸としては、硫酸、硝酸、塩酸等が例示される。フリーの酸の種類は限定されないが、塩酸が工業的規模での生産性が高い点で好ましい。 The sulfating agent is preferably added so that the weight ratio of sulfate radical (SO 4 2− ) / ZrO 2 is 0.3 to 0.6. Moreover, it is preferable that the free acid density | concentration of a liquid mixture shall be 0.2-2.2N (regulation). Examples of the free acid include sulfuric acid, nitric acid, hydrochloric acid and the like. Although the kind of free acid is not limited, hydrochloric acid is preferable in terms of high productivity on an industrial scale.

ジルコニウム塩溶液と硫酸塩化剤は、通常65℃以上の温度において反応し、塩基性硫酸ジルコニウムが生成する。本発明においては、オートクレーブ中で、温度100℃以上(好ましくは110〜150℃)のジルコニウム塩溶液に硫酸塩化剤を添加することによって塩基性硫酸ジルコニウムを生成させる。   The zirconium salt solution and the sulfating agent usually react at a temperature of 65 ° C. or higher to produce basic zirconium sulfate. In the present invention, basic zirconium sulfate is produced by adding a sulfating agent to a zirconium salt solution at a temperature of 100 ° C. or higher (preferably 110 to 150 ° C.) in an autoclave.

ジルコニウム塩溶液の温度が100℃未満の場合には、硫酸塩化の反応が遅く、大きな凝集粒子が生成され易くなるために好ましくない。そのため、本発明では、温度を100℃以上とすることを必須としている。   When the temperature of the zirconium salt solution is less than 100 ° C., the reaction of sulfation is slow, and large aggregated particles are likely to be generated, which is not preferable. Therefore, in the present invention, it is essential to set the temperature to 100 ° C. or higher.

硫酸塩化の際の圧力条件は限定されないが、1.02×10〜4.91×10Paが好ましく、1.45×10〜4.91×10Paがより好ましい。 The pressure conditions during the sulfuric acid chlorides is not limited, but is preferably 1.02 × 10 5 ~4.91 × 10 5 Pa, more preferably 1.45 × 10 5 ~4.91 × 10 5 Pa.

硫酸塩化後、オートクレーブ中において反応液を10〜60分保持し、生成した塩基性硫酸ジルコニウムを熟成させることが好ましい。塩基性硫酸ジルコニウムとしては限定されないが、例えば、ZrOSO・ZrO、5ZrO・3SO、7ZrO・3SO等の化合物の水和物が例示される。なお、塩基性硫酸ジルコニウムは、これらの1種又は2種以上の混合物でもよい。 After sulfation, it is preferable to hold the reaction solution in an autoclave for 10 to 60 minutes to age the produced basic zirconium sulfate. The basic zirconium sulfate but are not limited to, for example, hydrates of ZrOSO 4 · ZrO 2, 5ZrO 2 · 3SO 3, 7ZrO compounds such 2 · 3SO 3 is illustrated. The basic zirconium sulfate may be one or a mixture of two or more thereof.

本発明では、高温条件下で硫酸塩化剤を添加することにより、塩基性硫酸ジルコニウムの生成が急速に促進される。これにより、塩基性硫酸ジルコニウムの核成長が進まず、凝集の非常に弱い凝集粒子が生成する。この凝集粒子を中和及び焼成することにより得られる本発明のジルコニア系粉末(粒子)は、1000℃以上の高温においても粒子同士の焼結が起こらず、初期状態の全細孔容積、その分布及び比表面積を維持し易いと考えられる。   In the present invention, the formation of basic zirconium sulfate is rapidly accelerated by adding a sulfating agent under high temperature conditions. Thereby, the nucleus growth of basic zirconium sulfate does not proceed, and aggregated particles having very weak aggregation are generated. The zirconia-based powder (particles) of the present invention obtained by neutralizing and calcining the aggregated particles does not sinter between particles even at a high temperature of 1000 ° C. or higher, and the total pore volume in the initial state and its distribution It is considered that the specific surface area can be easily maintained.

硫酸塩化後、オートクレーブから塩基性硫酸ジルコニウム含有スラリーを取り出し、80℃以下、好ましくは60℃以下になるように冷却する。   After sulfation, the basic zirconium sulfate-containing slurry is taken out from the autoclave and cooled to 80 ° C. or less, preferably 60 ° C. or less.

本発明の多孔質ジルコニア系粉末に前記の金属酸化物を含有させる場合には、硫酸塩化後であって中和工程の前に、所定量のY、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種又は2種以上の金属の塩を添加することが好ましい。   When the porous zirconia-based powder of the present invention contains the metal oxide, a predetermined amount of Y, Sc, rare earth metal, transition metal element, alkaline earth, after sulfation and before the neutralization step. It is preferable to add a salt of one or more metals selected from the group consisting of similar metals, Al, In, Si, Sn, Bi and Zn.

次に、塩基性硫酸ジルコニウムをアルカリで中和することにより、水酸化ジルコニウムとする。アルカリとしては限定されず、例えば、水酸化アンモニウム、重炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム等が使用できる。この中でも、工業的なコスト面から水酸化ナトリウムが好ましい。   Next, the basic zirconium sulfate is neutralized with an alkali to form zirconium hydroxide. It is not limited as an alkali, For example, ammonium hydroxide, ammonium bicarbonate, sodium hydroxide, potassium hydroxide etc. can be used. Among these, sodium hydroxide is preferable from the viewpoint of industrial cost.

アルカリの添加量は、塩基性硫酸ジルコニウムの溶液から沈殿物として水酸化ジルコニウムを生成させることができれば特に限定されない。通常は上記溶液のpHが11以上、好ましくは12以上となるように添加する。   The amount of alkali added is not particularly limited as long as zirconium hydroxide can be produced as a precipitate from a basic zirconium sulfate solution. Usually, the solution is added so that the pH of the solution is 11 or more, preferably 12 or more.

中和反応後は、水酸化ジルコニウム含有溶液を35〜60℃で1時間以上保持することが好ましい。これにより、生成した沈殿が熟成されるとともに、濾別が容易となる。   After the neutralization reaction, it is preferable to hold the zirconium hydroxide-containing solution at 35 to 60 ° C. for 1 hour or longer. As a result, the generated precipitate is aged and is easily separated by filtration.

次に、水酸化ジルコニウムを固液分離法により回収する。例えば、濾過、遠心分離、デカンテーション等が利用できる。   Next, zirconium hydroxide is recovered by a solid-liquid separation method. For example, filtration, centrifugation, decantation, etc. can be used.

水酸化ジルコニウムを回収後、水酸化ジルコニウムを水洗し、付着している不純物を除去することが好ましい。   After collecting the zirconium hydroxide, it is preferable to wash the zirconium hydroxide with water to remove the adhering impurities.

水酸化ジルコニウムは、自然乾燥又は加熱乾燥により乾燥してもよい。必要に応じて、乾燥処理後に粉砕処理、分級処理等を実施してもよい。   Zirconium hydroxide may be dried by natural drying or heat drying. If necessary, a pulverization process, a classification process, or the like may be performed after the drying process.

最後に、水酸化ジルコニウムを熱処理することにより、多孔質ジルコニア系粉末が得られる。熱処理温度は限定的ではないが、400〜900℃程度で1〜5時間程度が好ましい。熱処理雰囲気は、大気中又は酸化性雰囲気中が好ましい。   Finally, a porous zirconia powder is obtained by heat-treating zirconium hydroxide. The heat treatment temperature is not limited, but is preferably about 400 to 900 ° C. and about 1 to 5 hours. The heat treatment atmosphere is preferably in the air or in an oxidizing atmosphere.

得られた多孔質ジルコニア系粉末は、粉砕してもよい。例えば、遊星ミル、ボールミル、ジェットミル等の粉砕機を利用できる。   The obtained porous zirconia-based powder may be pulverized. For example, a pulverizer such as a planetary mill, a ball mill, or a jet mill can be used.

以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。   The present invention will be specifically described below with reference to examples and comparative examples. However, the present invention is not limited to the examples.

比表面積、全細孔容積の測定方法は次の通りとした。
(1)比表面積
比表面積計(「フローソーフ゛-II」マイクロメリティクス製)を用いてBET法で測定した。
(2)全細孔容積
細孔分布測定装置(Pore Master 60-GT)を用いて水銀圧入法で測定した。測定範囲は0.0036〜10.3μmとした。
The specific surface area and total pore volume were measured as follows.
(1) Specific surface area Measured by the BET method using a specific surface area meter ("Flowsorb-II" manufactured by Micromeritics).
(2) Total pore volume It measured by the mercury intrusion method using the pore distribution measuring apparatus (Pore Master 60-GT). The measurement range was 0.0036 to 10.3 μm.

表1中の「Fresh」は、水酸化ジルコニウムを600℃×5時間熱処理して得られた酸化物を示す。また、「1000℃、3時間後」は、上記酸化物を更に1000℃×3時間熱処理したものを示す。これらは、熱処理の後、常温まで冷却してから比表面積及び全細孔容積を測定した。   “Fresh” in Table 1 represents an oxide obtained by heat-treating zirconium hydroxide at 600 ° C. for 5 hours. “After 3 hours at 1000 ° C.” indicates that the oxide is further heat-treated at 1000 ° C. for 3 hours. These were cooled to room temperature after heat treatment, and then the specific surface area and total pore volume were measured.

実施例1
オキシ塩化ジルコニウム・8水和物187g(ZrO換算:72g)をイオン交換水に溶解し、次に35%塩酸及びイオン交換水により酸濃度が0.67N、ZrO濃度が4w/v%となるように調整した。
Example 1
187 g of zirconium oxychloride octahydrate (ZrO 2 conversion: 72 g) was dissolved in ion exchange water, and then the acid concentration was 0.67 N and the ZrO 2 concentration was 4 w / v% with 35% hydrochloric acid and ion exchange water. It adjusted so that it might become.

得られた溶液をオートクレーブに入れて圧力を2×10Paとし、120℃まで昇温させて同温度で5%硫酸ナトリウム(硫酸塩化剤)1065gを添加し、更に15分間保持した。硫酸塩化後、室温になるまで放冷し、塩基性硫酸ジルコニウム含有スラリーを得た。 The obtained solution was put into an autoclave to adjust the pressure to 2 × 10 5 Pa, the temperature was raised to 120 ° C., 1065 g of 5% sodium sulfate (sulfating agent) was added at the same temperature, and the mixture was further maintained for 15 minutes. After sulfation, the mixture was allowed to cool to room temperature to obtain a basic zirconium sulfate-containing slurry.

塩基性硫酸ジルコニウム含有スラリーに硝酸セリウム溶液210g(CeO換算:21g)、硝酸ランタン溶液20g(La換算:2g)及び硝酸ネオジム溶液50g(Nd換算:5g)を添加した。次に25%水酸化ナトリウム(中和用アルカリ)500gを60分間かけて添加した。この中和により、水酸化ジルコニウムを生成させた。 To the basic zirconium sulfate-containing slurry, 210 g of cerium nitrate solution (CeO 2 conversion: 21 g), 20 g of lanthanum nitrate solution (La 2 O 3 conversion: 2 g) and 50 g of neodymium nitrate solution (Nd 2 O 3 conversion: 5 g) were added. Next, 500 g of 25% sodium hydroxide (alkali for neutralization) was added over 60 minutes. This neutralization produced zirconium hydroxide.

次に、水酸化ジルコニウム含有スラリーを濾過・水洗した後、600℃で5時間焼成して酸化物を得た。酸化物は乳鉢で20μm以下になるまで粉砕した。   Next, the zirconium hydroxide-containing slurry was filtered and washed with water, and then fired at 600 ° C. for 5 hours to obtain an oxide. The oxide was pulverized in a mortar until it became 20 μm or less.

上記粉砕物の組成(酸化物換算)、比表面積(SA)及び3種類の熱処理後の比表面積(Aged SA ※1〜※3)を表1に示す。また、上記粉砕物の全細孔容積(Fresh)及び2種類の熱処理後の全細孔容積も示す。更に、全細孔容積の測定結果(グラフ)を図3に示す。   Table 1 shows the composition of the pulverized product (as oxide), specific surface area (SA), and specific surface areas after three types of heat treatment (Aged SA * 1 to * 3). The total pore volume (Fresh) of the pulverized product and the total pore volume after two types of heat treatment are also shown. Furthermore, the measurement result (graph) of the total pore volume is shown in FIG.

実施例2
オキシ塩化ジルコニウム・8水和物117g(ZrO換算:45g)をイオン交換水に溶解し、次に35%塩酸及びイオン交換水により酸濃度が0.67N、ZrO濃度が4w/v%となるように調整した。
Example 2
117 g of zirconium oxychloride octahydrate (ZrO 2 conversion: 45 g) was dissolved in ion-exchanged water, and then the acid concentration was 0.67 N and the ZrO 2 concentration was 4 w / v% with 35% hydrochloric acid and ion-exchanged water. It adjusted so that it might become.

得られた溶液をオートクレーブに入れて圧力を2×10Paとし、120℃まで昇温させて同温度で5%硫酸ナトリウム(硫酸塩化剤)665gを添加し、更に15分間保持した。硫酸塩化後、室温になるまで放冷し、塩基性硫酸ジルコニウム含有スラリーを得た。 The obtained solution was put into an autoclave, the pressure was adjusted to 2 × 10 5 Pa, the temperature was raised to 120 ° C., 665 g of 5% sodium sulfate (sulfating agent) was added at the same temperature, and the mixture was further maintained for 15 minutes. After sulfation, the mixture was allowed to cool to room temperature to obtain a basic zirconium sulfate-containing slurry.

塩基性硫酸ジルコニウム含有スラリーに硝酸セリウム溶液450g(CeO換算:45g)、硝酸ランタン溶液30g(La換算:3g)及び硝酸プラセオジム溶液70g(Pr11換算:7g)を添加した。次に25%水酸化ナトリウム(中和用アルカリ)500gを60分間かけて添加した。この中和により、水酸化ジルコニウムを生成させた。 To the basic zirconium sulfate-containing slurry, 450 g of cerium nitrate solution (CeO 2 conversion: 45 g), 30 g of lanthanum nitrate solution (La 2 O 3 conversion: 3 g), and 70 g of praseodymium nitrate solution (Pr 6 O 11 conversion: 7 g) were added. Next, 500 g of 25% sodium hydroxide (alkali for neutralization) was added over 60 minutes. This neutralization produced zirconium hydroxide.

次に、水酸化ジルコニウム含有スラリーを濾過・水洗した後、600℃で5時間焼成して酸化物を得た。酸化物は乳鉢で20μm以下になるまで粉砕した。   Next, the zirconium hydroxide-containing slurry was filtered and washed with water, and then fired at 600 ° C. for 5 hours to obtain an oxide. The oxide was pulverized in a mortar until it became 20 μm or less.

上記粉砕物の組成(酸化物換算)、比表面積(SA)及び3種類の熱処理後の比表面積(Aged SA ※1〜※3)を表1に示す。また、上記粉砕物の全細孔容積(Fresh)及び2種類の熱処理後の全細孔容積も示す。   Table 1 shows the composition of the pulverized product (as oxide), specific surface area (SA), and specific surface areas after three types of heat treatment (Aged SA * 1 to * 3). The total pore volume (Fresh) of the pulverized product and the total pore volume after two types of heat treatment are also shown.

比較例1
オキシ塩化ジルコニウム・8水和物187g(ZrO換算:72g)をイオン交換水に溶解し、次に35%塩酸及びイオン交換水により酸濃度が0.67N、ZrO濃度が4w/v%となるように調整した。
Comparative Example 1
187 g of zirconium oxychloride octahydrate (ZrO 2 conversion: 72 g) was dissolved in ion exchange water, and then the acid concentration was 0.67 N and the ZrO 2 concentration was 4 w / v% with 35% hydrochloric acid and ion exchange water. It adjusted so that it might become.

得られた溶液を60℃まで昇温させて同温度で5%硫酸ナトリウム(硫酸塩化剤)1065gを添加した。次に95℃まで昇温させて同温度で15分保持後、室温になるまで放冷し、塩基性硫酸ジルコニウム含有スラリーを得た。   The resulting solution was heated to 60 ° C., and 1065 g of 5% sodium sulfate (sulfating agent) was added at the same temperature. Next, the temperature was raised to 95 ° C., held at the same temperature for 15 minutes, and then allowed to cool to room temperature to obtain a basic zirconium sulfate-containing slurry.

塩基性硫酸ジルコニウム含有スラリーに硝酸セリウム溶液210g(CeO換算:21g)、硝酸ランタン溶液20g(La換算:2g)及び硝酸ネオジム溶液50g(Nd換算:5g)を添加した。次に25%水酸化ナトリウム(中和用アルカリ)500gを60分間かけて添加した。この中和により、水酸化ジルコニウムを生成させた。 To the basic zirconium sulfate-containing slurry, 210 g of cerium nitrate solution (CeO 2 conversion: 21 g), 20 g of lanthanum nitrate solution (La 2 O 3 conversion: 2 g) and 50 g of neodymium nitrate solution (Nd 2 O 3 conversion: 5 g) were added. Next, 500 g of 25% sodium hydroxide (alkali for neutralization) was added over 60 minutes. This neutralization produced zirconium hydroxide.

次に、水酸化ジルコニウム含有スラリーを濾過・水洗した後、600℃で5時間焼成して酸化物を得た。酸化物は乳鉢で20μm以下になるまで粉砕した。   Next, the zirconium hydroxide-containing slurry was filtered and washed with water, and then fired at 600 ° C. for 5 hours to obtain an oxide. The oxide was pulverized in a mortar until it became 20 μm or less.

上記粉砕物の組成(酸化物換算)、比表面積(SA)及び3種類の熱処理後の比表面積(Aged SA ※1〜※3)を表1に示す。また、上記粉砕物の全細孔容積(Fresh)及び2種類の熱処理後の全細孔容積も示す。更に、全細孔容積の測定結果(グラフ)を図4に示す。   Table 1 shows the composition of the pulverized product (as oxide), specific surface area (SA), and specific surface areas after three types of heat treatment (Aged SA * 1 to * 3). The total pore volume (Fresh) of the pulverized product and the total pore volume after two types of heat treatment are also shown. Furthermore, the measurement result (graph) of the total pore volume is shown in FIG.

Figure 2008081392
Figure 2008081392

※1 …1000℃×3時間熱処理後
※2 …1100℃×3時間熱処理後
※3 …1150℃×6時間熱処理後
表1から明らかなように、本発明の多孔質ジルコニア系粉末は、1000℃で3時間熱処理後の全細孔容積が0.75ml/g以上であり、且つ1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の30%以上である。つまり、比較例1と比べて、実施例1、2の多孔質ジルコニア系粉末は、全細孔容積の耐熱性が向上している。また、比表面積の耐熱性の観点でも、1100℃で3時間熱処理後における比表面積が25m/gであり、比較例1と比べて耐熱性が大幅に向上していることが分かる。
* 1 After heat treatment at 1000 ° C. for 3 hours * 2 After heat treatment at 1100 ° C. for 3 hours * 3 After heat treatment at 1150 ° C. for 6 hours As shown in Table 1, the porous zirconia powder of the present invention is 1000 ° C. And the total pore volume after heat treatment for 3 hours is 0.75 ml / g or more, and the total volume of pores having a diameter of 10 to 100 nm after heat treatment at 1000 ° C. for 3 hours is 30% or more of the total pore volume It is. That is, as compared with Comparative Example 1, the porous zirconia-based powders of Examples 1 and 2 have improved heat resistance of the total pore volume. Also, from the viewpoint of heat resistance of the specific surface area, the specific surface area after heat treatment at 1100 ° C. for 3 hours is 25 m 2 / g, which indicates that the heat resistance is significantly improved as compared with Comparative Example 1.

実施例1で得られたジルコニア系粉末のTEM写真を示す。The TEM photograph of the zirconia-type powder obtained in Example 1 is shown. 比較例1で得られたジルコニア系粉末のTEM写真を示す。The TEM photograph of the zirconia-type powder obtained by the comparative example 1 is shown. 実施例1で得られたジルコニア系粉末の全細孔容積の測定結果を示す。The measurement result of the total pore volume of the zirconia-type powder obtained in Example 1 is shown. 比較例1で得られたジルコニア系粉末の全細孔容積の測定結果を示す。The measurement result of the total pore volume of the zirconia-type powder obtained by the comparative example 1 is shown.

Claims (6)

1000℃で3時間熱処理後の全細孔容積が少なくとも0.75ml/gであり、且つ、1000℃で3時間熱処理後の10〜100nmの直径を有する細孔の合計容積が全細孔容積の少なくとも30%であることを特徴とする多孔質ジルコニア系粉末。   The total pore volume after heat treatment at 1000 ° C. for 3 hours is at least 0.75 ml / g, and the total volume of pores having a diameter of 10 to 100 nm after heat treatment at 1000 ° C. for 3 hours is the total pore volume A porous zirconia-based powder characterized by being at least 30%. 1000℃で3時間熱処理後の比表面積が少なくとも35m/gである、請求項1に記載の多孔質ジルコニア系粉末。 The porous zirconia-based powder according to claim 1, wherein the specific surface area after heat treatment at 1000 ° C for 3 hours is at least 35 m 2 / g. 1100℃で3時間熱処理後の比表面積が少なくとも10m/gである、請求項1又は2に記載の多孔質ジルコニア系粉末。 The porous zirconia-based powder according to claim 1 or 2, wherein the specific surface area after heat treatment at 1100 ° C for 3 hours is at least 10 m 2 / g. Y、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種以上の金属の酸化物を1〜60%含有する、請求項1〜3のいずれかに記載の多孔質ジルコニア系粉末。   1 to 60% of an oxide of one or more metals selected from the group consisting of Y, Sc, rare earth metals, transition metal elements, alkaline earth metals, Al, In, Si, Sn, Bi and Zn, Item 4. The porous zirconia-based powder according to any one of Items 1 to 3. ジルコニウム塩溶液に硫酸塩化剤を添加することにより塩基性硫酸ジルコニウムを生成させ、次に前記塩基性硫酸ジルコニウムを中和することにより水酸化ジルコニウムを生成させ、次に前記水酸化ジルコニウムを熱処理することにより多孔質ジルコニア系粉末を製造する方法であって、前記ジルコニウム塩溶液に前記硫酸塩化剤を添加する際に、オートクレーブ中で、温度100℃以上の前記ジルコニウム塩溶液に前記硫酸塩化剤を添加することを特徴とする多孔質ジルコニア系粉末の製造方法。   Adding a sulfating agent to a zirconium salt solution to form basic zirconium sulfate, then neutralizing the basic zirconium sulfate to form zirconium hydroxide, and then heat treating the zirconium hydroxide; The porous zirconia-based powder is produced by adding the sulfating agent to the zirconium salt solution at a temperature of 100 ° C. or higher in an autoclave when the sulfating agent is added to the zirconium salt solution. A method for producing a porous zirconia-based powder. 前記塩基性硫酸ジルコニウムを生成させた後であって前記塩基性硫酸ジルコニウムを中和する前に、Y、Sc、希土類金属、遷移金属元素、アルカリ土類金属、Al、In、Si、Sn、Bi及びZnからなる群から選ばれる1種以上の金属の塩を添加する、請求項5に記載の製造方法。   After forming the basic zirconium sulfate and before neutralizing the basic zirconium sulfate, Y, Sc, rare earth metal, transition metal element, alkaline earth metal, Al, In, Si, Sn, Bi The production method according to claim 5, wherein one or more metal salts selected from the group consisting of Zn and Zn are added.
JP2007211368A 2006-08-22 2007-08-14 Porous zirconia-based powder and method for producing the same Active JP5063252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211368A JP5063252B2 (en) 2006-08-22 2007-08-14 Porous zirconia-based powder and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006253460 2006-08-22
JP2006253460 2006-08-22
JP2006263536 2006-08-29
JP2006263536 2006-08-29
JP2007211368A JP5063252B2 (en) 2006-08-22 2007-08-14 Porous zirconia-based powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008081392A true JP2008081392A (en) 2008-04-10
JP5063252B2 JP5063252B2 (en) 2012-10-31

Family

ID=39352601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211368A Active JP5063252B2 (en) 2006-08-22 2007-08-14 Porous zirconia-based powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5063252B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108621A1 (en) 2008-04-09 2009-10-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium based compound oxide and production method thereof
WO2010103870A1 (en) * 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder
JP2012533499A (en) * 2009-07-17 2012-12-27 ロデイア・オペラシヨン Composition comprising cerium oxide and zirconium oxide with specific porosity, its preparation method and its use in catalysis
WO2013073381A1 (en) * 2011-11-16 2013-05-23 株式会社三徳 Composite oxide
JP2013525255A (en) * 2010-05-06 2013-06-20 ロデイア・オペラシヨン Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis
JP2014506221A (en) * 2010-11-30 2014-03-13 ロデイア・オペラシヨン Composition based on zirconium oxide and at least one oxide of rare earth elements other than cerium, having a unique porosity, its production process and its use in catalysis
WO2014041984A1 (en) * 2012-09-14 2014-03-20 三井金属鉱業株式会社 Exhaust-gas-purification catalyst carrier
WO2015145787A1 (en) * 2014-03-28 2015-10-01 第一稀元素化学工業株式会社 Zirconia-based porous body and method for producing same
US10196313B2 (en) 2016-03-30 2019-02-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia fine powder and production method therefor
WO2020195973A1 (en) 2019-03-28 2020-10-01 第一稀元素化学工業株式会社 Zirconia-based porous body
WO2021020104A1 (en) 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 Zirconia-based composite oxide and method for manufacturing zirconia-based composite oxide
WO2021049525A1 (en) 2019-09-10 2021-03-18 三井金属鉱業株式会社 Powdered complex oxide containing elemental cerium and element zirconium, exhaust gas purification catalyst composition using same, and method for producing same
WO2022107900A1 (en) 2021-08-12 2022-05-27 第一稀元素化学工業株式会社 Zirconia-based porous body and production method for zirconia-based porous body
JP7137035B1 (en) 2022-03-25 2022-09-13 第一稀元素化学工業株式会社 Zirconia powder material
JP7162716B1 (en) 2021-11-01 2022-10-28 第一稀元素化学工業株式会社 zirconium hydroxide powder
JP7178526B1 (en) 2022-06-06 2022-11-25 第一稀元素化学工業株式会社 Porous zirconia-based composite oxide and method for producing porous zirconia-based composite oxide
JP7203180B1 (en) 2021-11-01 2023-01-12 第一稀元素化学工業株式会社 Zirconium hydroxide powder and method for producing zirconium hydroxide powder
US11958039B2 (en) 2021-08-12 2024-04-16 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body and method for manufacturing zirconia-based porous body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2000319019A (en) * 1999-03-05 2000-11-21 Daiichi Kigensokagaku Kogyo Co Ltd Zirconium-cerium based compound oxide and manufacture of the same
JP2006036576A (en) * 2004-07-26 2006-02-09 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-based porous body and its production method
JP2007197311A (en) * 2005-12-28 2007-08-09 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium composite oxide and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JP2000319019A (en) * 1999-03-05 2000-11-21 Daiichi Kigensokagaku Kogyo Co Ltd Zirconium-cerium based compound oxide and manufacture of the same
JP2006036576A (en) * 2004-07-26 2006-02-09 Daiichi Kigensokagaku Kogyo Co Ltd Zirconia-based porous body and its production method
JP2007197311A (en) * 2005-12-28 2007-08-09 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium composite oxide and method for producing the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249275A (en) * 2008-04-09 2009-10-29 Daiichi Kigensokagaku Kogyo Co Ltd Cerium-zirconium-based composite oxide and its manufacturing process
US7795171B2 (en) 2008-04-09 2010-09-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium based compound oxide and production method thereof
EP2108621A1 (en) 2008-04-09 2009-10-14 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Cerium-zirconium based compound oxide and production method thereof
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder
WO2010103870A1 (en) * 2009-03-09 2010-09-16 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and method for purifying exhaust gas
JP2012533499A (en) * 2009-07-17 2012-12-27 ロデイア・オペラシヨン Composition comprising cerium oxide and zirconium oxide with specific porosity, its preparation method and its use in catalysis
KR101428354B1 (en) 2010-05-06 2014-08-07 로디아 오퍼레이션스 Composition containing oxides of zirconium, cerium and at least one other rare earth and having a specific porosity, method for preparing same and use thereof in catalysis
JP2013525255A (en) * 2010-05-06 2013-06-20 ロデイア・オペラシヨン Compositions comprising zirconium, cerium and at least one other rare earth oxide and having a specific porosity, a process for preparing them, and their use in catalysis
JP2014506221A (en) * 2010-11-30 2014-03-13 ロデイア・オペラシヨン Composition based on zirconium oxide and at least one oxide of rare earth elements other than cerium, having a unique porosity, its production process and its use in catalysis
JPWO2013073381A1 (en) * 2011-11-16 2015-04-02 株式会社三徳 Complex oxide
WO2013073381A1 (en) * 2011-11-16 2013-05-23 株式会社三徳 Composite oxide
US10258964B2 (en) 2011-11-16 2019-04-16 Santoku Corporation Composite oxide
US9707543B2 (en) 2012-09-14 2017-07-18 Mitsui Mining & Smelting Co., Ltd. Exhaust-gas-purification catalyst carrier
WO2014041984A1 (en) * 2012-09-14 2014-03-20 三井金属鉱業株式会社 Exhaust-gas-purification catalyst carrier
JP2014057904A (en) * 2012-09-14 2014-04-03 Mitsui Mining & Smelting Co Ltd Support for catalyst for exhaust gas purification
US9956543B2 (en) 2014-03-28 2018-05-01 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body and method for producing same
EP3085667A4 (en) * 2014-03-28 2016-12-07 Daiichi Kigenso Kagaku Kogyo Zirconia-based porous body and method for producing same
WO2015145787A1 (en) * 2014-03-28 2015-10-01 第一稀元素化学工業株式会社 Zirconia-based porous body and method for producing same
US10196313B2 (en) 2016-03-30 2019-02-05 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia fine powder and production method therefor
WO2020195973A1 (en) 2019-03-28 2020-10-01 第一稀元素化学工業株式会社 Zirconia-based porous body
JP7240482B2 (en) 2019-03-28 2023-03-15 第一稀元素化学工業株式会社 Zirconia-based porous body
US11945727B2 (en) 2019-03-28 2024-04-02 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body
JPWO2020195973A1 (en) * 2019-03-28 2021-10-14 第一稀元素化学工業株式会社 Zirconia-based porous body
CN113631515A (en) * 2019-03-28 2021-11-09 第一稀元素化学工业株式会社 Zirconia porous body
CN113631515B (en) * 2019-03-28 2023-08-29 第一稀元素化学工业株式会社 Zirconia porous body
WO2021020104A1 (en) 2019-07-30 2021-02-04 第一稀元素化学工業株式会社 Zirconia-based composite oxide and method for manufacturing zirconia-based composite oxide
WO2021049525A1 (en) 2019-09-10 2021-03-18 三井金属鉱業株式会社 Powdered complex oxide containing elemental cerium and element zirconium, exhaust gas purification catalyst composition using same, and method for producing same
CN115968355A (en) * 2021-08-12 2023-04-14 第一稀元素化学工业株式会社 Zirconia-based porous body and method for producing zirconia-based porous body
US11958039B2 (en) 2021-08-12 2024-04-16 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconia-based porous body and method for manufacturing zirconia-based porous body
WO2022107900A1 (en) 2021-08-12 2022-05-27 第一稀元素化学工業株式会社 Zirconia-based porous body and production method for zirconia-based porous body
JP2023067461A (en) * 2021-11-01 2023-05-16 第一稀元素化学工業株式会社 zirconium hydroxide powder
WO2023074665A1 (en) * 2021-11-01 2023-05-04 第一稀元素化学工業株式会社 Zirconium hydroxide powder and method for producing zirconium hydroxide powder
WO2023074671A1 (en) * 2021-11-01 2023-05-04 第一稀元素化学工業株式会社 Zirconium hydroxide powder
JP2023067405A (en) * 2021-11-01 2023-05-16 第一稀元素化学工業株式会社 Zirconium hydroxide powder and manufacturing method of zirconium hydroxide powder
JP7162716B1 (en) 2021-11-01 2022-10-28 第一稀元素化学工業株式会社 zirconium hydroxide powder
JP7203180B1 (en) 2021-11-01 2023-01-12 第一稀元素化学工業株式会社 Zirconium hydroxide powder and method for producing zirconium hydroxide powder
JP7137035B1 (en) 2022-03-25 2022-09-13 第一稀元素化学工業株式会社 Zirconia powder material
WO2023182196A1 (en) * 2022-03-25 2023-09-28 第一稀元素化学工業株式会社 Zirconia-based powder material
JP2023142376A (en) * 2022-03-25 2023-10-05 第一稀元素化学工業株式会社 Zirconia-based powder material
WO2023238734A1 (en) * 2022-06-06 2023-12-14 第一稀元素化学工業株式会社 Porous zirconia-based composite oxide and method for manufacturing porous zirconia-based composite oxide
JP2023178603A (en) * 2022-06-06 2023-12-18 第一稀元素化学工業株式会社 Porous zirconia based composite oxide, and method of producing porous zirconia based composite oxide
JP7178526B1 (en) 2022-06-06 2022-11-25 第一稀元素化学工業株式会社 Porous zirconia-based composite oxide and method for producing porous zirconia-based composite oxide

Also Published As

Publication number Publication date
JP5063252B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5063252B2 (en) Porous zirconia-based powder and method for producing the same
US7927699B2 (en) Porous zirconia powder and production method of same
US7795171B2 (en) Cerium-zirconium based compound oxide and production method thereof
JP4789794B2 (en) Cerium-zirconium composite oxide and method for producing the same
EP1872851B1 (en) Cerium oxide-zirconium oxide-based mixed oxide and method for the production thereof
EP3085667B1 (en) Zirconia-based porous body and method for producing same
JP2006036576A (en) Zirconia-based porous body and its production method
JP7240482B2 (en) Zirconia-based porous body
US11242264B2 (en) Alumina-based composite oxide and production method for same
JP6325010B2 (en) Alumina-based composite oxide and method for producing the same
JP4928931B2 (en) Ceria-zirconia composite oxide and method for producing the same
JP6991384B1 (en) Zirconia-based porous body and method for producing zirconia-based porous body
JP2017109880A (en) Cerium-zirconium-based composite oxide and manufacturing method therefor
JP7178526B1 (en) Porous zirconia-based composite oxide and method for producing porous zirconia-based composite oxide
JP7057467B1 (en) Zirconium composite oxide and method for producing zirconium composite oxide
US11958039B2 (en) Zirconia-based porous body and method for manufacturing zirconia-based porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250