WO2020080620A1 - Preparation method of metal ion-doped ceria using solvothermal synthesis - Google Patents

Preparation method of metal ion-doped ceria using solvothermal synthesis Download PDF

Info

Publication number
WO2020080620A1
WO2020080620A1 PCT/KR2019/002794 KR2019002794W WO2020080620A1 WO 2020080620 A1 WO2020080620 A1 WO 2020080620A1 KR 2019002794 W KR2019002794 W KR 2019002794W WO 2020080620 A1 WO2020080620 A1 WO 2020080620A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal ion
ceria
doped ceria
solvent
precursor
Prior art date
Application number
PCT/KR2019/002794
Other languages
French (fr)
Korean (ko)
Inventor
정연길
손정훈
최연빈
옥지영
이재현
김봉구
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Publication of WO2020080620A1 publication Critical patent/WO2020080620A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity

Definitions

  • the present invention (i) the National R & D project implemented by the Ministry of Education (project identification number: 1345272855, project name: regional creative innovation manpower development project, research project name: development of catalyst application oxide particle manufacturing technology by chemical process, research management agency: Korea Research Foundation, Host organization: Changwon University Industry-University Cooperation Foundation, Research Period: 2015.05.01. ⁇ 2018.04.30.), (Ii) National R & D Project by Ministry of Science and ICT (Detailed Number: 2018R1A5A6075959, Project: Leading Research Center Support project, research project name: Mechatronics Convergence Components Research Center, Research Management Agency: Korea Research Foundation, Host Organization: Changwon University Industry-Academy Cooperation Foundation, Research Period: 2018.09.01.
  • Cerium oxide that is, ceria
  • SOFC solid oxide fuel cell
  • OMC oxygen gas sensor
  • ultraviolet absorber an ultraviolet absorber
  • abrasive due to its unique physical and chemical properties.
  • Ceria oxidizes / reduces oxygen according to the surrounding oxygen concentration, has excellent oxygen storage capacity, and is widely used as a catalyst that decomposes exhaust gases of automobiles and converts them into non-toxic gases. At this time, since the activity of the catalyst depends on the surface area, it is essential to obtain a high specific surface area. Nano-sized ceria has been studied with constant interest because it has better performance of oxidation / reduction and oxygen storage (OSC) when compared to bulk powder.
  • OSC oxygen storage
  • a precipitation method, a sol-gel method, and the like are representatively known, but the precipitation method and the sol-gel method require an additional high-temperature reaction process to make a powder having high crystallinity. In this process, the particles aggregate to lower the surface energy and form irregular shapes. To control this, a surfactant is added, and a process for removing the surfactant is required.
  • the technical problem to be solved by the present invention is that metal ion doping ceria is superior in thermal stability at high temperatures and has a large specific surface area, high purity and crystallinity, and is relatively free from surfactants or additional heat treatment, unlike the prior art. It is to provide a method for manufacturing at a low temperature.
  • the present invention comprises the steps of (a) adding a basic material to a cerium acetate solution to adjust the pH; (b) adding a basic substance to the metal ion precursor solution to adjust the pH; And (c) dispersing the solution obtained in each of steps (a) and (b) in a solvent, followed by a solvent heat reaction at a temperature of 90 to 160 ° C. to form a metal ion-doped ceria; A method of manufacturing a metal ion doped ceria using a synthetic method is proposed.
  • the metal ion precursor is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor.
  • nitrate based A method of manufacturing a metal ion doped ceria using a solvent heat synthesis method, which is a precursor, is proposed.
  • the solvent proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method, characterized in that it is water or a mixed solvent of water and alcohol.
  • the mixed solvent proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method, characterized in that it contains less than 75% by volume of ethanol (EtOH).
  • the basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH) or potassium hydroxide (KOH), it is proposed a method for producing a metal ion doped ceria using a solvent heat synthesis method.
  • NH 4 OH ammonium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • the solvent heat reaction proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method characterized in that it is carried out for 2 to 10 hours.
  • the present invention proposes a metal ion doped ceria produced by the above manufacturing method in another aspect of the invention.
  • the present invention proposes a catalyst for purification of exhaust gas comprising the metal ion-doped ceria as an oxygen storage capacity (OSC) material.
  • OSC oxygen storage capacity
  • metal ion-doped ceria having a high specific surface area and crystallinity can be economically synthesized at a temperature lower than the existing hydrothermal synthesis temperature (90-160 ° C) through a solvent heat synthesis method without a surfactant or additional heat treatment.
  • cerium acetate as a cerium precursor, it is possible to dramatically improve the specific surface area of the metal ion-doped ceria.
  • the present invention has various particle sizes and specific surface areas through control of process parameters such as the type of metal ions to be doped, the mixing ratio between solvents in a mixed solvent, pH, and reaction time, and exhibits higher OSC catalyst characteristics than pure ceria.
  • Metal ion doped ceria can be synthesized.
  • FIG. 1 is a process flow diagram of a method for producing a metal ion doped ceria using a solvent heat synthesis method according to the present invention.
  • FIG. 2 is a process flow diagram showing each detailed process of metal ion doping ceria synthesis using a solvent heat synthesis method in the present embodiment.
  • XRD 3 is an X-ray diffraction analysis (XRD) result for the synthesized ruthenium doped ceria (Ru-doped CeO 2 ) nano powder synthesized in the present example.
  • FIG. 4 to 8 are Ru doped amount of ruthenium doped ceria (Ru-doped CeO 2 ) nano-powder synthesized in the present embodiment (Fig. 4: 5 mol%, Fig. 5: 10 mol%, Fig. 6: 15 mol%, Figure 7: FE-TEM photograph showing the change in microstructure according to 20 mol%, Figure 8: 25 mol%).
  • the present invention relates to a novel method capable of manufacturing a metal ion doped ceria having a high specific surface area through a more economical and simple process than the conventional synthetic method.
  • a method of manufacturing a metal ion doped ceria using a solvent heat synthesis method includes: (a) adding a basic substance to a cerium acetate solution to adjust the pH; (b) adding a basic substance to the metal ion precursor solution to adjust the pH; And (c) dispersing the solutions obtained in steps (a) and (b) in a solvent, followed by solvent heat reaction at a temperature of 90 to 160 ° C. to form metal ion-doped ceria.
  • step (a) after preparing a cerium acetate solution as a cerium precursor, a basic substance is added to the solution to adjust the pH to 7 to 11.
  • cerium acetate as the cerium precursor, a metal ion doped ceria with a significantly increased specific surface area can be prepared compared to the case of using other precursors such as cerium nitrate.
  • step (c) to be described later when water is used as a dispersion medium in step (c) to be described later, the effect of increasing the specific surface area of the metal ion doped ceria is maximized by using cerium acetate as a cerium precursor, which is an organic polymer having a long unit of cerium acetate in water. This is because the dispersion is largely caused by the dielectric constant and the chains are blocked between cerium hydroxide, thereby effectively suppressing particle growth and agglomeration of the powder by the steric effect, thereby reducing the overall particle size.
  • step (b) after preparing a precursor solution of a metal ion doped with ceria, a basic substance is added to the solution to adjust the pH to 7-11.
  • the type of the metal ion precursor may be appropriately selected according to the type of metal to be doped into ceria, for example, an acetate-based precursor, an alkoxide-based precursor, or a halogenation containing the metal ion to be doped. It may be a water based (halide based) precursor, an oxyhalide based precursor or a nitrate based precursor.
  • the metal ion precursor is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor containing the metal ion according to the type of metal ion to be doped to ceria ( oxyhalide based precursors or nitrate based precursors.
  • the basic material added for the pH adjustment of each solution in the above steps (a) and (b) is not particularly limited, for example, ammonium hydroxide (NH 4 OH), potassium hydroxide (KOH), hydroxide Sodium (NaOH) or the like can be used.
  • step (c) the pH-adjusted cerium acetate solution obtained in step (a) and the pH-adjusted metal ion precursor solution in step (b) are mixed in and dispersed in a solvent, followed by 90 to 160 Metal ion-doped ceria is synthesized by a solvent heat reaction at a temperature of °C.
  • the solvent for dispersing the cerium acetate solution and the metal ion precursor solution prior to the solvent heating process in step (c) may be water or a mixed solvent of water and alcohol, wherein the alcohol is methanol, ethanol, propanol. , A mixture of one or two or more of known alcohols such as butanol and ethylene glycol can be used.
  • the content ratio of the cerium acetate solution and the metal ion precursor solution dispersed in the solvent in step (c) can be appropriately adjusted according to the desired metal ion doping amount.
  • step (c) when the reaction temperature of the solvent heat reaction performed in step (c) is less than 90 ° C., there is a problem that the solvent heat reaction is difficult to occur, and when it exceeds 160 ° C., the solvent heat reaction rate rapidly increases due to excessive heat, resulting in particles. There is a problem that the stability of the.
  • reaction time of the solvent heat reaction is less than 2 hours, there is a problem in that particle formation is difficult due to insufficient reaction, and when it exceeds 10 hours, the particle size is excessively large and the stability of the particle is also reduced. Can occur.
  • a metal ion doping ceria having a high specific surface area and crystallinity is lower than the existing hydrothermal synthesis temperature through a solvent heat synthesis method without a surfactant or additional heat treatment.
  • ceria nanopowders doped with ruthenium (Ru) ions were synthesized according to the process flow chart shown in FIG. 2.
  • an aqueous solution of cerium precursor and an aqueous solution of ruthenium ion precursor were prepared, and then the pH of each solution was adjusted to 11 using NH 4 OH. Subsequently, the aqueous solution of the cerium precursor and the solution of the ruthenium ion precursor are redispersed in a solvent (water) so that the molar ratio of Ce and Ru is 95: 5, 90:10, 85:15, 80:20 or 75:25 and stirred, followed by Teflon. It was placed in a container and subjected to a solvent heat reaction at 120 ° C. for 2 hours. Thereafter, washing was performed 5 times using water and ethanol, and drying was performed in a dryer for 24 hours to collect ceria nano powders doped with ruthenium ions.
  • Zn, Cu or Ag doped ceria is a metal ion precursor, respectively, Zinc nitrate hexahydrate [Zn (NO 3 ) 2 ⁇ 6H 2 O], Copper nitrate [Cu (NO 3 ) 2 ] or Silver nitrate hexahydrate [Ag (NO 3 ) 2 ⁇ 6H 2 O] was prepared according to the same synthesis method as above.
  • ruthenium doping ceria (Ru-doped CeO 2 ) synthesized under the conditions of 95: 5, 90:10, 85:15, 80:20, 75:25 in the molar ratio of Ru to Ce as described above. It is the result of X-ray diffraction analysis (XRD) for the nano powder. When the observed XRD phase was compared with ICSD 98-005-3995, the same peak appeared at all positions, and thus it was confirmed that ceria of a fluorite structure without a secondary phase was synthesized.
  • XRD X-ray diffraction analysis
  • Table 1 below shows the particle size, specific surface area and H 2 -TPR catalytic characterization results calculated using the Scherrer formula.
  • the ionic radii of Ce 4+ and Ce 3+ are 111 and 128.3 ⁇ at the 8th coordinate, respectively, and Ru 4+ and Ru 3+ are 76 ⁇ and 82 ⁇ at the 6th coordinate.
  • Ru 4+ and Ru 3+ are 76 ⁇ and 82 ⁇ at the 6th coordinate.
  • the specific surface area increased from 135.56 m 2 / g to 209.73 m 2 / g, but the particle size increased to 8.76 nm when compared to 20 mol% at 25 mol%.
  • the specific surface area was reduced to 157.72 m 2 / g. Nevertheless, it was confirmed that the specific surface area was much higher than that of the existing pure ceria (90-100 m 2 / g).
  • Table 2 Metal (Ru, Zn, Cu or Ag) ion doped ceria nano powder and pure ceria nano powder specific surface area and catalytic properties analysis results
  • metal (Ru, Zn, Cu or Ag) ion is 15 mol% doped
  • the calculated particle size, specific surface area, and H 2 -TPR catalyst characterization results for ceria nano powder and pure ceria nano powder are shown. According to this, although the difference in specific surface area and catalytic properties is large between metal ion doped ceria according to the type of doped metal ions, it was confirmed that all metal ion doped ceria have higher specific surface area and catalytic properties than pure ceria.
  • a metal ion doping ceria having a high specific surface area and crystallinity and exhibiting OSC catalyst characteristics higher than that of pure ceria is lower than the existing hydrothermal synthesis temperature (90 ⁇ 160 ° C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a method of preparing metal ion-doped ceria using solvothermal synthesis, the method comprising the steps of: (a) regulating the pH of a cerium acetate solution by adding an alkaline material thereto; (b) regulating the pH of a metal-ion precursor solution by adding an alkaline material thereto; and (c) after dispersing each solution obtained in steps (a) and (b) in a solvent, conducting a solvothermal reaction at 90-160℃ to form metal ion-doped ceria. According to the present invention, the metal ion-doped ceria having a high specific surface area and crystallinity can be economically synthesized via solvothermal synthesis at relatively lower temperatures (90-160℃) compared to conventional solvothermal synthesis temperatures, without surfactant or additional heat treatment, wherein, in particular, the specific surface area of the metal ion-doped ceria can be dramatically improved by using cerium acetate as a cerium precursor.

Description

용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법Method for manufacturing metal ion doped ceria using solvent heat synthesis
본 발명은, (i) 교육부 시행 국가연구개발사업(과제고유번호:1345272855, 사업명:지역창의혁신인력양성사업, 연구과제명:화학 공정에 의한 촉매응용 산화물 입자제조 기술 개발, 연구관리전문기관:한국연구재단, 주관기관:창원대학교 산학협력단, 연구기간:2015.05.01. ~ 2018.04.30.), (ii) 과학기술정보통신부 시행 국가연구개발사업(세부과제번호:2018R1A5A6075959, 사업명:선도연구센터지원사업, 연구과제명: 메카트로닉스 융합 부품 소재 연구센터, 연구관리전문기관:한국연구재단, 주관기관:창원대학교 산학협력단, 연구기간:2018.09.01. ~ 2021.08.31.), (iii) 산업통상자원부 시행 국가연구개발사업(세부과제번호:20174030201460, 사업명:에너지인력양성사업, 연구과제명:가스터빈 고온부품 고효율화 융복합 연구 및 인력양성 고급트랙, 연구관리전문기관:한국산업기술평가관리원, 주관기관:창원대학교 산학협력단, 연구기간:2017.04.01. ~ 2021.12.31.), 및 (iv) 교육부 시행 국가연구개발사업(세부과제번호:NRF-2016R1D1A3B03934054, 사업명:이공학 개인기초연구지원사업, 연구과제명:정밀 주조용 세라믹 몰드 및 중자 제작을 위한 3D 프린터용 바인더 시스템 개발, 연구관리전문기관:한국연구재단, 주관기관:창원대학교 산학협력단, 연구기간:2018.09.01. ~ 2019.10.31.)의 연구개발 지원 하에 창원대학교가 수행한 결과물로서, 금속이온 도핑 세리아를 제조하는 방법에 대한 것이다.The present invention, (i) the National R & D project implemented by the Ministry of Education (project identification number: 1345272855, project name: regional creative innovation manpower development project, research project name: development of catalyst application oxide particle manufacturing technology by chemical process, research management agency: Korea Research Foundation, Host organization: Changwon University Industry-University Cooperation Foundation, Research Period: 2015.05.01. ~ 2018.04.30.), (Ii) National R & D Project by Ministry of Science and ICT (Detailed Number: 2018R1A5A6075959, Project: Leading Research Center Support project, research project name: Mechatronics Convergence Components Research Center, Research Management Agency: Korea Research Foundation, Host Organization: Changwon University Industry-Academy Cooperation Foundation, Research Period: 2018.09.01. ~ 2021.08.31.), (Iii) Industry Trade National R & D project conducted by the Ministry of Resources and Energy (Detailed number: 20174030201460, Project name: Energy manpower training project, Research project name: Gas turbine high-temperature parts high-efficiency convergence research and manpower training advanced track, research management agency: Korea Institute of Industrial Technology Evaluation Won, Organized by: Changwon University Industry-University Cooperation Foundation, Research Period: 2017.04.01. ~ 2021.12.31.), And (iv) National R & D Project by Ministry of Education Support project, research project name: Development of a ceramic mold for precision casting and a binder system for 3D printer for core production, research management agency: Korea Research Foundation, Host organization: Changwon University Industry-University Cooperation Foundation, Research period: 2018.09.01. ~ 2019.10 As a result of Changwon University under the research and development support of .31.), It is about a method of manufacturing a metal ion doped ceria.
산화세륨(Cerium oxide) 즉, 세리아(ceria)는 특유의 물리, 화학적 성질에 의해 고체산화물 연료전지(SOFC), 산소가스센서, 자외선 흡수제(UV absorbent), 연마제 등 매우 광범위한 분야로 응용되어 사용된다. 세리아는 주위의 산소 농도에 따라 산화/환원 작용을 하며 우수한 산소 저장 능력을 가지고 있으며, 특히 자동차의 배기 가스를 분해하여 무독성의 가스로 변환하는 촉매로써 널리 응용되고 있다. 이 때 촉매의 활동도는 표면 면적에 의존하므로, 높은 값의 비표면적을 얻는 것이 핵심이다. 나노 크기의 세리아는 벌크 상태의 분말과 비교했을 때 더 우수한 성능의 산화/환원 작용 및 산소저장능력(OSC) 성능을 가지므로 꾸준히 관심을 가지고 연구되어 왔다.  Cerium oxide, that is, ceria, is applied to a very wide range of fields, such as a solid oxide fuel cell (SOFC), an oxygen gas sensor, an ultraviolet absorber, and an abrasive, due to its unique physical and chemical properties. . Ceria oxidizes / reduces oxygen according to the surrounding oxygen concentration, has excellent oxygen storage capacity, and is widely used as a catalyst that decomposes exhaust gases of automobiles and converts them into non-toxic gases. At this time, since the activity of the catalyst depends on the surface area, it is essential to obtain a high specific surface area. Nano-sized ceria has been studied with constant interest because it has better performance of oxidation / reduction and oxygen storage (OSC) when compared to bulk powder.
한편, 세리아 나노 입자를 합성하는 방법으로는 대표적으로 침전법, 졸겔법 등이 알려져 있으나, 침전법과 졸겔법은 높은 결정성을 가지는 분말을 만들기 위해 추가적인 고온 반응 공정을 필요로 한다. 이 과정에서 입자들은 표면 에너지를 낮추기 위해 응집이 되며, 불규칙한 모양을 형성한다. 이를 제어하기 위해 계면활성제를 첨가하며, 계면활성제를 제거하기 위한 공정을 필요로 한다.On the other hand, as a method for synthesizing ceria nanoparticles, a precipitation method, a sol-gel method, and the like are representatively known, but the precipitation method and the sol-gel method require an additional high-temperature reaction process to make a powder having high crystallinity. In this process, the particles aggregate to lower the surface energy and form irregular shapes. To control this, a surfactant is added, and a process for removing the surfactant is required.
본 발명이 해결하고자 하는 기술적 과제는, 금속이온이 도핑되어 고온에서의 열적 안정성이 뛰어나고 큰 비표면적, 고순도 및 결정성을 가지는 금속이온 도핑 세리아를 종래 기술과 달리 계면활성제나 추가 열처리 필요 없이 상대적으로 낮은 온도에서 제조하는 방법을 제공하는 것이다.The technical problem to be solved by the present invention is that metal ion doping ceria is superior in thermal stability at high temperatures and has a large specific surface area, high purity and crystallinity, and is relatively free from surfactants or additional heat treatment, unlike the prior art. It is to provide a method for manufacturing at a low temperature.
상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및 (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계;를 포함하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In order to achieve the above technical problem, the present invention comprises the steps of (a) adding a basic material to a cerium acetate solution to adjust the pH; (b) adding a basic substance to the metal ion precursor solution to adjust the pH; And (c) dispersing the solution obtained in each of steps (a) and (b) in a solvent, followed by a solvent heat reaction at a temperature of 90 to 160 ° C. to form a metal ion-doped ceria; A method of manufacturing a metal ion doped ceria using a synthetic method is proposed.
또한, 상기 단계 (b)에서 상기 금속이온 전구체는, 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, in the step (b), the metal ion precursor is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor. (nitrate based) A method of manufacturing a metal ion doped ceria using a solvent heat synthesis method, which is a precursor, is proposed.
또한, 상기 용매는 물 또는 물과 알코올의 혼합용매인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the solvent proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method, characterized in that it is water or a mixed solvent of water and alcohol.
또한, 상기 혼합용매는 75 부피% 이하의 에탄올(EtOH)을 포함하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the mixed solvent proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method, characterized in that it contains less than 75% by volume of ethanol (EtOH).
또한, 상기 염기성 물질은 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH) or potassium hydroxide (KOH), it is proposed a method for producing a metal ion doped ceria using a solvent heat synthesis method.
또한, 상기 용매열 반응은 2 내지 10 시간 동안 실시하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법을 제안한다.In addition, the solvent heat reaction proposes a method for producing a metal ion doped ceria using a solvent heat synthesis method characterized in that it is carried out for 2 to 10 hours.
그리고, 본 발명은 발명의 다른 측면에서 상기 제조방법에 의해 제조된 금속이온 도핑 세리아를 제안한다.And, the present invention proposes a metal ion doped ceria produced by the above manufacturing method in another aspect of the invention.
나아가. 본 발명은 발명의 또 다른 측면에서 상기 금속이온 도핑 세리아를 산소저장능력(oxygen storage capacity, OSC) 물질로 포함하는 배기가스 정화용 촉매를 제안한다.Furthermore. In another aspect of the invention, the present invention proposes a catalyst for purification of exhaust gas comprising the metal ion-doped ceria as an oxygen storage capacity (OSC) material.
본 발명에 따르면, 계면활성제나 추가 열처리 없이 용매열 합성법을 통해 고비표면적 및 결정성을 가지는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있으며, 특히, 세륨 전구체로서 세륨 아세테이트(cerium acetate)를 사용함으로써 금속이온 도핑 세리아의 비표면적을 획기적으로 향상시킬 수 있다.According to the present invention, metal ion-doped ceria having a high specific surface area and crystallinity can be economically synthesized at a temperature lower than the existing hydrothermal synthesis temperature (90-160 ° C) through a solvent heat synthesis method without a surfactant or additional heat treatment. , By using cerium acetate as a cerium precursor, it is possible to dramatically improve the specific surface area of the metal ion-doped ceria.
또한, 본 발명에 의하면, 도핑되는 금속 이온의 종류, 혼합용매의 용매간 혼합 비율, pH, 반응시간 등의 공정 변수의 제어를 통해 다양한 입도 및 비표면적을 가지며 순수 세리아보다 높은 OSC 촉매특성을 나타내는 금속이온 도핑 세리아를 합성할 수 있다.In addition, according to the present invention, it has various particle sizes and specific surface areas through control of process parameters such as the type of metal ions to be doped, the mixing ratio between solvents in a mixed solvent, pH, and reaction time, and exhibits higher OSC catalyst characteristics than pure ceria. Metal ion doped ceria can be synthesized.
도 1은 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법의 공정 흐름도이다.1 is a process flow diagram of a method for producing a metal ion doped ceria using a solvent heat synthesis method according to the present invention.
도 2는 본원 실시예에서 용매열 합성법을 이용한 금속이온 도핑 세리아 합성의 각 세부 공정을 나타낸 공정 흐름도이다.2 is a process flow diagram showing each detailed process of metal ion doping ceria synthesis using a solvent heat synthesis method in the present embodiment.
도 3은 본원 실시예에서 합성된 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말에 대한 X-선 회절분석(XRD) 결과이다.3 is an X-ray diffraction analysis (XRD) result for the synthesized ruthenium doped ceria (Ru-doped CeO 2 ) nano powder synthesized in the present example.
도 4 내지 도 8은 본원 실시예에서 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말의 Ru 도핑량(도 4: 5 mol%, 도 5: 10 mol%, 도 6: 15 mol%, 도 7: 20 mol%, 도 8: 25 mol%)에 따른 미세구조 변화를 보여주는 FE-TEM 사진이다.4 to 8 are Ru doped amount of ruthenium doped ceria (Ru-doped CeO 2 ) nano-powder synthesized in the present embodiment (Fig. 4: 5 mol%, Fig. 5: 10 mol%, Fig. 6: 15 mol%, Figure 7: FE-TEM photograph showing the change in microstructure according to 20 mol%, Figure 8: 25 mol%).
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In the description of the present invention, when it is determined that detailed descriptions of related known functions or configurations may unnecessarily obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The embodiments according to the concept of the present invention may be modified in various ways and have various forms, and thus, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention to a specific disclosure form, and it should be understood to include all modifications, equivalents, or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, terms such as “include” or “have” are intended to indicate that a feature, number, step, action, component, part, or combination thereof described is present, and one or more other features or numbers. It should be understood that it does not preclude the presence or addition possibilities of, steps, actions, components, parts or combinations thereof.
이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.
본 발명은, 기존의 합성방법에 비해 보다 경제적이고 간단한 공정을 통해 고비표면적을 가지는 금속이온 도핑 세리아를 제조할 수 있는 신규한 방법에 대한 것이다.The present invention relates to a novel method capable of manufacturing a metal ion doped ceria having a high specific surface area through a more economical and simple process than the conventional synthetic method.
구체적으로, 도 1에 도시한 바와 같이 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법은, (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및 (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계를 포함한다.Specifically, as shown in Figure 1, a method of manufacturing a metal ion doped ceria using a solvent heat synthesis method according to the present invention includes: (a) adding a basic substance to a cerium acetate solution to adjust the pH; (b) adding a basic substance to the metal ion precursor solution to adjust the pH; And (c) dispersing the solutions obtained in steps (a) and (b) in a solvent, followed by solvent heat reaction at a temperature of 90 to 160 ° C. to form metal ion-doped ceria.
상기 단계 (a)에서는 세륨 전구체로서 세륨 아세테이트(cerium acetate) 용액을 준비한 후, 상기 용액에 염기성 물질을 가해 pH를 7 내지 11로 조절한다.In step (a), after preparing a cerium acetate solution as a cerium precursor, a basic substance is added to the solution to adjust the pH to 7 to 11.
본 발명에서는 세륨 전구체로서 상기와 같이 세륨 아세테이트를 사용함으로써 세륨 아세테이트(cerium nitrate) 등 다른 전구체를 사용하는 경우에 비해 비표면적이 현저히 증가된 금속이온 도핑 세리아를 제조할 수 있다.In the present invention, by using cerium acetate as the cerium precursor, a metal ion doped ceria with a significantly increased specific surface area can be prepared compared to the case of using other precursors such as cerium nitrate.
특히, 후술할 단계 (c)에서 분산매로서 물을 사용할 경우에 세륨 아세테이트를 세륨 전구체로 사용함에 따른 금속이온 도핑 세리아의 비표면적 증가 효과가 극대화되는데, 이는 세륨 아세테이트의 단위체가 긴 유기 고분자로 물에서 유전율에 의해 분산이 크게 일어나고 세륨 하이드록사이드(cerium hydroxide) 사이에 사슬들이 가로막고 있어 입체 효과(steric effect)에 의해 입자 성장 및 분말의 응집이 효과적으로 억제되어 전체적인 입자 크기가 감소하기 때문이다.In particular, when water is used as a dispersion medium in step (c) to be described later, the effect of increasing the specific surface area of the metal ion doped ceria is maximized by using cerium acetate as a cerium precursor, which is an organic polymer having a long unit of cerium acetate in water. This is because the dispersion is largely caused by the dielectric constant and the chains are blocked between cerium hydroxide, thereby effectively suppressing particle growth and agglomeration of the powder by the steric effect, thereby reducing the overall particle size.
다음으로, 상기 단계 (b)에서는 세리아에 도핑되는 금속이온의 전구체 용액을 준비한 후, 상기 용액에 염기성 물질을 가해 pH를 7 내지 11로 조절한다. Next, in step (b), after preparing a precursor solution of a metal ion doped with ceria, a basic substance is added to the solution to adjust the pH to 7-11.
상기 금속이온 전구체 종류는 세리아에 도핑하고자 하는 금속의 종류에 따라 적절히 선택할 수 있으며, 예를 들면, 도핑하고자 하는 금속이온을 포함하는 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체일 수 있다.The type of the metal ion precursor may be appropriately selected according to the type of metal to be doped into ceria, for example, an acetate-based precursor, an alkoxide-based precursor, or a halogenation containing the metal ion to be doped. It may be a water based (halide based) precursor, an oxyhalide based precursor or a nitrate based precursor.
상기 금속이온 전구체는 세리아에 도핑하고자 하는 금속이온의 종류에 따라 해당 금속이온을 포함하는 아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체 등에서 선택할 수 있다.The metal ion precursor is an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor containing the metal ion according to the type of metal ion to be doped to ceria ( oxyhalide based precursors or nitrate based precursors.
하지만, 산화수가 +2인 금속 이온(Ru, Zn, Cu, Ag, Ba, Sr, Sn 등)을 도핑할 경우 순수 세리아보다 촉매 특성보다 우수한 금속이온 도핑 세리아 합성이 가능하며, 또한, 순수 세리아의 이온반경보다 도핑되는 금속이온의 이온반경이 더 작을수록 격자의 축소 정도가 증가하여 입자크기를 감소시키고 비표면적을 증가시켜 결과적으로 촉매반응성을 보다 증대시킬 수 있으므로, 이에 해당되는 금속이온을 포함하는 전구체를 사용하는 것이 보다 바람직하다.However, when doping metal ions having an oxidation number of +2 (Ru, Zn, Cu, Ag, Ba, Sr, Sn, etc.), it is possible to synthesize metal ion doping ceria that is superior to catalytic properties than pure ceria. The smaller the ion radius of the metal ion to be doped than the ion radius, the more the lattice shrinkage increases, thereby reducing the particle size and increasing the specific surface area. As a result, catalytic reactivity can be further increased. It is more preferable to use a precursor.
한편, 상기 단계 (a) 및 (b)에서 각 용액의 pH 조절을 위해 첨가되는 염기성 물질로는 그 종류가 특별히 제한되지 않으며, 일례로 수산화암모늄(NH4OH), 수산화칼륨(KOH), 수산화나트륨(NaOH) 등을 사용할 수 있다.On the other hand, the basic material added for the pH adjustment of each solution in the above steps (a) and (b) is not particularly limited, for example, ammonium hydroxide (NH 4 OH), potassium hydroxide (KOH), hydroxide Sodium (NaOH) or the like can be used.
다음으로, 상기 단계 (c)에서는 상기 단계 (a)에서 얻어진 pH 조절된 세륨 아세테이트 용액과 상기 단계 (b)에서 pH 조절된 금속이온 전구체 용액 모두를 용매에 넣고 혼합 및 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 합성한다.Next, in step (c), the pH-adjusted cerium acetate solution obtained in step (a) and the pH-adjusted metal ion precursor solution in step (b) are mixed in and dispersed in a solvent, followed by 90 to 160 Metal ion-doped ceria is synthesized by a solvent heat reaction at a temperature of ℃.
본 단계 (c)에서 용매가열 공정에 앞서 세륨 아세테이트 용액과 금속이온 전구체 용액을 분산시키기 위한 용매는 물, 또는 물과 알코올의 혼합용매를 사용할 수 있으며, 이때, 상기 알코올로는 메탄올, 에탄올, 프로판올, 부탄올, 에틸렌글리콜 등의 공지의 알코올 중에서 1종 또는 2종 이상을 혼합한 것을 사용할 수 있다.The solvent for dispersing the cerium acetate solution and the metal ion precursor solution prior to the solvent heating process in step (c) may be water or a mixed solvent of water and alcohol, wherein the alcohol is methanol, ethanol, propanol. , A mixture of one or two or more of known alcohols such as butanol and ethylene glycol can be used.
또한, 본 단계 (c)에서 용매에 분산되는 세륨 아세테이트 용액 및 금속이온 전구체 용액의 함량비는 원하는 금속이온 도핑량에 맞춰 적절히 조절할 수 있다.In addition, the content ratio of the cerium acetate solution and the metal ion precursor solution dispersed in the solvent in step (c) can be appropriately adjusted according to the desired metal ion doping amount.
그리고, 본 단계 (c)에서 이루어지는 용매열 반응의 반응온도가 90 ℃ 미만인 경우에는 용매열 반응이 일어나기 어려운 문제가 있으며, 160 ℃를 초과하는 경우에는 과도한 열로 인해 용매열 반응속도가 급격히 증가하여 입자의 안정성이 저하되는 문제가 있다.In addition, when the reaction temperature of the solvent heat reaction performed in step (c) is less than 90 ° C., there is a problem that the solvent heat reaction is difficult to occur, and when it exceeds 160 ° C., the solvent heat reaction rate rapidly increases due to excessive heat, resulting in particles. There is a problem that the stability of the.
또한, 상기 용매열 반응의 반응 시간이 2 시간 미만인 경우에는 충분한 반응이 일어나지 않아 입자형성이 어려운 문제가 있으며, 10 시간을 초과하는 경우에는 입자의 크기가 과도하게 커지고 입자의 안정성도 저하되는 문제가 발생할 수 있다.In addition, if the reaction time of the solvent heat reaction is less than 2 hours, there is a problem in that particle formation is difficult due to insufficient reaction, and when it exceeds 10 hours, the particle size is excessively large and the stability of the particle is also reduced. Can occur.
전술한 본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법에 의하면, 계면활성제나 추가 열처리 없이 용매열 합성법을 통해 고비표면적 및 결정성을 가지는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있으며, 특히, 세륨 전구체로서 세륨 아세테이트(cerium acetate)를 사용함으로써 금속이온 도핑 세리아의 비표면적을 획기적으로 향상시킬 수 있으며, 또한, 도핑되는 금속 이온의 종류, 혼합용매의 용매간 혼합 비율, pH, 반응시간 등의 공정 변수의 제어를 통해 다양한 입도 및 비표면적을 가지며 순수 세리아보다 높은 OSC 촉매특성을 나타내는 금속이온 도핑 세리아를 합성할 수 있다.According to the above-described method for preparing a metal ion doping ceria using a solvent heat synthesis method according to the present invention, a metal ion doping ceria having a high specific surface area and crystallinity is lower than the existing hydrothermal synthesis temperature through a solvent heat synthesis method without a surfactant or additional heat treatment. It can be synthesized economically at a temperature (90 ~ 160 ℃), and in particular, by using cerium acetate as a cerium precursor, it is possible to dramatically improve the specific surface area of metal ion doping ceria, and also doped metal ion Metal ion doped ceria having various particle size and specific surface area and showing higher OSC catalyst characteristics than pure ceria can be synthesized through control of process variables such as, mixture ratio between solvents of mixed solvent, pH, reaction time, etc.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail with reference to Examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.The embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not interpreted to be limited to the embodiments described below. The embodiments of the present specification are provided to more fully describe the present specification to those skilled in the art.
<실시예><Example>
본 실시예에서는 도 2에 도시된 공정 흐름도에 따라 루테늄(Ru) 이온이 도핑된 세리아 나노분말을 합성하였다.In this example, ceria nanopowders doped with ruthenium (Ru) ions were synthesized according to the process flow chart shown in FIG. 2.
세륨 전구체(cerium precursor)로서 Cerium(Ⅲ) acetate hy-drate [Ce(CH3CO2)3·xH2O]를, 루테늄 이온 전구체로는 Ruthenium(Ⅲ) chloride [RuCl3·nH2O]를 사용하였으며, 물은 2차 증류수를 사용하였다. Cerium (III) acetate hy-drate [Ce (CH 3 CO 2 ) 3 · xH 2 O] as cerium precursor, and Ruthenium (III) chloride [RuCl 3 · nH 2 O] as ruthenium ion precursor. Secondary distilled water was used as the water.
먼저, 세륨 전구체 수용액 및 루테늄 이온 전구체 수용액을 준비한 후 NH4OH를 이용하여 각 용액의 pH를 11로 맞췄다. 이어서, 세륨 전구체 수용액과 루테늄 이온 전구체 수용액을 Ce와 Ru의 몰 비가 95:5, 90:10, 85:15, 80:20 또는 75:25가 되도록 용매(물)에 재분산시키고 교반한 후에 테플론 용기에 넣고 120℃에서 2시간 동안 용매열 반응을 실시하였다. 그 후 물과 에탄올을 이용하여 5회 세척하고 건조기에서 24시간동안 건조를 실시하여 루테늄 이온이 도핑된 세리아 나노 분말을 회수하였다.First, an aqueous solution of cerium precursor and an aqueous solution of ruthenium ion precursor were prepared, and then the pH of each solution was adjusted to 11 using NH 4 OH. Subsequently, the aqueous solution of the cerium precursor and the solution of the ruthenium ion precursor are redispersed in a solvent (water) so that the molar ratio of Ce and Ru is 95: 5, 90:10, 85:15, 80:20 or 75:25 and stirred, followed by Teflon. It was placed in a container and subjected to a solvent heat reaction at 120 ° C. for 2 hours. Thereafter, washing was performed 5 times using water and ethanol, and drying was performed in a dryer for 24 hours to collect ceria nano powders doped with ruthenium ions.
Zn, Cu 또는 Ag이 도핑된 세리아는 금속이온 전구체로서 각각 Zinc nitrate hexahydrate [Zn(NO3)2·6H2O], Copper nitrate [Cu(NO3)2] 또는 Silver nitrate hexahydrate [Ag(NO3)2·6H2O]를 사용해 상기와 동일한 합성방법에 따라 제조하였다.Zn, Cu or Ag doped ceria is a metal ion precursor, respectively, Zinc nitrate hexahydrate [Zn (NO 3 ) 2 · 6H 2 O], Copper nitrate [Cu (NO 3 ) 2 ] or Silver nitrate hexahydrate [Ag (NO 3 ) 2 · 6H 2 O] was prepared according to the same synthesis method as above.
도 3은 상기와 같이 Ce에 대한 Ru의 몰비를 각각 95:5, 90:10, 85:15, 80:20, 75:25의 조건으로 합성한 합성된 루테늄 도핑 세리아(Ru-doped CeO2) 나노 분말에 대한 X-선 회절분석(XRD) 결과이다. 관측된 XRD 상을 ICSD 98-005-3995와 대조했을 때 모든 위치에서 동일한 피크가 나타났으므로, 이차상이 없는 형석 구조(Fluorite structure)의 세리아가 합성된 것으로 확인되었다.3 is a synthesized ruthenium doping ceria (Ru-doped CeO 2 ) synthesized under the conditions of 95: 5, 90:10, 85:15, 80:20, 75:25 in the molar ratio of Ru to Ce as described above. It is the result of X-ray diffraction analysis (XRD) for the nano powder. When the observed XRD phase was compared with ICSD 98-005-3995, the same peak appeared at all positions, and thus it was confirmed that ceria of a fluorite structure without a secondary phase was synthesized.
아래 표 1(Ru-doped CeO2 나노 분말의 비표면적 및 촉매 특성분석 결과)에는 Scherrer 공식을 이용하여 계산한 입자의 크기, 비표면적 및 H2-TPR 촉매 특성분석 결과를 나타내었다. 제조된 루테늄 도핑 세리아(Ru-doped CeO2)의 평균 입자 크기는 9nm 미만으로서 순수 세리아와 비교했을 때보다 크기가 작아진 것을 확인하였다. Ce4+와 Ce3+의 이온 반지름은 8 배위에 각각 111 와 128.3Å 이며, Ru4+와 Ru3+는 6 배위에 76Å 과 82Å으로 나타난다. 이온 반경을 고려했을 때, 세리아 격자 내에 상대적으로 작은 크기의 Ru 이온이 치환되어서 격자 수축이 발생하여 Ru 도핑량이 늘어날수록 입자 크기가 작아진 것으로 보인다. Table 1 below (specific surface area and catalytic characterization results of Ru-doped CeO 2 nanopowder) shows the particle size, specific surface area and H 2 -TPR catalytic characterization results calculated using the Scherrer formula. The average particle size of the prepared ruthenium-doped ceria (Ru-doped CeO 2 ) was less than 9 nm, which was confirmed to be smaller than that of pure ceria. The ionic radii of Ce 4+ and Ce 3+ are 111 and 128.3 Å at the 8th coordinate, respectively, and Ru 4+ and Ru 3+ are 76 Å and 82 에 at the 6th coordinate. Considering the ion radius, it seems that the relatively small size of Ru ions is substituted in the ceria lattice, resulting in lattice shrinkage, resulting in a smaller particle size as the amount of Ru doping increases.
세리아에 Ru 도핑량이 20 mol%까지 증가할수록 비표면적이 135.56m2/g 에서 209.73m2/g 로 증가하였으나, Ru 도핑량이 25 mol%에서는 20mol%에 비교했을 때 입자 크기가 8.76nm 로 증가하며 비표면적이 157.72m2/g 으로 감소하였다. 그럼에도 불구하고, 기존 순수 세리아의 비표면적(90~100m2/g)보다 훨씬 높은 비표면적을 가지는 것으로 확인되었다.As the doping amount of ceria increased to 20 mol%, the specific surface area increased from 135.56 m 2 / g to 209.73 m 2 / g, but the particle size increased to 8.76 nm when compared to 20 mol% at 25 mol%. The specific surface area was reduced to 157.72 m 2 / g. Nevertheless, it was confirmed that the specific surface area was much higher than that of the existing pure ceria (90-100 m 2 / g).
또한, Ru 도핑량이 15mol% 이하인 루테늄 도핑 세리아(Ru-doped CeO2)의 촉매특성은 기존 순수 세리아의 촉매특성(H2 소비량: 243.27 umol/g)보다 2~3배 이상 우수한 것으로 확인되었다.In addition, it was confirmed that the catalytic properties of ruthenium doped ceria (Ru-doped CeO 2 ) having a Ru doping amount of 15 mol% or less is 2-3 times higher than the catalytic properties of H pure ceria (H 2 consumption: 243.27 umol / g).
Figure PCTKR2019002794-appb-T000001
Figure PCTKR2019002794-appb-T000001
도 4 내지 도 8은 루테늄 도핑 세리아(Ru-doped CeO2)의 FE-TEM 측정 결과로서, Ru 함량이 늘어남에 따라 로드(rod) 상의 발생이 증가하는 것이 확인되었다. EDS 측정 결과 로드 상은 순수 세리아 상으로 관측되었다.4 to 8 are FE-TEM measurement results of ruthenium doped ceria (Ru-doped CeO 2 ), it was confirmed that the occurrence of the rod (rod) increases as the Ru content increases. The EDS measurement showed that the rod phase was a pure ceria phase.
아래 표 2(금속(Ru, Zn, Cu 또는 Ag)이온 도핑 세리아 나노 분말 및 순수 세리아 나노 분말의 비표면적 및 촉매특성 분석결과)에는 금속(Ru, Zn, Cu 또는 Ag)이온이 15mol% 도핑된 세리아 나노 분말 및 순수 세리아 나노 분말에 대해 계산된 입자 크기, 비표면적 및 H2-TPR 촉매 특성분석 결과를 나타내었다. 이에 따르면, 금속이온 도핑 세리아 간에는 도핑된 금속 이온의 종류에 따라 비표면적 및 촉매 특성의 차이가 크긴 하지만, 모든 금속이온 도핑 세리아가 순수한 세리아에 비해 높은 비표면적 및 촉매 특성을 가지는 것으로 확인되었다.Table 2 (Metal (Ru, Zn, Cu or Ag) ion doped ceria nano powder and pure ceria nano powder specific surface area and catalytic properties analysis results) metal (Ru, Zn, Cu or Ag) ion is 15 mol% doped The calculated particle size, specific surface area, and H 2 -TPR catalyst characterization results for ceria nano powder and pure ceria nano powder are shown. According to this, although the difference in specific surface area and catalytic properties is large between metal ion doped ceria according to the type of doped metal ions, it was confirmed that all metal ion doped ceria have higher specific surface area and catalytic properties than pure ceria.
Figure PCTKR2019002794-appb-T000002
Figure PCTKR2019002794-appb-T000002
본 발명에 따른 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법에 의하면, 고비표면적 및 결정성을 가지며 순수 세리아보다 높은 OSC 촉매특성을 나타내는 금속이온 도핑 세리아를 기존 수열합성 온도보다도 낮은 온도(90~160℃)에서 경제적으로 합성할 수 있다.According to the method of manufacturing a metal ion doping ceria using a solvent heat synthesis method according to the present invention, a metal ion doping ceria having a high specific surface area and crystallinity and exhibiting OSC catalyst characteristics higher than that of pure ceria is lower than the existing hydrothermal synthesis temperature (90 ~ 160 ° C).

Claims (8)

  1. (a) 세륨 아세테이트(cerium acetate) 용액에 염기성 물질을 첨가해 pH를 조절하는 단계;(A) adding a basic material to the cerium acetate solution to adjust the pH;
    (b) 금속이온 전구체 용액에 염기성 물질을 첨가해 pH를 조절하는 단계; 및(b) adding a basic substance to the metal ion precursor solution to adjust the pH; And
    (c) 상기 단계 (a) 및 (b) 각각에서 얻어진 용액을 용매에 분산시킨 후, 90 내지 160 ℃의 온도에서 용매열 반응시켜 금속이온 도핑된 세리아를 형성시키는 단계;(c) dispersing the solutions obtained in steps (a) and (b) in a solvent, followed by solvent heat reaction at a temperature of 90 to 160 ° C. to form metal ion-doped ceria;
    를 포함하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.Method for producing a metal ion doped ceria using a solvent heat synthesis method comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 단계 (b)에서 상기 금속이온 전구체는, The metal ion precursor in the step (b),
    아세테이트계(acetate based) 전구체, 알콕시드계(alkoxide based) 전구체, 할로겐화물계(halide based) 전구체, 옥시할로겐화물계(oxyhalide based) 전구체 또는 나이트레이트계(nitrate based) 전구체인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.Solvent heat synthesis method characterized by being an acetate-based precursor, an alkoxide-based precursor, a halide-based precursor, an oxyhalide-based precursor, or a nitrate-based precursor Method of manufacturing a metal ion doped ceria using.
  3. 제1항에 있어서,According to claim 1,
    상기 용매는 물 또는 물과 알코올의 혼합용매인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.The solvent is a method of producing a metal ion doped ceria using a solvent heat synthesis method, characterized in that a mixed solvent of water or water and alcohol.
  4. 제3항에 있어서,According to claim 3,
    상기 혼합용매는 75 부피% 이하의 에탄올(EtOH)을 포함하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.The mixed solvent is 75% by volume or less of ethanol (EtOH) method of manufacturing a metal ion doped ceria using a solvent heat synthesis method, characterized in that.
  5. 제1항에 있어서,According to claim 1,
    상기 염기성 물질은 수산화암모늄(NH4OH), 수산화나트륨(NaOH) 또는 수산화칼륨(KOH)인 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.The basic material is ammonium hydroxide (NH 4 OH), sodium hydroxide (NaOH) or potassium hydroxide (KOH), characterized in that the metal ion doping ceria production method using a solvent heat synthesis method.
  6. 제1항에 있어서,According to claim 1,
    상기 용매열 반응은 2 내지 10 시간 동안 실시하는 것을 특징으로 하는 용매열 합성법을 이용한 금속이온 도핑 세리아의 제조방법.The method of producing a metal ion doped ceria using a solvothermal synthesis method, characterized in that the solvothermal reaction is performed for 2 to 10 hours.
  7. 제1항 내지 제6항 중 어느 한 항에 기재된 방법에 의해 제조된 금속이온 도핑 세리아.A metal ion-doped ceria produced by the method according to claim 1.
  8. 제7항의 금속이온 도핑 세리아를 산소저장능력(oxygen storage capacity, OSC) 물질로 포함하는 배기가스 정화용 촉매.A catalyst for purification of exhaust gas comprising the metal ion doping ceria of claim 7 as an oxygen storage capacity (OSC) material.
PCT/KR2019/002794 2018-10-17 2019-03-11 Preparation method of metal ion-doped ceria using solvothermal synthesis WO2020080620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0123648 2018-10-17
KR1020180123648A KR102162974B1 (en) 2018-10-17 2018-10-17 Method for synthesizing metal ion-doped ceria using solvothermal synthesis

Publications (1)

Publication Number Publication Date
WO2020080620A1 true WO2020080620A1 (en) 2020-04-23

Family

ID=70283099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002794 WO2020080620A1 (en) 2018-10-17 2019-03-11 Preparation method of metal ion-doped ceria using solvothermal synthesis

Country Status (2)

Country Link
KR (1) KR102162974B1 (en)
WO (1) WO2020080620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067607A (en) * 2020-09-09 2020-12-11 深圳九星印刷包装集团有限公司 Carbon monoxide indicating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566384B1 (en) * 2021-02-03 2023-08-10 성균관대학교산학협력단 Cmp slurry composition and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023070A (en) * 1987-06-29 1991-06-11 Rhone-Poulenc Chimie Process for obtaining a ceric oxide
US20090208398A1 (en) * 2008-02-15 2009-08-20 Sheng Li Nanoparticle synthesis by solvothermal process
CN104628025A (en) * 2015-02-15 2015-05-20 渤海大学 Solvothermal preparation method of silicon-surface vertically-assembled CeO2 nanorod film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043226A (en) 2002-07-10 2004-02-12 Toyota Motor Corp METHOD OF MANUFACTURING CeO2-ZrO2 COMPOUND OXIDE AND CATALYST FOR PURIFYING EXHAUST GAS
EP1920830A1 (en) * 2006-11-08 2008-05-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Group VIII and ceria/zirconia containing catalysts for catalytic hydrocarbon reforming or oxidation
KR101117351B1 (en) 2009-03-31 2012-03-07 한국생산기술연구원 Electrolyte for solid oxide fuel cell and manufacturing method of the electrolyte and cell having the electrolyte and manufacturing method of the cell
KR20160121229A (en) 2015-04-10 2016-10-19 주식회사 케이씨텍 Metal-substituted abrasive, method of preparing the same and polishing slurry composition comprising the metal-substituted abrasive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023070A (en) * 1987-06-29 1991-06-11 Rhone-Poulenc Chimie Process for obtaining a ceric oxide
US20090208398A1 (en) * 2008-02-15 2009-08-20 Sheng Li Nanoparticle synthesis by solvothermal process
CN104628025A (en) * 2015-02-15 2015-05-20 渤海大学 Solvothermal preparation method of silicon-surface vertically-assembled CeO2 nanorod film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, DAE HAN: "Fabrication and Characterization of Barium doped Ceria Nanopowders by a Solvothermal Processing", MATERIALS SCIENCE FORUM, vol. 868, 22 August 2016 (2016-08-22), pages 84 - 88, XP055702856, DOI: 10.4028/www.scientific.net/MSF.868.84 *
OCK, JI YOUNG ET AL.: "Effect of Solvent and Precursor on the CeO2 Nanoparticles Fabrication", JOURNAL OF THE KOREAN CRYSTAL GROWTH AND CRYSTAL TECHNOLOGY, vol. 28, no. 3, 30 June 2018 (2018-06-30), pages 118 - 122, XP055702852, DOI: 10.6111/JKCGCT.2018.28.3.118 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112067607A (en) * 2020-09-09 2020-12-11 深圳九星印刷包装集团有限公司 Carbon monoxide indicating device

Also Published As

Publication number Publication date
KR102162974B1 (en) 2020-10-07
KR20200043060A (en) 2020-04-27

Similar Documents

Publication Publication Date Title
Huang et al. Wet chemical synthesis of Sr-and Mg-doped LaGaO3, a perovskite-type oxide-ion conductor
CN101565194B (en) Method for preparing superfine mesoporous magnesium aluminate spinel
WO2020080620A1 (en) Preparation method of metal ion-doped ceria using solvothermal synthesis
TW200941804A (en) Homogeneous nanoparticle core doping of cathode material precursors
CN103011306B (en) Method for preparing nanometer-level cube-like cobaltosic oxide
CN109360993A (en) A kind of synthetic method for the Fe-N/C-20 adulterating iron atom using ZIF-8 as substrate
JPH08503686A (en) Fluxed lanthanum chromite for low temperature air firing
JP2003509323A (en) Method for producing mesoporous metal oxide composition and solid oxide fuel cell
CN111477948A (en) Preparation method of garnet type solid electrolyte and product
CN110937620B (en) Non-stoichiometric zinc-aluminum spinel and preparation method thereof
Gulliver et al. Hydrolytic Condensation of Tin (IV) Alkoxide Compounds to Form Particles with Well‐Defined Morphology
Priya et al. Synthesis and characterization of Nd 3+-doped Ce 0.6 Zr 0.4 O 2 and its doping significance on oxygen storage capacity
CN109354053B (en) Synthesis method of superfine cerium dioxide nano material
Li et al. Sc2O3 nanopowders via hydroxyl precipitation: effects of sulfate ions on powder properties
WO2020130226A1 (en) Method of preparing yttria stabilized zirconia (ysz) nanosol having excellent dispersibility
Andal et al. Synthesis of CuAl2O4 nanoparticle and its conversion to CuO nanorods
KR20110064905A (en) Manufacturing method of porous yttria stabilized zirconia
Yang et al. Effect of acid on the coating of boehmite onto silicon carbide particles in aqueous suspensions
CN114349041B (en) Preparation method of zinc sulfide and cobalt sulfide core-shell cube nanomaterial suitable for sodium ion battery electrode
WO2022102917A1 (en) Method for preparing highly-dispersible radical scavenger metal oxide-ionomer nanocomposite by using self-assembly process and fuel cell comprising nanocomposite prepared thereby
Ahmad Nanostructured cerium oxide (Ceria): Electrolyte for IT-SOFC
CN114349075A (en) Preparation method of coated metal element-doped ternary positive electrode material, prepared positive electrode material and application thereof
CN114516656B (en) ZnO material and preparation method and application thereof
Montanaro et al. Preparation via gelling of porous Li 2 ZrO 3 for fusion reactor blanket material
CN111908522B (en) Three-dimensional prismatic nickel cobaltate/silicon dioxide nano composite material and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873660

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19873660

Country of ref document: EP

Kind code of ref document: A1