KR102147058B1 - Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa - Google Patents

Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa Download PDF

Info

Publication number
KR102147058B1
KR102147058B1 KR1020190095105A KR20190095105A KR102147058B1 KR 102147058 B1 KR102147058 B1 KR 102147058B1 KR 1020190095105 A KR1020190095105 A KR 1020190095105A KR 20190095105 A KR20190095105 A KR 20190095105A KR 102147058 B1 KR102147058 B1 KR 102147058B1
Authority
KR
South Korea
Prior art keywords
extract
activity
root
glucose
hepatocytes
Prior art date
Application number
KR1020190095105A
Other languages
Korean (ko)
Inventor
최면
김경곤
Original Assignee
최면
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최면 filed Critical 최면
Priority to KR1020190095105A priority Critical patent/KR102147058B1/en
Application granted granted Critical
Publication of KR102147058B1 publication Critical patent/KR102147058B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/254Acanthopanax or Eleutherococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/42Cucurbitaceae (Cucumber family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • A61K36/738Rosa (rose)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/80Scrophulariaceae (Figwort family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/81Solanaceae (Potato family), e.g. tobacco, nightshade, tomato, belladonna, capsicum or jimsonweed
    • A61K36/815Lycium (desert-thorn)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/328Foods, ingredients or supplements having a functional effect on health having effect on glycaemic control and diabetes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/14Extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a composition for preventing, alleviating, or treating diabetes containing a Scrophularia Buergeriana extract, a Siberian ginseng extract, a Lycii fructus root extract, a Momordica charantia linnaeus extract, and a Rosa rugosa root extract. The composition containing a Scrophularia Buergeriana extract, a Siberian ginseng extract, a Lycii fructus root extract, a Momordica charantia linnaeus extract, and a Rosa rugosa root extract of the present invention is a natural material that has few side effects and is effective, and exhibits an alleviation, prevention, and treatment effect of diabetes.

Description

현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 함유하는 당뇨병 예방, 개선 또는 치료용 조성물 {Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa}Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root , Momordica charantia Linnaeus, Rosa rugosa}

본 발명은 현삼(Scrophularia Buergeriana) 추출물, 가시오갈피(Siberian ginseng) 추출물, 구기자(Lycii fructus)뿌리 추출물, 여주(Momordica charantia Linnaeus) 추출물 및 해당화(Rosa rugosa)뿌리 추출물을 함유하는 당뇨병 예방, 개선 또는 치료용 조성물에 관한 것이다.The present invention prevents, improves or treats diabetes containing scrophularia buergeriana extract, Siberian ginseng extract, Lycii fructus root extract, bitter gourd ( Momordica charantia Linnaeus ) extract and glycosyllium ( Rosa rugosa ) root extract It relates to a dragon composition.

현대인은 서구화된 식습관과 운동부족으로 인해 당뇨, 비만 등의 에너지대사 이상질환의 성인병이 급증하고 있는 추세이며, 사회보장적 의료비용도 기하급수적으로 증가하고 있다. 그 중 당뇨병은 인슐린의 분비량이 부족하거나 정상적인 기능이 이루어지지 않는 등의 대사 질환의 일종으로 혈중 포도당 농도가 높아지는 고혈당을 특징으로 한다.In modern people, adult diseases such as diabetes and obesity are increasing rapidly due to lack of exercise and dietary habits, and social security medical expenses are increasing exponentially. Among them, diabetes is a type of metabolic disease such as insufficient secretion of insulin or inability to perform normal functions, and is characterized by high blood sugar in which blood glucose concentration is increased.

당뇨병은 인슐린 의존형 당뇨(insulin dependent diabetes)와 인슐린 비의존형 당뇨(non-insulin dependent diabetes mellitus)로 구분되는데, 그 중 인슐린 비의존형 당뇨는 인슐린의 기능이 떨어져 혈당이 높아지는 경우를 말한다. 인슐린 비의존형 당뇨의 의과학적 치료방법은 다양하게 발전하고 있지만 현재까지 개발된 당뇨 치료제로는 완치율이 매우 낮으면서도, 장기 복용에 따라 심각한 부작용을 동반하고 있다.Diabetes is divided into insulin dependent diabetes mellitus and non-insulin dependent diabetes mellitus. Among them, insulin-independent diabetes refers to a case in which the function of insulin decreases and blood sugar rises. Although the medical treatment method for insulin-independent diabetes is developing in various ways, the cure rate is very low as the diabetes treatment developed so far, and serious side effects are accompanied by long-term use.

기존의 다양한 당뇨 치료제들이 인슐린 분비촉진, 축적지방 분해억제, 포도당 신생성 억제, GLUT2 또는 GLUT4 단백질의 활성화를 통한 세포내 포도당 유입증가, 글루코키나제(Glucokinase)의 활성화를 통한 세포내 포도당 분해대사 촉진, 소화흡수 억제기능 등의 원리를 가지고 혈당을 낮추려 하지만 이 모든 반응은 일련의 연계대사과정이므로 통합적 조절을 하지 못하면 혈당감소는 매우 제한적이고 비효율적이다. 따라서, 부작용이 나타나지 않으면서 당뇨증상의 완화 및 개선을 나타낼 수 있는 천연 소재를 발굴하는 것이 필요한 실정이다.Existing various diabetes treatments promote insulin secretion, inhibit the decomposition of accumulated fat, inhibit glucose neoplasm, increase intracellular glucose inflow through activation of GLUT2 or GLUT4 protein, and promote intracellular glucose degradation metabolism through activation of glucokinase. Although it tries to lower blood sugar based on the principle of digestion and absorption inhibition function, all these reactions are a series of linked metabolic processes, so if integrated control is not performed, blood sugar reduction is very limited and inefficient. Therefore, it is necessary to discover a natural material capable of reducing and improving diabetes symptoms without showing side effects.

대한민국 등록특허 제10-1321203호 (등록일자:2013.10.16)에는, 신선초 녹즙의 착즙 후, 잔여물인 신선초박으로부터 수용성 성분을 제거한 신선초박 추출물을 유효성분으로 포함하는 당뇨병의 예방 및 개선용 조성물에 대해 기재되어 있다.In Korean Patent Registration No. 10-1321203 (Registration Date: October 16, 2013), a composition for the prevention and improvement of diabetes containing the extract of fresh herbaceous leaves from which the water-soluble component was removed from the residue, after the juice of the fresh herbaceous green juice, Is described. 대한민국 공개특허 제10-2014-0034620호 (공개일자:2014.03.20)에는, 화살나무, 겨우살이, 꾸찌뽕, 조릿대, 두충나무, 가시오갈피 및 감초의 혼합물의 추출물을 유효성분으로 포함하는 당뇨병 치료, 개선 또는 예방용 조성물에 대해 기재되어 있다.Republic of Korea Patent Laid-Open Patent No. 10-2014-0034620 (published date: Mar 20, 2014), diabetes treatment comprising an extract of a mixture of arrow tree, mistletoe, cuchipon, Joritdae, Duchung tree, gasiocarpus and licorice as an active ingredient, It is described for a composition for improvement or prevention.

본 발명은 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 함유하는 조성물을 개발함으로써, 부작용이 적고 효과가 좋은 천연물 소재의 당뇨병 개선, 예방 또는 치료용 조성물을 제공하고자 한다.The present invention aims to provide a composition for improving, preventing or treating diabetes of a natural material having fewer side effects and having good effects by developing a composition containing a hyeon ginseng extract, a gasoline extract, a wolfberry root extract, a bitter gourd extract and a glycosyllium root extract.

본 발명은 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하는 것을 특징으로 하는 당뇨병 개선용 식품 조성물을 제공한다.The present invention provides a food composition for improving diabetes, characterized in that it includes all of the hyeonsam extract, gasoline extract, goji japonica root extract, bitter gourd extract, and glycosyllium root extract.

또한, 본 발명은 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하는 것을 특징으로 하는 당뇨병 예방 또는 치료용 약학 조성물을 제공한다.In addition, the present invention provides a pharmaceutical composition for preventing or treating diabetes, characterized in that it includes all of the hyeon ginseng extract, gasoline extract, goji japonica root extract, bitter gourd extract, and glycosyllium root extract.

본 발명의 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 함유하는 조성물은, 부작용이 적고, 효과가 좋은 천연물 소재로, 당뇨병의 개선, 예방 및 치료 효과를 발휘한다.The composition containing the present invention of the present invention is a natural material material having few side effects and a good effect, and exhibits an improvement, prevention and treatment effect of diabetes.

도 1의 (A)는 간세포가 혈액 중 높아진 포도당을 이용하는 대사과정을 그린 모식도이고, (B)는 에너지로 쓰고 남은 아세틸 코엔자임 A를 니코틴아마이드-N-메틸트렌스퍼라아제(Nicotinamide-N- methyltransferase, NNMT) 활성 억제를 통해 소변으로 배설시키는 생화학적 반응을 그린 모식도이다.
도 2는 천연소재 추출물들의 세포 독성 측정 결과를 나타낸 그래프이다.
도 3은 배지 내 포도당 농도를 달리한 조건(0.1%, 0.45%, 0.7%)에서 천연소재 추출물들을 첨가했을 때, 글루코스 흡수(glucose uptake) 결과를 나타낸 그래프이다.
도 4는 현삼 추출물 및 뽕나무껍질 추출물의 첨가농도를 달리했을 때, 글루코스 흡수(glucose uptake) 결과를 나타낸 그래프이다.
도 5는 글루코스 흡수 작용 기전으로 알려진 HNF-1α 단백질과 GLUT2 mRNA 발현 관계를 나타낸 모식도이다.
도 6은 간세포(HepG2 세포)에 현삼 추출물 및 뽕나무껍질 추출물을 첨가할 시, HNF-1αmRNA 및 단백질 발현(A) 및 GLUT 2 mRNA 및 단백질 발현(B) 실험 결과이다.
도 7은 배지 내 포도당 농도를 달리한 조건(0.1%, 0.45%, 0.7%)에서 천연소재 추출물들을 첨가했을 때, 글루코키나제(glucokinase, GK) 활성 측정 결과를 나타낸 그래프이다.
도 8은 가시오갈피 추출물 및 뽕나무껍질 추출물의 첨가농도를 달리했을 때, 글루코키나제(glucokinase, GK) 활성 측정 결과를 나타낸 그래프이다.
도 9는 간세포(HepG2 세포)에 가시오갈피 추출물 및 뽕나무껍질 추출물을 첨가할 시, 글루코키나제(glucokinase, GK) mRNA 및 단백질 발현 실험 결과이다.
도 10은 간세포(HepG2 세포)에서 글루코키나제(glucokinase, GK) 활성화와 관련된 작용기전으로 알려진 조절 단백질들의 작용기전을 설명한 모식도이다.
도 11은 간세포(HepG2 세포)에 가시오갈피 추출물 및 뽕나무껍질 추출물을 첨가할 시, PIK3 단백질 발현(A) 및 SREBP-1C 단백질 발현(B) 실험 결과이다.
도 12는 배지 내 포도당 농도를 달리한 조건(0.1%, 0.45%, 0.7%)에서 천연소재 추출물들을 첨가했을 때, 피루브산 탈수소효소(pyruvate dehydrogenase, PDH) 활성 측정 결과를 나타낸 그래프이다.
도 13은 구기자뿌리 추출물의 첨가농도를 달리했을 때, 피루브산 탈수소효소(pyruvate dehydrogenase, PDH) 활성 측정 결과를 나타낸 그래프이다.
도 14는 간세포(HepG2 세포)에 구기자뿌리 추출물을 첨가할 시, 피루브산 탈수소효소(pyruvate dehydrogenase, PDH) mRNA 발현 실험 결과이다.
도 15는 간세포(HepG2 세포)에서 피루브산 탈수소효소(pyruvate dehydrogenase, PDH) 활성화와 관련된 효소반응을 설명한 모식도이다.
도 16은 간세포(HepG2 세포)에서 구기자뿌리 추출물을 첨가할 시 인산화된 피루브산 탈수소 효소(phosphorylated pyruvate dehydrogenase, pPDH, 비활성화 상태)와 피루브산 탈수소효소(pyruvate dehydrogenase,PDH, 활성화 상태) 단백질 발현 실험 결과이다.
도 17은 배지 내 포도당 농도를 달리한 조건(0.1%, 0.45%, 0.7%)에서 천연소재 추출물들을 첨가했을 때, ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 단백질과 인산화된 ATP-시트레이트 리아제(phosphorylated ATP-citrate lyase, pACL) 단백질 발현 비율을 나타낸 그래프이다.
도 18은 여주 추출물의 첨가농도를 달리했을 때, ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 단백질과 인산화된 ATP-시트레이트 리아제(phosphorylated ATP-citrate lyase, pACL) 단백질 발현 비율을 나타낸 그래프이다.
도 19는 천연소재 추출물들을 첨가했을 때의 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 활성 측정 결과를 나타낸 그래프이다.
도 20은 천연소재 추출물들을 첨가했을 때의 알파 글루코시다제(α-glucosidase)의 활성 측정 결과를 나타낸 그래프이다.
도 21는 당 분해대사 과정의 활성화 효과가 있는 각각의 천연소재 추출물들의 복합배합비를 나타낸 표이다.
도 22는 배합을 달리한 천연소재 복합 추출물들의 세포 독성 측정 결과를 나타낸 그래프이다.
도 23의 A)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 아세틸 코엔자임 A 카르복실라아제(Acetyl Co A carboxylase, ACC) 단백질 발현 결과를 나타낸 그래프이고, 도 23의 B)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 활성형(인산화된 아세틸 코엔자임 A 카르복실라제, phosphorylated acetyl CoA carboxylase, pACC) 및 비활성형(아세틸 코엔자임 A 카르복실라제, Acetyl CoA carboxylase, ACC) 단백질 발현 결과를 나타낸 그래프이다.
도 24의 A)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 아세틸 코엔자임 A 카르복실라아제(Acetyl Co A carboxylase, ACC) 단백질 발현 결과를 나타낸 그래프이고, 도 24의 B)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 활성형(인산화된 아세틸 코엔자임 A 카르복실라제, phosphorylated acetyl CoA carboxylase, pACC) 및 비활성형(아세틸 코엔자임 A 카르복실라제, Acetyl CoA carboxylase, ACC) 단백질 발현 결과를 나타낸 그래프이다.
도 25의 A) 및 B)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 지방산 합성효소 복합체(fatty acid synthetase, FAS) 단백질 발현 결과를 나타낸 그래프이다.
도 26의 A) 및 B)는 배합을 달리한 천연소재 복합 추출물들을 처리할시, 간세포(HepG2 세포)에서 말로닐 코엔자임 A(Malonyl-Co A) 생성량 변화를 나타낸 그래프이다.
(A) of Figure 1 is a schematic diagram depicting the metabolic process of liver cells using elevated glucose in blood, (B) is nicotinamide-N-methyltransferase (Nicotinamide-N-methyltransferase,) remaining acetyl coenzyme A used as energy NNMT) is a schematic diagram depicting a biochemical reaction that is excreted in urine through inhibition of activity.
2 is a graph showing the cytotoxicity measurement results of natural material extracts.
3 is a graph showing the results of glucose uptake when natural material extracts are added under different conditions (0.1%, 0.45%, 0.7%) of glucose concentration in the medium.
Figure 4 is a graph showing the results of glucose absorption (glucose uptake) when different concentrations of the hyeonsam extract and the mulberry bark extract added.
5 is a schematic diagram showing the relationship between HNF-1α protein and GLUT2 mRNA expression known as a mechanism of action for glucose uptake.
Figure 6 shows the results of HNF-1αmRNA and protein expression (A) and GLUT 2 mRNA and protein expression (B) when adding hyeonsam extract and mulberry bark extract to hepatocytes (HepG2 cells).
7 is a graph showing the results of measuring glucokinase (GK) activity when natural extracts are added under different conditions (0.1%, 0.45%, 0.7%) of glucose concentration in the medium.
8 is a graph showing the results of measuring glucokinase (GK) activity when the concentrations of the extract and the extract of the mulberry bark are varied.
9 is a glucokinase (GK) mRNA and protein expression test results when adding the extract and Morus bark extract to hepatocytes (HepG2 cells).
10 is a schematic diagram illustrating the mechanism of action of regulatory proteins known as mechanisms of action related to glucokinase (GK) activation in hepatocytes (HepG2 cells).
Figure 11 shows the results of experiments on PIK3 protein expression (A) and SREBP-1C protein expression (B) when adding the extract and Morus bark extract to hepatocytes (HepG2 cells).
12 is a graph showing the result of measuring pyruvate dehydrogenase (PDH) activity when natural extracts are added under different conditions (0.1%, 0.45%, 0.7%) of glucose concentration in the medium.
13 is a graph showing the results of measuring pyruvate dehydrogenase (PDH) activity when the concentration of the extract of Goji japonica root extract was varied.
14 is a result of pyruvate dehydrogenase (PDH) mRNA expression when adding Goji japonica root extract to hepatocytes (HepG2 cells).
15 is a schematic diagram illustrating an enzymatic reaction related to activation of pyruvate dehydrogenase (PDH) in hepatocytes (HepG2 cells).
FIG. 16 is a result of an experiment on expression of phosphorylated pyruvate dehydrogenase (pPDH, inactive state) and pyruvate dehydrogenase (PDH, activated state) proteins when adding goji root extract in hepatocytes (HepG2 cells).
FIG. 17 shows ATP-citrate lyase (ACL) protein and phosphorylated ATP-sheet when natural extracts were added under different conditions (0.1%, 0.45%, 0.7%) of glucose concentration in the medium. This is a graph showing the rate of expression of a phosphorylated ATP-citrate lyase (pACL) protein.
FIG. 18 is a graph showing the expression ratio of ATP-citrate lyase (ACL) protein and phosphorylated ATP-citrate lyase (pACL) protein at different concentrations of bitter gourd extract to be.
19 is a graph showing the result of measuring the activity of nicotinamide-N-methyltransferase (NNMT) when natural extracts are added.
20 is a graph showing the result of measuring the activity of alpha glucosidase (α-glucosidase) when natural extracts are added.
Figure 21 is a table showing the complex blending ratio of each natural material extracts having an activating effect of the metabolic process of sugar degradation.
22 is a graph showing the cytotoxicity measurement results of natural material composite extracts with different combinations.
23A) is a graph showing the result of expression of acetyl coenzyme A carboxylase (ACC) protein in hepatocytes (HepG2 cells) when processing complex extracts of natural materials with different combinations, and FIG. 23 B) of is an active form (phosphorylated acetyl coenzyme A carboxylase, phosphorylated acetyl CoA carboxylase, pACC) and inactive form (acetyl coenzyme A carboxylase, pACC) in liver cells (HepG2 cells) when treating complex extracts with different combinations This is a graph showing the results of expression of a proteinase, Acetyl CoA carboxylase, ACC).
24A) is a graph showing the result of expression of acetyl coenzyme A carboxylase (ACC) protein in hepatocytes (HepG2 cells) when processing complex extracts of natural materials with different combinations, and FIG. 24 B) of is the active form (phosphorylated acetyl coenzyme A carboxylase, phosphorylated acetyl CoA carboxylase, pACC) and inactive form (acetyl coenzyme A carboxylase) in hepatocytes (HepG2 cells) when treating complex extracts of natural materials with different combinations. This is a graph showing the results of expression of a proteinase, Acetyl CoA carboxylase, ACC).
25A) and B) are graphs showing the result of expression of a fatty acid synthetase (FAS) protein in hepatocytes (HepG2 cells) when processing complex extracts of natural materials with different combinations.
26A) and 26B) are graphs showing changes in the amount of malonyl coenzyme A (Malonyl-Co A) produced in hepatocytes (HepG2 cells) when processing complex extracts of natural materials with different combinations.

일반적으로 식사를 통해 섭취한 탄수화물이 소화를 거쳐 포도당이 되면 장에서 흡수되어 혈액으로 이동하게 된다. 이로 인해 혈당 농도가 높아지면 정상인의 경우, 인슐린이 분비되어 당을 뇌, 근육 등으로 이동시켜 에너지 등의 필요물질을 만드는 대사반응에 사용하게 하면서, 간세포로도 이동시켜 혈당을 이용하는 다양한 대사를 활성화하여 혈당을 정상으로 돌아오게 한다. 간세포에서 혈당을 이용하는 다양한 대사는 1) 글리코겐(Glycogen)으로 저장했다가 혈당이 낮을 때 사용하기 위해 저장하는 것, 2) 간세포가 필요로 하는 물질이나 에너지로 대사하는 것, 3) 아세틸 코엔자임 A(Acetyl Coenzyme A, Acetyl Co A)까지 분해한 후 일련의 반응을 거쳐 지방산으로 전환 후, 저장하는 것으로 나타나게 된다.In general, when carbohydrates ingested through a meal become glucose through digestion, they are absorbed by the intestine and transferred to the blood. As a result, when the blood sugar concentration rises, in the case of normal people, insulin is secreted to move sugar to the brain and muscles and use it for metabolic reactions that make necessary substances such as energy, while also moving to liver cells to activate various metabolisms using blood sugar. To bring blood sugar back to normal. Various metabolisms using blood sugar in hepatocytes are 1) stored as glycogen and then stored for use when blood sugar is low, 2) metabolized to substances or energy required by hepatocytes, 3) acetyl coenzyme A ( Acetyl Coenzyme A and Acetyl Co A) are decomposed and then converted into fatty acids through a series of reactions, and then stored.

그러나, 당뇨에 걸린 환자의 경우, 상기의 대사과정이 잘 이루어지지 않아 혈액 중에 포도당이 높은 상태를 계속 유지하게 되면서 심각한 대사 이상질환을 유발하게 된다. 이러한 당뇨를 치료하기 위해 의과학적 제제에 대한 연구 개발이 계속되고 있지만 아직 완치는 불가하며, 혈당 조절의 반응은 일련의 연계대사과정이므로 이를 통합적으로 조절하지 못하면 매우 제한적이고 비효율적이라는 문제가 있다. 따라서, 본 발명에서는 부작용이 나타나지 않으면서 당뇨증상의 완화 및 개선을 나타낼 수 있는 천연 소재들을 발굴하고자 하였다.However, in the case of a diabetic patient, the above metabolic process is not well performed, and thus the state of high glucose in the blood continues to be maintained, causing serious metabolic abnormalities. Although research and development on medical preparations continues to treat such diabetes, it is still impossible to cure it, and because the response of blood sugar control is a series of linked metabolic processes, there is a problem that it is very limited and inefficient if it cannot be controlled in an integrated manner. Therefore, in the present invention, it was attempted to discover natural materials capable of reducing and improving diabetes symptoms without causing side effects.

한편, 본 발명의 핵심원리는 간세포가 혈액 중 높아진 포도당을 이용하는 대사과정으로, 도 1과 같다. 구체적으로 설명하면, 1) 혈액 중의 포도당을 간세포(HepG2) 내로 이동시키는데(Glucose uptake) 관여하는 GLUT2 단백질의 활성화가 되어야 하고, 2) 세포내로 유입된 포도당을 아세틸 코엔자임 A (Acetyl Co A)까지 분해하는 반응에 관여하는 주요 효소인 글루코키나제(Glucokinase, GK)와 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH)들의 활성이 증가되어야 한다. Meanwhile, the core principle of the present invention is a metabolic process in which hepatocytes use elevated glucose in the blood, as shown in FIG. 1. Specifically, 1) GLUT2 protein, which is involved in the movement of glucose in blood into hepatocytes (HepG2), must be activated, and 2) glucose introduced into cells is decomposed to acetyl coenzyme A (Acetyl Co A). The activities of glucokinase (GK) and pyruvate dehydrogenase (PDH), the main enzymes involved in the reaction, should be increased.

또한, 3) 미토콘드리아에서 과잉의 아세틸 코엔자임 A를 처리하기 위해 생성된 구연산을 분해하는 ATP-시트레이트 리아제(ATP-citrate lyase, ACL)의 활성이 증가된다. 3)의 과정과 관련하여 상기 1) 및 2)의 대사반응이 증가되면 세포 내 미토콘드리아에는 아세틸 코엔자임 A의 생성양이 증가하게 된다. 일반적으로 아세틸 코엔자임 A는 생성되면 완전산화 반응을 거쳐 에너지로 전환되어야하지만 과잉으로 생성되어 에너지로 산화되지 못하고, 옥살초산(Oxaloacetic acid)과 결합하여 구연산(Citric acid)이 된 후 미토콘드리아 밖으로 나오게 된다. 이후, 구연산은 ATP-시트레이트 리아제(ATP-citrate lyase, ACL)에 의해 다시 아세틸 코엔자임 A와 옥살초산으로 분해되게 된다. In addition, 3) activity of ATP-citrate lyase (ACL), which decomposes citric acid produced to treat excess acetyl coenzyme A in mitochondria, is increased. In connection with the process of 3), when the metabolic reactions of 1) and 2) are increased, the amount of acetyl coenzyme A produced in the mitochondria increases. In general, when acetyl coenzyme A is produced, it must be converted to energy through a complete oxidation reaction, but it is produced in excess and cannot be oxidized to energy, and it is combined with oxalic acid to become citric acid and then comes out of the mitochondria. Thereafter, citric acid is decomposed into acetyl coenzyme A and oxalacetic acid again by ATP-citrate lyase (ACL).

이때, 생성된 아세틸 코엔자임 A는 아세틸 코엔자임 A 카르복실라제(Acetyl Co A Carboxylase, ADD)에 의해 말로닐 코엔자임 A(Malonyl Co A)로 전환된 후 지방산 합성 효소 복합체(Fatty acid synthetase complex)로 이동해 지방산으로 전환 저장되는 것이 정상 분해대사인데, 이는 비만을 초래할 가능성이 있다. 따라서, 4) 아세틸 코엔자임 A가 지방산으로 전환 저장되어 비만을 초래하지 못하게 하려면 소변으로 배출시켜야하는데 이와 관련된 효소인 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT)의 활성을 억제하게 된다. 이를 통해 과잉 생성된 아세틸 코엔자임 A는 폴리아민(Polyamines)과 결합(Acetyl-polyamines)되어 소변으로 배출시킬 수 있게 된다. At this time, the produced acetyl coenzyme A is converted to malonyl coenzyme A by acetyl coenzyme A carboxylase (ADD), and then transferred to the fatty acid synthetase complex. It is the normal metabolism that is converted into and stored, which may lead to obesity. Therefore, 4) acetyl coenzyme A must be excreted in the urine to prevent obesity from being converted and stored into fatty acids. This inhibits the activity of nicotinamide-N-methyltransferase (NNMT), an enzyme related to this. Is done. Through this, the over-produced acetyl coenzyme A is combined with polyamines (Acetyl-polyamines) to be discharged into the urine.

이에 본 발명은, 상기의 1)-4)의 대사반응을 조절할 수 있는 천연 소재들을 찾아 효능 및 작용기전을 과학적으로 검증하고, 이들을 배합처리한 조성물을 이용하여 인슐린이나 당뇨약제의 도움 없이도 간세포내 포도당 분해이용대사를 촉진하는 능력을 확인하였다. 또한, 식사를 통해 소장으로 이동된 탄수화물을 포도당으로 분해하여 소화흡수되는 것을 감소시키기 위해 소화효소인 알파-글루코시다아제(α-glucosidase)의 활성을 억제할 수 있는 천연물질을 발굴하여 최종 복합물을 완성하였고, 이를 통해 식후 높아진 혈당을 낮출 수 있는 뛰어난 효과를 제공하고자 한다.Therefore, the present invention finds natural materials that can control the metabolic reactions of 1)-4) above, scientifically verifies the efficacy and mechanism of action, and uses a composition formulated with them to intrahepatocytes without the help of insulin or diabetes drugs. The ability to promote the metabolism of glucose degradation was confirmed. In addition, in order to reduce digestion and absorption by decomposing carbohydrates transferred to the small intestine through meals into glucose, a natural substance capable of inhibiting the activity of α-glucosidase, a digestive enzyme, was discovered to create the final complex. It was completed, and it is intended to provide an excellent effect to lower blood sugar, which has been elevated after a meal.

본 발명은, 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하는 것을 특징으로 하는 당뇨병 개선용 식품 조성물을 제공한다. 또한, 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하는 것을 특징으로 하는 당뇨병 예방 또는 치료용 약학 조성물을 제공한다.The present invention provides a food composition for improving diabetes, characterized in that it includes all of the hyeonsam extract, gasoline extract, goji japonica root extract, bitter gourd extract and glycosyllium root extract. In addition, it provides a pharmaceutical composition for preventing or treating diabetes, characterized in that it comprises all of the hyeon ginseng extract, ginseng extract, goji japonica root extract, bitter gourd extract, and glycosyllium root extract.

한편, 본 발명에 있어서, 상기 조성물은, 바람직하게 세포내 포도당 이용대사를 증가시키는 것일 수 있다.Meanwhile, in the present invention, the composition may preferably increase intracellular glucose utilization metabolism.

현삼(Scrophularia Buergeriana)은 현삼과에 속하는 다년생 초본식물로, 중대(重臺) ·현대(玄臺) ·귀장(鬼藏) ·축마(逐馬)라고도 한다. 현삼은 산지에서 자라고, 해열제로 인후염 ·종기 ·림프선염에 사용하며, 울릉도에서 자라는 섬현삼(S. takesimensis), 산지에서 자라는 큰개현삼(S. kakudensis) 및 토현삼(S. koraiensis) 등이 있다. 본 발명의 현삼 추출물은, 세포내 포도당 유입에 관여하는 것일 수 있다. Hyeonsam ( Scrophularia Buergeriana ) is a perennial herbaceous plant belonging to the Hyeonsam family, and is also known as the middle (重臺), Hyundai (玄臺), Gwijang (鬼藏), and Chukma (逐馬). Hyeonsam is grown in mountainous areas, and is used as an antipyretic agent for sore throat, boils, and lymphadenitis, and there are island hyeonsam ( S. takesimensis ) growing in Ulleungdo, large gaehyeonsam ( S. kakudensis ) and Tohyeonsam ( S. koraiensis ) growing in the mountains. Hyeonsam extract of the present invention may be involved in the influx of glucose into cells.

가시오갈피(Siberian ginseng)는 식물 산형화목 두릅나무과의 낙엽 관목으로, 가시오갈피나무 또는 가시오가피라고도 한다. 가시오갈피는 전국 각지의 깊은 산골짜기에서 자라고, 잎이 지는 떨기나무이며, 유용한 약성 물질이 풍부해 인삼보다 뛰어난 약재로 알려져 있다. 본 발명의 가시오갈피 추출물은, 글루코키나제(Glucokinase)의 활성화에 관여하는 것일 수 있다. Siberian ginseng is a deciduous shrub of the plant umbel, Araliaceae, and is also known as Siberian ginseng . Gashiogalpi grows in deep mountain valleys all over the country, and is a shrub with leaves. It is known as a superior medicinal material than ginseng because of its abundant useful medicinal substances. Gasiogalpi extract of the present invention may be involved in the activation of glucokinase (Glucokinase).

구기자(Lycii fructus)는 가짓과에 속하는 구기자나무의 열매로, 베타인, 제아잔틴, 카로틴, 티아민, 비타민 A, B1, B2, C 등이 함유되어 있다. 만성간염, 간경변증 등에 복용하면 염증이 제거되고 기능을 활성화시키며, 민간에서는 구기차 또는 구기주로 이용한다. 본 발명에서는 구기자뿌리를 사용하였고, 본 발명의 구기자뿌리 추출물은, 피루베이트 데하이드로게나아제(Pyruvate dehydrogenase)의 활성화에 관여하는 것일 수 있다. Lycii fructus is a fruit of the Lyciiaceae tree belonging to the Gajitsu family, and contains betaine, zeaxanthin, carotene, thiamine, vitamins A, B1, B2, and C. When taken for chronic hepatitis, cirrhosis, etc., inflammation is removed and the function is activated, and in the private sector, it is used as Gugicha or Gugiju. In the present invention, Goji japonica root was used, and the Goji japonica root extract of the present invention may be involved in the activation of pyruvate dehydrogenase.

여주(Momordica charantia Linnaeus)는 도깨비방망이처럼 길쭉하고 울퉁불퉁한 모양을 가진 채소로 태국 등 동남아 음식에서 다양하게 활용되고 있다. 특유의 쓴맛이 강해 '쓴 오이'라고도 불리고 있으며, 주로 약재나 건강식품으로 가공된다. 본 발명의 여주 추출물은, ATP-시트레이트 리아제(ATP-citrate lyase)의 발현에 관여하는 것일 수 있다.Yeoju ( Momordica charantia Linnaeus ) is a vegetable that has an elongated and uneven shape like a goblin bat and is widely used in Southeast Asian foods such as Thailand. It is also called'bitter cucumber' because of its characteristic bitter taste, and is mainly processed into medicinal or health foods. The bitter gourd extract of the present invention may be involved in the expression of ATP-citrate lyase.

해당화(Rosa rugosa)는 쌍떡잎식물 장미목 장미과에 속하는 낙엽관목으로, 해당나무, 해당과, 필두화라고도 한다. 해당화는 꽃이 아름답고 특유의 향기를 지니고 있으며 열매도 아름다워 향수원료로 이용되고 약재로도 쓰이며, 개해당화(var. kamtschatica), 만첩해당화(for. plena), 민해당화(var. chamissoniana), 흰해당화 등의 종류가 있다. 본 발명에서는 해당화뿌리를 사용하였고, 본 발명의 해당화뿌리 추출물은 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성 억제에 관여하는 것일 수 있다. Rosa rugosa is a deciduous shrub belonging to the dicotyledonous Rosaceae Rosaceae, and is also known as the narcissus tree, the lysaceae, and the head flower. The flowers are beautiful, have a unique scent, and the fruit is beautiful, so they are used as a perfume ingredient and medicinal material. Gaehedanghwa (var. kamtschatica ), Mancheophaedanhwa (for. plena ), Minhaedanghwa ( var.chamissoniana ), and white halibut There are types such as. In the present invention, glycosylation root was used, and the glycosylation root extract of the present invention may be involved in the inhibition of nicotinamide-N-methyl-transferase (NNMT) activity.

한편, 본 발명에 있어서, 추출 재료가 되는 천연 소재 현삼, 가시오갈피, 구기자뿌리, 여주 및 해당화뿌리는 추출 효율을 높이기 위해 분쇄하여 사용하는 것이 바람직하며, 물 추출방법을 사용하였다.On the other hand, in the present invention, it is preferable to pulverize and use natural materials for extraction, such as hyeonsam, ginseng, goji root, bitter gourd, and glycolysis root to increase extraction efficiency, and a water extraction method was used.

본 발명에 따른 당뇨병 개선용 식품 조성물은 일 예로, 육류, 곡류, 카페인 음료, 일반음료, 초콜릿, 빵류, 스낵류, 과자류, 사탕, 피자, 젤리, 면류, 껌류, 유제품류, 아이스크림류, 알코올성 음료, 술, 비타민 복합제 및 그 밖의 건강보조식품류 중 선택되는 어느 하나일 수 있으나, 반드시 이에 한정되는 것은 아니다.The food composition for improving diabetes according to the present invention includes, for example, meat, grains, caffeine beverages, general beverages, chocolate, bread, snacks, confectionery, candy, pizza, jelly, noodles, gum, dairy products, ice cream, alcoholic beverages, It may be any one selected from alcohol, vitamin complexes, and other health supplements, but is not limited thereto.

한편, 본 발명에 따른 식품 조성물은 원하는 조성물의 형태에 따라 통상의 보조제 또는 첨가제, 또는 감미료, 예를 들면 감초, 비타민 C, 구연산, 니코틴산, 안식향산나트륨, 아스파탐, 사카린, 펙틴, 말리톨, 솔비톨, 자일리톨, 구아검, 탈지분유 및 올리고당으로 이루어진 군 중에서 선택되는 하나 이상의 성분을 추가하여 기호도나 미감을 증대시킬 수 있다.On the other hand, the food composition according to the present invention may include conventional adjuvants or additives, or sweeteners, such as licorice, vitamin C, citric acid, nicotinic acid, sodium benzoate, aspartame, saccharin, pectin, malitol, sorbitol, depending on the form of the desired composition. By adding one or more components selected from the group consisting of xylitol, guar gum, skim milk powder, and oligosaccharides, preference or taste may be increased.

본 발명의 당뇨병 예방 및 치료용 약학 조성물은 유효성분 이외에 약제학적으로 허용 가능한 담체, 희석제 또는 부형제를 더욱 포함할 수 있다. 사용가능한 담체, 부형제 또는 희석제로는, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자이리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유가 있으며, 이들은 1종 이상 사용될 수 있다. 또한, 예방 및 치료제가 약제인 경우 충진제, 항응집제, 윤활제, 습윤제, 향료, 유화제 또는 방부제 등이 추가적으로 포함될 수 있다.The pharmaceutical composition for preventing and treating diabetes of the present invention may further include a pharmaceutically acceptable carrier, diluent or excipient in addition to the active ingredient. Examples of carriers, excipients or diluents that can be used include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, There are microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil, and one or more of these may be used. In addition, when the prophylactic and therapeutic agent is a drug, a filler, an anti-aggregating agent, a lubricant, a wetting agent, a fragrance, an emulsifying agent or a preservative may be additionally included.

본 발명의 당뇨병 예방 및 치료용 약학 조성물의 제형은 사용방법에 따라 바람직한 형태일 수 있으며, 특히 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 공지된 방법을 채택하여 제형화하는 것이 좋다. 구체적인 제형의 예로는 경고제(PLASTERS), 과립제(GRANULES), 리니멘트제(LINIMENTS), 리모나데제(LEMONADES), 산제(POWDERS), 시럽제(SYRUPS), 액제(LIQUIDS AND SOLUTIONS), 엑스제(EXTRACTS), 엘릭실제(ELIXIRS), 유동엑스제(FLUID EXTRACTS), 유제(EMULSIONS), 현탁제(SUSPESIONS), 전제(DECOCTIONS), 침제(INFUSIONS), 정제(TABLETS), 좌제(SUPPOSITIORIES), 주사제(INJECTIONS), 주정제(SPIRITS), 카타플라스마제(CATAPLASMA), 캅셀제(CAPSULES), 트로키제(TROCHES), 틴크제(TINCTURES), 파스타제(PASTES), 환제(PILLS), 연질 또는 경질 젤라틴 캅셀 중 선택되는 어느 하나일 수 있다.The formulation of the pharmaceutical composition for preventing and treating diabetes of the present invention may be in a preferred form depending on the method of use, and in particular, a method known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal. It is good to adopt and formulate. Examples of specific formulations include PLASTERS, GRANULES, LINIMENTS, LEMONADES, POWDERS, SYRUPS, LIQUIDS AND SOLUTIONS, and EX ( EXTRACTS), ELIXIRS, FLUID EXTRACTS, emulsions (EMULSIONS), suspensions (SUSPESIONS), DECOCTIONS, INFUSIONS, tablets, SUPPOSITIORIES, injections ( INJECTIONS), SPIRITS, CATAPLASMA, Capsules, Troches, Tinctures, Pastes, PILLS, Soft or Hard Gelatin Capsules It can be any one selected.

본 발명의 당뇨병 예방 및 치료용 약학 조성물의 투여량은 투여방법, 복용자의 연령, 성별 및 체중, 및 질환의 중증도 등을 고려하여 결정하는 것이 좋다. 일 예로, 본 발명의 당뇨병 예방 및 치료용 약학 조성물은 유효성분을 기준으로 하였을 때 1일 0.1 내지 100㎎/㎏(체중)으로 1회 이상 투여 가능하다. 그러나 상기의 투여량은 예시하기 위한 일 예에 불과하며, 복용자의 상태에 따라 의사의 처방에 의해 변화될 수 있다.The dosage of the pharmaceutical composition for preventing and treating diabetes of the present invention is preferably determined in consideration of the administration method, the age, sex and weight of the user, and the severity of the disease. For example, the pharmaceutical composition for preventing and treating diabetes of the present invention may be administered at least once at 0.1 to 100 mg/kg (body weight) per day based on the active ingredient. However, the above dosage is only an example for illustration, and may be changed by a doctor's prescription according to the state of the user.

이하, 본 발명의 내용을 하기 실시예를 통해 더욱 상세히 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 이와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the content of the present invention will be described in more detail through the following examples. However, the scope of the present invention is not limited only to the following examples, and includes modifications of equivalent technical ideas.

[제조예 : 천연 소재 추출물의 제조][Production Example: Preparation of natural material extract]

본 제조예에서는 토종마을에서 구입한 천연소재(가시오갈피, 현삼, 구기자뿌리껍질, 구기자뿌리, 뽕나무껍질, 여주, 해당화뿌리 등)는 흐르는 물에 세척하여 건조한 뒤 분쇄하였다. 분쇄한 각각의 천연소재 10 g에 10.7배의 증류수에 넣고 60℃ shaking incubator에서 24시간 교반 추출하였다. 24시간 추출한 뒤 3,000 rpm에서 30분 동안 원심분리하고 0.45 um로 여과지(filter paper)로 감압여과 후 동결건조한 각각의 시료를 실험에 사용하였다. In this preparation example, natural materials purchased from native villages (gasiogalpi, hyeonsam, goji berry root bark, goji berry root, mulberry bark, bitter gourd, glycolysis root, etc.) were washed with running water, dried, and then pulverized. 10 g of each pulverized natural material was added to 10.7 times of distilled water and extracted with stirring in a 60°C shaking incubator for 24 hours. After extracting for 24 hours, centrifuged at 3,000 rpm for 30 minutes, filtered under reduced pressure with filter paper with 0.45 um, and lyophilized each sample was used in the experiment.

하기에서는 본 제조예의 천연소재 추출물들의 세포 내 포도당 이용 대사능을 확인하기 위해 실험을 진행하였다.In the following, an experiment was conducted to confirm the metabolic ability of the natural material extracts of the present preparation example to use intracellular glucose.

[실험예 1: 간세포(HepG2 세포) 배양 및 세포 독성 측정 및 실험 방법][Experimental Example 1: Hepatocyte (HepG2 cell) culture and cytotoxicity measurement and experimental method]

본 실험예에서는 간세포(HepG2 세포) 배양 및 상기 제조예의 천연소재 추출물들에 대한 간세포(HepG2) 독성 측정을 확인하기 위해 하기와 같은 실험을 진행하였다. In this experimental example, the following experiments were conducted to confirm the cultivation of hepatocytes (HepG2 cells) and measurement of hepatocyte (HepG2) toxicity to the natural material extracts of the preparation example.

1) 간세포(HepG2 세포) 배양1) Hepatocyte (HepG2 cell) culture

동결보관된 HepG2 세포는 37℃로 설정된 워터 배스(Water bath)에서 해동한 뒤 10% FBS와 1% PEST가 포함된 MEM을 이용하여 37℃, 5% CO2 조건의 세포배양기에서 배양하였다. 세포가 배양접시의 80% 이상 배양되면 트립신(trypsin)-EDTA를 이용하여 세포를 떼어내고 새로운 배양접시에 계대배양하여 충분한 세포를 확보하였다. 세포 배양시 0.1% 글루코스(glucose) 저당배지(low glucose media), 0.45% 글루코스(glucose) 일반당배지(normal glucose media), 0.7% 글루코스(glucose) 고당배지(high glucose media)를 이용하여 배양하였다. 선발소재 실험에서는 저당배지, 일반당배지, 고당배지 조건에서 세포를 배양하여 사용하였으며, 기작검증 실험 및 배합첨가 실험에서는 고당배지 조건의 세포를 배양하여 사용하였다. 하기에서는 상기 방법으로 배양한 HepG2 세포를 사용하였다.HepG2 cells stored in cryopreservation were thawed in a water bath set at 37°C, and then cultured in a cell incubator at 37°C and 5% CO 2 using MEM containing 10% FBS and 1% PEST. When the cells were cultured more than 80% of the culture dish, the cells were removed using trypsin-EDTA and subcultured in a new culture dish to secure sufficient cells. Cells were cultured using 0.1% glucose low glucose media, 0.45% glucose normal glucose media, and 0.7% glucose high glucose media. . In the selection material experiment, cells were cultured under the conditions of low sugar medium, normal sugar medium, and high sugar medium, and cells were cultured under high sugar medium conditions in the mechanism verification experiment and combination addition experiment. In the following, HepG2 cells cultured by the above method were used.

2) 세포독성 측정2) Cytotoxicity measurement

천연소재 추출물들이 간세포(HepG2 세포)에 미치는 독성평가는 3-[4,5-dimethyl- thiazole-2-yl]-2,5-di-phenyl-tetrazolium bromide (MTT) 환원 방법을 이용하여 측정하였다. 정상적인 세포의 미토콘드리아에 존재하는 환원제(Reductase)에 의해 MTT tetrazolium (yellow color)은 MTT formazan (purple color)으로 환원되며, 비정상적인 세포에서는 리덕타아제(reductase)에 의한 환원작용이 일어나지 않는다.Toxicity evaluation of natural extracts on hepatocytes (HepG2 cells) was measured using 3-[4,5-dimethyl-thiazole-2-yl]-2,5-di-phenyl-tetrazolium bromide (MTT) reduction method. . MTT tetrazolium (yellow color) is reduced to MTT formazan (purple color) by a reducing agent present in the mitochondria of normal cells, and the reduction action by reductase does not occur in abnormal cells.

HepG2 세포를 96 well plate에 1 ×105 cells/mL로 100 uL씩 분주하고 24시간 배양한 뒤 FBS가 첨가되지 않은 배지에 소재를 희석하여 세포에 처리 후 24시간 배양하였다. 소재가 포함된 배양배지를 제거하고 MTT (0.5 mg/mL)를 배양배지에 녹여 100 uL씩 분주한 뒤 37℃에서 4시간 동안 배양한 후 배양배지를 제거하였다. 각 well에 형성된 포마잔(formazan)에 DMSO 100 uL를 첨가한 후 쉐이커(shaker)를 이용하여 녹이고, 30분 후 UV/vis spectrophotometer (Opiwen 2120 UV plus, Mecasys Co. Ltd., Korea)를 사용하여 570 nm에서 흡광도를 측정하였다. 대조군의 흡광도 값을 기준으로 세포독성을 확인하였다. HepG2 cells were dispensed into a 96 well plate at 1 × 10 5 cells/mL at 100 uL each, cultured for 24 hours, and then the material was diluted in a medium to which FBS was not added, treated with cells, and cultured for 24 hours. The culture medium containing the material was removed, MTT (0.5 mg/mL) was dissolved in the culture medium, dispensed at 100 uL, and cultured at 37°C for 4 hours, and the culture medium was removed. After adding 100 uL of DMSO to the formazan formed in each well, it is dissolved using a shaker, and after 30 minutes, using a UV/vis spectrophotometer (Opiwen 2120 UV plus, Mecasys Co. Ltd., Korea) Absorbance was measured at 570 nm. Cytotoxicity was confirmed based on the absorbance value of the control group.

도 2는 천연소재 추출물들을 다양한 농도로 간세포(HepG2 세포)에 개별 처리하였을 때, 농도별 (0.1mg/mL, 0.25mg/mL, 0.5mg/mL, 1.0mg/mL, 2.5mg/mL, 5.0mg/mL) 세포독성을 측정한 결과이다. 천연소재 추출물들 중 일부(현삼 5.0mg/mL, 구기자뿌리껍질 2.5mg/mL, 5.0mg/mL, 구기자뿌리 5.0mg/mL, 여주 5.0mg/mL, 해당화뿌리 5.0mg/mL)에서 세포독성이 나타나 안전한 범위에서만 실험을 진행하였다.Figure 2 shows when the natural material extracts were individually treated in hepatocytes (HepG2 cells) at various concentrations, by concentration (0.1mg/mL, 0.25mg/mL, 0.5mg/mL, 1.0mg/mL, 2.5mg/mL, 5.0 mg/mL) is the result of measuring cytotoxicity. Cytotoxicity was found in some of the natural extracts (Hyunsam 5.0mg/mL, Goji berry root bark 2.5mg/mL, 5.0mg/mL, Goji berry root 5.0mg/mL, bitter gourd 5.0mg/mL, Glycoris root 5.0mg/mL). The experiment was conducted only in a safe range.

[실험예 2: 천연소재 추출물에 의한 글루코스 흡수(Glucose uptake) 측정][Experimental Example 2: Measurement of glucose uptake by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 글루코스 흡수(Glucose uptake) 측정을 위해 하기와 같은 실험을 진행하였다. In this experimental example, the following experiment was conducted to measure glucose uptake of the natural material extracts of the preparation example.

간세포(HepG2 세포)에서 각각의 천연소재 추출물이 글루코스 흡수(Glucose uptake)에 미치는 영향은 glucose uptake colorimetric assay kit를 이용하여 실험하였다. 2-데옥시글루코스(2-Deoxyglucose, 2-DG)는 글루코스(glucose)와 유사한 구조로 세포대사과정에서 글루코스(glucose)가 흡수될 때 같이 흡수되어 2-DG-6-포스페이트(2-DG-6-phosphate, 2-DG6P)로 대사된다. 2-DG6P는 더 이상 대사되지 않고 세포에 축적되며, 흡수되는 2-DG의 양과 비례하게 2-DG6P가 축적된다. 축적되는 2-DG6P를 측정함으로 세포내로의 당 유입정도를 측정할 수 있다. The effect of each natural material extract on glucose uptake in hepatocytes (HepG2 cells) was tested using a glucose uptake colorimetric assay kit. 2-Deoxyglucose (2-DG) has a structure similar to glucose and is absorbed together when glucose is absorbed in the cell metabolism process, and 2-DG-6-phosphate (2-DG- 6-phosphate, 2-DG6P). 2-DG6P is no longer metabolized and accumulates in cells, and 2-DG6P accumulates in proportion to the amount of 2-DG absorbed. By measuring the accumulated 2-DG6P, the degree of sugar influx into the cell can be measured.

간세포(HepG2 세포)를 96 well plates에 1 ×105 cells/mL로 100 uL 분주한 뒤 24시간 배양한 후 혈청기아(serum starvation)을 위해 FBS가 포함되지 않은 배지로 12시간 더 배양하였다. 스타베이션(Starvation) 후 KRPH (Krebs ringer phosphate HEPES) buffer에 2% BSA를 녹인 뒤 40분 배양하였다. 100 nM의 인슐린과 천연소재, 10 mM 2-데옥시글루코스(2-Deoxyglucose, 2-DG)를 20분간 처리하였다. 세포를 PBS로 3회 세척한 뒤 assay buffer 58 uL 와 enzyme mix A 2 uL를 처리한 후 37℃에서 1시간 동안 반응시켰다. Extraction buffer 90 uL를 처리한 뒤 90℃에서 40분간 가열한 후 얼음을 이용하여 냉각시킨 뒤 neutralization buffer 12 uL를 첨가하였다. 글루타티온 리덕타아제(Glutathione reductase) 20 uL와 DTNB [5-5’(2-nitrobenzoic acid)] 16 uL, recycling mix 2 uL를 이용하여 40분 동안 37℃ 조건에서 반응시켰으며 412 nm에서 흡광도를 측정하였다.Hepatocytes (HepG2 cells) were dispensed with 100 uL at 1 × 10 5 cells/mL in 96 well plates, cultured for 24 hours, and cultured for 12 hours in a medium containing no FBS for serum starvation. After starvation, 2% BSA was dissolved in KRPH (Krebs ringer phosphate HEPES) buffer and incubated for 40 minutes. 100 nM of insulin and a natural material, 10 mM 2-Deoxyglucose (2-DG) were treated for 20 minutes. After washing the cells 3 times with PBS, 58 uL of assay buffer and 2 uL of enzyme mix A were treated, and then reacted at 37°C for 1 hour. After treatment with 90 uL of the extraction buffer, it was heated at 90°C for 40 minutes, cooled with ice, and then 12 uL of neutralization buffer was added. Using 20 uL of glutathione reductase and 16 uL of DTNB [5-5'(2-nitrobenzoic acid)], 2 uL of recycling mix was used to react at 37°C for 40 minutes, and absorbance was measured at 412 nm. I did.

먼저, 정상 또는 고혈당상태(당뇨와 유사조건)와 유사한 조건을 만들기 위해 배지 내 포도당 농도를 달리한 조건(0.1%, 0.45%, 0.7%)에서 천연소재 추출물들을 첨가했을 때, 간세포(HepG2 세포) 내로 유입되는 포도당의 양이 어떻게 변하는지를 실험한 결과, 도 3과 같이, 무처리 대조군과 비교할 때 천연소재 추출물을들 첨가할 경우 배지 내 포도당 농도에 관계없이 세포내로 유입되는 포도당의 양을 증가시킬 수 있음을 확인하였다. 특히, 현삼 추출물과 뽕나무껍질 추출물이 간세포(HepG2 세포) 내로 유입되는 포도당의 양을 유의적으로 증가시키며, 인슐린을 처리한 경우에도 통계적으로 유사하게 세포 내로 유입되는 포도당의 양을 증가시키는 것을 관찰하여 최적후보소재로 선발하였다. First, when natural material extracts were added under different conditions (0.1%, 0.45%, 0.7%) with different glucose concentrations in the medium to create conditions similar to normal or hyperglycemic conditions (diabetes-like conditions), hepatocytes (HepG2 cells) As a result of experimenting how the amount of glucose introduced into the cells changes, as shown in FIG. 3, when adding natural material extracts compared to the untreated control group, the amount of glucose introduced into the cells was increased regardless of the glucose concentration in the medium. It was confirmed that it can be. In particular, it was observed that the ginseng extract and the mulberry bark extract significantly increased the amount of glucose introduced into the hepatocytes (HepG2 cells), and statistically similarly increased the amount of glucose introduced into the cells even when treated with insulin. It was selected as the best candidate material.

또한, 선발된 소재인 현삼 추출물과 뽕나무껍질 추출물의 첨가농도를 달리 했을때, 간세포(HepG2 세포) 내로 유입되는 포도당의 양이 어떻게 변하는지를 실험한 결과, 이들 추출물의 첨가농도가 증가할수록 간세포(HepG2 세포)내로 유입되는 포도당의 양이 증가함을 관찰하였으며 특히 1.5mg/ml의 현삼 추출물 첨가시 가장 증가량이 높아짐을 관찰하였다.In addition, as a result of testing how the amount of glucose introduced into hepatocytes (HepG2 cells) changes when the added concentrations of the selected materials, hyeon ginseng extract and mulberry bark extract were varied, hepatocytes (HepG2) were tested as the concentration of these extracts increased. Cells) was observed to increase the amount of glucose introduced into the cells, and in particular, it was observed that the increase was the highest when 1.5mg/ml of Hyeonsam extract was added.

한편, 간세포 내로 포도당이 유입될 때 GLUT 단백질과 GLUT 2 mRNA의 발현을 조절하는 여러 가지 전사 인자(Transcription factor) 헤파토사이트 뉴클리어 팩터-1 알파(hepatocyte nuclear factors 1 alpha, HNF-1α), HNF-4α, 포크헤드 박스 A2(forkhead box A2, FOXA2), 스테롤 조절 요소 결합 단백질 1C(sterol regulatory element binding protein 1C, SREBP-1C), CCAAT/인헨서 결합 단백질-베타(CCAAT enhancer binding protein-beta, C/EBP-β) 등이 관여하는 것으로 알려져 있는데, 특히 사람 GLUT2 유전자 프로모터(human GLUT2 gene promotor)에는 HNF-1α, FOXA2, C/EBP-β가 주요조절인자로 알려져 있다(Ban N et al., 2002. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter. Diabetes 51(5): 1409-1418.28, 29). 간세포내로 포도당이 유입될 때의 HNF-1α 단백질과 GLUT2 mRNA 발현 관계는 도 5와 같다. 이에 선발된 소재인 현삼 추출물과 뽕나무껍질 추출물을 첨가시 간세포내로 포도당이 유입될 때의 HNF-1α 단백질과 GLUT2 mRNA 발현 관계를 확인하고자 하였다. On the other hand, various transcription factors that regulate the expression of GLUT protein and GLUT 2 mRNA when glucose is introduced into hepatocytes, hepatocyte nuclear factors 1 alpha, HNF-1α, and HNF. -4α, forkhead box A2 (FOXA2), sterol regulatory element binding protein 1C (SREBP-1C), CCAAT/enhancer binding protein-beta (CCAAT enhancer binding protein-beta, C/EBP-β) and the like are known to be involved, and in particular, HNF-1α, FOXA2, and C/EBP-β are known as major regulators in the human GLUT2 gene promotor (Ban N et al. , 2002. Hepatocyte nuclear factor-1alpha recruits the transcriptional co-activator p300 on the GLUT2 gene promoter.Diabetes 51(5): 1409-1418.28, 29). The relationship between HNF-1α protein and GLUT2 mRNA expression when glucose is introduced into hepatocytes is shown in FIG. 5. Thus, when the selected materials, hyeonsam extract and mulberry bark extract, were added, the relationship between HNF-1α protein and GLUT2 mRNA expression when glucose was introduced into hepatocytes was examined.

HepG2 세포를 6-well plates에 1x106 cells/mL로 분주한 뒤 24시간 동안 배양한 후 소재를 처리하여 24시간 더 배양한 다음 RIPA 용해 버퍼(lysis buffer) (10 mM Tris-HCl, 0.1 M EDTA, 10 mM NaCl, 0.5% Triton X-100, pH 7.4,)에 프로테아제 인히비터 칵테일(protease inhibitor Cocktail), 1 mM PMSF를 혼합하고 4℃에서 용해시킨 후 원심분리 (8,000 rpm, 10 min, 4℃) 하여 얻은 단백질은 브랜드포드(bradford)법을 이용하여 정량하여 실험에 사용하였다.Dispense HepG2 cells into 6-well plates at 1x10 6 cells/mL, incubate for 24 hours, treat the material, and incubate for 24 hours, then RIPA lysis buffer (10 mM Tris-HCl, 0.1 M EDTA). , 10 mM NaCl, 0.5% Triton X-100, pH 7.4,) mixed with a protease inhibitor cocktail, 1 mM PMSF, dissolved at 4℃, and centrifuged (8,000 rpm, 10 min, 4℃ ) The obtained protein was quantified using the Brandford method and used in the experiment.

동일한 양의 단백질 (40 ug)과 샘플 버퍼(sample buffer)를 4:1로 혼합한 후 100℃에서 10분간 가열하였다. 준비된 단백질샘플은 바이오래드 미니 젤 시스템(Bio-Rad mini-gel system)를 이용하여 SDS-PAGE 후 폴리비닐리덴 플루오리드 멤브레인(Polyvinylidene fluoride membrane) (0.45 um)으로 단백질을 전이하였다. 멤브레인(Membrane)은 0.1% tween 20과 5% 스킴 밀크(Skim milk)를 함유한 tris-buffered saline (TBS)에 1시간 동안 블로킹(blocking)하였다. 그 후 1차 항체(antibody)가 첨가된 5% 스킴 밀크(Skim milk)에서 1시간 동안 반응시키고 TBS-T (TBS containing 0.1% tween-20)로 5분간 3회 세척하였다. 세척된 멤브레인(Membrane)은 2차 안티-래빗 IgG 콘쥬게이트 호스래디쉬 퍼록시다아제 항체(anti-rabbit IgG conjugates horseradish peroxidase antibody)가 첨가된 5% 스킴 밀크(Skim milk)를 넣고 실온에서 1시간 동안 반응한 후 5분간 3회 세척하였다. 세척 후 enhanced chemiluminescence를 이용하여 x-ray 필름에 감광시켰다. Image J (National institutes of health, Bethesda, MD, USA) 소프트웨어를 이용하여 필름에 현상된 단백질 밴드를 정량하였으며, 내부표준단백질은 β-actin을 사용하였다. 하기 다른 실험예에서 단백질 발현 정도 측정시, 이와 같은 방법을 사용하였다.The same amount of protein (40 ug) and sample buffer were mixed at 4:1 and heated at 100° C. for 10 minutes. The prepared protein sample was SDS-PAGE using a Bio-Rad mini-gel system, and then the protein was transferred to a polyvinylidene fluoride membrane (0.45 um). Membrane was blocked in tris-buffered saline (TBS) containing 0.1% tween 20 and 5% skim milk for 1 hour. Then, it was reacted for 1 hour in 5% skim milk to which the primary antibody was added, and washed 3 times for 5 minutes with TBS-T (TBS containing 0.1% tween-20). The washed membrane was added with 5% skim milk to which a secondary anti-rabbit IgG conjugate horseradish peroxidase antibody was added, and 1 hour at room temperature. After reacting for 5 minutes, it was washed 3 times. After washing, it was sensitized to the x-ray film using enhanced chemiluminescence. The protein band developed on the film was quantified using Image J (National institutes of health, Bethesda, MD, USA) software, and β-actin was used as the internal standard protein. When measuring the protein expression level in the following other experimental examples, the same method was used.

실험 결과, 도 6의 A)와 같이 현삼 추출물과 뽕나무껍질 추출물 모두 HNF-1α mRNA 및 단백질 발현을 증가시키는 것이 관찰되었고, 도 6의 B)와 같이 현삼 추출물과 뽕나무껍질 추출물 모두 HNF-1α증가를 통해(도 6의 A 참조) GLUT2 mRNA 및 단백질 발현을 증가시키는 것이 관찰되었다. 따라서 상기의 작용기전을 검증할 수 있었다.As a result of the experiment, it was observed that both HNF-1α mRNA and protein expression were increased as shown in FIG. 6A), and both HNF-1α increased as shown in FIG. 6B). It was observed to increase GLUT2 mRNA and protein expression through (see Fig. 6A). Therefore, the mechanism of action could be verified.

[실험예 3: 천연소재 추출물에 의한 글루코키나제(Glucokinase, GK) 활성 측정][Experimental Example 3: Measurement of glucokinase (GK) activity by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 글루코키나제(Glucokinase, GK) 활성 측정을 위해 하기와 같은 실험을 진행하였다. 본 실험예에서는 상기 실험예 1에서 배양된 간세포(HepG2 세포)를 사용하였다. In this experimental example, the following experiment was conducted to measure the glucokinase (GK) activity of the natural material extracts of the preparation example. In this experimental example, hepatocytes (HepG2 cells) cultured in Experimental Example 1 were used.

간세포(HepG2 세포)에서 각각의 천연소재 추출물이 GK 활성에 미치는 영향은 hexokinase colorimetric assay kit를 이용하였다. GK에 의해 글루코스(glucose)는 글루코스-6-포스페이트(glucose-6-phosphate, G-6-P)로 인산화되며, G-6-P 데하이드로게나제(G-6-P dehydrogenase, G-6-PD)에 의해 니코틴아마이드 아데닌 디뉴클레오티드(Nicotinamide adenine dinucleotide, NAD)가 NADH로 환원되는 것을 이용하여 GK 활성을 측정하였다. 간세포(HepG2 세포)에 천연소재를 24시간 배양한 후 세포를 회수하였으며, 단백질을 정량하여 well 당 40 ug/50 uL로 맞춘 뒤 에세이 버퍼(assay buffer) 34 uL, 효소 믹스(enzyme Mix) 2 uL, 현상액(developer) 2 uL, 코엔자임(coenzyme) 2 uL, 헥소키나아제(hexokinase) 10 uL을 처리한 후 450 nm에서 3분 간격으로 흡광도를 측정하였다.Hexokinase colorimetric assay kit was used to determine the effect of each natural material extract on GK activity in hepatocytes (HepG2 cells). Glucose by GK is phosphorylated to glucose-6-phosphate (G-6-P), and G-6-P dehydrogenase (G-6) -PD) was used to measure GK activity by using the reduction of Nicotinamide adenine dinucleotide (NAD) to NADH. After culturing natural materials in hepatocytes (HepG2 cells) for 24 hours, the cells were recovered, and the protein was quantified and adjusted to 40 ug/50 uL per well, followed by 34 uL of assay buffer and 2 uL of enzyme mix. , After treatment with 2 uL of developer, 2 uL of coenzyme, and 10 uL of hexokinase, absorbance was measured at 450 nm every 3 minutes.

식사 후 소화흡수된 세포내로 유입되는 포도당(glucose)이 글루코키나제(glucokinase, GK)에 의해 글루코스-6-포스페이트(glucose-6 phosphate)로 전환되어야 분해대사가 시작된다. 천연소재 추출물들이 간세포(HepG2 세포) 내 글루코키나제(glucokinase, GK) 활성 증가에 미치는 영향에 대한 실험 결과, 도 7과 같이, 가시오갈피 추출물이 배지내 포도당 농도에 관계없이(0.1%, 0.45%, 0.7%)에서 가장 유의적으로 글루코키나제 활성을 증가시키는 것을 알 수 있었다.After a meal, the digested and absorbed glucose into the cells must be converted to glucose-6 phosphate by glucokinase (GK) to start decomposition and metabolism. As a result of the experiment on the effect of natural material extracts on the increase in glucokinase (GK) activity in hepatocytes (HepG2 cells), as shown in FIG. 7, the gasoline extract is irrespective of the glucose concentration in the medium (0.1%, 0.45%, 0.7%) was found to increase the glucokinase activity most significantly.

선발된 소재인 가시오가피 추출물과 뽕나무껍질 추출물의 첨가농도를 달리했을 때, 간세포(HepG2 세포) 내 글루코키나제(glucokinase, GK) 활성에 어떤 영향을 미치는 지를 실험한 결과, 도 8과 같이 이들 추출물의 첨가농도가 증가할수록 간세포(HepG2 세포)내 글루코키나제(glucokinase, GK) 활성이 증가함을 관찰하였다. 특히, 1.5 및 2 mg/ml의 가시오갈피 추출물 첨가시 글루코키나제(glucokinase, GK) 활성은 인슐린 첨가시보다 유의적으로 증가하는 것이 관찰되어 매우 우수한 소재을 알 수 있었다. 또한, 선발된 소재인 가시오가피 추출물과 뽕나무껍질 추출물이 간세포(HepG2 세포) 내 글루코키나제(glucokinase, GK) mRNA 및 단백질 발현에 어떤 영향을 미치는지를 확인한 결과, 도 9와 같이 대조군과 비교할 때 글루코키나제(glucokinase, GK) mRNA 및 단백질 발현이 증가하는 것을 확인하였고, 이는 상기 도 9의 결과를 뒷받침하는 결과였다.When the concentrations of the selected material, the extract of the extract of the bark bark and the extract of the mulberry bark were varied, the effect of the experiment on the activity of glucokinase (GK) in the hepatocytes (HepG2 cells) was tested. As a result, the addition of these extracts as shown in FIG. It was observed that as the concentration increased, the activity of glucokinase (GK) in hepatocytes (HepG2 cells) increased. In particular, it was observed that the glucokinase (GK) activity increased significantly when added with 1.5 and 2 mg/ml of the gasoline extract, compared to the addition of insulin, indicating a very excellent material. In addition, as a result of confirming how the selected materials, gasiogapi extract and mulberry bark extract affect the expression of glucokinase (GK) mRNA and protein in hepatocytes (HepG2 cells), as shown in FIG. 9, glucokinase ( It was confirmed that glucokinase, GK) mRNA and protein expression were increased, and this was a result supporting the result of FIG. 9.

한편, 글루코키나제(glucokinase, GK) mRNA 발현은 SREBP-1C와 포스파티딜이노시톨 3-키나제(phosphatidylinositol 3-kinase, PI3K)에 의해 조절되며, GK의 프로모터(Promotor)에 SREBP-1C가 작용하는데(Desvergne B, Michalik L, Wahli W. 2006. Transcriptional regulation of metabolism. Physiol Rev 86(2): 465-514.), 이러한 작용기전은 도 10에 나타냈다. 따라서, 선발된 소재인 가시오갈피 추출물과 뽕나무껍질 추출물을 첨가시 간세포(HepG2 세포)에서 PI3K 단백질 및 SREBP-1C 단백질 발현에 어떤 영향을 미치는지를 실험하였다. Meanwhile, glucokinase (GK) mRNA expression is regulated by SREBP-1C and phosphatidylinositol 3-kinase (PI3K), and SREBP-1C acts on the promoter of GK (Desvergne B). , Michalik L, Wahli W. 2006. Transcriptional regulation of metabolism. Physiol Rev 86(2): 465-514.), this mechanism of action is shown in FIG. Therefore, it was tested how the addition of the selected materials, the extract of the extract and the extract of the mulberry bark, affects the expression of PI3K protein and SREBP-1C protein in hepatocytes (HepG2 cells).

그 결과, 도 11의 A)와 같이 가시오갈피 추출물과 뽕나무껍질 추출물 모두 PI3K 단백질 발현을 증가시키는 것이 관찰되었고, 도 11의 B)와 같이 가시오갈피 추출물과 뽕나무껍질 추출물 모두 SREBP-1C 단백질 발현을 증가시키는 것이 관찰되었다. 상기의 도 9 및 도 11의 결과를 통해 가시오갈피 추출물과 뽕나무 껍질 추출물을 첨가할 때 간세포(HepG2 세포) 내에서 글루코키나제(Glucokinase, GK)의 활성화가 기전적으로 반응하는 것임을 확인할 수 있었다.As a result, it was observed to increase the expression of PI3K protein in both the gasiocarpone extract and the mulberry bark extract as shown in FIG. 11A), and both the gasiocarpone extract and the mulberry bark extract increase the SREBP-1C protein expression as shown in FIG. 11B). Was observed. Through the results of FIGS. 9 and 11, it was confirmed that the activation of glucokinase (GK) in hepatocytes (HepG2 cells) was mechanically reacted when adding the extract and the mulberry bark extract.

[실험예 4: 천연소재 추출물에 의한 탈수소효소(Pyruvate dehydrogenase, PDH) 활성 측정][Experimental Example 4: Dehydrogenase (Pyruvate dehydrogenase, PDH) activity measurement by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 탈수소효소(Pyruvate dehydrogenase, PDH) 활성 측정을 위해 하기와 같은 실험을 진행하였다. In this experimental example, the following experiment was performed to measure the activity of the natural material extracts of the preparation example for measuring Pyruvate dehydrogenase (PDH) activity.

HepG2 세포에서 각각의 천연소재 추출물이 PDH 활성에 미치는 영향은 PDH 활성 어세이 키트(PDH activity assay kit)를 이용하였다. PDH 활성에 의해 NAD+가 NADH로 환원되는 원리를 이용하여 측정하였다. HepG2 세포에 소재를 24시간 배양한 후 세포를 회수하였으며, 단백질을 정량하여 well 당 100 ug/200 uL로 맞춘 뒤 실온에서 3시간 인큐베이션(incubation)하고 1X stabilizer로 2회 세척 후 20X reagent Mix 11 uL, 1X buffer 0.2 mL, 100X coupler 2.25 uL, 100X reagent Dye 2.25 uL을 처리한 후 450 nm에서 3분 간격으로 흡광도를 측정하였다. The effect of each natural material extract on the PDH activity in HepG2 cells was performed using a PDH activity assay kit. It was measured using the principle that NAD + is reduced to NADH by PDH activity. After culturing the material in HepG2 cells for 24 hours, the cells were recovered, and the protein was quantified and adjusted to 100 ug/200 uL per well, incubated at room temperature for 3 hours, washed twice with 1X stabilizer, and then 20X reagent Mix 11 uL , 0.2 mL of 1X buffer, 2.25 uL of 100X coupler, 2.25 uL of 100X reagent Dye were treated, and absorbance was measured at 450 nm every 3 minutes.

세포내로 유입되는 포도당(glucose)이 글루코키나제(glucokinase, GK)에 의해 글루코스-6-포스페이트(glucose-6 phosphate)로 전환된 후, 해당과정을 거쳐 피루브산(pyruvic acid)이 되면 미토콘드리아에서 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH)에 의해 아세틸 코엔자임 A(Acetyl coenzme A, Acetyl co A)로 생성된다. 천연소재 추출물들이 간세포(HepG2 세포) 내 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) 활성 증가에 미치는 영향에 대한 실험 결과, 도 12와 같이, 현삼 추출물, 구기자뿌리껍질 추출물, 구기자뿌리 추출물이 배지내 포도당 농도에 관계없이(0.1%, 0.45%, 0.7%)에서 가장 유의적으로 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) 활성을 증가시켰으며, 인슐린 첨가시와 비슷한 증가 효과를 나타내는 것을 알 수 있었다.Glucose introduced into cells is converted to glucose-6 phosphate by glucokinase (GK), and then converted to pyruvic acid through glycolysis, and then pyruvic acid dehydrogenase in mitochondria (Pyruvate dehydrogenase, PDH) is produced as acetyl coenzme A (Acetyl co A). Experimental results for the effect of natural material extracts on the increase of pyruvate dehydrogenase (PDH) activity in hepatocytes (HepG2 cells), as shown in FIG. 12, the concentration of glucose concentration in the medium of hyeon ginseng extract, goji root bark extract, goji berry root extract Regardless of (0.1%, 0.45%, 0.7%), the activity of pyruvate dehydrogenase (PDH) was most significantly increased, and it was found that the increase effect was similar to that of insulin addition.

상기에서 선발된 소재인 구기자뿌리 추출물의 첨가농도를 달리했을때, 간세포(HepG2 세포) 내 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) 활성에 어떤 영향을 미치는 지를 실험한 결과, 도 13와 같이 이들 추출물의 첨가농도가 증가할수록 간세포(HepG2 세포)내 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) 활성이 증가함을 관찰하으며, 특히, 1.5 및 2 mg/ml의 구기자뿌리 추출물 첨가시 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) 활성은 인슐린 첨가시와 유사하게 증가하는 것이 관찰되어 매우 우수한 소재을 알 수 있었다. When the concentration of the extract of Goji japonica root extract, which is the material selected above, was tested, how it affected the activity of pyruvate dehydrogenase (PDH) in hepatocytes (HepG2 cells), as shown in FIG. As the concentration of addition increases, the activity of pyruvate dehydrogenase (PDH) in hepatocytes (HepG2 cells) increases.In particular, when 1.5 and 2 mg/ml of Goji root extract are added, pyruvate dehydrogenase (Pyruvate dehydrogenase) increases. PDH) activity was observed to increase similarly to when insulin was added, indicating a very good material.

또한, 선발된 소재인 구기자뿌리 추출물이 간세포(HepG2 세포) 내 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) mRNA 발현에 어떤 영향을 미치는지를 확인한 결과, 도 14와 같이 대조군과 비교할 때 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH) mRNA 발현이 증가하는 것을 확인하였고, 이는 상기 도 13의 결과를 뒷받침하는 결과였다.In addition, as a result of confirming how the selected material, goji root extract, affects the expression of pyruvate dehydrogenase (PDH) mRNA in hepatocytes (HepG2 cells), as shown in FIG. 14, when compared with the control group, pyruvate dehydrogenase , PDH) mRNA expression was confirmed to increase, which was a result supporting the result of FIG. 13.

한편, 간 세포에서 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH)가 활성화되려면 증가한 피루브산에 의해 비활성화 상태(인산화된 피르브산 탈수소효소, phosphorylated pyruvate dehydrogenase, pPDH)인 효소가 활성화 상태(피르브산 탈수소효소, pyruvate dehydrogenase, PDH)로 전환되어야 한다. 이에 관련된 모식도는 도 15에 나타냈다. 그러므로 상기 도 14의 결과가 피르브산 탈수소효소(pyruvate dehydrogenase, PDH)의 활성화에 의한 것인지를 입증하려면 pPDH의 효소가 증가했는지, 아니면 PDH의 효소가 증가했는지를 검증해야한다. 따라서, 선발된 소재인 구기자뿌리 추출물을 첨가시 간세포(HepG2 세포)에서pPDH 및 PDH 단백질 발현에 어떤 영향을 미치는지를 실험하였다.On the other hand, in order to activate pyruvate dehydrogenase (PDH) in liver cells, an enzyme in an inactivated state (phosphorylated pyruvate dehydrogenase, pPDH) is activated (pyruvate dehydrogenase, pyruvate dehydrogenase) by increased pyruvate. , PDH). A schematic diagram related to this is shown in FIG. 15. Therefore, in order to prove whether the result of FIG. 14 is due to the activation of pyruvate dehydrogenase (PDH), it is necessary to verify whether the enzyme of pPDH is increased or the enzyme of PDH is increased. Therefore, it was tested how the addition of the selected material, Goji root extract, on the expression of pPDH and PDH proteins in hepatocytes (HepG2 cells).

그 결과, 도 16과 같이 구기자뿌리 추출물을 첨가하면 pPDH 단백질의 발현은 감소하고, PDH 단백질의 발현은 증가한다는 것을 관찰하였고, 인슐린 첨가와 비교시에도 PDH 단백질 발현은 유의적으로 증가한다는 것을 확인할 수 있었다. 이와 같은 결과를 통해 구기자뿌리 추출물을 첨가할 때 피루브산 탈수소효소(pyruvate dehydrogenase, PDH) 활성화가 기전적으로 반응하는 것임을 확인할 수 있었다.As a result, it was observed that the expression of the pPDH protein decreased and the expression of the PDH protein increased when the Goji root extract was added as shown in FIG. 16, and it was confirmed that the expression of the PDH protein was significantly increased even when compared with the addition of insulin. there was. From these results, it was confirmed that when the extract of Goji japonica root extract was added, the activation of pyruvate dehydrogenase (PDH) was mechanically reacted.

[실험예 5: 천연소재 추출물에 의한 ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 활성 측정][Experimental Example 5: Measurement of ATP-citrate lyase (ACL) activity by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 활성 측정을 위해 하기와 같은 실험을 진행하였다.In this experimental example, the following experiment was conducted to measure the activity of ATP-citrate lyase (ACL) of the natural material extracts of the preparation example.

포도당의 분해대사과정에서 시트르산 회로(citric acid cycle)를 통해 에너지로 산화분해되지 못한 아세틸 코엔자임 A는 미토콘드리아에서 옥살초산(oxaloacetic acid)과 결합한 후 구연산(citric acid)이 되어 미토콘드리아 밖으로 나오게 되며, 이후, ATP-시트레이트 리아제(ATP-citrate lyase, ACL)에 의해 다시 아세틸 코엔자임 A와 옥살초산으로 분해된다. 이때 생성된 아세틸 코엔자임 A는 아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC)에 의해 말로닐 코엔자임 A(Malonyl CoA)로 전환된 후 지방산 합성효소 복합체(Fatty acid synthetase complex)의 작용에 의해 지방산으로 전환 저장되는 과정을 거치게 된다. Acetyl coenzyme A, which cannot be oxidatively decomposed into energy through the citric acid cycle in the process of glucose decomposition and metabolism, is combined with oxaloacetic acid in the mitochondria, then becomes citric acid, and then comes out of the mitochondria. It is decomposed into acetyl coenzyme A and oxalacetic acid again by ATP-citrate lyase (ACL). The acetyl coenzyme A produced at this time is converted to malonyl CoA by acetyl coenzyme A carboxylase (ACC), and then converted to fatty acid by the action of the fatty acid synthetase complex. It is converted and saved.

ATP-시트레이트 리아제(ATP-citrate lyase, ACL)에 의한 아세틸 코엔자임 A와 옥살초산으로의 분해반응이 활성화되지 못하면 아세틸 코엔자임 A가 세포내에 축적되며 포도당의 분해대사를 방해해 식후 상승한 혈당이 정상으로 돌아오는 것을 저해하여 고혈당 상태를 장시간 유지하게 되면서 당뇨가 유발된다. 그러므로 ATP-시트레이트 리아제(ATP-citrate lyase, ACL)의 활성화는 당뇨유발에서 중요한 역할을 한다. If the decomposition reaction of acetyl coenzyme A and oxalic acid by ATP-citrate lyase (ACL) is not activated, acetyl coenzyme A accumulates in the cell and interferes with the metabolism of glucose, resulting in elevated blood sugar levels after eating. Diabetes is induced by inhibiting return and maintaining high blood sugar for a long time. Therefore, activation of ATP-citrate lyase (ACL) plays an important role in the induction of diabetes.

ATP-시트레이트 리아제는 비활성 상태(ATP-citrate lyase, ACL)로 존재하다가 활성화(phosphorylated ATP-citrate lyase. pACL)되면 구연산(citric acid)을 아세틸 코엔자임 A와 옥살초산으로 분해하므로 활성화 여부를 검증하려면 세포내 비활성형(ACL)과 활성형(pACL)의 비율 변화를 측정하게 된다. 천연소재 추출물들이 간세포(HepG2 세포) 내 ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 단백질과 인산화된 ATP-시트레이트 리아제(phosphorylated ATP-citrate lyase, pACL) 단백질 발현에 미치는 영향에 대한 실험 결과, 도 17과 같이, 여주 추출물이 pACL/ACL 비율을 가장 유의적으로 증가시켜 매우 우수한 소재임을 검증하였다.ATP-citrate lyase In an inactive state (ATP-citrate lyase, ACL) and activated (phosphorylated ATP-citrate lyase. pACL), citric acid is decomposed into acetyl coenzyme A and oxalic acid. )and The change in the percentage of active form (pACL) is measured. Experimental results of the effect of natural extracts on the expression of ATP-citrate lyase (ACL) protein and phosphorylated ATP-citrate lyase (pACL) protein in hepatocytes (HepG2 cells) , As shown in FIG. 17, it was verified that the bitter gourd extract was a very excellent material by increasing the pACL/ACL ratio most significantly.

상기에서 선발된 소재인 여주 추출물의 첨가농도를 달리했을때, 간세포(HepG2 세포) 내 ATP-시트레이트 리아제(ATP-citrate lyase, ACL) 단백질과 인산화된 ATP-시트레이트 리아제(phosphorylated ATP-citrate lyase, pACL) 단백질 발현에 어떤 영향을 미치는지를 실험한 결과, 도 18과 같이 추출물의 첨가농도를 2mg/ml까지 증가하였을때, 세포내 비활성형(ACL)과 활성형(pACH)의 비율이 증가함을 관찰할 수 있었다.When the concentration of bitter gourd extract, the material selected above, was varied, ATP-citrate lyase (ACL) protein in hepatocytes (HepG2 cells) and phosphorylated ATP-citrate lyase , pACL) As a result of testing how it affects protein expression, as shown in FIG. 18, when the added concentration of the extract was increased to 2 mg/ml, the ratio of intracellular inactive form (ACL) and active form (pACH) increased. Could be observed.

[실험예 6: 천연소재 추출물에 의한 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 활성 측정][Experimental Example 6: Measurement of nicotinamide-N-methyltransferase (NNMT) activity by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 활성 측정을 위해 하기와 같은 실험을 진행하였다. In this experimental example, the following experiment was performed to measure the activity of nicotinamide-N-methyltransferase (NNMT) of the natural material extracts of Preparation Example.

간 세포에서 1) 혈액 중의 포도당을 간세포(HepG2) 내로 이동시키는데(Glucose uptake) 관여하는 GLUT2 단백질의 활성화가 되고, 2) 세포내로 유입된 포도당을 아세틸 코엔자임 A (Acetyl Co A)까지 분해하는 반응에 관여하는 주요 효소인 글루코키나제(Glucokinase, GK)와 피루브산 탈수소효소(Pyruvate dehydrogenase, PDH)들의 활성이 증가되고, 3) 과잉의 아세틸 코엔자임 A 처리를 위해 생성된 구연산(citric acid)를 분해하는 ATP-시트레이트 리아제(ATP-citrate lyase, ACL)의 활성이 증가되는 3가지 반응이 활성화되어 당뇨를 개선한다해도 상기 1)-3)의 과정을 통해 증가된 아세틸 코엔자임 A가 에너지로 산화분해되지 못하면 결국 지방산으로 전환 저장되어 비만을 초래하게 되므로 또다른 대사 이상을 야기하게 될 수 있다. 따라서, 증가된 아세틸 코엔자임 A를 소변으로 배출시켜야하는데, 이 역할을 하는 유일한 효소는 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT)로서, 이 효소의 활성을 억제할 수 있으면, 과잉 생성된 아세틸 코엔자임 A는 폴리아민(polyamines)과 결합(Acetyl-polyamines)되어 소변으로 배출시킬 수 있게 된다. In liver cells, 1) GLUT2 protein, which is involved in the movement of glucose in blood into hepatocytes (HepG2), is activated, and 2) the reaction to decompose glucose introduced into cells to acetyl coenzyme A (Acetyl Co A). The activities of glucokinase (GK) and pyruvate dehydrogenase (PDH), which are the major enzymes involved, are increased, and 3) ATP- decomposes citric acid generated for treatment of excess acetyl coenzyme A. Even if the three reactions that increase the activity of citrate lyase (ATP-citrate lyase, ACL) are activated to improve diabetes, if acetyl coenzyme A, which is increased through the process of 1)-3) above, cannot be oxidatively decomposed into energy, eventually It is converted into fatty acids and stored, resulting in obesity, which can lead to another metabolic abnormality. Therefore, increased acetyl coenzyme A must be excreted into the urine, and the only enzyme that plays this role is nicotinamide-N-methyltransferase (NNMT), if the activity of this enzyme can be inhibited. , Over-produced acetyl coenzyme A is combined with polyamines (Acetyl-polyamines) to be excreted in urine.

천연소재 추출물들이 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 활성 억제에 미치는 영향에 대한 실험 결과, 도 19와 같이, 신선목, 해당화뿌리 추출물이 유의적으로 NNMT 효소 활성을 억제하였으며, 일반적으로 NNMT 효소 활성억제에 사용되는 약제인 N-메틸 니코틴아마이드(N-methyl nicotinamide)보다도 유의적으로 억제시키는 결과임을 확인하였다.As a result of the experiment on the effect of natural material extracts on the inhibition of nicotinamide-N-methyltransferase (NNMT) activity, as shown in Fig. 19, the extracts of fresh wood and glycosyllium root have significant NNMT enzyme activity. Was inhibited, and it was confirmed that the result was significantly more inhibited than N-methyl nicotinamide, a drug generally used to inhibit the activity of NNMT enzyme.

[실험예 7: 천연소재 추출물에 의한 α-글루코시다제(α-glucosidase) 활성 측정][Experimental Example 7: Measurement of α-glucosidase activity by natural material extract]

본 실험예에서는 상기 제조예의 천연소재 추출물들의 α-글루코시다제(α-glucosidase) 활성 측정을 위해 하기와 같은 실험을 진행하였다. In this experimental example, the following experiment was performed to measure the α-glucosidase activity of the natural material extracts of Preparation Example.

간세포에서 포도당 분해 이용대사와 별도로, 식사를 통해 소장으로 이동된 탄수화물을 포도당으로 분해하여 소화흡수되는 것을 감소시키기 위해, 섭취한 탄수화물을 포도당으로 소화분해하는 효소인 알파-글루코시다아제(α-glucosidase)의 활성을 억제할 수 있는 천연물질을 발굴하고자 했다. 천연소재 추출물들이 알파-글루코시다아제(α-glucosidase) 활성 억제에 미치는 영향에 대한 실험 결과, 도 20과 같이, 뽕나무껍질 추출물이 가장 탁월한 저해효과가 있음을 확인하였다.Apart from metabolism using glucose decomposition in liver cells, alpha-glucosidase, an enzyme that digests and decomposes ingested carbohydrates into glucose in order to reduce digestion and absorption by decomposing carbohydrates transferred to the small intestine through meals into glucose. ) To find a natural substance that can inhibit the activity. As a result of the experiment on the effect of natural material extracts on the inhibition of α-glucosidase activity, as shown in FIG. 20, it was confirmed that the Morus bark extract had the most excellent inhibitory effect.

[실시예 1: 천연소재 복합 추출물(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물, 해당화뿌리 추출물)에 의한 당 분해대사 활성][Example 1: Glucose decomposition and metabolism activity by natural material complex extract (Hyunsam extract, Ginseng extract, Gugija root extract, bitter gourd extract, Glycoris root extract)]

본 실시예에서는 상기 실험예들의 결과에서 확인된 바와 같이, 포도당 분해 이용대사중 각각의 부분적인 활성화 효과를 나타내어 선발했던 소재들(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물, 해당화뿌리 추출물)을 복합배합하여 사용하였을 때, 간세포(HepG2 세포) 내 당 분해대사에 실질적인 변화가 있는지를 검증하고자 하였다. 상기 천연소재 추출물들을 복합배합하여 사용할 때, 소재간의 상호작용에 의해 당 분해대사 활성화가 있을 수 있기 때문에, 도 21과 같이 배합비를 달리하여 전체 또는 일부 복합배합하여 천연소재 복합 추출물을 제조하여 다양한 검증을 하고자 하였다.In this example, as confirmed from the results of the above experimental examples, the materials selected by showing partial activation effects of each of the glucose degradation utilization metabolism (Hyunsam extract, Gasiocarp extract, Goji berry root extract, bitter gourd extract, Glycoris root extract ) Was used in a complex combination to verify whether there was a substantial change in the metabolism of glucose degradation in hepatocytes (HepG2 cells). When the natural material extracts are mixed and used, since glycolysis and metabolism may be activated due to the interaction between the materials, various verifications were made by preparing a natural material complex extract by combining all or part of the mixture by varying the mixing ratio as shown in FIG. I wanted to.

1) 세포독성측정1) Cytotoxicity measurement

배합비를 달리하여 전체 또는 일부 복합배합한 천연소재 복합 추출물의 세포독성을 평가하고자 했고, 실험방법은 상기 실험예 1에 기재된 방법을 동일하게 적용하였다. 도 22와 같이 천연소재 복합 추출물들을 처리하여 간세포(HepG2 세포)에 대한 독성여부를 평가한 결과, 모든 배합에서 세포독성은 나타나지 않았다.It was attempted to evaluate the cytotoxicity of the natural material composite extract mixed with all or part of the mixture by varying the mixing ratio, and the experimental method was the same as described in Experimental Example 1. As a result of evaluating the toxicity to hepatocytes (HepG2 cells) by treating the natural material composite extracts as shown in FIG. 22, cytotoxicity was not observed in all formulations.

2)2) 천연소재 복합 추출물(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물)에 의한 아세틸 코엔자임 A 카르복실라제(Acetyl Co A carboxylase, ACC) 단백질 관련 발현 양상Expression patterns related to Acetyl Co A carboxylase (ACC) protein by natural material complex extracts (Horse ginseng extract, Ginseng extract, Goji root extract, and bitter gourd extract)

아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 효소 중 ACC1은 세포기질에 발현되며 간세포와 지방세포에서 지방합성을 활성화 시키는 것으로 알려져 있고(Tong L, Harwood HJ. 2006. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. Journal of Cellular Biochemistry. 99(6):1476-88), ACC2는 미토콘드리아 외막에서 발현되며 미토콘드리아의 β-oxidation을 조절하는 것으로 알려져 있다(Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’J, Siliart B, Dumon H. 2008. Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition. 92: 272-283).Among the acetyl coenzyme A carboxylase (ACC) enzymes, ACC1 is expressed in the cell substrate and is known to activate adipogenesis in hepatocytes and adipocytes (Tong L, Harwood HJ. 2006. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery.Journal of Cellular Biochemistry. 99(6):1476-88), ACC2 is expressed in the outer mitochondrial membrane and is known to regulate mitochondrial β-oxidation (Nguyen P, Leray V, Diez M, Serisier S, Le Bloc'J, Siliart B, Dumon H. 2008. Liver lipid metabolism. Journal of Animal Physiology and Animal Nutrition. 92: 272-283).

아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC)는 전체 당 이용대사를 활성화를 통해 증가된 아세틸 코엔자임 A를 말로닐 코엔자임 A(Malonyl CoA)로 전환시키는 기능을 갖고 있다. 이에, 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재를 일부(도 23의 mixture 1부터 3) 또는 전부(도 23의 mixture 4)를 첨가해서 그 활성의 변화를 조사하여 선발한 소재들과 그 소재의 배합이 효능이 있는가를 검증하고자 하였다.Acetyl CoA carboxylase (ACC) has a function of converting acetyl coenzyme A, which has been increased through activation, to malonyl coenzyme A (Malonyl CoA) by activating total sugar utilization. Thus, some of the material that activates the three reactions of glucose degradation utilization metabolism (activating GLUT2 protein, increasing glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increasing the activity of ATP-citrate lyase (ACL)) is partially (Fig. 23). Mixtures 1 to 3) or all (mixture 4 in Fig. 23) were added to investigate the change in the activity to verify whether the selected materials and the combination of the materials were effective.

실험결과, 도 23의 A)와 같이 포도당 분해이용대사의 세가지 반응을 활성화시키는 소재 전부(도 23의 mixture 4)를 첨가했을 때와 일부(도 23의 mixture 1부터 3)를 첨가했을 때 모두 대조군과 인슐린 첨가군에 비해 아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 1을 유의적으로 증가시켰다. 그리고, 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부(도 23의 mixture 4)를 첨가했을 때가 일부(도 23의 mixture 1부터 3)를 첨가했을 때보다 아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 1과 2 모두를 증가시키는 것으로 나타다.As a result of the experiment, as shown in FIG. 23A), when all the materials (mixture 4 in FIG. 23) were added and some (mixtures 1 to 3 in FIG. 23) were added to activate the three reactions Acetyl CoA carboxylase (ACC) 1 was significantly increased compared to the insulin-added group. In addition, all of the materials that activate the three reactions of glucose degradation utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) (Fig. The addition of mixture 4) was found to increase both acetyl coenzyme A carboxylase (ACC) 1 and 2 than when some (mixtures 1 to 3 in FIG. 23) were added.

또한, 천연소재 복합 추출물들이 간세포(HepG2 세포)에서 활성형(인산화된 아세틸 코엔자임 A 카르복실라제(phosphorylated acetyl CoA carboxylase, pACC) 및 비활성형 (아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 단백질 발현에 어떤 영향을 미치는지를 실험한 결과. 도 23의 B)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부(도 23의 mixture 4) 또는 일부(도 23의 mixture 1부터 3)를 첨가했을 때 모두 대조군에 비해 활성형(pACC)의 단백질 발현은 유의적으로 증가시키고, 비활성형(ACC)의 단백질 발현은 유의적 변화가 없었다.In addition, natural material complex extracts are active (phosphorylated acetyl CoA carboxylase, pACC) and inactive form (Acetyl CoA carboxylase, ACC) proteins in hepatocytes (HepG2 cells). As a result of experimentation to see how it affects the expression, three reactions of glucose degradation utilization metabolism (GLUT2 protein activation, glucokinase (GK) and pyruvate dehydrogenase (PDH) activity increase, ATP-citrate lyase) as shown in Fig. 23B. When all (mixture 4 in FIG. 23) or some (mixtures 1 to 3 in FIG. 23) were added to activate (increased activity of (ACL)), protein expression of the active form (pACC) was significantly compared to the control group. Increased, and there was no significant change in the protein expression of the inactive form (ACC).

3)3) 천연소재 복합 추출물(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물, 해당화뿌리 추출물)에 의한 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 활성 측정Measurement of the activity of nicotinamide-N-methyltransferase (NNMT) by natural material complex extracts (Horse ginseng extract, Ginseng extract, Gugija root extract, bitter gourd extract, Glycoris root extract)

상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 및 NNMT 활성을 억제하는 소재들을 복합 배합첨가하여 간세포(HepG2 세포)에서 아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 단백질 발현에 어떤 영향을 미치는지 확인하고자 하였다.Among the natural extracts, a material that activates three reactions of glucose degradation and utilization metabolism (activating GLUT2 protein, increasing glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increasing activity of ATP-citrate lyase (ACL)), and The purpose of this study was to confirm the effect on the expression of acetyl coenzyme A carboxylase (ACC) protein in hepatocytes (HepG2 cells) by adding materials that inhibit NNMT activity.

실험결과, 도 24의 A)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부(도 24의 mixture 4) 또는 일부(도 24의 mixture 1부터 3)를 첨가한 실험군에 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재)인 해당화뿌리 추출물을 첨가하게 되면, 대조군 및 인슐린 첨가군에 비해 아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 1과 2 모두를 증가시키지 않음을 확인하였다. As a result of the experiment, three reactions of glucose degradation utilization metabolism (GLUT2 protein activation, glucokinase (GK) and pyruvate dehydrogenase (PDH) activity increase, and ATP-citrate lyase (ACL) activity increase) as shown in FIG. 24A). Inhibit the activity of nicotinamide-N-methyl-transferase (NNMT) to the experimental group in which all or part of the activated material (mixture 4 in FIG. 24) or part (mixtures 1 to 3 in FIG. 24) was added. It was confirmed that the addition of the glycolysis root extract, which is the material), did not increase both acetyl coenzyme A carboxylase (ACC) 1 and 2 compared to the control group and the insulin-added group.

이러한 결과는, 간세포 내 포도당 분해이용대사를 증가시키는 추출물들(현삼 추출물, 가시오갈피 추출물, 구기자뿌리추출물, 여주추출물)만을 첨가했을 때는 증가된 아세틸 코엔자임 A가 ACC 1 및 ACC 2의 활성화에 의해 말로닐 코엔자임 A(Malonyl CoA)로 전환되는 반응이 활성화되지만, NNMT 활성을 억제하는 추출물(해당화뿌리 추출물)을 추가첨가하면 증가된 아세틸 코엔자임 A가 폴리아민(polyamines)과 결합(Acetyl-polyamines)된 후 소변으로 배출되므로 ACC 1 및 ACC 2의 활성화가 일어나지 못하기 때문에 지방산으로 합성되는 아세틸 코엔자임 A의 양도 감소하는 효과가 나타나는 것을 의미하는 것으로 판단된다. These results show that when only extracts that increase the metabolism of glucose decomposition and utilization in hepatocytes (Hyunsam extract, Ginseng extract, Gugija root extract, and bitter gourd extract) were added, increased acetyl coenzyme A was expressed by activation of ACC 1 and ACC 2. The reaction to convert to neyl coenzyme A (Malonyl CoA) is activated, but when an extract (glycosylated root extract) that inhibits NNMT activity is added, increased acetyl coenzyme A is combined with polyamines (Acetyl-polyamines) and urine It is believed that the effect of reducing the amount of acetyl coenzyme A synthesized as fatty acids is exhibited because the activation of ACC 1 and ACC 2 cannot occur.

또한, 상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 및 NNMT 활성을 억제하는 소재들을 복합 배합첨가하여 간세포(HepG2 세포)에서 활성형(인산화된 아세틸 코엔자임 A 카르복실라제(phosphorylated acetyl CoA carboxylase, pACC) 및 비활성형 (아세틸 코엔자임 A 카르복실라제(Acetyl CoA carboxylase, ACC) 단백질 발현에 어떤 영향을 미치는지를 실험하였다.In addition, among the natural material extracts, three reactions of glucose degradation and utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) are activated. In the active form (phosphorylated acetyl CoA carboxylase, pACC) and inactive form (acetyl coenzyme A carboxylase, pACC) in hepatocytes (HepG2 cells) by adding a combination of materials and materials that inhibit NNMT activity. CoA carboxylase (ACC) protein expression was tested to see what effect it had.

실험결과, 도 24의 B)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부 또는 일부를 첨가한 실험군에 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재)인 해당화뿌리 추출물을 첨가하게 되면, 활성형(pACC) 및 비활성형(ACC) 단백질 발현이 현저히 감소하는 것을 확인하였다.As a result of the experiment, three reactions of glucose degradation utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) as shown in FIG. 24B) When glycotinamide-N-methyl-transferase (NNMT) activity inhibitory material is added to the experimental group in which all or part of the activating material is added, the active form (pACC ) And inactive (ACC) protein expression was significantly reduced.

이러한 결과는, 상기 도 23의 결과와 동일하게, 증가된 아세틸 코엔자임 A가 폴리아민(polyamines)과 결합(Acetyl-polyamines)된 후 소변으로 배출되므로 ACC의 활성화가 현저히 감소하기 때문에 지방산으로 합성되는 아세틸 코엔자임 A의 양도 감소하는 효과가 나타나는 것을 의미하는 것으로 판단된다. This result is similar to the result of FIG. 23, since increased acetyl coenzyme A is released into urine after being combined with polyamines (Acetyl-polyamines), the activation of ACC is remarkably reduced, so acetyl coenzyme synthesized into fatty acids. It is believed that the effect of decreasing the amount of A appears.

3) 천연소재 복합 추출물(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물, 해당화뿌리 추출물)에 의한 지방산 합성효소 복합체(fatty acid synthetase, FAS) 단백질 발현 양상 확인3) Confirmation of the expression pattern of fatty acid synthetase (FAS) protein by natural material complex extracts (Hyunsam extract, Ginseng extract, Gugija root extract, bitter gourd extract, Glycoris root extract)

상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재들의 복합 배합첨가가 간세포(HepG2 세포)에서 지방산 합성효소 복합체(fatty acid synthetase(FAS)) 단백질 발현에 어떤 영향을 미치는지를 확인하고자 하였다.Among the natural material extracts, the three reactions of glucose degradation and utilization metabolism (activating GLUT2 protein, increasing glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increasing the activity of ATP-citrate lyase (ACL)) The purpose of this study was to find out how the combination additives affect the expression of fatty acid synthetase (FAS) proteins in hepatocytes (HepG2 cells).

실험 결과, 도 25의 A)와 같이 대조군 및 인슐린 첨가군에 비해 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부(도 25의 mixture 4) 또는 일부(도 25의 mixture 1부터 3)를 첨가한 모든 실험군에서 지방산 합성효소 복합체(fatty acid synthetase(FAS)) 단백질 발현이 증가하였으며, 특히 소재 전부(도 25의 mixture 4)를 첨가한 경우 유의적 증가가 나타났다.As a result of the experiment, as shown in Fig.25A), three reactions of glucose degradation utilization metabolism (GLUT2 protein activation, glucokinase (GK) and pyruvate dehydrogenase (PDH) activity increase, ATP-citrate lyase ( The expression of fatty acid synthetase (FAS) protein in all experimental groups in which all (mixture 4 in FIG. 25) or part (mixtures 1 to 3 in FIG. 25) was added to activate the (ACL) activity). In particular, when all the materials (mixture 4 in Fig. 25) were added, a significant increase was observed.

또한, 상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 및 NNMT 활성을 억제하는 소재들을 복합 배합첨가하여 간세포(HepG2 세포)에서 지방산 합성효소 복합체(fatty acid synthetase(FAS)) 단백질 발현에 어떤 영향을 미치는지를 확인하고자 하였다.In addition, among the natural material extracts, three reactions of glucose degradation and utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) are activated. The purpose of this study was to confirm the effect on the expression of the fatty acid synthetase (FAS) protein in hepatocytes (HepG2 cells) by adding materials and materials that inhibit NNMT activity.

실험결과, 도 25의 B)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부 또는 일부를 첨가한 실험군에 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재)인 해당화뿌리 추출물을 첨가하게 되면, 모든 실험군에서 지방산 합성효소 복합체(fatty acid synthetase(FAS)) 단백질 발현은 유의적 증가를 보이지 않고, 대조군 및 인슐린 첨가군과 유사한 수치를 나타내는 것을 확인하였다.As a result of the experiment, three reactions of glucose degradation utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) as shown in FIG. When nicotinamide-N-methyl-transferase (NNMT) activity inhibiting material is added to the experimental group in which all or part of the activating material is added, fatty acids in all experimental groups It was confirmed that the protein expression of the synthetase complex (fatty acid synthetase (FAS)) did not show a significant increase, and showed similar values to the control group and the insulin-added group.

이러한 결과는 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재를 추가첨가하게 되면, 증가된 아세틸 코엔자임 A가 폴리아민(polyamines)과 결합(Acetyl-polyamines)된 후 소변으로 배출되어 지방산으로 합성되는 양이 감소하기 때문에 지방산 합성효소 복합체(fatty acid synthetase(FAS)) 단백질 발현도 증가되지 않는 것으로 판단된다. These results show that when a material that inhibits nicotinamide-N-methyl-transferase (NNMT) activity is additionally added, the increased acetyl coenzyme A is bound to polyamines (Acetyl-polyamines). ), the amount of fatty acid synthetase (FAS) protein is not increased because the amount of fatty acid synthesized as fatty acid decreases after being excreted in urine.

4) 천연소재 복합 추출물(현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물, 해당화뿌리 추출물)에 의한 말로닐 코엔자임 A(Malonyl-Co A) 생성량 변화4) Changes in malonyl coenzyme A (Malonyl-Co A) production by natural material complex extracts (Horse ginseng extract, Ginseng extract, Goji root extract, bitter gourd extract, Glycoris root extract)

상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재들의 복합 배합첨가가 간세포(HepG2 세포)에서 말로닐 코엔자임 A(Malonyl-Co A) 생성량 변화에 어떤 영향을 미치는지를 확인하고자 하였다. Among the natural material extracts, the three reactions of glucose degradation and utilization metabolism (activating GLUT2 protein, increasing glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increasing the activity of ATP-citrate lyase (ACL)) The purpose of this study was to determine how the combination addition had an effect on the change of malonyl-Co A production in hepatocytes (HepG2 cells).

HepG2 세포에서 천연소재 추출물이 malonyl-CoA 함량에 미치는 영향은 human malonyl coenzyme A ELISA Kit를 이용하였다. 말로닐 코엔자임 A(Malonyl-Co A) 함량은 정량적 샌드위치(quantitative sandwich) ELISA 방법을 이용하여 측정하였다. HepG2 세포에 소재를 24시간 배양한 후 세포를 회수하였으며, PBS를 이용하여 균질한 뒤 2회 얼려서 세포막을 파괴한 뒤 5,000 x g에서 5분간 원심분리 하였다. 상층액만 회수한 뒤 단백질 정량 후 well 당 100 uL씩 분주한다. 37 ℃에서 2시간 반응한 뒤 세척과정 없이 뒤 100 uL 비오틴-항체(Biotin-antibody) (1x)를 분주한 뒤 37 ℃에서 1시간 반응시킨다. 200 uL 워시 버퍼(wash buffer)로 2회 세척한 뒤 100 uL HRP-아비딘(HRP-avidin) (1x)를 분주하고 37 ℃에서 1시간 반응시킨다. 200 uL 워시 버퍼(wash buffer)로 2회 세척한 뒤 90 uL TMB 기질(TMB Substrate)를 분주하고 15-30분 37 ℃에서 빛을 차단하고 반응시킨 뒤 50 uL 정지액(stop solution)을 분주한다. 450 nm에서 5분 간격으로 흡광도를 측정하였다. The human malonyl coenzyme A ELISA Kit was used to determine the effect of natural extracts on malonyl-CoA content in HepG2 cells. Malonyl coenzyme A (Malonyl-Co A) content was measured using a quantitative sandwich (quantitative sandwich) ELISA method. After culturing the material in HepG2 cells for 24 hours, the cells were recovered, homogenized with PBS, frozen twice to destroy the cell membrane, and then centrifuged at 5,000 x g for 5 minutes. After collecting only the supernatant, quantify the protein, and dispense 100 uL per well. After reacting for 2 hours at 37° C., 100 uL biotin-antibody (1x) was dispensed without washing, and then reacted at 37° C. for 1 hour. After washing twice with 200 uL wash buffer, 100 uL HRP-avidin (1x) was dispensed and reacted at 37° C. for 1 hour. After washing twice with 200 uL wash buffer, dispense 90 uL TMB substrate, block the light at 37°C for 15-30 minutes, react, and dispense 50 uL stop solution. . Absorbance was measured at 450 nm every 5 minutes.

실험 결과, 도 26의 A)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부(도 26의 mixture 4) 또는 일부(도 26의 mixture 1부터 3)를 첨가한 모든 실험군에서 말로닐 코엔자임 A(Malonyl-Co A) 생성량이 유의적으로 증가하였다.As a result of the experiment, three reactions of glucose degradation utilization metabolism (GLUT2 protein activation, glucokinase (GK) and pyruvate dehydrogenase (PDH) activity increase, and ATP-citrate lyase (ACL) activity increase) as shown in FIG. The amount of malonyl coenzyme A (Malonyl-Co A) produced was significantly increased in all experimental groups to which all or part of the activated material (mixture 4 in FIG. 26) or part (mixtures 1 to 3 in FIG. 26) was added.

또한, 상기 천연소재 추출물들 중 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 및 NNMT 활성을 억제하는 소재들을 복합 배합첨가하여 간세포(HepG2 세포)에서 말로닐 코엔자임 A(Malonyl-Co A) 생성량 변화에 어떤 영향을 미치는지를 확인하고자 하였다.In addition, among the natural material extracts, three reactions of glucose degradation and utilization metabolism (activation of GLUT2 protein, increase in glucokinase (GK) and pyruvate dehydrogenase (PDH) activity, increase in activity of ATP-citrate lyase (ACL)) are activated. The purpose of this study was to confirm the effect on the change in the amount of malonyl-Co A produced in hepatocytes (HepG2 cells) by adding materials and materials that inhibit NNMT activity.

실험결과, 도 26의 B)와 같이 포도당 분해이용대사의 세가지 반응(GLUT2 단백질 활성화, 글루코키나제(GK)와 피루브산 탈수소효소(PDH) 활성 증가, ATP-시트레이트 리아제(ACL)의 활성 증가)을 활성화시키는 소재 전부 또는 일부를 첨가한 실험군에 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재)인 해당화뿌리 추출물을 첨가하게 되면, 모든 실험군에서 말로닐 코엔자임 A(Malonyl-Co A) 생성량이 유의적으로 증가가를 보이지 않고, 오히려 대조군보다 낮은 수치를 나타내는 것을 확인하였다.As a result of the experiment, the three reactions of glucose degradation utilization metabolism (GLUT2 protein activation, glucokinase (GK) and pyruvate dehydrogenase (PDH) activity increase, and ATP-citrate lyase (ACL) activity increase) as shown in FIG. When glycotinamide-N-methyl-transferase (NNMT) activity is suppressed in the experimental group in which all or part of the activating material is added, the extract of glycosyllium root extract is added. It was confirmed that the production amount of Neil Coenzyme A (Malonyl-Co A) did not increase significantly, but rather showed a lower value than the control group.

이러한 결과는 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyl-transferase, NNMT) 활성을 억제하는 소재를 추가첨가하게 되면, 증가된 아세틸 코엔자임 A가 폴리아민(polyamines)과 결합(Acetyl-polyamines)된 후 소변으로 배출되는 양이 증가하여 코엔자임 A(Malonyl-Co A)로 합성하는 양이 감소하기 때문인 것으로 판단된다. These results show that when a material that inhibits nicotinamide-N-methyl-transferase (NNMT) activity is additionally added, the increased acetyl coenzyme A is bound to polyamines (Acetyl-polyamines). ), the amount excreted into urine increases, and the amount synthesized into Coenzyme A (Malonyl-Co A) decreases.

Claims (2)

현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하되,
상기 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물은 0.3 : 0.5 : 1 : 1.5 : 1의 중량비로 혼합되고,
상기 현삼 추출물은 간세포내 유입 포도당 양을 증가시키고,
상기 가시오갈피 추출물은 글루코키나제 활성을 증가시키며,
상기 구기자뿌리 추출물은 피루브산 탈수소효소(pyruvate dehydrogenase) 활성을 증가시키고,
상기 여주 추출물은 ATP-시트레이트 리아제(ATP-citrate lyase) 활성을 증가시키며,
상기 해당화뿌리 추출물은 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 효소 활성을 억제시킴으로써, 간세포내 포도당 이용 대사를 활성화시켜 혈당을 낮추며, 지방산 합성효소 복합체(FAS) 단백질 발현을 감소시키는 것을 특징으로 하는 당뇨병 개선용 식품 조성물.
Including all of the Hyeonsam extract, Ginseng ginseng extract, Goji berry root extract, bitter gourd extract and Glycoris root extract,
The Hyeonsam extract, Ginseng extract, Goji japonica root extract, bitter gourd extract, and Glycoris root extract are mixed in a weight ratio of 0.3: 0.5: 1: 1.5: 1,
The Hyeonsam extract increases the amount of glucose introduced into hepatocytes,
The gasoline extract increases glucokinase activity,
The wolfberry root extract increases pyruvate dehydrogenase activity,
The bitter gourd extract increases ATP-citrate lyase activity,
The glycosylation root extract inhibits nicotinamide-N-methyltransferase (NNMT) enzyme activity, thereby activating the metabolism of glucose utilization in hepatocytes, lowering blood sugar, and expressing a fatty acid synthase complex (FAS) protein. Food composition for improving diabetes, characterized in that to reduce the.
현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물을 모두 포함하되,
상기 현삼 추출물, 가시오갈피 추출물, 구기자뿌리 추출물, 여주 추출물 및 해당화뿌리 추출물은 0.3 : 0.5 : 1 : 1.5 : 1의 중량비로 혼합되고,
상기 현삼 추출물은 간세포내 유입 포도당 양을 증가시키고,
상기 가시오갈피 추출물은 글루코키나제 활성을 증가시키며,
상기 구기자뿌리 추출물은 피루브산 탈수소효소(pyruvate dehydrogenase) 활성을 증가시키고,
상기 여주 추출물은 ATP-시트레이트 리아제(ATP-citrate lyase) 활성을 증가시키며,
상기 해당화뿌리 추출물은 니코틴아마이드-N-메틸트렌스퍼라제(Nicotinamide-N-methyltransferase, NNMT) 효소 활성을 억제시킴으로써, 간세포내 포도당 이용 대사를 활성화시켜 혈당을 낮추며, 지방산 합성효소 복합체(FAS) 단백질 발현을 감소시키는 것을 특징으로 하는 당뇨병 예방 또는 치료용 약학 조성물.
Including all of the Hyeonsam extract, Ginseng ginseng extract, Goji berry root extract, bitter gourd extract and Glycoris root extract,
The Hyeonsam extract, Ginseng extract, Goji japonica root extract, bitter gourd extract, and Glycoris root extract are mixed in a weight ratio of 0.3: 0.5: 1: 1.5: 1,
The Hyeonsam extract increases the amount of glucose introduced into hepatocytes,
The gasoline extract increases glucokinase activity,
The wolfberry root extract increases pyruvate dehydrogenase activity,
The bitter gourd extract increases ATP-citrate lyase activity,
The glycosylation root extract inhibits nicotinamide-N-methyltransferase (NNMT) enzyme activity, thereby activating the metabolism of glucose utilization in hepatocytes, lowering blood sugar, and expressing a fatty acid synthase complex (FAS) protein. A pharmaceutical composition for preventing or treating diabetes, characterized in that reducing the.
KR1020190095105A 2019-08-05 2019-08-05 Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa KR102147058B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190095105A KR102147058B1 (en) 2019-08-05 2019-08-05 Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190095105A KR102147058B1 (en) 2019-08-05 2019-08-05 Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa

Publications (1)

Publication Number Publication Date
KR102147058B1 true KR102147058B1 (en) 2020-08-24

Family

ID=72235399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190095105A KR102147058B1 (en) 2019-08-05 2019-08-05 Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa

Country Status (1)

Country Link
KR (1) KR102147058B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110069A (en) * 2001-01-12 2001-12-12 황종복 Manufacturing Method for Tea and Beverage Using Rosa rugosa Thunberg
KR100395619B1 (en) * 2001-01-22 2003-08-21 이승영 A pharmaceutical composition for the treatment of diabetes mellitus
KR20100128167A (en) * 2009-05-27 2010-12-07 강원대학교산학협력단 Antidiabetic composition containing the extract of lycium chinense, cordyceps sinensis and acanthopanax senticosus harms
KR101321203B1 (en) 2011-10-13 2013-10-23 (주)풀무원홀딩스 Anti-diabetic composition comprising Angelica Keiskei Koid. extracts
KR20140034620A (en) 2012-09-12 2014-03-20 (주)이푸른 Composition for preventing or treating diabetbes mellitus disease containing extract of plants
KR20180061062A (en) * 2016-11-28 2018-06-07 콜마비앤에이치 주식회사 Composition for preventing or improving diabetes mellitus comprising momrdica charantia (l.) extract, chrysanthemum zawadskii var. latilobum and paeonia lactiflora extract as an effective ingredient

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110069A (en) * 2001-01-12 2001-12-12 황종복 Manufacturing Method for Tea and Beverage Using Rosa rugosa Thunberg
KR100395619B1 (en) * 2001-01-22 2003-08-21 이승영 A pharmaceutical composition for the treatment of diabetes mellitus
KR20100128167A (en) * 2009-05-27 2010-12-07 강원대학교산학협력단 Antidiabetic composition containing the extract of lycium chinense, cordyceps sinensis and acanthopanax senticosus harms
KR101321203B1 (en) 2011-10-13 2013-10-23 (주)풀무원홀딩스 Anti-diabetic composition comprising Angelica Keiskei Koid. extracts
KR20140034620A (en) 2012-09-12 2014-03-20 (주)이푸른 Composition for preventing or treating diabetbes mellitus disease containing extract of plants
KR20180061062A (en) * 2016-11-28 2018-06-07 콜마비앤에이치 주식회사 Composition for preventing or improving diabetes mellitus comprising momrdica charantia (l.) extract, chrysanthemum zawadskii var. latilobum and paeonia lactiflora extract as an effective ingredient

Similar Documents

Publication Publication Date Title
Kreft Buckwheat phenolic metabolites in health and disease
Dewanjee et al. Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes
CN101175416A (en) A method and composition for nutritionally improving glucose control and insulin action
JP5718468B2 (en) Composition for suppressing obesity or lowering blood glucose, comprising Hariguwa and Yokuinin, and use thereof
US7537790B2 (en) Method and composition for reducing body weight and improving control of body lipids
Arunakumara et al. Salacia reticulata Wight: A review of botany, phytochemistry and pharmacology
CN101766274B (en) Antioxidant functional food composition containing bamboo-leaves flavones
KR101965061B1 (en) Composition for prevention or treatment of metabolic disorder comprising peanut sprout extracts and fractions thereof
CN109123351A (en) A kind of special doctor's food and preparation method with hyperglycemia population generation meal regulatory function
US20220133763A1 (en) Composition containing nicotinamide mononucleotide and mogroside, and application thereof
KR102147058B1 (en) Composition for prevention, improvement or treatment of diabetes with extracts from Scrophularia Buergeriana, Siberian ginseng, Lycii fructus root, Momordica charantia Linnaeus, Rosa rugosa
EP1369123A1 (en) A health-care product comprising lotus rhizome and process for its preparation
KR100481114B1 (en) Pharmaceutical Composition for Decreasing Blood Glucose Level Containing Fermentation Product of the Extract of Banaba, Fenugreek and Bitter Mellon as a Effective Ingredient
JP2007520548A (en) Composition for prevention and treatment of diabetic complications
CN108124793A (en) Improve the cultural method of Tilapia quality
US7416750B1 (en) Composition to provide maintenance and nutritional support in glycemic control deficits
EP3860615B1 (en) Oral composition comprising b-escin and the use thereof
KR101935861B1 (en) Functional food composition for removing hangover and improving liver function and manufacturing method for thereof
CN101530209A (en) A health-care food capable of adjusting blood fat and protecting liver and preparation method thereof
KR20100111088A (en) Composition for preventing and treating diabetes mellitus or diabetic complications comprising extract of herbal combination
Chan An overview on clinical studies of Morus species with bioactivities of compounds providing supporting evidence
KR20130056940A (en) Compositions for preventing and treating diabetes or diabetic complications comprising extracts of acer tegmentosum maximowoca and magnolia officinalis rehd. et wils
KR100473529B1 (en) Composition comprising an extract of sungisan crude drug complex as an effective ingredient for preventing and treating diabetes
KR102025572B1 (en) Composition for preventing, ameliorating or treating metabolic diseases comprising mixture of Diospyros lotus leaf and grape fruit stem extract as effective component
KR20090003661A (en) Functional drink comprising extracts of commelina communis and eleutherococcus for antidiabetic mellitus activity and prevention and the manufacturing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant