KR102108096B1 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
KR102108096B1
KR102108096B1 KR1020130155472A KR20130155472A KR102108096B1 KR 102108096 B1 KR102108096 B1 KR 102108096B1 KR 1020130155472 A KR1020130155472 A KR 1020130155472A KR 20130155472 A KR20130155472 A KR 20130155472A KR 102108096 B1 KR102108096 B1 KR 102108096B1
Authority
KR
South Korea
Prior art keywords
group
layer
organic
sub
compound
Prior art date
Application number
KR1020130155472A
Other languages
English (en)
Other versions
KR20150069256A (ko
Inventor
이범성
이선희
김대성
박정철
이윤석
소기호
윤진호
오대환
박성제
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to KR1020130155472A priority Critical patent/KR102108096B1/ko
Priority to PCT/KR2014/011820 priority patent/WO2015088183A1/ko
Publication of KR20150069256A publication Critical patent/KR20150069256A/ko
Application granted granted Critical
Publication of KR102108096B1 publication Critical patent/KR102108096B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 화합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.

Description

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치{COMPOUND FOR ORGANIC ELECTRONIC ELEMENT, ORGANIC ELECTRONIC ELEMENT USING THE SAME, AND AN ELECTRONIC DEVICE THEREOF}
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
현재 휴대용 디스플레이 시장은 대면적 디스플레이로 그 크기가 증가하고 있는 추세이며, 이로 인해 기존 휴대용 디스플레이에서 요구하던 소비전력보다 더 큰 소비전력이 요구되고 있다. 따라서 배터리라는 제한적인 전력 공급원을 가지고 있는 휴대용 디스플레이입장에서는 소비전력이 매우 중요한 요소가 되었고, 효율과 수명 문제 또한 반드시 해결되어야 하는 상황이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
또한, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제 및 구동전압 문제를 해결하기 위해서는 정공수송층과 발광층 사이에 발광보조층이 존재하여야 하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요한 시점이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.
하지만 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야 하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층으로 넘어가게 되어 결과적으로 정공수송층 내 또는 정공수송층 계면에서 발광하게 되어 유기전기소자의 색순도 저하, 효율 및 수명 감소 현상이 나타나게 된다.
또한, 정공 이동도(hole mobility)가 빠른 물질을 사용하여 구동전압을 낮출 수 있으나 정공 이동도(hole mobility)가 전자 이동도(electron mobility) 보다 빨라 발광층 내 전하 불균형(charge unbalance)을 초래하여 유기전기소자의 색순도 및 효율이 저하되고 수명이 짧아지는 문제점이 발생하게 된다.
따라서 높은 T1 값을 가지며, 정공수송층 HOMO 에너지 준위와 발광층의 HOMO 에너지 준위 사이의 HOMO 준위를 갖는 발광보조층이 개발이 절실히 요구된다.
한편, 유기전기소자의 수명단축 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투확산되는 것을 지연시키면서, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공주입층 재료에 대한 개발이 필요하다. 정공수송층 재료의 낮은 유리전이 온도는 소자 구동시, 박막 표면의 균일도를 저하시키는 특성이 있는바, 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자는 주로 증착 방법에 의해 형성되는데, 증착시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요한 실정이다.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있으며, 특히 발광보조층과 정공수송층의 재료에 대한 개발이 절실히 요구되고 있다.
본 발명은 소자의 높은 발광효율, 낮은 구동전압, 고내열성, 색순도 및 수명을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다.
Figure 112013114333856-pat00001
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압, 고내열성을 달성할 수 있고, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다.
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "헤테로알킬기"는 알킬기를 구성하는 탄소 원자 중 하나 이상이 헤테로원자로 대체된 것을 의미한다.
본 발명에 사용된 용어 "알켄일기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알켄옥실기", "알켄옥시기", "알켄일옥실기", 또는 "알켄일옥시기"는 산소 라디칼이 부착된 알켄일기를 의미하며, 다른 설명이 없는 한 2 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 명세서에서 사용된 용어 "헤테로알킬"은 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. 본 발명에 사용된 용어 "헤테로아릴기" 또는 "헤테로아릴렌기"는 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 아릴기 또는 아릴렌기를 의미하며, 여기에 제한되는 것은 아니며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 이웃한 작용기기가 결합하여 형성될 수도 있다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는, 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure 112013114333856-pat00002
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "카르보닐"이란 -COR'로 표시되는 것이며, 여기서 R'은 수소, 탄소수 1 내지 20 의 알킬기, 탄소수 6 내지 30 의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "에테르"란 -R-O-R'로 표시되는 것이며, 여기서 R 또는 R'은 각각 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure 112013114333856-pat00003
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure 112013114333856-pat00004
도 1은 본 발명에 일 실시예에 따른 유기전기소자에 대한 예시도이다.
도 1을 참조하면, 본 발명에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(110)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 발광층(150)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(151), 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
또한, 미도시하였지만, 본 발명에 따른 유기전기소자는 제 1전극과 제 2전극 중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다.
상기 유기물층에 적용되는 본 발명에 따른 화합물은 정공주입층(130), 정공수송층(140), 전자수송층(160), 전자주입층(170), 발광층(150)의 호스트 또는 도펀트 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는, 본 발명의 화합물은 발광층(150), 정공수송층(140) 및/또는 발광보조층(151)으로 사용될 수 있을 것이다.
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
이미 설명한 것과 같이, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 정공수송층과 발광층 사이에 발광보조층이 형성하는 것이 바람직하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요한 시점이다. 한편, 발광보조층의 경우 정공수송층 및 발광층(호스트)과의 상호관계를 파악해야하므로 유사한 코어를 사용하더라도 사용되는 유기물층이 달라지면 그 특징을 유추하기는 매우 어려울 것이다.
따라서, 본 발명에서는 화학식 1로 표시되는 화합물을 사용하여 발광층 또는 발광보조층을 형성함으로써 각 유기물층 간의 에너지 레벨(level) 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명에 따른 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일측면에 따른 화합물은 하기 화학식 1로 표시된다.
<화학식 1>
Figure 112013114333856-pat00005
상기 화학식 1에서,
Ar1 내지 Ar4는 ⅰ) 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R')(R");로 이루어진 군에서 선택되거나, 또는 ⅱ) Ar1과 Ar2가 서로 결합하여 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 Ar3과 Ar4는 각각 상기 ⅰ)에서 정의된 것과 동일하다. 구체적으로 Ar1 내지 Ar4는 서로 독립적으로 페닐, 나프틸, 바이페닐, 피리딘, 페닐치환 피리미딘, 페닐치환 카바졸, 디벤조티오펜, 9,9-디메틸-플루오렌, 9,9-디페닐-플루오렌, 스파이로플루오렌 등일 수 있다. 또한, Ar1과 Ar2는 이들이 결합된 질소(N)와 함께 카바졸 유도체 고리를 형성하며, 고리를 형성하지 않은 Ar3과 Ar4는 각각 상기 예시를 든 치환기일 수 있다.
a 및 c는 서로 독립적으로 0 내지 4의 정수이며, b 및 d는 서로 독립적으로 0 내지 3의 정수이다.
R1 내지 R4는 ⅰ) 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R')(R");로 이루어진 군에서 선택되거나, 또는 ⅱ) 이웃하는 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 R1 내지 R4는 각각 상기 ⅰ)에서 정의된 것과 동일하다. 이웃하는 기끼리 서로 결합하여 고리를 형성하는 것은 이웃하는 R1끼리, 이웃하는 R2끼리, 이웃하는 R3끼리, 또는 이웃하는 R4끼리 서로 결합하여 적어도 하나의 고리를 형성하는 것을 의미하며, 여기서 상기 고리는 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다. 구체적으로 R1 내지 R4는 서로 독립적으로 수소, 페닐, 피리딘, 바이페닐 등일 수 있다. 또한, 각각 이웃하는 R1끼리, 이웃하는 R2끼리, 이웃하는 R3끼리, 또는 이웃하는 R4끼리 서로 결합하여 적어도 하나의 벤젠고리를 형성하며, 고리를 형성하지 않은 R1 내지 R4는 각각 상기 예시를 든 치환기일 수 있다.
상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택된다.
상기 R' 및 R"는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택된다.
여기서, 상기 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕실기, 아릴옥시기, 아릴렌기 및 플루오렌일렌기 각각은 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기 및 C8~C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다.
또한, 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~30, 보다 바람직하게는 탄소수 6~15, 특히 바람직하게는 탄소수 6~10의 아릴기일 수 있으며, 상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20, 특히 바람직하게는 탄소수 2~15의 헤테로고리일 수 있으며, 상기 아릴렌기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~30, 보다 바람직하게는 탄소수 6~15, 특히 바람직하게는 탄소수 6~10의 아릴렌기일 수 있으며, 상기 알킬기인 경우 탄소수는 1~50, 바람직하게는 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 특히 바람직하게는 탄소수 1~10의 알킬기 일 수 있다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
<화학식 2> <화학식 3>
Figure 112013114333856-pat00006
상기 화학식 2 및 3에서, Ar1 ~ Ar4, R1 ~ R4, a, b, c 및 d는 상기 화학식 1에서 정의된 것과 동일하게 정의된다.
보다 구체적으로, 상기 화학식 1 내지 화학식 3으로 표시되는 화합물은 하기 화합물 중 어느 하나일 수 있다.
Figure 112013114333856-pat00007
Figure 112013114333856-pat00008
Figure 112013114333856-pat00009

다른 실시예로서, 본 발명은 상기 화학식 1로 표시되는 유기전기소자용 화합물을 제공한다.
또 다른 실시예에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 함유하는 유기전기소자를 제공한다.
이때, 유기전기소자는 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층;을 포함할 수 있으며, 유기물층은 화학식 1로 표시되는 화합물을 포함할 수 있으며, 화학식 1은 유기물층의 정공주입층, 정공수송층, 발광보조층 또는 발광층 중 적어도 하나의 층에 함유될 수 있을 것이다. 즉, 화학식 1로 표시되는 화합물은 정공주입층, 정공수송층, 발광보조층 또는 발광층의 재료로 사용될 수 있다. 구체적으로, 유기물층에 상기 화학식 2 내지 화학식 3으로 표시되는 화합물 중 하나를 포함하는 유기전기소자를 제공하며, 보다 구체적으로, 본 발명은 상기 유기물층에 상기 개별 화학식으로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
본 발명의 또 다른 실시예에서, 본 발명은 상기 제 1전극의 일측면 중 상기 유기물층과 반대되는 일측 또는 상기 제 2전극의 일측면 중 상기 유기물층과 반대되는 일측 중 적어도 하나에 형성되는 광효율 개선층을 더 포함하는 유기전기소자를 제공한다.
이하에서, 본 발명에 따른 화학식으로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
합성예
본 발명에 따른 화합물(Final Product)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 제조되나 이에 한정되는 것은 아니다.
<반응식 1>
Figure 112013114333856-pat00010
Ⅰ. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성될 수 있으나 이에 한정되는 것은 아니다.
<반응식 2>
Figure 112013114333856-pat00011
1. Sub 1-1의 합성
상기 반응식 2의 Sub 1-1은 하기 반응식 3의 반응경로에 의해 합성될 수 있으나 이에 한정되는 것은 아니다.
<반응식 3>
Figure 112013114333856-pat00012
Sub 1-1-3 합성
둥근바닥플라스크에 Sub 1-1-1 (1당량)을 넣고, Sub 1-1-2 (1당량), Pd(PPh3)4 (0.03당량), NaOH (3당량), THF (3mL / Sub 1-1-1 1mmol), 물 (1.5mL / Sub 1-1-1 1mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-1-3을 얻었다.
Sub 1-1-4 합성
둥근바닥플라스크에 Sub 1-1-3(1당량)과 triphenylphosphine (3당량)을 o-dichlorobenzene에 녹이고, 24시간 동안 환류시켰다. 반응이 종결되면 감압증류를 이용하여 용매를 제거한 후, 농축된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 원하는 Sub 1-1-4를 얻었다
Sub 1-1-6 합성
둥근바닥플라스크에 Sub 1-1-4 (1당량), Sub 1-1-5 (1당량), Pd2(dba)3 (0.05당량), PPh3 (0.1당량), NaOt-Bu (3당량), toluene (10.5mL / Sub 1-1-4 1mmol)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-1-6을 얻었다.
Sub 1-1-7 합성
Sub 1-1-6 (1당량)을 무수 Ether에 녹이고, 반응물의 온도를 -78℃로 낮추고, n-BuLi (2.5M in hexane) (1.1당량)을 천천히 적가하고 난 후, 반응물을 30분 동안 교반시켰다. 그 후 다시 반응물의 온도를 -78℃로 낮추고 Triisopropyl borate (1.5당량)를 적가하였다. 상온에서 교반한 뒤 물을 넣어 희석시키고 2N HCl을 넣어준다. 반응이 완료되면 ethyl acetate와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-1-7을 얻었다.
Sub 1-1 합성
둥근바닥플라스크에 Sub 1-1-7 (1당량)을 넣고, Sub 1-1-8 (1당량), Pd(PPh3)4 (0.03당량), NaOH (3당량), THF (3mL / Sub 1-1-7 1mmol), 물 (1.5mL / Sub 1-1-7 1mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-1을 얻었다.
(1) Sub 1-1(1)의 합성
Figure 112013114333856-pat00013
Sub 1-1-3-1 합성
둥근바닥플라스크에 Sub 1-1-1-1 (2.4g, 20mmol)을 넣고, Sub 1-1-2-1 (6.6g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-1-3-1을 3.1g (수율: 56%) 얻었다.
Sub 1-1-4-1 합성
둥근바닥플라스크에 Sub 1-1-3-1 (5.6g, 20mmol)과 triphenylphosphine (15.7g, 60mmol)을 o-dichlorobenzene에 녹이고, 24시간 동안 환류시켰다. 반응이 종결되면 감압증류를 이용하여 용매를 제거한 후, 농축된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 원하는Sub 1-1-4-1을 3.0g (수율: 60%) 얻었다.
Sub 1-1-6-1 합성
둥근바닥플라스크에 Sub 1-1-4-1 (4.9g, 20mmol), Sub 1-1-5-1 (4.1g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-1-6-1을 4.8g (수율: 75%) 얻었다.
Sub 1-1-7-1 합성
Sub 1-1-6-1 (6.4g, 20mmol)을 무수 Ether에 녹이고, 반응물의 온도를 -78℃로 낮추고, n-BuLi (2.5M in hexane) (1.4g, 22mmol)을 천천히 적가하고 난 후, 반응물을 30분 동안 교반시켰다. 그 후 다시 반응물의 온도를 -78℃로 낮추고 Triisopropyl borate (5.6g, 30mmol)를 적가하였다. 상온에서 교반한 뒤 물을 넣어 희석시키고 2N HCl을 넣어준다. 반응이 완료되면 ethyl acetate와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-1-7-1을 4.1g (수율: 71%) 얻었다.
Sub 1-1(1) 합성
둥근바닥플라스크에 Sub 1-1-7-1 (5.7g, 20mmol)을 넣고, Sub 1-1-8-1 (6.3g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-1(1)을 6.5g (수율: 68%) 얻었다.
한편, Sub 1-1의 예시는 다음과 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 1과 같다.
Figure 112013114333856-pat00014
[표 1]
Figure 112013114333856-pat00015

2. Sub 1-2의 합성
상기 반응식 2의 Sub 1-2는 하기 반응식 4의 반응경로에 의해 합성될 수 있으나 이에 한정되는 것은 아니다.
<반응식 4>
Figure 112013114333856-pat00016
Sub 1-2-3 합성
둥근바닥플라스크에 Sub 1-2-1 (1당량)을 넣고, Sub 1-2-2 (1당량), Pd(PPh3)4 (0.03당량), NaOH (3당량), THF (3mL / Sub 1-2-1 1mmol), 물 (1.5mL / Sub 1-2-1 1mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-2-3을 얻었다.
Sub 1-2-4 합성
둥근바닥플라스크에 Sub 1-2-3 (1당량)과 triphenylphosphine (3당량)을 o-dichlorobenzene에 녹이고, 24시간 동안 환류시켰다. 반응이 종결되면 감압증류를 이용하여 용매를 제거한 후, 농축된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 원하는 Sub 1-2-4를 얻었다.
Sub 1-2-6 합성
둥근바닥플라스크에 Sub 1-2-4 (1당량), Sub 1-2-5 (1당량), Pd2(dba)3 (0.05당량), PPh3 (0.1당량), NaOt-Bu (3당량), toluene (10.5mL / Sub 1-2-4 1mmol)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-2-6을 얻었다.
Sub 1-2 합성
Sub 1-2-6 (1당량)을 무수 Ether에 녹이고, 반응물의 온도를 -78℃로 낮추고, n-BuLi (2.5M in hexane) (1.1당량)을 천천히 적가하고 난 후, 반응물을 30분 동안 교반시켰다. 그 후 다시 반응물의 온도를 -78℃로 낮추고 Triisopropyl borate (1.5당량)를 적가하였다. 상온에서 교반한 뒤 물을 넣어 희석시키고 2N HCl을 넣어준다. 반응이 완료되면 ethyl acetate와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-2를 얻었다.
(1) Sub 1-2(1)의 합성
Figure 112013114333856-pat00017
Sub 1-2-3-1 합성
둥근바닥플라스크에 Sub 1-2-1-1 (2.4g, 20mmol)을 넣고, Sub 1-2-2-1 (6.6g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1-2-3-1을 3.1g (수율: 55%) 얻었다.
Sub 1-2-4-1 합성
둥근바닥플라스크에 Sub 1-2-3-1 (5.6g, 20mmol)과 triphenylphosphine (15.7g, 60mmol)을 o-dichlorobenzene에 녹이고, 24시간 동안 환류시켰다. 반응이 종결되면 감압증류를 이용하여 용매를 제거한 후, 농축된 생성물을 컬럼크로마토그래피를 이용하여 분리하여 원하는 Sub 1-2-4-1을 2.8g (수율: 58%) 얻었다.
Sub 1-2-6-1 합성
둥근바닥플라스크에 Sub 1-2-4-1 (4.9g, 20mmol), Sub 1-2-5-1 (4.1g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-2-6-1을 4.6g (수율: 73%) 얻었다.
Sub 1-2(1) 합성
Sub 1-2-6-1 (6.4g, 20mmol)을 무수 Ether에 녹이고, 반응물의 온도를 -78℃로 낮추고, n-BuLi (2.5M in hexane) (1.4g, 22mmol)을 천천히 적가하고 난 후, 반응물을 30분 동안 교반시켰다. 그 후 다시 반응물의 온도를 -78℃로 낮추고 Triisopropyl borate (5.6g, 30mmol)를 적가하였다. 상온에서 교반한 뒤 물을 넣어 희석시키고 2N HCl을 넣어준다. 반응이 완료되면 ethyl acetate와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 1-2(1)을 3.8g (수율: 68%) 얻었다.
한편, Sub 1-2의 예시는 다음과 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 2와 같다.
Figure 112013114333856-pat00018
[표 2]
Figure 112013114333856-pat00019
3. Sub 1의 합성
둥근바닥플라스크에 Sub 1-1 (1당량)을 넣고, Sub 1-2 (1당량), Pd(PPh3)4 (0.03당량), NaOH (3당량), THF (3mL / Sub 1-1 1mmol), 물 (1.5mL / Sub 1-1 1mmol)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1을 얻었다.
(1) Sub 1(1)의 합성
Figure 112013114333856-pat00020
둥근바닥플라스크에 Sub 1-1(1) (9.5g, 20mmol)을 넣고, Sub 1-2(1) (5.7g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1(1)을 7.9g (수율: 62%) 얻었다.
(2) Sub 1(7)의 합성
Figure 112013114333856-pat00021
둥근바닥플라스크에 Sub 1-1(1) (9.5g, 20mmol)을 넣고, Sub 1-2(5) (7.9g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1(7)을 8.7g (수율: 58%) 얻었다.
(3) Sub 1(10)의 합성
Figure 112013114333856-pat00022
둥근바닥플라스크에 Sub 1-1(1) (9.5g, 20mmol)을 넣고, Sub 1-2(6) (6.7g, 20mmol), Pd(PPh3)4 (0.7g, 0.6mmol), NaOH (2.4g, 60mmol), THF (60mL), 물 (30mL)을 넣는다. 그런 후에 80℃~90℃ 상태에서 가열 환류시킨다. 반응이 완료되면 상온에서 증류수를 넣어 희석시키고 메틸렌클로라이드와 물로 추출한다. 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 1(10)을 8.1g (수율: 59%) 얻었다.
한편, Sub 1의 예시는 다음과 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 3과 같다.
Figure 112013114333856-pat00023
[표 3]
Figure 112013114333856-pat00024

Ⅱ. Sub 2의 합성
상기 반응식 1의 Sub 2는 하기 반응식 5의 반응경로에 의해 합성될 수 있으나 이에 한정되는 것은 아니다.
<반응식 5>
Figure 112013114333856-pat00025
둥근바닥플라스크에 Sub 2-1 (1당량), Sub 2-2 (1당량), Pd2(dba)3 (0.05당량), PPh3 (0.1당량), NaOt-Bu (3당량), toluene (10.5mL / Sub 2-1 1mmol)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 2를 얻었다.
1. Sub 2-9의 합성
Figure 112013114333856-pat00026
둥근바닥플라스크에 Sub 2-1-1 (1.9g, 20mmol), Sub 2-2-1 (5.5g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 2-9를 5.2g (수율: 64%) 얻었다.
2. Sub 2-14의 합성
Figure 112013114333856-pat00027
둥근바닥플라스크에 Sub 2-1-2 (1.9g, 20mmol), Sub 2-2-2 (4.1g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 2-14를 2.6g (수율: 60%) 얻었다.
3. Sub 2-28의 합성
Figure 112013114333856-pat00028
둥근바닥플라스크에 Sub 2-1-3 (3.4g, 20mmol), Sub 2-2-3 (4.7g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 Sub 2-28을 4.2g (수율: 65%) 얻었다.
한편, Sub 2의 예시는 다음과 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 4와 같다.
Figure 112013114333856-pat00029
Figure 112013114333856-pat00030
[표 4]
Figure 112013114333856-pat00031
Figure 112013114333856-pat00032

Ⅲ. 최종 생성물( Final Product )의 합성
둥근바닥플라스크에 Sub 1 (1당량), Sub 2 (1당량), Pd2(dba)3 (0.05당량), PPh3 (0.1당량), NaOt-Bu (3당량), toluene (10.5mL / Sub 1 1mmol)을 넣은 후에 100℃에서 반응을 진행한다. 반응이 완료되면 ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 최종 생성물을 얻었다.
1. 1-34의 합성
Figure 112013114333856-pat00033
둥근바닥플라스크에 Sub 1(1) (12.8g, 20mmol), Sub 2-28 (6.4g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 1-34를 11.2g (수율: 68%) 얻었다.
2. 1-40의 합성
Figure 112013114333856-pat00034
둥근바닥플라스크에 Sub 1(1) (12.8g, 20mmol), Sub 2-32 (7.2g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 1-40을 12.0g (수율: 65%) 얻었다.
3. 1-49의 합성
Figure 112013114333856-pat00035
둥근바닥플라스크에 Sub 1(9) (13.8g, 20mmol), Sub 2-1 (3.4g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 1-49를 9.8g (수율: 63%) 얻었다.
4. 1-61의 합성
Figure 112013114333856-pat00036
둥근바닥플라스크에 Sub 1(1) (12.8g, 20mmol), Sub 2-51 (3.3g, 20mmol), Pd2(dba)3 (0.9g, 1mmol), PPh3 (0.5g, 2mmol), NaOt-Bu (5.8g, 60mmol), toluene (210mL)을 각각 첨가한 뒤, 100℃에서 24시간 동안 교반환류시킨다. ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column 및 재결정하여 1-61을 9.6g (수율: 66%) 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 1-1 내지 1-72의 FD-MS 값은 하기 표 5와 같다
[표 5]
Figure 112013114333856-pat00037
Figure 112013114333856-pat00038

유기전기소자의 제조평가
[ 실시예 1] 그린유기전기발광소자( 정공수송층 )
본 발명의 화합물을 정공수송층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 N1-(naphthalen-2-yl)-N4,N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (이하 "2-TNATA"로 약기함)을 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 본 발명의 화합물 1-1을 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 4,4'-N,N'-dicarbazole-biphenyl (이하 "CBP"로 약기함)을 호스트로, tris(2-phenylpyridine)-iridium (이하 "Ir(ppy)3"으로 약기함)을 도판트로 하여 90:10 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 (1,1'비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 "BAlq"로 약기함)을 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄 (이하 "Alq3"로 약기함)을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 2] 내지 [ 실시예 7] 그린유기전기발광소자( 정공수송층 )
정공수송층 물질로 본 발명의 화합물 1-1 대신 하기 표 6에 기재된 본 발명의 화합물 1-2~1-4, 1-34, 1-35, 1-40을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 1]
정공수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 A를 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제조하였다.
<비교화합물 A>
Figure 112013114333856-pat00039
[ 비교예 2]
정공수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 B를 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제조하였다.
<비교화합물 B>
Figure 112013114333856-pat00040
[ 비교예 3]
정공수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 C를 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제조하였다.
<비교화합물 C>
Figure 112013114333856-pat00041
본 발명의 실시예 1 내지 실시예 7, 비교예 1 내지 비교예 3에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치 (photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 5000cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 6과 같다.
[표 6]
Figure 112013114333856-pat00042

상기 표 6의 결과로부터 알 수 있듯이, 본 발명의 화합물을 정공수송층의 재료로 사용한 유기전기발광소자는 비교화합물 A 내지 C를 정공수송층의 재료로 사용한 유기전기발광소자에 비해 구동전압, 발광효율 및 수명이 현저히 개선되었다.
즉, NPB인 비교화합물 A 및 카바졸(Carbazole) 1개가 연결된 비교화합물 B를 정공수송층의 재료로 사용한 소자보다 카바졸이 2개가 연결된 비교화합물 C와 본 발명의 화합물을 정공수송층 재료로 사용한 소자가 구동전압, 효율 및 수명 면에서 우수한 결과를 나타내었다. 또한, 2개의 카바졸이 각각 3번 위치에 연결기를 통해 연결된 비교화합물 C를 정공수송층 재료로 사용한 소자보다 2개의 카바졸이 각각 1번, 4번 위치에 연결기를 통해 연결된 본 발명의 화합물을 정공수송층의 재료로 사용한 소자가 구동전압, 효율 및 수명 면에서 더 우수한 결과를 나타내었으며, 특히 구동전압이 더 낮아져 본 발명의 화합물을 사용한 소자에서의 소비전력을 더 효율적으로 사용할 수 있다. 이는 카바졸의 연결 개수, 연결 위치, 또는 다른 치환기의 종류에 따라 화합물의 특성이 현저히 달라지고 또한 이들 화합물을 적용한 소자의 특성도 현저히 달라질 수 있음을 시사하고 있다.
[ 실시예 8] 레드유기전기발광소자( 발광보조층 )
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 4,4-비스[N-(1-나프틸)-N-페닐아미노]비페닐 (이하 “NPD”로 약기함)을 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 1-1을 20nm 두께로 진공증착하여 발광보조층을 형성하고, 상기 발광보조층 상에 CBP를 호스트로, bis-(1-phenylisoquinolyl)iridium(Ⅲ)acetylacetonate (이하 “(piq)2Ir(acac)”로 약기함)를 도판트로 하여 95:5 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 9] 내지 [ 실시예 79] 레드유기전기발광소자( 발광보조층 )
발광보조층 물질로 본 발명의 화합물 1-1 대신 하기 표 7에 기재된 본 발명의 화합물 1-2~1-72를 사용한 점을 제외하고는 상기 실시예 8과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 4]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 8과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 5]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 A를 사용한 점을 제외하고는 상기 실시예 8과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 6]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 B를 사용한 점을 제외하고는 상기 실시예 8과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 7]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 C를 사용한 점을 제외하고는 상기 실시예 8과 동일한 방법으로 유기전기발광소자를 제조하였다.
본 발명의 실시예 8 내지 실시예 79, 비교예 4 내지 비교예 7에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치 (photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 2500cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 7과 같다.
[표 7]
Figure 112013114333856-pat00043
Figure 112013114333856-pat00044
Figure 112013114333856-pat00045

[ 실시예 80] 그린유기전기발광소자( 발광보조층 )
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPD를 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 1-1을 20nm 두께로 진공증착하여 발광보조층을 형성하고, 상기 발광보조층 상에 CBP를 호스트로, Ir(ppy)3을 도판트로 하여 95:5 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 81] 내지 [ 실시예 151] 그린유기전기발광소자( 발광보조층 )
발광보조층 물질로 본 발명의 화합물 1-1 대신 하기 표 8에 기재된 본 발명의 화합물 1-2~1-72를 사용한 점을 제외하고는 상기 실시예 80과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 8]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 80과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 9]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 A를 사용한 점을 제외하고는 상기 실시예 80과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 10]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 B를 사용한 점을 제외하고는 상기 실시예 80과 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 11]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 C를 사용한 점을 제외하고는 상기 실시예 80과 동일한 방법으로 유기전기발광소자를 제조하였다.
본 발명의 실시예 80 내지 실시예 151, 비교예 8 내지 비교예 11에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 5000cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 8과 같다.
[표 8]]
Figure 112013114333856-pat00046
Figure 112013114333856-pat00047
Figure 112013114333856-pat00048

[ 실시예 152] 블루유기전기발광소자( 발광보조층 )
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPD를 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 1-1을 20nm 두께로 진공증착하여 발광보조층을 형성하고, 상기 발광보조층 상에 9,10-di(naphthalen-2-yl)anthracene을 호스트로, BD-052X (Idemitsukosan 제조)를 도판트로 하여 93:7 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 153] 내지 [ 실시예 223] 블루유기전기발광소자( 발광보조층 )
발광보조층 물질로 본 발명의 화합물 1-1 대신 하기 표 9에 기재된 본 발명의 화합물 1-2~1-72를 사용한 점을 제외하고는 상기 실시예 152와 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 12]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 152와 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 13]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 A를 사용한 점을 제외하고는 상기 실시예 152와 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 14]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 B를 사용한 점을 제외하고는 상기 실시예 152와 동일한 방법으로 유기전기발광소자를 제조하였다.
[ 비교예 15]
발광보조층 물질로 본 발명의 화합물 1-1 대신 상기 비교화합물 C를 사용한 점을 제외하고는 상기 실시예 152와 동일한 방법으로 유기전기발광소자를 제조하였다.
본 발명의 실시예 152 내지 실시예 223, 비교예 12 내지 비교예 15에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 500cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 9과 같다.
[표 9]
Figure 112013114333856-pat00049
Figure 112013114333856-pat00050
Figure 112013114333856-pat00051

상기 표 7, 표 8 및 표 9의 결과로부터 알 수 있듯이, 본 발명의 화합물을 발광보조층의 재료로 사용한 유기전기발광소자는 발광보조층을 형성하지 않은 유기전기발광소자와 비교화합물 A 내지 C를 발광보조층의 재료로 사용한 유기전기발광소자에 비하여 구동전압, 발광효율 및 수명이 현저히 개선되었다.
즉, 발광보조층을 형성하지 않은 소자보다 비교화합물 A 내지 C, 본 발명의 화합물을 발광보조층의 재료로 사용한 소자가 발광효율 및 수명이 향상되었음을 확인할 수 있으며, 또한, 비교화합물 A, B를 발광보조층 재료로 사용한 소자보다 2개의 카바졸이 연결된 비교화합물 C와 본 발명의 화합물을 발광보조층의 재료로 사용한 소자가 효율과 수명 면에서 월등히 우수한 결과를 나타내는 것을 확인하였다. 이는 2개의 카바졸이 연결기를 통해 연결된 화합물들이 단독으로 발광보조층으로 사용될 경우 높은 T1 에너지 레벨과 깊은 HOMO 에너지 레벨을 갖게 되는데 이로 인해 정공과 전자가 전하균형 (charge balance)을 이루고 정공수송층 계면이 아닌 발광층 내부에서 발광이 이루어져 더 높은 효율 및 수명을 극대화시켜주기 때문인 것으로 판단된다.
또한, 비교화합물 A 내지 C를 발광보조층의 재료로 사용한 비교예 5 내지 7, 9 내지 11, 13 내지 15처럼 일반적으로 발광보조층을 사용하였을 경우, 발광보조층을 사용하지 않았을 때보다 효율 및 수명은 향상되지만 구동전압이 높아지는 현상을 확인할 수 있다. 그러나 본 발명의 화합물을 발광보조층의 재료로 사용한 소자의 결과를 보면 효율 및 수명은 향상시키면서 구동전압은 높아지지 않음을 확인하였다. 즉 본 발명의 화합물을 발광보조층의 재료로 사용한 소자는 효율과 수명을 향상시켜줌과 동시에 구동전압도 높아지지 않고 동등하거나 낮아져 소비전력을 감소시킬 수 있는 가장 우수한 결과를 나타내었다. 이는 상기 표 6에서 설명한 것과 같이 카바졸의 연결 개수, 연결 위치, 또는 다른 치환기의 종류에 따라 화합물의 특성이 현저히 달라지고 또한 이들 화합물을 적용한 소자의 특성도 현저히 달라질 수 있음을 시사하고 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
100: 유기전기소자 110: 기판
120: 제 1전극 130: 정공주입층
140: 정공수송층 141: 버퍼층
150: 발광층 151: 발광보조층
160: 전자수송층 170: 전자주입층
180: 제 2전극

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물.
    <화학식 1>
    Figure 112019129870517-pat00052

    상기 화학식 1에서,
    Ar1 내지 Ar4는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기로 이루어진 군에서 선택되며, Ar1과 Ar2는 서로 결합하여 고리를 형성할 수 있으며,
    a 및 c는 서로 독립적으로 0 내지 4의 정수이며,
    b 및 d는 서로 독립적으로 0 내지 3의 정수이며,
    R1 내지 R4는 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R')(R");로 이루어진 군에서 선택되고, 이웃하는 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며,
    상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택되며,
    상기 R' 및 R"는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택되며,
    상기 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕실기, 아릴옥시기, 아릴렌기 및 플루오렌일렌기 각각은 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
  2. 제 1항에 있어서,
    상기 Ar1과 Ar2는 서로 결합하여 고리를 형성하며, 이 경우 상기 화학식 1은 하기 화학식 3과 같이 표시되는 것을 특징으로 하는 화합물:
    <화학식 3>
    Figure 112019129870517-pat00058

    상기 화학식 3에서, Ar3, Ar4, R1 ~ R4, a, b, c 및 d는 제1항에서 정의된 것과 동일하다.
  3. 제 1항에 있어서,
    상기 Ar1와 Ar2 중에서 적어도 하나는 O 또는 S를 포함하는 C2~C18의 헤테로고리기인 것을 특징으로 하는 화합물:
  4. 제 1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 중 하나인 것을 특징으로 하는 화합물.
    Figure 112019129870517-pat00054

    Figure 112019129870517-pat00055

    Figure 112019129870517-pat00056
  5. 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층;을 포함하며,
    상기 유기물층은 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
  6. 제 5항에 있어서,
    상기 화합물은 상기 유기물층의 정공주입층, 정공수송층, 발광보조층 또는 발광층 중 적어도 하나의 층에 함유되는 것을 특징으로 하는 유기전기소자.
  7. 제 5항에 있어서,
    상기 제 1전극과 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 유기전기소자.
  8. 제 5항에 있어서,
    상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성되는 것을 특징으로 하는 유기전기소자.
  9. 제 5항의 유기전기소자를 포함하는 디스플레이장치; 및
    상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  10. 제 9항에 있어서,
    상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자장치.
KR1020130155472A 2013-12-13 2013-12-13 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 KR102108096B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130155472A KR102108096B1 (ko) 2013-12-13 2013-12-13 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
PCT/KR2014/011820 WO2015088183A1 (ko) 2013-12-13 2014-12-04 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130155472A KR102108096B1 (ko) 2013-12-13 2013-12-13 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Publications (2)

Publication Number Publication Date
KR20150069256A KR20150069256A (ko) 2015-06-23
KR102108096B1 true KR102108096B1 (ko) 2020-05-07

Family

ID=53371436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130155472A KR102108096B1 (ko) 2013-12-13 2013-12-13 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (2)

Country Link
KR (1) KR102108096B1 (ko)
WO (1) WO2015088183A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102232857B1 (ko) * 2014-08-05 2021-03-25 삼성전자주식회사 유기 화합물, 유기 박막 및 전자 소자
KR102530113B1 (ko) * 2014-10-23 2023-05-10 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2017099490A1 (ko) * 2015-12-08 2017-06-15 희성소재(주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
JP6743896B2 (ja) * 2016-02-15 2020-08-19 エルジー・ケム・リミテッド ヘテロ環化合物およびこれを含む有機電界発光素子
KR102512067B1 (ko) * 2016-02-26 2023-03-21 삼성디스플레이 주식회사 방향족 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107056807B (zh) * 2016-04-25 2019-06-07 中节能万润股份有限公司 一种以均苯为核心的化合物及其在有机电致发光器件中的应用
KR20180116740A (ko) * 2017-04-17 2018-10-25 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
CN107325037B (zh) * 2017-05-24 2020-03-13 北京八亿时空液晶科技股份有限公司 一种1-溴咔唑的制备方法
CN109867619B (zh) * 2019-04-02 2023-03-10 西安瑞联新材料股份有限公司 一种OLED中间体11-氯-7H-苯并[c]咔唑及其合成方法
CN116120265A (zh) * 2021-11-12 2023-05-16 奥来德(上海)光电材料科技有限公司 一种含芳胺基团的发光辅助材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072817B1 (ko) * 2011-02-21 2011-10-14 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101303894B1 (ko) * 2004-12-28 2013-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 카르바졸 유도체, 및 카르바졸 유도체를 사용한 발광소자와발광장치
JP2008127290A (ja) * 2006-11-16 2008-06-05 Bando Chem Ind Ltd 新規なカルバゾール誘導体とその利用
DE102007002714A1 (de) * 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101072817B1 (ko) * 2011-02-21 2011-10-14 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치

Also Published As

Publication number Publication date
KR20150069256A (ko) 2015-06-23
WO2015088183A1 (ko) 2015-06-18

Similar Documents

Publication Publication Date Title
KR102177800B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101512059B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102081689B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102108096B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102137429B1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102054159B1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102195540B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102208859B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102126201B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101389527B1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR102180085B1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자장치
KR102179763B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102171124B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102231935B1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR101503734B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102231248B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102154271B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102178086B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102052565B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102106803B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102249062B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102082668B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102026645B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102109484B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102172735B1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant