KR102091728B1 - Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon - Google Patents

Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon Download PDF

Info

Publication number
KR102091728B1
KR102091728B1 KR1020190105099A KR20190105099A KR102091728B1 KR 102091728 B1 KR102091728 B1 KR 102091728B1 KR 1020190105099 A KR1020190105099 A KR 1020190105099A KR 20190105099 A KR20190105099 A KR 20190105099A KR 102091728 B1 KR102091728 B1 KR 102091728B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
tank
hydrogen peroxide
decomposition
activated carbon
Prior art date
Application number
KR1020190105099A
Other languages
Korean (ko)
Inventor
정영남
Original Assignee
정영남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정영남 filed Critical 정영남
Priority to KR1020190105099A priority Critical patent/KR102091728B1/en
Application granted granted Critical
Publication of KR102091728B1 publication Critical patent/KR102091728B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0211Peroxy compounds
    • C01B13/0214Hydrogen peroxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a retention type continuous dissolution bath apparatus for removing hydrogen peroxide from waste sulfuric acid using activated carbon and, more specifically, to a retention type continuous dissolution bath apparatus for removing hydrogen peroxide from waste sulfuric acid using activated carbon, which dissolves the hydrogen peroxide included in the waste sulfuric acid generated from a wafer cleaning process of a semiconductor manufacturing process through an active carbon catalyst to purify the sulfuric acid. To this end, according to the present invention, the retention type continuous dissolution bath apparatus for removing the hydrogen peroxide included in the waste sulfuric acid generated from the semiconductor manufacturing process through a dissolution reaction of separating the hydrogen peroxide included in the waste sulfuric acid into water and hydrogen by using a catalyst comprises: a dissolution tank having a reception space formed therein to form a dissolution bath and a retention bath; a plurality of acid-resistant filtering and separation membranes installed on the inner wall surface of the dissolution tank at predetermined intervals to partition the reception space of the dissolution tank into a plurality of dissolution baths and retention baths, not passing the catalyst received in the dissolution baths, and passing the waste sulfuric acid; a filtering apparatus purifying the waste sulfuric acid, from which the hydrogen peroxide is removed, transferred from the retention baths; a collection hood collecting discharge gas generated by dissolving the hydrogen peroxide included in the catalyst and waste sulfuric acid received in the dissolution baths; and a wet filtering unit receiving the discharge gas from the collection hood to remove pollutant from the discharge gas.

Description

활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치{Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon}Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon}

본 발명은 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치에 관한 것으로서, 더욱 상세하게는 반도체 제조과정 중 웨이퍼 세정공정에서 발생하는 황산폐산에 포함되는 과산화수소를 활성탄 촉매를 통해 분해하여 황산을 정제하는 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치에 관한 것이다.The present invention relates to a continuous continuous decomposition tank apparatus for removing hydrogen peroxide in sulfuric acid waste acid using activated carbon, and more specifically, hydrogen peroxide contained in sulfuric acid waste acid generated in a wafer cleaning process during a semiconductor manufacturing process through an activated carbon catalyst. The present invention relates to a continuous continuous cracking apparatus for removing hydrogen peroxide in sulfuric acid using activated carbon to decompose and purify sulfuric acid.

반도체 제조 공정에서 과산화수소(H2O2)는 흔히 사용하는 일종의 산화제로서 늘 황산(H2SO4)과 함께 사용되어 포토 레지스트(photo resist)의 제거액 또는 식각액으로 이용할 수 있으므로 반도체 제조 공정의 폐액 중의 황산폐산이 30~40% 이상을 차지한다.In the semiconductor manufacturing process, hydrogen peroxide (H 2 O 2 ) is a kind of commonly used oxidizing agent, and is always used with sulfuric acid (H 2 SO 4 ) to be used as a photoresist removal solution or an etching solution. Sulfuric acid waste acid accounts for more than 30-40%.

황산폐산은 강한 산화성을 가지므로 저장 및 회수 재활용에 유리하도록 반드시 과산화수소를 제거하여 산화성을 낮추어야 하며 일반적인 과산화수소 처리방법은 하기와 같은 내용으로 처리된다.Since sulfuric acid waste acid has strong oxidizing properties, it must be removed to reduce hydrogen peroxide to favor storage and recovery recycling, and the general hydrogen peroxide treatment method is processed as follows.

(1) 가열 분해 : 하기 식 1에 나타난 바와 같이, 140℃ 이상의 고온으로 가열하면 과산화수소는 급격히 분해되어 산소 기체를 방출한다. 이 방법의 가장 문제로 되는 결점은 고온 발열반응의 위험성이다.(1) Heat decomposition: As shown in Equation 1 below, when heated to a temperature of 140 ° C or higher, hydrogen peroxide is rapidly decomposed to release oxygen gas. The most problematic drawback of this method is the risk of high temperature exothermic reactions.

(2) 자외선 분해 : 과산화수소 분자는 파장이 3200~3800Å인 자외선을 흡수하면 분해반응이 진행된다. 이 방법의 결점은 용액 중의 기타 구성 성분이 자외선을 흡수할 가능성이 있으므로, 자외선에 대한 과산화수소의 흡수효과가 저하된다. 따라서, 자외선 광원의 강도를 강하게 하여야 하며, 그 외에 기타 광화학 부산물이 발생될 가능성이 있어 바람직하지 못하다.(2) UV decomposition: When hydrogen peroxide molecules absorb UV rays with a wavelength of 3200 ~ 3800Å, the decomposition reaction proceeds. The drawback of this method is that other components in the solution may absorb ultraviolet rays, and thus the effect of absorbing hydrogen peroxide on ultraviolet rays is lowered. Therefore, the intensity of the ultraviolet light source must be strengthened, and other photochemical byproducts are likely to be generated, which is not preferable.

(3) 질산 분해 : 과산화수소를 포함하는 황산용액에 질산(HNO3)을 첨가하여 분해 반응을 발생함으로써 산소 기체를 방출한다. 이 방법은 분해반응시 높은 발열온도가 동반되기에 황산가스가 방출될 수 있으며 또한, 반응의 촉매로 이용된 질산을 제거하는 추가공정이 요구된다.(3) Decomposition of nitric acid: Oxygen gas is released by generating decomposition reaction by adding nitric acid (HNO 3 ) to a sulfuric acid solution containing hydrogen peroxide. This method is accompanied by a high exothermic temperature during the decomposition reaction, whereby sulfuric acid gas can be released, and further processing is required to remove nitric acid used as a catalyst for the reaction.

(4) 기타 유기물 또는 무기물을 환원제로 첨가하여 과산화수소와 작용시키는 것으로서, 이 방법은 반응온도를 적당한 온도로 제어해야만 안전성과 반응 효율성을 겸비할 수 있고, 이와 동시에 반응에 따른 부산물이 후속의 폐용액 처리 과정을 추가시키는지 여부도 반드시 고려해야 한다.(4) Other organic or inorganic substances are added as a reducing agent to act with hydrogen peroxide. This method can control safety and reaction efficiency only by controlling the reaction temperature to an appropriate temperature. You should also consider whether or not to add treatment.

이와 같이 황산폐산 내 과산화수소를 제거할 때 투입되는 설비 및 유지 비용을 감소시키면서도 제거효율을 높일 수 있는 과산화수소 제거장치의 개발이 요구된다.As described above, there is a need to develop a hydrogen peroxide removal device capable of increasing the removal efficiency while reducing the equipment and maintenance cost input when removing hydrogen peroxide in sulfuric acid waste acid.

한국등록특허 제10-1641959호Korean Registered Patent No. 10-1641959

본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로서 복수개로 구획된 분해조에 단계적으로 황산폐산 내 과산화수소를 제거하기 위한 촉매제로 활성탄을 투입하되 황산폐산의 이동경로를 따라 점차 활성탄의 투입량을 증대시킴으로써 지나친 발열온도의 상승에 따른 활성탄의 오염 또는 파손을 감소시킬 수 있으면서도 과산화수소의 분해반응에 따른 제거율은 상승시킬 수 있는 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치를 제공함에 그 목적이 있다. The present invention has been devised to solve the above problems, and the activated carbon is introduced as a catalyst for removing hydrogen peroxide in sulfuric acid in stages in a decomposition tank divided into a plurality, but gradually increased by increasing the amount of activated carbon along the movement path of sulfuric acid. Providing a continuous continuous decomposition tank apparatus for removing hydrogen peroxide in sulfuric acid using activated carbon that can increase the removal rate due to decomposition reaction of hydrogen peroxide while reducing contamination or damage of activated carbon due to an increase in exothermic temperature. There is a purpose.

본 발명은 상기의 목적을 달성하기 위해 아래와 같은 특징을 갖는다.The present invention has the following features to achieve the above object.

본 발명은 반도체 공정에서 발생되는 과산화수소를 포함한 황산폐산에서 촉매를 활용하여 황산폐산 내 과산화수소가 물과 산소로 분리되는 분해반응을 통해 제거되는 체류형 연속식 분해조장치에 있어서, 상기 체류형 연속식 분해조장치는 분해조 및 저류조를 형성하기 위해 내측에 수용공간이 형성되는 분해조탱크와; 상기 분해조탱크 내의 수용공간을 복수개의 분해조와 저류조로 구획하도록 분해조탱크의 내벽면 상에 일정 간격 이격 되어 복수개가 설치되며, 분해조 내에 수용되는 촉매는 통과하지 못하고 황산폐산은 통과가능한 내산 여과 분리막과; 상기 저류조로부터 과산화수소가 제거된 황산폐산이 이송되어 정제를 수행하는 여과장치와; 상기 분해조 내에 수용되는 촉매와 황산폐산 내에 포함되는 과산화수소가 분해반응되어 발생되는 배출가스를 포집하는 포집후드; 및 상기 포집후드로부터 배출가스를 전달받아 오염물질을 제거하는 습식여과부;를 포함한다.In the present invention, a continuous continuous decomposition tank apparatus in which hydrogen peroxide in sulfuric acid sulfuric acid is removed through a decomposition reaction that is separated into water and oxygen by utilizing a catalyst in sulfuric acid waste acid containing hydrogen peroxide generated in a semiconductor process, is the continuous type The decomposition tank apparatus includes a decomposition tank in which an accommodation space is formed inside to form a decomposition tank and a storage tank; A plurality of spaced apart spaces are installed on the inner wall surface of the cracking tank so as to divide the receiving space in the cracking tank into a plurality of cracking tanks and storage tanks. A separator; A filtering device for carrying out purification by transferring sulfuric acid waste acid from which hydrogen peroxide has been removed from the storage tank; A collection hood for collecting the exhaust gas generated by the decomposition reaction of the catalyst contained in the decomposition tank and the hydrogen peroxide contained in the sulfuric acid waste acid; And a wet filtration unit that receives the exhaust gas from the collection hood and removes contaminants.

여기서 상기 분해조는 상기 분해조탱크 내에 내산 여과 분리막을 통해 구획되되 이웃하여 순차적으로 배열되는 제1분해조, 제2분해조 및 제3분해조를 포함한다. Here, the decomposition tank includes a first decomposition tank, a second decomposition tank, and a third decomposition tank, which are partitioned through an acid-resistant filtration separation membrane in the decomposition tank and are sequentially arranged adjacent to each other.

아울러 상기 제1분해조, 제2분해조 및 제3분해조는 황산폐산 내 과산화수소를 제거하기 위한 촉매제가 포함되되 상기 촉매제는 비표면적이 500 내지 3000㎡/g이며 30mesh 보다 큰 크기의 입상 형태로 형성되는 활성탄으로 산화철을 포함하는 철염에 함침되어 표면 코팅된 것이 바람직하다. In addition, the first cracking tank, the second cracking tank, and the third cracking tank include a catalyst for removing hydrogen peroxide in sulfuric acid, but the catalyst has a specific surface area of 500 to 3000 m2 / g and is formed in a granular form with a size larger than 30 mesh. It is preferable to be impregnated with an iron salt containing iron oxide with activated carbon to be surface coated.

또한 상기 제1분해조, 제2분해조 및 제3분해조는 상기 촉매제와 황산폐산 내 과산화수소 간의 분해 과정에서 발생되는 기포가 상승하여 공기와 접촉시 파괴되어 발생되는 황산 액체 미립자의 공기 중 비산을 방지하도록 황산폐산 보다 비중이 낮은 플라스틱 재질의 비산방지 내산볼이 투입된다. In addition, the first decomposition tank, the second decomposition tank and the third decomposition tank prevent bubbles from occurring in the air of sulfuric acid liquid particulates generated when bubbles are generated in the decomposition process between the catalyst and hydrogen peroxide in sulfuric acid and are destroyed when contacted with air. To prevent this, a shatterproof acid-resistant ball made of plastic, which has a specific gravity lower than that of sulfuric acid, is injected.

또한 상기 내산 여과 분리막은 입상형 활성탄은 통과되지 않고 황산폐산만 통과하도록 하는 내산 재질로 형성된다. In addition, the acid-resistant filtration membrane is formed of an acid-resistant material that does not pass granular activated carbon, but only sulfuric acid waste acid.

본 발명에 따르면 폐기물인 황산폐산을 황산으로 재활용 할 수 있도록 구성됨에 따라 산업에서 발생하는 폐기물을 자원으로 순환하여 환경오염을 방지함과 동시에 자원절약을 달성할 수 있는 효과가 있다. According to the present invention, as the waste sulfuric acid waste acid is configured to be recycled as sulfuric acid, waste generated in the industry is recycled to resources to prevent environmental pollution and at the same time achieve resource saving.

아울러 황산폐산의 자연스러운 체류형 이송에 따라 과산화수소가 제거되어 활성탄과의 급격한 반응이 방지되어 활성탄의 오염 또는 파손을 감소시킬 수 있는 효과가 있다. In addition, hydrogen peroxide is removed according to the natural retention of sulfuric acid waste transport, thereby preventing a rapid reaction with activated carbon, thereby reducing contamination or damage of activated carbon.

아울러 체류형 연속식 분해방법으로 과산화수소를 제거하므로 분해조의 용량을 늘리거나 분해조의 개수를 늘리는 방법으로 대량으로 황산폐산의 과산화수소 제거가 가능하며, 반영구적인 촉매인 활성탄을 사용함에 따라 별도의 약품 첨가가 필요 없어 유지 비용 및 관리 비용이 현저히 감소되는 효과가 있다. In addition, since hydrogen peroxide is removed by a continuous continuous decomposition method, it is possible to remove hydrogen peroxide of sulfuric acid in large quantities by increasing the capacity of the decomposition tank or increasing the number of decomposition tanks, and additional chemicals are added by using activated carbon, which is a semi-permanent catalyst. Since it is not necessary, the maintenance cost and the management cost are significantly reduced.

도 1은 본 발명의 일실시예에 따른 체류형 연속식 분해조장치의 개략적인 구성을 나타내는 도면이다.
도 2는 본 발명의 일실시예에 따른 체류형 연속식 분해조장치의 내부 구성 및 과산화수소 제거과정을 나타내는 블럭도이다.
1 is a view showing a schematic configuration of a continuous continuous decomposition tank apparatus according to an embodiment of the present invention.
Figure 2 is a block diagram showing the internal configuration and hydrogen peroxide removal process of the continuous continuous decomposition tank apparatus according to an embodiment of the present invention.

본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여 이하에서는 본 발명의 바람직한 실시예를 예시하고 이를 참조하여 살펴본다.In order to explain the operational advantages of the present invention and the objects achieved by the practice of the present invention, the following describes preferred embodiments of the present invention and looks at them with reference to them.

먼저, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.First, the terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention, and singular expressions may include plural expressions unless the context clearly indicates otherwise. Also, in this application, the terms “include” or “have” are intended to indicate the presence of features, numbers, steps, actions, components, parts or combinations thereof described in the specification, one or more other It should be understood that features or numbers, steps, operations, components, parts or combinations thereof are not excluded in advance.

본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In describing the present invention, when it is determined that detailed descriptions of related well-known configurations or functions may obscure the subject matter of the present invention, detailed descriptions thereof will be omitted.

도 1은 본 발명의 일실시예에 따른 체류형 연속식 분해조장치의 개략적인 구성을 나타내는 도면이며, 도 2는 본 발명의 일실시예에 따른 체류형 연속식 분해조장치의 내부 구성 및 과산화수소 제거과정을 나타내는 블럭도이다. 1 is a view showing a schematic configuration of a continuous continuous decomposition tank apparatus according to an embodiment of the present invention, Figure 2 is an internal configuration and hydrogen peroxide of the continuous continuous decomposition tank apparatus according to an embodiment of the present invention It is a block diagram showing the removal process.

도면을 참조하면 본 발명의 일실시예에 따른 체류형 연속식 분해조장치(100)는 크게 분해조(11) 및 저류조(12)를 형성하기 위해 내측에 수용공간이 형성되는 분해조탱크(10)와, 상기 분해조탱크(10) 내의 수용공간을 복수개의 분해조(11)와 저류조(12)로 구획하도록 분해조탱크(10)의 내벽면 상에 일정 간격 이격 되어 복수개가 설치되며, 분해조(11) 내에 수용되는 촉매는 통과하지 못하고 황산폐산은 통과가능한 내산 여과 분리막(20)과, 상기 저류조(12)로부터 과산화수소가 제거된 황산폐산이 이송되어 정제를 수행하는 여과장치(30)와, 상기 분해조(11) 내에 수용되는 촉매와 황산폐산 내에 포함되는 과산화수소가 분해반응되어 발생되는 배출가스를 포집하는 포집후드(40) 및 상기 포집후드(40)로부터 배출가스를 전달받아 오염물질을 제거하는 습식여과부(50)로 이루어진다. Referring to the drawings, the residence type continuous decomposition tank apparatus 100 according to an embodiment of the present invention largely decomposes a tank 10 in which a receiving space is formed inside to form a decomposition tank 11 and a storage tank 12 ), A plurality of spaced apart on the inner wall surface of the decomposition tank 10 so as to divide the receiving space in the decomposition tank 10 into a plurality of decomposition tanks 11 and storage tanks 12, disassembled The catalyst accommodated in the tank 11 does not pass, and the sulfuric acid waste acid can pass through the acid-resistant filtration separation membrane 20, and the filtration device 30 for carrying out purification by transporting the sulfuric acid waste acid from which hydrogen peroxide has been removed from the storage tank 12 , The catalyst is accommodated in the decomposition tank 11 and the hydrogen peroxide contained in sulfuric acid waste acid is decomposed to collect the exhaust gas generated by the decomposition reaction and receives the exhaust gas from the capture hood 40 and the pollutant to receive the pollutants It consists of a wet filtration unit 50 to be removed.

여기서 상기 분해조탱크(10)는 분해조(11) 및 저류조(12)가 형성되도록 수용공간이 형성되고 해당 수용공간 내에 복수개의 분해조(11)와 저류조(12)가 각각 내산 여과 분리막(20)을 통해 구획되도록 구성된다. Here, the decomposition tank 10 is formed with a receiving space so that the decomposition tank 11 and the storage tank 12 are formed, and a plurality of the decomposition tanks 11 and the storage tank 12 are respectively acid resistant filtration separation membrane 20 in the accommodation space. ).

또한 상기 분해조탱크(10)는 황산폐산을 수용하여야 함에 따라 내산성을 가지는 콘크리트 재질로 구성되거나 이외에 내산성이 우수한 재질로 형성됨이 바람직하다. In addition, the decomposition tank 10 is preferably made of a concrete material having acid resistance or formed of a material having excellent acid resistance as it must accommodate sulfuric acid waste acid.

상기 분해조(11)는 내산 여과 분리막(20)을 통해 복수개로 분리, 구획되며 내산 여과 분리막(20)은 분해조(11)에 수용되는 황산폐산이 통과될 수 있도록 내산성을 가지는 여과가능한 막으로 형성된다. The decomposition tank 11 is separated and divided into a plurality through the acid-resistant filtration membrane 20, and the acid-resistant filtration membrane 20 is a filterable membrane having acid resistance so that the sulfuric acid wastewater contained in the decomposition tank 11 can pass through. Is formed.

이와 같은 내산 여과 분리막(20)에 의해 분해조(11) 내에 수용되는 촉매제 또는 비산방지 내산볼(60)은 해당 분해조(11)에서 이웃하는 분해조(11)로 이동할 수 없게 된다. The catalyst or the shatterproof acid-resistant ball 60 accommodated in the decomposition tank 11 by the acid-resistant filtration separation membrane 20 cannot move from the decomposition tank 11 to the adjacent decomposition tank 11.

본 발명에 따른 분해조(11)가 복수개로 형성되는 이유는 황산폐산이 순차적으로 구획된 복수개의 분해조(11)를 순차적으로 이동하면서 점차 황산폐산 내 과산화수소가 제거되도록 함은 물론 과산화수소의 제거효율을 가장 증대시키기 위해 촉매제의 투입량을 이동경로를 따른 분해조(11) 순으로 점차 늘리기 위함이다. The reason why the decomposition tank 11 according to the present invention is formed in plural is that the hydrogen peroxide in the sulfuric acid waste acid is gradually removed while sequentially moving the plurality of decomposition tanks 11 in which sulfuric acid waste acid is sequentially partitioned, as well as the removal efficiency of hydrogen peroxide. This is to gradually increase the amount of the catalyst input in the order of the decomposition tank 11 along the movement path in order to increase the most.

즉, 도 1에 도시된 바와 같이 분해조(11)가 3개소가 형성되는 경우 제1분해조(11a)에는 황산폐수 100 중량부를 기준으로 활성탄이 0.5 내지 1 중량부를 투입하고, 제2분해조(11b)에는 황산폐수 100 중량부를 기준으로 활성탄이 1 내지 2 중량부를 투입하고, 제3분해조(11c)에는 황산폐수 100 중량부를 기준으로 활성탄이 2 내지 5 중량부를 투입하면 분해반응으로 인한 발열온도를 촉매제가 오염되거나 파괴되지 않은 안정적인 온도 내로 제어하면서 과산화수소의 제거효율을 최대화할 수 있게 된다. That is, as shown in FIG. 1, when three decomposition tanks 11 are formed, 0.5 to 1 part by weight of activated carbon is added to the first decomposition tank 11a based on 100 parts by weight of sulfuric acid waste water, and the second decomposition tank When activated carbon is added in 1 to 2 parts by weight based on 100 parts by weight of sulfuric acid waste water (11b), activated carbon is added in an amount of 2 to 5 parts by weight based on 100 parts by weight of sulfuric acid waste water in the third cracking tank (11c), resulting in decomposition reaction It is possible to maximize the removal efficiency of hydrogen peroxide while controlling the temperature within a stable temperature where the catalyst is not contaminated or destroyed.

따라서, 내산 여과 분리막(20)을 통해 별도의 분해조별 이동을 강제할 필요없이 자연스러운 유동을 유도함은 물론 촉매제의 투입량 증가에 따라 황산폐수 내 과산화수소의 제거효율을 최적화할 수 있게 된다. Therefore, it is possible to optimize the removal efficiency of hydrogen peroxide in the sulfuric acid waste water as well as induce a natural flow through the acid-resistant filtration membrane 20 without forcing separate separation tank movements and increase the input amount of the catalyst.

아울러 상기 각 분해조(11a, 11b, 11c)에 투입되는 촉매제는 황산폐산 내 과산화수소를 제거하기 위해 구비되며, 이러한 촉매제는 비표면적 500 내지 3000㎡/g이며 30mesh 보다 큰 크기의 입상 형태로 형성되는 활성탄인 것이 바람직하다. In addition, the catalyst to be introduced into each of the decomposition tanks (11a, 11b, 11c) is provided to remove hydrogen peroxide in sulfuric acid, and the catalyst has a specific surface area of 500 to 3000 m2 / g and is formed in a granular form with a size larger than 30 mesh. It is preferably activated carbon.

한편 상기 저류조(12)는 분해조(11)로부터 과산화수소가 제거된 황산폐산을 내산 여과 분리막(20)을 통해 전달받아 일정 시간 저류한 뒤 후단에 설치되는 여과장치(30)로 전달하게 되는데, 이러한 저류조(12)에서 여과장치(30)로 황산폐수를 전달하기 위해서는 별도의 배출관을 통해 전달할 수도 있고, 도 1에 도시된 바와 같이 저류조(12)의 일측 벽면에 일정 수위를 넘어서는 황산폐산이 여과장치(30) 측으로 전달되도록 배출댐(12a)이 형성될 수 있다.On the other hand, the storage tank 12 receives the sulfuric acid waste acid from which the hydrogen peroxide has been removed from the decomposition tank 11 through the acid filtration separation membrane 20, stores it for a certain time, and then delivers it to the filtration device 30 installed at the rear end. In order to transfer the sulfuric acid wastewater from the storage tank 12 to the filtering device 30, it may be delivered through a separate discharge pipe, and as shown in FIG. 1, the sulfuric acid waste acid exceeding a certain level on the wall surface of the storage tank 12 is filtered device The discharge dam 12a may be formed to be delivered to the 30 side.

도 1에서는 개략적으로 도시하였으나, 배출댐(12a)은 별도의 승하강 구동부를 구비하여 목적 높이로 승하강 시킴에 따라 여과장치(30)측으로 전달하는 황산폐산의 양이나 배출속도 등을 조절할 수 있도록 구성할 수 있다. Although schematically illustrated in FIG. 1, the discharge dam 12a is provided with a separate raising and lowering driving unit so as to adjust the amount or discharge rate of sulfuric acid waste acid delivered to the filtration device 30 as it moves up and down to the desired height. Can be configured.

한편 상기 여과장치(30)는 상기 저류조(12)로부터 과산화수소가 제거된 황산폐산이 이송되어 추가적인 물리적 또는 화학적 정제과정을 수행하도록 구비되며, 이러한 여과장치(30)는 과산화수소가 제거된 황산폐산 내에 제거하고자 하는 타깃에 따라 다양한 형태로 구성될 수 있다. On the other hand, the filtration device 30 is provided to perform additional physical or chemical purification process by transporting sulfuric acid waste acid from which hydrogen peroxide has been removed from the storage tank 12, and the filtration device 30 is removed in sulfuric acid waste acid from which hydrogen peroxide has been removed. It can be configured in various forms depending on the target.

아울러 상기 분해조(11) 또는 저류조(12) 상에는 황산폐산 내 과산화수소와 촉매제인 활성탄이 분해반응을 수행하는 과정에서 발생되는 배출가스를 포집하기 위한 포집후드(40)가 설치된다. In addition, a collection hood 40 is provided on the decomposition tank 11 or the storage tank 12 to capture the exhaust gas generated during the decomposition reaction of hydrogen peroxide in sulfuric acid and catalyst, activated carbon.

이러한 포집후드(40)에 의해 수집된 배출가스는 습식여과부(50)로 전달되고, 습식여과부(50)는 배출가스 내 오염물질을 제거하게 된다. The exhaust gas collected by the collecting hood 40 is transferred to the wet filtration unit 50, and the wet filtration unit 50 removes contaminants in the exhaust gas.

이러한 습식여과부(50)의 제거 구성은 제거하고자 하는 오염물질 또는 목적 제거율에 따라 다양한 형태로 형성될 수 있다. The removal configuration of the wet filtration unit 50 may be formed in various forms depending on the removal rate of the pollutant or the object to be removed.

한편 상기 제1분해조(11a), 제2분해조(11b) 및 제3분해조(11c)에는 상기 촉매제와 황산폐산 내 과산화수소 간의 분해 과정에서 발생되는 기포가 상승하여 공기와 접촉시 파괴되어 발생되는 황산 액체 미립자의 공기 중 비산을 방지하도록 황산폐산 보다 비중이 낮은 플라스틱 재질의 비산방지 내산볼(60)이 투입되는데, 이러한 비산방지 내산볼(60)은 각 분해조(11) 상에 상부 전면을 덮도록 충분하게 투입됨이 바람직하다. On the other hand, in the first decomposition tank 11a, the second decomposition tank 11b, and the third decomposition tank 11c, bubbles generated in the decomposition process between the catalyst and hydrogen peroxide in sulfuric acid are raised and destroyed when contacted with air. In order to prevent scattering of sulfuric acid liquid particulates in the air, a shatterproof acid resistant ball 60 made of plastic having a specific gravity lower than that of sulfuric acid waste acid is introduced, and these shatterproof acid resistant balls 60 are disposed on the upper front of each decomposition tank 11. It is preferable that it is sufficiently injected to cover the.

이하에서는 본 발명에 따른 체류형 연속식 분해조장치를 통해 황산폐산 내 과산화수소를 제거하기 위한 다양한 실시예 및 실험예에 대해 설명하도록 한다. Hereinafter, various examples and experimental examples for removing hydrogen peroxide in sulfuric acid from the sulfuric acid through the retention type continuous cracking apparatus according to the present invention will be described.

우선 시험을 위해 두 가지 형태의 활성탄을 준비하였다. First, two types of activated carbon were prepared for the test.

실시예 1. 황산폐산 수집 및 활성탄 준비Example 1. Collection of sulfuric acid and preparation of activated carbon

본 발명의 황산폐산은 반도체 산업에서 발생하는 과산화수소를 포함한 황산폐산을 사용하였으며, 더욱 상세하게는 황산 60중량%, 과산화수소 5중량%, 물 35중량%인 것을 사용하였다. 또한, 활성탄은 비표면적이 최소 950㎡/g 이상의 석탄계로 30 mesh 크기인 것을 준비하였다.As the sulfuric acid waste acid of the present invention, sulfuric acid waste acid including hydrogen peroxide generated in the semiconductor industry was used, and more specifically, sulfuric acid 60% by weight, hydrogen peroxide 5% by weight, and water 35% by weight were used. In addition, the activated carbon was prepared to have a specific mesh area of at least 950 m2 / g and a coal-based size of 30 mesh.

실시예 2. 산화철이 함침된 활성탄 제조Example 2. Preparation of activated carbon impregnated with iron oxide

상기 실시예 1에서 준비한 활성탄에 산화철을 함침시킨 활성탄을 제조하였다. 더욱 상세하게는 상기 실시예 1에서 준비한 활성탄을 우선 산용액에서 식각 및 산화시켰다. 산용액은 95%(v/v) 황산과 70%(v/v) 질산을 3:1의 비율로 제조하였으며 이렇게 준비된 산용액에 활성탄을 25℃에서 24시간 침지하였다. 이후 산용액 처리된 활성탄은 증류수로 반복 세척하여 pH를 중성으로 맞췄다. 중화된 활성탄에 산화철을 함침시키는 과정은 다음과 같이 진행되었다.The activated carbon prepared in Example 1 was impregnated with iron oxide to prepare activated carbon. More specifically, the activated carbon prepared in Example 1 was first etched and oxidized in an acid solution. As an acid solution, 95% (v / v) sulfuric acid and 70% (v / v) nitric acid were prepared at a ratio of 3: 1, and activated carbon was immersed in the prepared acid solution at 25 ° C for 24 hours. After that, the activated carbon treated with the acid solution was repeatedly washed with distilled water to adjust the pH to neutral. The process of impregnating the neutralized activated carbon with iron oxide proceeded as follows.

삼(Ⅲ)질산철(Fe(NO3)3ㅇ9H2O)을 에탄올에 넣고 3중량% 철염용액을 만들었다. 이후 상기 철염용액에 상기 활성탄을 넣고, 철염용액을 초음파세척기에 넣어 10분간 진동을 주어 철염용액이 활성탄에 함침되도록 하였다. 이후 철염용액이 함침된 활성탄을 100℃에서 1시간 열처리하여 에탄올을 제거한 후, 400℃에서 4시간 열처리하여 철염을 산화시켜 산화철이 함침된 활성탄을 제조하였다.Tri (III) iron nitrate (Fe (NO 3 ) 3 ㅇ 9H 2 O) was added to ethanol to prepare a 3% by weight iron salt solution. Thereafter, the activated carbon was added to the iron salt solution, and the iron salt solution was put in an ultrasonic cleaner to vibrate for 10 minutes so that the iron salt solution was impregnated with the activated carbon. Thereafter, the activated carbon impregnated with the iron salt solution was heat treated at 100 ° C. for 1 hour to remove ethanol, and then heat treated at 400 ° C. for 4 hours to oxidize the iron salt to prepare activated carbon impregnated with iron oxide.

실험예 1. 활성탄 투입량에 따른 과산화수소 분해시간 확인Experimental Example 1. Determination of the hydrogen peroxide decomposition time according to the amount of activated carbon

활성탄 또는 질산 투입량에 따른 과산화수소 분해시간을 확인하기 위한 실험을 실시하였다. 본 실험을 위해 내산 재질로 제작된 체류형 분해조(11)를 제작하였으며, 상기 체류형 분해조에 활성탄 1g, 2g, 3g, 4g, 5g씩을 각각 넣어 준비하고, 실시예 1에서 수집한 황산폐산 100g을 각 체류형 분해조에 부은 후 기포 포집장치를 통해 기포발생 개수를 측정하였으며, 이를 하기 표 1에 나타내었다. 한편, 기포가 더 이상 발생하지 않으면 과산화수소 분해가 완료된 것으로 판단하고 분해완료시간을 확인하였다.An experiment was conducted to confirm the decomposition time of hydrogen peroxide according to the amount of activated carbon or nitric acid. For this experiment, a retention type decomposition tank 11 made of an acid-resistant material was prepared, and 1 g, 2 g, 3 g, 4 g, and 5 g of activated carbon were respectively added to the retention type decomposition tank, and 100 g of sulfuric acid waste acid collected in Example 1 was prepared. Was poured into each retention type decomposition tank, and the number of bubbles generated was measured through a bubble collecting device, and this is shown in Table 1 below. On the other hand, when no more bubbles were generated, it was determined that the decomposition of hydrogen peroxide was completed and the decomposition completion time was confirmed.

활성탄 투입량Activated carbon input 실험예 1-1Experimental Example 1-1 실험예 1-2Experimental Example 1-2 실험예 1-3Experimental Example 1-3 실험예 1-4Experimental Example 1-4 실험예 1-5Experimental Example 1-5 활성탄 1gActivated carbon 1 g 활성탄 2g2g activated carbon 활성탄 3gActivated carbon 3 g 활성탄 4gActivated carbon 4 g 활성탄 5gActivated carbon 5 g 경과시간(시)Elapsed time (hour) 기포발생 개수(개/분)Number of bubbles generated (pieces / minute) 1One 77 1313 1818 2424 3030 22 88 1414 1818 2121 2323 33 88 1010 1515 2020 1010 44 66 88 1111 1313 00 55 44 77 99 77 -- 66 44 44 77 66 -- 77 33 33 55 33 -- 88 22 22 22 00 -- 99 22 22 22 -- -- 1010 22 1One 22 -- -- 분해완료시간(시)Disassembly completion time (hours) 2020 1616 1111 88 44

표 1을 참고하면, 활성탄의 투입량이 증가할수록 과산화수소의 분해완료시간이 단축되는 것을 확인할 수 있으며, 실험예 2-5에서는 분해완료시간이 4시간인 것을 알 수 있다. 활성탄 1g 투입 시에는 분해완료시간이 20시간이며 기포발생 개수 2개 이하로 11시간을 유지하였다. 따라서 활성탄의 투입량이 증가할수록 분해시간이 빠르다는 것을 확인할 수 있었다.Referring to Table 1, it can be seen that as the amount of activated carbon increased, the decomposition completion time of hydrogen peroxide was shortened, and in Experimental Example 2-5, it was found that the decomposition completion time was 4 hours. When 1 g of activated carbon was added, the decomposition completion time was 20 hours, and the number of bubbles generated was 2 or less and maintained for 11 hours. Therefore, it was confirmed that as the input amount of activated carbon increased, the decomposition time was faster.

실험예 2. 활성탄 투입량에 따른 발열비교 확인Experimental Example 2. Confirmation of heat generation comparison according to the amount of activated carbon

상기 실시예 1에서 준비한 활성탄의 투입량에 따른 과산화수소 분해과정에서 발생하는 발열을 확인하기 위해 실험을 실시하였다.An experiment was conducted to confirm the heat generated during the decomposition of hydrogen peroxide according to the amount of activated carbon prepared in Example 1.

본 실험을 위해 내산 재질의 체류형 분해조(11)를 제작하였으며, 상기 체류형 분해조에 활성탄 1g, 2g, 3g, 4g, 5g씩을 각각 넣어 준비하고, 실시예 1에서 수집한 황산폐산 100g을 각 체류형 분해조에 부은 후 시간에 따른 온도 변화를 측정하여 하기 표 2에 나타내었다.For this experiment, a retention-type decomposition tank 11 made of an acid-resistant material was prepared, and 1 g, 2 g, 3 g, 4 g, and 5 g of activated carbon were put in the retention-type decomposition tank, respectively, and each 100 g of sulfuric acid waste acid collected in Example 1 was prepared. It is shown in Table 2 below by measuring the temperature change over time after being poured into the residence type cracking tank.

구분division 활성탄
투입량
Activated carbon
input
온도 변화Temperature change
투입시Upon input 1시간1 hours 3시간3 hours 5시간5 hours 10시간10 hours 실험예 2-1Experimental Example 2-1 1g1 g 24℃24 ℃ 24℃24 ℃ 25℃25 ℃ 26℃26 ℃ 26℃26 ℃ 실험예 2-2Experimental Example 2-2 2g2 g 24℃24 ℃ 25℃25 ℃ 26℃26 ℃ 27℃27 ℃ 26℃26 ℃ 실험예 2-3Experimental Example 2-3 3g3 g 24℃24 ℃ 25℃25 ℃ 28℃28 30℃30 30℃30 ℃ 실험예 2-4Experimental Example 2-4 4g4 g 24℃24 30℃30 ℃ 32℃32 ℃ 34℃34 ℃ -- 실험예 2-5Experimental Example 2-5 5g5 g 24℃24 ℃ 33℃33 ℃ 35℃35 ℃ -- --

표 2를 참고하면, 실험예 2-1 내지 2-3은 투입 후 반응 종료시까지 30℃ 이하를 나타내어 과산화수소 분해과정 중 발열이 미비한 것을 확인할 수 있었으며, 반면, 실험예 2-4 및 2-5에서는 발열온도가 30℃를 초과한 것을 확인할 수 있었다. 또한, 황산폐산 100g 기준 활성탄을 3g 이상 투입하였을 때는 분해과정에서 활성탄 손상으로 인한 황산이 오염되었으며, 황산가스가 발생하여 안정성이 떨어지는 것을 알 수 있었다.Referring to Table 2, Experimental Examples 2-1 to 2-3 showed 30 ° C. or less until the end of the reaction after injection, and thus it was confirmed that exotherm was insufficient during the hydrogen peroxide decomposition process, whereas in Experimental Examples 2-4 and 2-5, It was confirmed that the exothermic temperature exceeded 30 ° C. In addition, when 3 g or more of activated carbon based on sulfuric acid waste acid was added, sulfuric acid due to damage to activated carbon was contaminated during the decomposition process, and it was found that sulfuric acid gas was generated, resulting in poor stability.

상기 실험예 1에서 실시한 과산화수소 분해시간 측정과 실험예 2를 통해 활성탄 투입량이 증가하면 분해시간이 단축되지만 발열온도 또한 높아지게 된다는 것을 알 수 있다. 따라서, 단순히 활성탄 투입량을 늘리는 것은 과산화수소 분해에 있어 안정성이 떨어지며, 활성탄을 적게 투입하면 과산화수소 분해시간이 너무 길어져 효율적이지 못하다는 것을 확인할 수 있었다.Through the measurement of the hydrogen peroxide decomposition time and the experiment example 2, the decomposition time is shortened, but the exothermic temperature is also increased. Therefore, it was confirmed that simply increasing the amount of activated carbon is inferior to hydrogen peroxide decomposition, and when less activated carbon is added, the decomposition time of hydrogen peroxide is too long to be effective.

실험예 3. 활성탄을 단계적으로 나누어 과산화수소를 분해Experimental Example 3. Divided hydrogen peroxide in stages by dividing activated carbon

본 실험예에서는 활성탄을 단계적으로 나누어 황산폐산 내의 과산화수소를 분해하는 실험을 실시하였다. 본 실험은 체류형 분해조를 연결한 연속식 분해조를 이용하여 실시하였다. 더욱 상세하게는 상기 체류형 분해조는 활성탄을 여과할 수 있는 여과장치를 포함하고 내산 재질의 탱크로 제작되었으며, 3개소의 체류형 분해조를 연결하여 황산폐산을 지속적으로 공급과 배출할 수 있는 연속식 분해조를 사용하였다. 3개의 체류형 분해조는 각각 제1분해조(11a), 제2분해조(11b) 및 제3분해조(11c)로 하여 스케일 다운하여 작은 크기로 제작하였으며, 각각의 분해조에는 활성탄의 함량을 다르게 하여 투입하였다.In this example, an experiment was performed in which activated carbon was divided into steps to decompose hydrogen peroxide in sulfuric acid. This experiment was conducted using a continuous cracking tank connected to a retention cracking tank. More specifically, the retention type decomposition tank includes a filtration device capable of filtering activated carbon and is made of a tank made of acid-resistant material, and is continuously capable of continuously supplying and discharging sulfuric acid waste acid by connecting three retention type decomposition tanks. A type cracker was used. The three retention-type cracking tanks were scaled down to the first cracking tank 11a, the second cracking tank 11b, and the third cracking tank 11c, respectively, to produce a small size. It was put in differently.

각 분해조의 활성탄 투입량은 제1분해조(11a)은 1g, 제2분해조(11b)는 2g, 제3분해조(11c)는 4g씩 투입하였다. 이후 상기 실시예 1에서 수집한 황산폐산 100g을 제1분해조(11a)에 붓고 4시간 동안 과산화수소 분해반응 후에 활성탄을 여과하고 분해조(1)의 황산폐산을 다음 분해조(2)로 이동시켜 이어서 과산화수소 분해반응을 진행하였다. 분해조(2)에서 추가로 4시간 반응 후 활성탄 4g이 투입된 분해조(3)으로 이동시켜 과산화수소 분해반응을 진행하였다. 활성탄 투입량을 다르게 한 분해조에서 각각 황산폐산 내의 과산화수소 분해반응을 단계적으로 실시하였으며 상기 실험예 1 및 2와 같은 방법으로 분해시간 및 온도변화를 측정하여 하기 표 3 및 4에 나타내었다.The amount of activated carbon in each cracking tank was 1 g for the first cracking tank 11a, 2 g for the second cracking tank 11b, and 4 g for the third cracking tank 11c. Then, 100 g of sulfuric acid waste acid collected in Example 1 was poured into the first cracking tank 11a, and after 4 hours of hydrogen peroxide decomposition reaction, the activated carbon was filtered and the sulfuric acid waste acid of the cracking tank 1 was moved to the next cracking tank 2 Subsequently, a hydrogen peroxide decomposition reaction was performed. After the reaction in the decomposition tank 2 for an additional 4 hours, 4 g of activated carbon was moved to the decomposition tank 3 into which the hydrogen peroxide decomposition reaction was performed. The decomposition tanks having different amounts of activated carbon were each subjected to a step of decomposing hydrogen peroxide in sulfuric acid, and the decomposition times and temperature changes were measured in the same manner as in Experimental Examples 1 and 2, and the results are shown in Tables 3 and 4.

구분division 기포발생 개수(개/분)Number of bubbles generated (pieces / minute) 활성탄이 1g 투입된
제1분해조
1g of activated carbon
First cracking tank
활성탄이 2g 투입된
제2분해조
2g of activated carbon
Second cracking tank
활성탄이 4g 투입된
제3분해조
4g of activated carbon
Third cracking tank
투입 초기Initial input 77 1시간1 hours 88 2시간2 hours 88 3시간3 hours 88 4시간4 hours 제2분해조로 옮김 Transferred to the second cracker 1010 5시간5 hours 99 6시간6 hours 88 7시간7 hours 44 8시간8 hours 제3분해조로 옮김 Transferred to the third cracker 88 9시간9 hours 22 10시간10 hours 00

구분division 온도 변화Temperature change 투입 초기Initial input 1시간1 hours 3시간3 hours 6시간6 hours 9시간9 hours 활성탄이 1g 투입된 제1분해조First cracking tank with 1 g of activated carbon 24℃24 ℃ 24℃24 ℃ 25℃25 ℃ -- -- 활성탄이 2g 투입된 제2분해조Second cracking tank with 2 g of activated carbon -- -- -- 27℃27 ℃ -- 활성탄이 4g 투입된 제3분해조Third cracking tank with 4 g of activated carbon -- -- -- -- 30℃30 ℃

표 3 및 4를 참고하면, 황산폐산 내의 과산화수소 분해를 3단계로 구분하여 실시하였을 때 10시간 이내에 분해가 완료된 것을 확인할 수 있다. 상기 실험예 1-1 내지 1-3의 과산화수소 분해시간과 비교하면 보다 시간이 단축된 것을 확인할 수 있으며, 이를 통해 황산폐산 내의 과산화수소의 분해가 진행되는 중 함량이 낮아지는 시점에서 활성탄 투입량을 증가시키는 방법을 통해 과산화수소 분해시간을 단축할 수 있다는 것을 알 수 있다.Referring to Tables 3 and 4, it can be confirmed that the decomposition was completed within 10 hours when the decomposition of hydrogen peroxide in sulfuric acid was divided into three steps. Compared to the hydrogen peroxide decomposition times of Experimental Examples 1-1 to 1-3, it can be seen that the time was shortened, and through this, the amount of activated carbon was increased at a time when the content was lowered during decomposition of hydrogen peroxide in sulfuric acid. It can be seen that the method can reduce the hydrogen peroxide decomposition time.

한편, 실험예 1-4 및 1-5보다 과산화수소 분해시간이 단축되진 않았으나 실험예 1-4 및 1-5에서 발생한 활성탄에 의한 황산 오염 및 황산가스가 상기 실험예 3에서는 발생하지 않았고, 또한, 발열온도 역시 30℃ 이하를 나타내어 안정적인 상태에서 과산화수소를 분해한다는 것을 확인하여, 보다 효과적으로 황산폐산 내의 과산화수소를 제거하는 방법인 것을 알 수 있다.On the other hand, although the hydrogen peroxide decomposition time was not shortened compared to Experimental Examples 1-4 and 1-5, sulfuric acid contamination and sulfuric acid gas by activated carbon generated in Experimental Examples 1-4 and 1-5 did not occur in Experimental Example 3, The exothermic temperature also shows 30 ° C. or less, confirming that it decomposes hydrogen peroxide in a stable state, and it can be seen that it is a method of more effectively removing hydrogen peroxide in sulfuric acid waste acid.

실험예 4. 산화철이 함침된 활성탄을 단계적으로 나누어 과산화수소를 분해Experimental Example 4. Decomposition of hydrogen peroxide by dividing the activated carbon impregnated with iron in stages

본 실험예에서는 산화철이 함침된 활성탄을 단계적으로 나누어 황산폐산 내의 과산화수소를 분해하는 실험을 실시하였다. 상기 실험예 3과 같은 방법으로 실시하되 활성탄 대신에 실시예 2에서 제조한 산화철이 함침된 활성탄을 투입하고, 황산폐산 투입후 3시간 간격으로 비커를 바꾸어주며 실험을 실시하였다. 이에 따른 분해시간 및 온도변화를 하기 표 5 및 6에 나타내었다.In this experimental example, an experiment was conducted in which the activated carbon impregnated with iron oxide was divided into stages to decompose hydrogen peroxide in sulfuric acid. The experiment was carried out in the same manner as in Experimental Example 3, but instead of activated carbon, activated carbon impregnated with iron oxide prepared in Example 2 was added, and after the sulfuric acid was added, the beaker was changed at intervals of 3 hours. Accordingly, the decomposition time and temperature change are shown in Tables 5 and 6 below.

구분division 기포발생 개수(개/분)Number of bubbles generated (pieces / minute) 산화철이 함침된 활성탄이 1g 투입된 제1분해조First cracking tank with 1 g of activated carbon impregnated with iron oxide 산화철이 함침된 활성탄이 2g 투입된 제2분해조2nd cracking tank with 2 g of activated carbon impregnated with iron oxide 산화철이 함침된 활성탄이 4g 투입된 제3분해조Third cracking tank with 4 g of activated carbon impregnated with iron oxide 투입 초기Initial input 88 1시간1 hours 99 2시간2 hours 88 3시간3 hours 제2분해조로 옮김Transferred to the second cracker 1212 4시간4 hours 1010 5시간5 hours 99 6시간6 hours 제3분해조로 옮김Transferred to the third cracker 99 7시간7 hours 33 8시간8 hours 00 9시간9 hours -- 10시간10 hours --

구분division 온도 변화Temperature change 투입 초기Initial input 1시간1 hours 3시간3 hours 5시간5 hours 7시간7 hours 산화철이 함침된 활성탄이 1g 투입된 제1분해조First cracking tank with 1 g of activated carbon impregnated with iron oxide 24℃24 ℃ 24℃24 ℃ -- -- -- 산화철이 함침된 활성탄이 2g 투입된 제2분해조2nd cracking tank with 2 g of activated carbon impregnated with iron oxide -- -- 26℃26 ℃ 26℃26 ℃ -- 산화철이 함침된 활성탄이 4g 투입된 제3분해조Third cracking tank with 4 g of activated carbon impregnated with iron oxide -- -- -- -- 29℃29 ℃

표 5 및 6을 참고하면, 황산폐산 내의 과산화수소 분해를 3단계로 구분하여 실시하였을 때 8시간 이내에 분해가 완료된 것을 확인할 수 있다. 상기 실험예 3과 비교해보면 과산화수소 분해시간이 보다 단축되고 발열온도 또한 30℃ 이하를 나타내어 보다 더 효과적인 것을 확인할 수 있다. 활성탄 손상에 의한 오염도 발생하지 않았으며, 발열온도가 낮아 황산가스 또한 발생하지 않았다.Referring to Tables 5 and 6, it can be confirmed that the decomposition was completed within 8 hours when the decomposition of hydrogen peroxide in sulfuric acid was divided into three stages. Compared to Experimental Example 3, it can be seen that the hydrogen peroxide decomposition time is shorter and the exothermic temperature is also less than 30 ° C., which is more effective. There was no contamination due to activated carbon damage, and sulfuric acid gas was not generated due to the low exothermic temperature.

이와 같이 본 발명은 체류형 연속식으로 내산 여과 분리막(20)을 통해 복수개의 분해조(11)를 형성하고 촉매제인 활성탄을 이동 경로를 따라 점차 투입량을 증대시킴으로써 발열 온도는 과열되지 않도록 제어하면서 분해반응률을 최대화하도록 구성할 수 있다. As described above, the present invention forms a plurality of decomposition tanks 11 through the acid-resistant filtration separation membrane 20 in a continuous type, and gradually increases the input amount of the activated carbon, which is a catalyst, by controlling the heating temperature so as not to overheat and decomposes. It can be configured to maximize the reaction rate.

이와 같이 본 발명은 도면에 도시된 일실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. As described above, the present invention has been described with reference to one embodiment shown in the drawings, but this is only an example, and various modifications and equivalent other embodiments are possible from those skilled in the art. Will understand.

따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (5)

반도체 공정에서 발생되는 과산화수소를 포함한 황산폐산에서 활성탄을 이용하여 황산폐산 내 과산화수소가 물과 산소로 분리되는 분해반응을 통해 제거되는 체류형 연속식 분해조장치에 있어서,
상기 체류형 연속식 분해조장치(100)는
분해조(11) 및 저류조(12)를 형성하기 위해 내측에 수용공간이 형성되는 분해조탱크(10)와;
상기 분해조탱크(10) 내의 수용공간을 복수개의 분해조(11)와 저류조(12)로 구획하도록 분해조탱크(10)의 내벽면 상에 일정 간격 이격 되어 복수개가 설치되며, 분해조(11) 내에 수용되는 촉매는 통과하지 못하고 황산폐산은 통과가능한 내산 여과 분리막(20)과;
상기 저류조(12)로부터 과산화수소가 제거된 황산폐산이 이송되어 정제를 수행하는 여과장치(30)와;
상기 분해조(11) 내에 수용되는 촉매와 황산폐산 내에 포함되는 과산화수소가 분해반응되어 발생되는 배출가스를 포집하는 포집후드(40); 및
상기 포집후드(40)로부터 배출가스를 전달받아 오염물질을 제거하는 습식여과부(50);를 포함하되,
상기 분해조(11)는 상기 분해조탱크(10) 내에 내산 여과 분리막(20)을 통해 구획되되 이웃하여 순차적으로 배열되는 제1분해조(11a), 제2분해조(11b) 및 제3분해조(11c)를 포함하고, 상기 제1분해조(11a), 제2분해조(11b) 및 제3분해조(11c)는 황산폐산 내 과산화수소를 제거하기 위한 촉매제가 포함되며,
상기 촉매제는 비표면적이 500 내지 3000㎡/g이며 30mesh 보다 큰 크기의 입상 형태로 형성되는 활성탄으로 산화철을 포함하는 철염에 함침되어 표면 코팅되며, 제1분해조(11a)에는 황산폐수 100 중량부를 기준으로 활성탄이 0.5 내지 1 중량부를 투입하고, 제2분해조(11b)에는 황산폐수 100 중량부를 기준으로 활성탄이 1 내지 2 중량부를 투입하고, 제3분해조(11c)에는 황산폐수 100 중량부를 기준으로 활성탄이 2 내지 5 중량부를 투입하며, 상기 황산폐산이 순차적으로 구획된 복수개의 분해조(11a, 11b, 11c)를 순차적으로 이동하면서 상기 촉매제의 투입량은 상기 복수개의 분해조(11a, 11b, 11c)순으로 느는 것을 특징으로 하는 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치.
In the residual continuous decomposition tank apparatus in which hydrogen peroxide in sulfuric acid waste acid is removed through a decomposition reaction separated into water and oxygen by using activated carbon in sulfuric acid waste acid including hydrogen peroxide generated in a semiconductor process,
The residence type continuous decomposition tank apparatus 100
A decomposition tank 10 in which an accommodation space is formed inside to form a decomposition tank 11 and a storage tank 12;
A plurality of spaced apart spaces are installed on the inner wall surface of the decomposition tank 10 to divide the receiving space in the decomposition tank 10 into a plurality of decomposition tanks 11 and a storage tank 12, and the decomposition tank 11 ) Does not pass through the catalyst, and the sulfuric acid waste acid can pass through the acid-resistant filtration membrane 20;
A filtering device 30 for carrying out purification by transporting sulfuric acid waste acid from which hydrogen peroxide has been removed from the storage tank 12;
A collection hood 40 for collecting the exhaust gas generated by the decomposition reaction of the catalyst contained in the decomposition tank 11 and the hydrogen peroxide contained in the sulfuric acid waste acid; And
Includes; a wet filtration unit 50 to remove the pollutants by receiving the exhaust gas from the collecting hood 40;
The decomposition tank 11 is partitioned through an acid-resistant filtration membrane 20 in the decomposition tank 10, and is firstly arranged in a neighboring sequence, and then the second decomposition tank 11a, the second decomposition tank 11b, and the third decomposition. Including the tank (11c), the first cracking tank (11a), the second cracking tank (11b) and the third cracking tank (11c) includes a catalyst for removing hydrogen peroxide in sulfuric acid waste acid,
The catalyst is an activated carbon formed in a granular form having a specific surface area of 500 to 3000 m 2 / g and larger than 30 mesh, impregnated with an iron salt containing iron oxide, and surface-coated, and the first decomposition tank 11a contains 100 parts by weight of sulfuric acid waste water. Activated carbon is added in an amount of 0.5 to 1 part by weight, and activated carbon is added in an amount of 1 to 2 parts by weight based on 100 parts by weight of sulfuric acid waste water in the second cracking tank (11b), and 100 parts by weight of sulfuric acid waste water is used in the third cracking tank (11c). As a reference, 2 to 5 parts by weight of activated carbon is added, and the amount of the catalyst added while the sequential movement of the plurality of decomposition tanks 11a, 11b, and 11c in which the sulfuric acid waste acid is sequentially partitioned is the plurality of decomposition tanks 11a, 11b. , 11c) Residual continuous decomposition tank apparatus for removing hydrogen peroxide in sulfuric acid using activated carbon characterized in that it is slow in order.
삭제delete 삭제delete 제1항에 있어서,
상기 제1분해조(11a), 제2분해조(11b) 및 제3분해조(11c)는
상기 촉매제와 황산폐산 내 과산화수소 간의 분해 과정에서 발생되는 기포가 상승하여 공기와 접촉시 파괴되어 발생되는 황산 액체 미립자의 공기 중 비산을 방지하도록 황산폐산 보다 비중이 낮은 플라스틱 재질의 비산방지 내산볼(60)이 투입되는 것을 특징으로 하는 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치.
According to claim 1,
The first cracking tank (11a), the second cracking tank (11b) and the third cracking tank (11c)
Bubbles generated in the decomposition process between the catalyst and the hydrogen peroxide in the sulfuric acid waste acid rise to prevent destruction of air in the air of sulfuric acid liquid particles generated by destruction upon contact with air. Residual continuous decomposition tank apparatus for removing hydrogen peroxide in sulfuric acid using activated carbon, characterized in that is).
제1항에 있어서,
상기 내산 여과 분리막(20)은 입상형 활성탄은 통과되지 않고 황산폐산만 통과하도록 하는 내산 재질로 형성되는 것을 특징으로 하는 활성탄을 이용하여 황산폐산 내 과산화수소를 제거하는 체류형 연속식 분해조장치.
According to claim 1,
The acid-resistant filtration membrane 20 is a continuous continuous decomposition tank device for removing hydrogen peroxide in sulfuric acid using activated carbon, characterized in that it is formed of an acid-resistant material that does not pass granular activated carbon but passes sulfuric acid waste acid.
KR1020190105099A 2019-08-27 2019-08-27 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon KR102091728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190105099A KR102091728B1 (en) 2019-08-27 2019-08-27 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190105099A KR102091728B1 (en) 2019-08-27 2019-08-27 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon

Publications (1)

Publication Number Publication Date
KR102091728B1 true KR102091728B1 (en) 2020-05-29

Family

ID=70911650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190105099A KR102091728B1 (en) 2019-08-27 2019-08-27 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon

Country Status (1)

Country Link
KR (1) KR102091728B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129472A (en) * 1998-10-30 2000-05-09 Zenken:Kk Device for treating and recovering aqueous solution containing copper, sulfuric acid and hydrogen peroxide
JP2004261634A (en) * 2003-01-31 2004-09-24 Matsushita Environment Airconditioning Eng Co Ltd Effluent treatment apparatus and method using fibrous activated carbon
KR20130014014A (en) * 2012-04-09 2013-02-06 소광민 Recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
JP2013163150A (en) * 2012-02-10 2013-08-22 Kurita Water Ind Ltd Method for treating wastewater containing organic compound
KR20140109366A (en) * 2011-12-05 2014-09-15 쿠리타 고교 가부시키가이샤 Method for treating water containing hydrogen peroxide
KR101641959B1 (en) 2014-02-11 2016-07-22 트러스발 테크놀로지 컴퍼니, 리미티드 Removing method of hydrogen peroxide from sulfuric acid-hydrogen peroxide solution and treatment agent thereof
KR20180051250A (en) * 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129472A (en) * 1998-10-30 2000-05-09 Zenken:Kk Device for treating and recovering aqueous solution containing copper, sulfuric acid and hydrogen peroxide
JP2004261634A (en) * 2003-01-31 2004-09-24 Matsushita Environment Airconditioning Eng Co Ltd Effluent treatment apparatus and method using fibrous activated carbon
KR20140109366A (en) * 2011-12-05 2014-09-15 쿠리타 고교 가부시키가이샤 Method for treating water containing hydrogen peroxide
JP2013163150A (en) * 2012-02-10 2013-08-22 Kurita Water Ind Ltd Method for treating wastewater containing organic compound
KR20130014014A (en) * 2012-04-09 2013-02-06 소광민 Recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
KR101641959B1 (en) 2014-02-11 2016-07-22 트러스발 테크놀로지 컴퍼니, 리미티드 Removing method of hydrogen peroxide from sulfuric acid-hydrogen peroxide solution and treatment agent thereof
KR20180051250A (en) * 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide

Similar Documents

Publication Publication Date Title
KR102047212B1 (en) Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid
WO2016115790A1 (en) Ozone-photocatalysis reactor and water treatment method
JPH05503242A (en) Process and equipment for purifying contaminated water with activated ozone
CN106861389A (en) A kind of VOC off-gas cleaning equipments and purification method
CN107970751B (en) Novel method and device for treating organic waste gas
KR100805378B1 (en) The Combined Process Method and Unit Equipment using Ozone-Electrolysis/Semiconductor Catalysis for Treatment of Non-degradable Waste
EP1310293B1 (en) Ozone removing material and method for preparing the same
KR101443724B1 (en) Soil treatment system combined with nanobubble, soil washing, and chemical oxidation for fuel/heavy metal contaminated soil remediation
KR102431449B1 (en) Wastewater treatment apparatus and method of acitvated carbon regeneration tank using superheated steam
KR102091728B1 (en) Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon
CN103214133B (en) Graphene sewage purification combined device and sewage purification method thereof
JP2013036847A (en) Decontamination system for radioactive soil
JP3459718B2 (en) Silicon wafer cleaning equipment
CN106698758A (en) Method and device for using catalytic oxidant for treating chemical sewage
CN106237846A (en) A kind of organic exhaust gas photocatalysis treatment Apparatus and method for
JPH0443705B2 (en)
KR20140130956A (en) Waste-water Treatment Apparatus
KR100473651B1 (en) Wastewater treatment apparatus and method using ultrasonic generator and photo-catalytic material
RU2560837C2 (en) Method for purifying radioactive waste liquid
CN218100715U (en) Novel medium-low level radioactive waste metal treatment device
KR101493962B1 (en) Apparatus for treating water using ozone and ultrasonic wave
JP2005095741A (en) Water treatment method and water treatment apparatus
JPH0938671A (en) Water treatment and water treating device
KR101910095B1 (en) System for of purify and reuse sewage
JP2008155184A (en) Apparatus and method for treating water