JP2013163150A - Method for treating wastewater containing organic compound - Google Patents

Method for treating wastewater containing organic compound Download PDF

Info

Publication number
JP2013163150A
JP2013163150A JP2012027283A JP2012027283A JP2013163150A JP 2013163150 A JP2013163150 A JP 2013163150A JP 2012027283 A JP2012027283 A JP 2012027283A JP 2012027283 A JP2012027283 A JP 2012027283A JP 2013163150 A JP2013163150 A JP 2013163150A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
organic compound
hydrogen peroxide
catalyst reaction
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012027283A
Other languages
Japanese (ja)
Inventor
Toshiji Nakahara
敏次 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012027283A priority Critical patent/JP2013163150A/en
Priority to PCT/JP2013/052567 priority patent/WO2013118702A1/en
Priority to AU2013218880A priority patent/AU2013218880B2/en
Publication of JP2013163150A publication Critical patent/JP2013163150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating organic-compound-containing wastewater that can decompose an organic compound in the organic-compound-containing wastewater with high efficiency using hydrogen peroxide in the presence of a catalyst.SOLUTION: Wastewater (W) containing an organic compound (also referred to as "organic-compound-containing wastewater (W)) is supplied into a first oxidation catalyst reaction column 2 while adding aqueous hydrogen peroxide to the organic-compound-containing wastewater (W) from a first hydrogen peroxide supply means 9 to bring the organic-compound-containing wastewater (W) into contact with an oxidation catalyst (C), thereby decomposing the organic compound by an oxidative decomposition reaction. Simultaneously, a gaseous component is generated. However, a header tube 14A is provided at the top of the first oxidation catalyst reaction column 2 and therefore the gaseous component is discharged from a gas discharge tube 15 through the header tube 14A. The wastewater (W) is then allowed to pass through a second oxidation catalyst reaction column 3 and a third oxidation catalyst reaction column 4 in this order while discharging a generated gas. In this manner, contact catalyst oxidative decomposition of the organic compound is carried out in three stages. Thus, the organic compound can be highly decomposed.

Description

本発明は、有機化合物含有排水の処理方法に関し、特に有機化合物含有排水中の有機化合物を酸化剤として過酸化水素を用いて触媒の存在下効率良く分解することの可能な有機化合物含有排水の処理方法に関する。   The present invention relates to a method for treating organic compound-containing wastewater, and in particular, treatment of organic compound-containing wastewater that can be efficiently decomposed in the presence of a catalyst using hydrogen peroxide as an oxidizing agent. Regarding the method.

石油工場、化学工場、発電所等から排出される各種溶媒や有機塩素化合物、さらには広くTOCを含有する有機化合物含有排水の処理方法、例えば、有機化合物を含む排水の処理方法として、活性炭吸着法や生物処理法が代表的である。しかしながら、活性炭吸着法では、活性炭は有機化合物を吸着するものの、活性炭が吸着平衡に達した後に再生する必要があり、再生に伴って高濃度に濃縮された再生廃液が発生し、その処理が必要になるという問題がある。また、生物処理法では、反応速度が遅いために、大容量の生物反応槽を必要とし、さらに汚泥が発生するという問題がある。   Various solvents and organochlorine compounds discharged from oil factories, chemical factories, power plants, etc., as well as treatment methods for wastewater containing organic compounds that contain TOC widely, such as wastewater containing organic compounds, activated carbon adsorption method And biological treatment methods are typical. However, in the activated carbon adsorption method, activated carbon adsorbs organic compounds, but it must be regenerated after the activated carbon reaches the adsorption equilibrium. Regeneration waste liquid concentrated to a high concentration is generated along with regeneration, and treatment is required. There is a problem of becoming. In addition, the biological treatment method has a problem that since the reaction rate is slow, a large-capacity biological reaction tank is required and sludge is generated.

そこで、これらの問題を解決するために、有機化合物含有排水を触媒を用いて酸化分解する方法が試みられている。例えば、イミダゾリジノン系化合物含有排水の処理方法として、特許文献1には、イミダゾリジノン系化合物含有排水に過酸化水素を添加し、100〜180℃の加温条件下で、多孔質担体に貴金属類を担持させた触媒を充填した反応塔に通過させることで、排水を触媒と接触させてイミダゾリジノン系化合物を酸化分解する排水の処理方法が開示されている。   Therefore, in order to solve these problems, an attempt has been made to oxidatively decompose organic compound-containing wastewater using a catalyst. For example, as a method for treating imidazolidinone-based compound-containing wastewater, Patent Document 1 discloses that hydrogen peroxide is added to imidazolidinone-based compound-containing wastewater, and the porous carrier is heated at 100 to 180 ° C. under heating conditions. Disclosed is a wastewater treatment method in which wastewater is brought into contact with a catalyst by oxidative decomposition of an imidazolidinone compound by passing it through a reaction tower packed with a catalyst supporting noble metals.

この特許文献1においては、貴金属を担持した触媒充填塔は複数段直列に連通していて、一段目の触媒充填塔を通過した排水を二段目の触媒充填塔、三段目の触媒充填塔へと順次導入することで、多段に触媒処理することで、有機化合物を酸化分解することができる。   In this Patent Document 1, a catalyst packed column carrying a noble metal is connected in series in a plurality of stages, and the waste water that has passed through the first packed catalyst column is used as a second packed catalyst column or a third packed catalyst column. By sequentially introducing the organic compound into the organic compound, the organic compound can be oxidatively decomposed by performing the catalyst treatment in multiple stages.

特許第3457143号公報Japanese Patent No. 3457143

しかしながら、上記特許文献1に記載されたイミダゾリジノン系化合物含有排水の処理方法においては、直列に接続された触媒充填塔を流通する処理水は全量が後段の触媒充填塔に流入するが、このとき各触媒充填塔においては、酸化剤として過酸化水素を用いると排水と触媒反応に伴いガスが発生する。そして、この発生したガスも後段の触媒充填塔に持ち込まれる。このため、後段の触媒充填塔に行くほど触媒塔に持ち込まれるガス量が大きくなり、触媒と排水との接触が悪くなり、反応速度の低下により酸化分解が十分に進行しないことがあることがわかった。また、ガス成分が多いと、流通する排水の見掛け上の線速度が大きくなり、触媒塔の触媒が流動化しやすくなる、という問題点もある。   However, in the method for treating imidazolidinone-based compound-containing waste water described in Patent Document 1, all of the treated water flowing through the catalyst packed tower connected in series flows into the catalyst packed tower in the subsequent stage. Sometimes, in each catalyst packed tower, when hydrogen peroxide is used as an oxidizing agent, gas is generated along with the waste water and catalytic reaction. The generated gas is also brought into the catalyst packed tower at the subsequent stage. For this reason, the amount of gas brought into the catalyst tower increases as it goes to the catalyst packed tower in the latter stage, the contact between the catalyst and the waste water becomes worse, and it is understood that the oxidative decomposition may not proceed sufficiently due to the decrease in the reaction rate. It was. Moreover, when there are many gas components, the apparent linear velocity of the waste_water | drain which distribute | circulates becomes large, and there also exists a problem that the catalyst of a catalyst tower becomes easy to fluidize.

本発明は、上記課題に鑑みてなされたものであり、有機化合物含有排水中の有機化合物を酸化剤として過酸化水素を用いて触媒の存在下効率良く分解することの可能な有機化合物含有排水の処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is an organic compound-containing wastewater that can be efficiently decomposed in the presence of a catalyst using hydrogen peroxide as an oxidizing agent. An object is to provide a processing method.

上記課題を解決するために、本発明は、有機化合物を含有する排水に過酸化水素を添加し、酸化触媒反応塔を通過させて有機化合物を接触酸化分解する有機化合物含有排水の処理方法であって、前記酸化触媒反応塔が頂部にヘッダ管を有しており、この酸化触媒反応塔を複数直列に設けてシリーズ通水するとともに各酸化触媒反応塔のヘッダ管からガスを排出することを特徴とする有機化合物含有排水の処理方法を提供する(発明1)。   In order to solve the above-described problems, the present invention is a method for treating organic compound-containing wastewater in which hydrogen peroxide is added to wastewater containing an organic compound, and the organic compound is catalytically oxidized and decomposed by passing through an oxidation catalyst reaction tower. The oxidation catalyst reaction tower has a header pipe at the top, and a plurality of the oxidation catalyst reaction towers are provided in series to pass water in series, and gas is discharged from the header pipe of each oxidation catalyst reaction tower. An organic compound-containing wastewater treatment method is provided (Invention 1).

かかる発明(発明1)によれば、有機化合物含有排水に過酸化水素を添加し、酸化触媒反応塔にシリーズ通水して有機化合物含有排水の触媒処理を多段に行うことで、有機化合物を酸化分解することができる。このとき各酸化触媒反応塔では、過酸化水素と酸化触媒とによる有機化合物の酸化分解によりガスが発生するが、酸化触媒反応塔の頂部にヘッダ管を設けることにより、酸化触媒反応塔で発生したガスを排出することができる。これにより、各触媒反応塔における触媒と有機化合物含有排水との接触を良好に維持し、酸化分解が十分に進行し有機化合物を十分に分解することができる。   According to this invention (invention 1), the organic compound is oxidized by adding hydrogen peroxide to the organic compound-containing wastewater, passing the series through the oxidation catalyst reaction tower, and performing the catalyst treatment of the organic compound-containing wastewater in multiple stages. Can be disassembled. At this time, in each oxidation catalyst reaction tower, gas is generated by oxidative decomposition of the organic compound by hydrogen peroxide and the oxidation catalyst, but by generating a header pipe at the top of the oxidation catalyst reaction tower, it was generated in the oxidation catalyst reaction tower. Gas can be discharged. Thereby, the contact of the catalyst and the organic compound-containing waste water in each catalytic reaction tower can be maintained satisfactorily, the oxidative decomposition can proceed sufficiently, and the organic compound can be sufficiently decomposed.

上記発明(発明1)においては、前記過酸化水素を前記複数の酸化触媒反応塔の前段でそれぞれ添加するのが好ましい(発明2)。   In the said invention (invention 1), it is preferable to add the said hydrogen peroxide in the front | former stage of these oxidation catalyst reaction towers, respectively (invention 2).

かかる発明(発明2)によれば、各酸化触媒反応塔における酸化分解反応を良好に維持することができ、これにより最終的な処理水における有機化合物濃度を十分に低く維持することができる。   According to this invention (invention 2), the oxidative decomposition reaction in each oxidation catalyst reaction tower can be maintained satisfactorily, and thereby the organic compound concentration in the final treated water can be maintained sufficiently low.

本発明の有機化合物含有排水の処理方法によれば、有機化合物を含有する排水に過酸化水素を添加し、頂部にヘッダ管を有する複数の酸化触媒反応塔にシリーズ通水して有機化合物含有排水の触媒処理を多段に行っているので、各酸化触媒反応塔で過酸化水素と酸化触媒とによる有機化合物の酸化分解により発生するガスは、酸化触媒反応塔の頂部のヘッダ管より排出されるため、各触媒反応塔における触媒と排水との接触を良好に維持し、酸化分解を十分に進行させて有機化合物を十分に分解することができる。   According to the method for treating organic compound-containing wastewater of the present invention, hydrogen peroxide is added to wastewater containing organic compounds, and the organic compound-containing wastewater is passed through a plurality of oxidation catalyst reaction towers having a header pipe at the top in series. Since the catalyst treatment of is performed in multiple stages, the gas generated by the oxidative decomposition of organic compounds by hydrogen peroxide and the oxidation catalyst in each oxidation catalyst reaction tower is discharged from the header pipe at the top of the oxidation catalyst reaction tower. The contact between the catalyst and the waste water in each catalytic reaction tower can be maintained satisfactorily, and the organic compound can be sufficiently decomposed by sufficiently proceeding the oxidative decomposition.

本発明の一実施形態に係る有機化合物含有排水の処理方法を実施可能なシステムを示す系統図である。It is a systematic diagram which shows the system which can implement the processing method of the organic compound containing waste_water | drain which concerns on one Embodiment of this invention. 従来の有機化合物含有排水の処理方法を実施可能なシステムを示す系統図である。It is a systematic diagram which shows the system which can implement the processing method of the conventional organic compound containing waste_water | drain.

以下、図1を参照して本実施形態の有機化合物含有排水の処理方法について説明する。図1は、本発明の一実施形態に係る有機化合物含有排水の処理方法を実施可能なシステムを示す系統図である。   Hereinafter, with reference to FIG. 1, the processing method of the organic compound containing waste_water | drain of this embodiment is demonstrated. FIG. 1 is a system diagram showing a system capable of implementing an organic compound-containing wastewater treatment method according to an embodiment of the present invention.

図1において、1は有機化合物含有排水Wを貯留する貯留槽であり、この貯留槽1は、酸化触媒Cが充填された第1の酸化触媒反応塔2、第2の酸化触媒反応塔3及び第3の酸化触媒反応塔4に、第1の流路5、第2の流路6及び第3の流路7を介してそれぞれ上向流通水可能に直列的に接続していて、第3の酸化触媒反応塔4は上側で第4の流路8に接続している。そして、第1の流路5にはポンプPと第1の過酸化水素供給手段9が設けられており、第2の流路6には第2の過酸化水素供給手段10が設けられており、第3の流路7には第3の過酸化水素供給手段11が設けられており、第4の流路8には冷却器12と圧力調整バルブ13とが設けられている。   In FIG. 1, reference numeral 1 denotes a storage tank for storing the organic compound-containing waste water W. The storage tank 1 includes a first oxidation catalyst reaction tower 2, a second oxidation catalyst reaction tower 3 filled with an oxidation catalyst C, and The third oxidation catalyst reaction tower 4 is connected in series through the first flow path 5, the second flow path 6 and the third flow path 7 so as to allow upward flow of water, respectively. The oxidation catalyst reaction tower 4 is connected to the fourth flow path 8 on the upper side. The first flow path 5 is provided with a pump P and first hydrogen peroxide supply means 9, and the second flow path 6 is provided with second hydrogen peroxide supply means 10. The third channel 7 is provided with a third hydrogen peroxide supply means 11, and the fourth channel 8 is provided with a cooler 12 and a pressure regulating valve 13.

さらに、第1の酸化触媒反応塔2、第2の酸化触媒反応塔3及び第3の酸化触媒反応塔4の頂部には、ヘッダ管14A,14B、14Cがそれぞれ付設されていて、これらヘッダ管14A,14B、14Cは排気管15で合流している。なお、16は排気管15の下流側に設けられた圧力調整バルブである。   Further, header pipes 14A, 14B, and 14C are attached to the tops of the first oxidation catalyst reaction tower 2, the second oxidation catalyst reaction tower 3, and the third oxidation catalyst reaction tower 4, respectively. 14 </ b> A, 14 </ b> B, and 14 </ b> C merge at the exhaust pipe 15. Reference numeral 16 denotes a pressure adjusting valve provided on the downstream side of the exhaust pipe 15.

上述したようなシステムにおいて、酸化触媒反応塔2、3、4に充填される酸化触媒Cとしては、過酸化水素の存在下に酸化機能を発揮できれば特に制限はないが、例えば、白金、パラジウム、ルテニウム、イリジウム、ロジウム、金、銀、オスミウムなどの貴金属触媒を使用することができる。これらの触媒は、1種を単独で使用することができ、2種以上を組み合わせて使用することもできる。触媒を担持する担体には特に制限はなく、例えば、チタニア、シリカ、アルミナ、シリカアルミナ、ゼオライト、活性炭、ポリテトラフルオロエチレンのような耐薬品性樹脂などを使用することができる。触媒を担持する担体は、多孔質担体であることが好ましい。貴金属触媒の担持量は、担体に対し0.05〜10重量%であることが好ましく、0.1〜5重量%であることがより好ましい。   In the system as described above, the oxidation catalyst C packed in the oxidation catalyst reaction towers 2, 3, and 4 is not particularly limited as long as it can exhibit an oxidation function in the presence of hydrogen peroxide. For example, platinum, palladium, Noble metal catalysts such as ruthenium, iridium, rhodium, gold, silver and osmium can be used. These catalysts can be used individually by 1 type, and can also be used in combination of 2 or more type. There is no restriction | limiting in particular in the support | carrier which carry | supports a catalyst, For example, chemical-resistant resin like a titania, a silica, an alumina, a silica alumina, a zeolite, activated carbon, polytetrafluoroethylene, etc. can be used. The carrier carrying the catalyst is preferably a porous carrier. The amount of the noble metal catalyst supported is preferably 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the support.

次に前記構成のシステムを用いた本実施形態の有機化合物含有排水の処理方法について説明する。   Next, the processing method of the organic compound containing waste_water | drain of this embodiment using the system of the said structure is demonstrated.

本発明において処理対象となる有機化合物含有排水とは、化学工場、製紙工場、食品飲料製造工場、ゴミ焼却場、し尿処理場、下水処理場などから排出される有機化合物を含有する排水である。   The organic compound-containing wastewater to be treated in the present invention is wastewater containing organic compounds discharged from chemical factories, paper factories, food and beverage production factories, garbage incineration plants, human waste treatment plants, sewage treatment plants, and the like.

まず、貯留槽1に貯留された有機化合物含有排水Wを必要に応じて100〜180℃に加熱した後、ポンプPにより第1の流路5を流通させる。このとき、第1の過酸化水素供給手段9から有機化合物含有排水Wに過酸化水素水を添加する。この際の過酸化水素水の添加量は、理論的酸素要求量から求められる酸素量(O)を用いて次式(1)から求めた過酸化水素量の0.5〜1倍量添加する。
酸素量(O)×34/16=過酸化水素量 ・・・ (1)
また、第2の過酸化水素供給手段10及び第3の過酸化水素供給手段11における過酸化水素添加量は、過酸化水素供給手段9で添加した量よりも少ない量とする。
First, the organic compound-containing waste water W stored in the storage tank 1 is heated to 100 to 180 ° C. as necessary, and then the first flow path 5 is circulated by the pump P. At this time, hydrogen peroxide solution is added from the first hydrogen peroxide supply means 9 to the organic compound-containing waste water W. The amount of hydrogen peroxide water added at this time is 0.5 to 1 times the amount of hydrogen peroxide determined from the following equation (1) using the amount of oxygen (O) determined from the theoretical oxygen demand. .
Oxygen amount (O) × 34/16 = hydrogen peroxide amount (1)
Further, the amount of hydrogen peroxide added in the second hydrogen peroxide supply means 10 and the third hydrogen peroxide supply means 11 is set to be smaller than the amount added by the hydrogen peroxide supply means 9.

この有機化合物含有排水Wを第1の酸化触媒反応塔2に上向流で供給して、有機化合物含有排水Wを酸化触媒Cに接触させる。このときの有機化合物含有排水WのSVは0.5〜10h−1であることが好ましく、特に0.5〜5h−1であることが好ましい。有機化合物の分解のために必要な反応時間は有機化合物含有排水W中の有機化合物の濃度や種類、その他の成分などの水質や、水温などにより影響されるので、これらの条件を考慮してSVを適切に選択すればよい。 The organic compound-containing waste water W is supplied to the first oxidation catalyst reaction tower 2 in an upward flow, and the organic compound-containing waste water W is brought into contact with the oxidation catalyst C. Preferably SV organic compound-containing waste water W at this time is 0.5~10h -1, it is particularly preferably 0.5~5h -1. The reaction time required for the decomposition of the organic compound is affected by the concentration and type of the organic compound in the organic compound-containing wastewater W, the water quality such as other components, and the water temperature. Should be selected appropriately.

この過酸化水素は触媒により活性な酸素となり、有機化合物の酸化分解反応より分解する。この際、有機化合物に含まれる元素C、NはCOガス、Nガスとなる。また、未反応の過酸化水素は、酸化触媒Cの表面で酸素ガス等のガス成分にもなり、有機化合物含有排水Wを上向流で第1の酸化触媒反応塔2に流通させているので、ガス成分は第1の酸化触媒反応塔2の上部に溜まる。これをそのまま放置すると、このガス成分が後述する第2の酸化触媒反応塔3、さらには第3の酸化触媒反応塔4に持ち込まれて、有機化合物含有排水Wと酸化触媒Cとの接触効率が低下して、酸化触媒Cが有機化合物の分解に効果的に働かなくなる。しかしながら、本実施形態においては、第1の酸化触媒反応塔2の頂部にヘッダ管14Aを設けているので、ガス成分はヘッダ管14Aを介して排気管15から圧力調整バルブ16で所定の圧力に調圧されて排出される。これにより第1の酸化触媒反応塔2での酸化反応が効率良く行われるだけでなく、第1の酸化触媒反応塔2から第2の流路6には、1段目の触媒酸化処理がなされた有機化合物含有排水Wのみが排出されることになる。 This hydrogen peroxide becomes active oxygen by the catalyst and is decomposed by the oxidative decomposition reaction of the organic compound. At this time, the elements C and N contained in the organic compound become CO 2 gas and N 2 gas. In addition, unreacted hydrogen peroxide also becomes a gas component such as oxygen gas on the surface of the oxidation catalyst C, and the organic compound-containing waste water W is circulated upward to the first oxidation catalyst reaction tower 2. The gas component is accumulated in the upper part of the first oxidation catalyst reaction tower 2. If this is left as it is, this gas component is brought into the second oxidation catalyst reaction tower 3 and further the third oxidation catalyst reaction tower 4 described later, and the contact efficiency between the organic compound-containing waste water W and the oxidation catalyst C is improved. The oxidation catalyst C does not work effectively on the decomposition of the organic compound. However, in this embodiment, since the header pipe 14A is provided at the top of the first oxidation catalyst reaction tower 2, the gas component is adjusted to a predetermined pressure from the exhaust pipe 15 through the header pipe 14A by the pressure adjustment valve 16. Pressure is adjusted and discharged. Thus, not only the oxidation reaction in the first oxidation catalyst reaction tower 2 is efficiently performed, but also the first stage catalytic oxidation treatment is performed from the first oxidation catalyst reaction tower 2 to the second flow path 6. Only the organic compound-containing waste water W is discharged.

そして、第1の酸化触媒反応塔2の後段に第2の流路6を経由して第2の酸化触媒反応塔3と、続いて第3の流路7を経由して第3の酸化触媒反応塔4とを順次シリーズ接続して、同様に発生するガスを排出しながら、接触触媒酸化分解を多段(3段)で行うことにより、有機化合物を分解することができる。この際、過酸化水素溶液は、第2の流路6に第2の過酸化水素供給手段10を、第3の流路7に第3の過酸化水素供給手段11をそれぞれ設けることで、各酸化触媒反応塔ごとに過酸化水素溶液を添加することが好ましい。このように接触酸化分解工程を多段にして、各段ごとに過酸化水素を添加することにより、各酸化触媒反応塔に活性な酸素が常に存在する状態となり、有機化合物の分解を効果的に進めることができる。   Then, the second oxidation catalyst reaction tower 3 is passed through the second flow path 6 in the subsequent stage of the first oxidation catalyst reaction tower 2, and then the third oxidation catalyst is passed through the third flow path 7. The organic compounds can be decomposed by sequentially connecting the reaction towers 4 in series and performing catalytic catalytic oxidative decomposition in multiple stages (three stages) while discharging similarly generated gas. At this time, the hydrogen peroxide solution is provided with the second hydrogen peroxide supply means 10 in the second flow path 6 and the third hydrogen peroxide supply means 11 in the third flow path 7, respectively. It is preferable to add a hydrogen peroxide solution to each oxidation catalyst reaction tower. In this way, the catalytic oxidative decomposition step is multistaged, and hydrogen peroxide is added to each stage, so that active oxygen is always present in each oxidation catalyst reaction tower, and the decomposition of organic compounds is effectively promoted. be able to.

このようにして3段の接触酸化分解工程を行った後は、第4の流路8から処理水を冷却器12により常温付近まで冷却し圧力調整バルブ13により所定の圧力で排出すればよい。そして、この処理水は、その他の必要な処理を適宜施した後、外部環境に放流するか、回収して再度利用すればよい。   After performing the three-stage catalytic oxidative decomposition process in this way, the treated water may be cooled from the fourth flow path 8 to near room temperature by the cooler 12 and discharged at a predetermined pressure by the pressure adjustment valve 13. Then, the treated water may be discharged to the external environment or recovered and reused after appropriately performing other necessary treatments.

なお、酸化触媒Cは長期間使用できるが、劣化した場合は酸で賦活処理して再使用したり、回収して触媒製造の原料として再利用したりすることができる。   The oxidation catalyst C can be used for a long period of time, but when it is deteriorated, it can be reused after being activated with an acid, or recovered and reused as a raw material for catalyst production.

以上本実施形態の有機化合物含有排水Wの処理方法について説明してきたが、本発明は前記実施形態に限定されず、種々の変形実施が可能である。   As mentioned above, although the processing method of the organic compound containing waste_water | drain W of this embodiment has been demonstrated, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible.

例えば、本実施形態においては、酸化触媒反応塔を3段に直列に配置してシリーズ通水したが、複数段であれば2段あるいは4段以上としてもよい。   For example, in this embodiment, the oxidation catalyst reaction towers are arranged in three stages in series and water is passed through the series, but if there are a plurality of stages, the oxidation catalyst reaction towers may be two stages or four stages or more.

以下の具体的実施例により本発明をさらに詳細に説明する。   The following specific examples further illustrate the present invention.

〔実施例1〕
酸化触媒Cとしてチタニア球100重量部に白金0.5重量部を担持した触媒約500ml充填した3本の酸化触媒反応塔(カラム)2,3,4を直列に接続し、ガス抜き用のヘッダ管14A,14B,14Cをそれぞれに接続して図1に示すシステムを構成した。このシステムに対して、TOC濃度526mg/Lを含むpH4の有機化合物含有排水Wを1.5L/hrの流量で温度160℃、操作圧力8kg/cm、SV3h−1で通水し、各酸化触媒反応塔2,3,4で発生したガスをヘッダ管14A,14B,14Cを経由して排気管15から排出しながら3段での酸化分解処理を行った。なお、過酸化水素は1段目2500mg/L、2段目、3段目それぞれ1000mg/L添加した。各酸化触媒反応塔2,3,4の出口における処理水のTOC濃度を測定した結果を表1に示す。
[Example 1]
As the oxidation catalyst C, three oxidation catalyst reaction columns (columns) 2, 3, and 4 filled with about 500 ml of a catalyst having 0.5 parts by weight of platinum supported on 100 parts by weight of titania spheres are connected in series, and a header for degassing The system shown in FIG. 1 was configured by connecting the tubes 14A, 14B, and 14C to each other. To this system, organic compound-containing wastewater W having a TOC concentration of 526 mg / L and having a pH of 4 was passed at a flow rate of 1.5 L / hr at a temperature of 160 ° C., an operating pressure of 8 kg / cm 2 , and SV3h −1. The gas generated in the catalytic reaction towers 2, 3 and 4 was subjected to oxidative decomposition treatment in three stages while being discharged from the exhaust pipe 15 via the header pipes 14A, 14B and 14C. In addition, hydrogen peroxide was added at 2500 mg / L in the first stage, 1000 mg / L in each of the second stage and the third stage. Table 1 shows the results of measuring the TOC concentration of the treated water at the outlets of the oxidation catalyst reaction towers 2, 3 and 4.

〔比較例1〕
実施例1において、それぞれの酸化触媒反応塔(カラム)2,3,4にガス抜き用のヘッダ管14A,14B,14Cを接続することなく直列に接続し、第4の流路8の端部に気液分離器17を設けて、第3の酸化触媒反応塔4から第4の流路8を経由して処理水とガス成分とを分離排出するようにした以外は同様にして図2に示すシステムを構成した。なお、図2においては、便宜上図1と同一の構成には同一の符号を付しその詳細な説明を省略する。このシステムに対して、実施例1と同じ有機化合物含有排水Wを同一の条件で通水して同一の条件で過酸化水素を添加し、3段での酸化分解処理を行った。各酸化触媒反応塔2,3,4の出口における処理水のTOC濃度を測定した結果を表1にあわせて示す。
[Comparative Example 1]
In the first embodiment, the oxidation catalyst reaction towers (columns) 2, 3, 4 are connected in series without connecting the degassing header tubes 14 A, 14 B, 14 C, and the end of the fourth flow path 8 is connected. 2 except that a gas-liquid separator 17 is provided to separate and discharge treated water and gas components from the third oxidation catalyst reaction tower 4 via the fourth flow path 8. Configured the system shown. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals for the sake of convenience, and detailed description thereof is omitted. To this system, the same organic compound-containing wastewater W as in Example 1 was passed under the same conditions, hydrogen peroxide was added under the same conditions, and oxidative decomposition treatment was performed in three stages. The results of measuring the TOC concentration of the treated water at the outlets of the oxidation catalyst reaction towers 2, 3 and 4 are shown in Table 1.

Figure 2013163150
Figure 2013163150

表1から明らかなとおり、酸化触媒反応塔(カラム)2,3,4を直列に接続し、それぞれにガス抜き用のヘッダ管14A,14B,14Cを接続して各酸化触媒反応塔で発生したガスを排気管15から排出しながら3段での酸化分解処理を行った実施例1では、TOC濃度を5%以下に低減することができた。これに対し、各酸化触媒反応塔で発生したガスを排出することなく処理を行った比較例1では、TOC濃度を10%まで低減できなかった。特に両者は1段目の第1の酸化触媒反応塔2においてTOC濃度に大きな差異が認められた。これはガス成分の有無により酸化触媒と有機化合物含有排水Wとの接触効率に差が生じたためであると考えられる。   As is apparent from Table 1, oxidation catalyst reaction towers (columns) 2, 3, and 4 are connected in series, and degassing header pipes 14A, 14B, and 14C are connected to the respective oxidation catalyst reaction towers. In Example 1 in which the oxidative decomposition process was performed in three stages while discharging the gas from the exhaust pipe 15, the TOC concentration could be reduced to 5% or less. On the other hand, in Comparative Example 1 in which the treatment was performed without discharging the gas generated in each oxidation catalyst reaction tower, the TOC concentration could not be reduced to 10%. In particular, a large difference was observed in the TOC concentration between the first oxidation catalyst reaction tower 2 in the first stage. This is considered to be due to the difference in contact efficiency between the oxidation catalyst and the organic compound-containing waste water W depending on the presence or absence of the gas component.

1…調整槽
2…第1の酸化触媒反応塔
3…第2の酸化触媒反応塔
4…第3の酸化触媒反応塔
9…第1の過酸化水素供給手段
10…第2の過酸化水素供給手段
11…第3の過酸化水素供給手段
14A,14B、14C…ヘッダ管
15…排気管
C…酸化触媒
DESCRIPTION OF SYMBOLS 1 ... Adjustment tank 2 ... 1st oxidation catalyst reaction tower 3 ... 2nd oxidation catalyst reaction tower 4 ... 3rd oxidation catalyst reaction tower 9 ... 1st hydrogen peroxide supply means 10 ... 2nd hydrogen peroxide supply Means 11 ... Third hydrogen peroxide supply means 14A, 14B, 14C ... Header pipe 15 ... Exhaust pipe C ... Oxidation catalyst

Claims (2)

有機化合物を含有する排水に過酸化水素を添加し、酸化触媒反応塔を通過させて有機化合物を接触酸化分解する有機化合物含有排水の処理方法であって、
前記酸化触媒反応塔が頂部にヘッダ管を有しており、この酸化触媒反応塔を複数直列に設けてシリーズ通水するとともに各酸化触媒反応塔のヘッダ管からガスを排出する
ことを特徴とする有機化合物含有排水の処理方法。
An organic compound-containing wastewater treatment method in which hydrogen peroxide is added to wastewater containing an organic compound, and the organic compound is catalytically oxidized and decomposed by passing through an oxidation catalyst reaction tower,
The oxidation catalyst reaction tower has a header pipe at the top, and a plurality of the oxidation catalyst reaction towers are provided in series to pass water in series, and gas is discharged from the header pipe of each oxidation catalyst reaction tower. Treatment method for wastewater containing organic compounds.
前記過酸化水素を前記複数の酸化触媒反応塔の前段でそれぞれ添加することを特徴とする請求項1に記載の有機化合物含有排水の処理方法。   The method for treating an organic compound-containing wastewater according to claim 1, wherein the hydrogen peroxide is added before the plurality of oxidation catalyst reaction towers.
JP2012027283A 2012-02-10 2012-02-10 Method for treating wastewater containing organic compound Pending JP2013163150A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012027283A JP2013163150A (en) 2012-02-10 2012-02-10 Method for treating wastewater containing organic compound
PCT/JP2013/052567 WO2013118702A1 (en) 2012-02-10 2013-02-05 Method for treating waste water containing organic compound
AU2013218880A AU2013218880B2 (en) 2012-02-10 2013-02-05 Method for treating waste water containing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027283A JP2013163150A (en) 2012-02-10 2012-02-10 Method for treating wastewater containing organic compound

Publications (1)

Publication Number Publication Date
JP2013163150A true JP2013163150A (en) 2013-08-22

Family

ID=48947465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027283A Pending JP2013163150A (en) 2012-02-10 2012-02-10 Method for treating wastewater containing organic compound

Country Status (3)

Country Link
JP (1) JP2013163150A (en)
AU (1) AU2013218880B2 (en)
WO (1) WO2013118702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091728B1 (en) * 2019-08-27 2020-05-29 정영남 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206079A (en) * 1993-01-08 1994-07-26 Akuasu Kk Method and apparatus for treating organochlorine compound
JPH10305286A (en) * 1997-05-02 1998-11-17 Tokyo Electric Power Co Inc:The Treatment of water containing imidazolidinone base compound
JPH10314760A (en) * 1997-05-16 1998-12-02 Japan Organo Co Ltd Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide
JP2006000827A (en) * 2004-06-21 2006-01-05 Japan Organo Co Ltd Wastewater treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3509186B2 (en) * 1994-06-06 2004-03-22 栗田工業株式会社 Denitrification treatment method
JP3358905B2 (en) * 1995-01-12 2002-12-24 関西電力株式会社 Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
JPH1142477A (en) * 1997-07-29 1999-02-16 Nippon Shokubai Co Ltd Treatment of waste water
JP3556515B2 (en) * 1999-03-31 2004-08-18 株式会社タクマ Wastewater treatment method using ozone and hydrogen peroxide
JP2001276855A (en) * 2000-03-30 2001-10-09 Nippon Shokubai Co Ltd Treatment method of drain
JP2003340471A (en) * 2002-05-27 2003-12-02 Ishikawajima Harima Heavy Ind Co Ltd Wet catalytic oxidation column

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206079A (en) * 1993-01-08 1994-07-26 Akuasu Kk Method and apparatus for treating organochlorine compound
JPH10305286A (en) * 1997-05-02 1998-11-17 Tokyo Electric Power Co Inc:The Treatment of water containing imidazolidinone base compound
JPH10314760A (en) * 1997-05-16 1998-12-02 Japan Organo Co Ltd Hydrogen peroxide removing apparatus and method for treating wastewater-containing hydrogen peroxide
JP2006000827A (en) * 2004-06-21 2006-01-05 Japan Organo Co Ltd Wastewater treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091728B1 (en) * 2019-08-27 2020-05-29 정영남 Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon

Also Published As

Publication number Publication date
AU2013218880A1 (en) 2014-09-25
AU2013218880B2 (en) 2017-12-07
WO2013118702A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
JP5447378B2 (en) Method and apparatus for treating water containing organic matter
JP5446400B2 (en) Hydrogen peroxide water treatment equipment
Ho et al. Experiment and modeling of advanced ozone membrane reactor for treatment of organic endocrine disrupting pollutants in water
Reguero et al. Comparison of conventional technologies and a Submerged Membrane Photocatalytic Reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants
WO2013118702A1 (en) Method for treating waste water containing organic compound
JP7025187B2 (en) Catalyst reformer, platinum group catalyst reforming method for water treatment, water treatment system and water treatment method
JP4986491B2 (en) Wastewater treatment method
JP2013208557A (en) Method for treating organic matter-containing water
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JPH11300374A (en) Treatment of waste water
JP2013237944A (en) Cross-linked catalase immobilized fiber and ultrapure water producing apparatus
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JP3457143B2 (en) Method of treating water containing imidazolidinone compound
JP4223706B2 (en) Wastewater treatment method
CN113908777B (en) Multi-stage circulation ozone catalytic oxidation reaction device and catalytic oxidation method
JP2012206122A (en) Method for treating waste water
JP3568298B2 (en) Method for treating power plant wastewater containing amine compounds
JP4390357B2 (en) Method for treating ammonia-containing water
JP2519122B2 (en) Method and apparatus for removing dissolved oxygen in liquid
JP2003145136A (en) Method and apparatus for treating wastewater
JP2000140864A (en) Treatment of ammonia-containing water
JP2003117543A (en) Cleaning equipment and cleaning method for hydrogen peroxide and ammonia-containing waste water
JPS62132591A (en) Wet oxidation treatment of waste water
JPS6335407A (en) Purification of liquid sulfur
JPH06226048A (en) Treatment of volatile organic halogen compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621