JP2003340471A - Wet catalytic oxidation column - Google Patents

Wet catalytic oxidation column

Info

Publication number
JP2003340471A
JP2003340471A JP2002152187A JP2002152187A JP2003340471A JP 2003340471 A JP2003340471 A JP 2003340471A JP 2002152187 A JP2002152187 A JP 2002152187A JP 2002152187 A JP2002152187 A JP 2002152187A JP 2003340471 A JP2003340471 A JP 2003340471A
Authority
JP
Japan
Prior art keywords
catalyst
waste liquid
tower
catalytic oxidation
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002152187A
Other languages
Japanese (ja)
Inventor
Akihiro Oka
昭宏 岡
Keiichi Miwa
敬一 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002152187A priority Critical patent/JP2003340471A/en
Publication of JP2003340471A publication Critical patent/JP2003340471A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new wet catalytic oxidation column in which clogging and enlargement of pressure loss can be avoided effectively. <P>SOLUTION: An oxidation catalyst 3 for oxidatively decomposing organic matter contained in hydrothermally treated waste liquid is housed in a column body 2 where the hydrothermally treated waste liquid is introduced from the bottom 4 together with oxygen and made to flow upward and the organic matter-decomposed waste liquid is discharged from the top 5. The catalyst 3 is formed into a honeycombed shape extending continuously from the bottom 4 to the top 5. As a result, the enlargement of pressure loss and the clogging phenomenon can be avoided surely in this catalytic oxidation column. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃液や下水
汚泥等を水熱反応処理するための有機性廃棄物水熱処理
システムに用いられる湿式触媒酸化塔に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet catalytic oxidation tower used in an organic waste hydrothermal treatment system for hydrothermally treating organic waste liquid, sewage sludge and the like.

【0002】[0002]

【従来の技術】図4は、係る従来の有機性廃棄物水熱処
理システムを示したものであり、廃液タンクa内に溜め
られた有害な有機性廃液や下水汚泥等の廃液を水熱塔b
で水熱反応処理し、酸化塔cで酸化処理することで無害
な水とガスとに分解処理するようにしたものである。
2. Description of the Related Art FIG. 4 shows such a conventional organic waste hydrothermal treatment system, in which waste liquid such as harmful organic waste liquid and sewage sludge stored in a waste liquid tank a is transferred to a hydrothermal tower b.
The hydrothermal reaction treatment is carried out at 1, and the oxidation treatment is carried out at the oxidation tower c so as to be decomposed into harmless water and gas.

【0003】すなわち、工場等から出た有機物を含む廃
液は、先ず廃液タンクa内に一時的に溜められた後、高
圧ポンプdによって廃液タンクa内から順次抜き出され
ると同時に高圧に加圧されて予熱器eに送られ、ここで
電気ヒーターfによって高温に加熱されながら水熱塔b
に送られる。水熱塔bに送られた廃液は亜臨界状態とな
って含んでいる有機物が溶液中に完全に溶解された状態
となって出た後、酸素供給ラインgから送られる酸素
(空気)と共に酸化塔c内に送られ、ここでチタニア担
体触媒やαアルミナ担体触媒等の酸化触媒下で溶解した
有機物が酸素と反応して水とCO2やN2等の無害なガス
に分解される。そして、この水とガスの混合物は酸化塔
cを出てから冷却器hを通過して冷却された後、圧力調
整弁i及び気液分離器jを通過して気液分離され、ガス
はそのまま大気中に放出され、水は処理液タンクk内に
順次溜められるようになっている。尚、この酸素供給ラ
インgは、空気ボンベl,減圧弁m,流量調整器n,逆
止弁o等から構成されており、廃液の流量に応じて最適
な量の酸素を廃液中に供給できるようになっている。
That is, the waste liquid containing organic substances discharged from a factory or the like is first temporarily stored in the waste liquid tank a and then sequentially withdrawn from the waste liquid tank a by the high-pressure pump d and simultaneously pressurized to a high pressure. Is sent to a preheater e, where it is heated to a high temperature by an electric heater f while being heated by a water heat tower b.
Sent to. The waste liquid sent to the hydrothermal tower b is in a subcritical state, and the organic matter contained therein is completely dissolved in the solution, and then the waste liquid is oxidized together with oxygen (air) sent from the oxygen supply line g. The organic matter, which is sent into the column c and dissolved under an oxidation catalyst such as a titania-supported catalyst or an α-alumina-supported catalyst, reacts with oxygen to be decomposed into water and harmless gases such as CO 2 and N 2 . The mixture of water and gas exits the oxidation tower c and then passes through a cooler h to be cooled, and then passes through a pressure regulating valve i and a gas-liquid separator j to be gas-liquid separated, and the gas remains as it is. The water is released into the atmosphere and is sequentially stored in the treatment liquid tank k. The oxygen supply line g is composed of an air cylinder 1, a pressure reducing valve m, a flow rate controller n, a check valve o, etc., and can supply an optimum amount of oxygen into the waste liquid according to the flow rate of the waste liquid. It is like this.

【0004】[0004]

【発明が解決しようとする課題】ところで、この水熱反
応を経た廃液を酸化処理するための酸化塔cは、垂直方
向に立設された筒状の塔本体p内に粒径1〜5mm程度
の粒状触媒qを充填し、その塔本体p内の下端から導入
された廃液を上向流で流しながら酸化処理した後、その
頂部から流出するようになっているため、処理する廃液
中に溶解しきれなかった有機物の一部や無機物が懸濁物
(固形物)として多く含まれていると、これが粒状触媒
qの隙間に詰まってしまい、圧力損失の増大や目詰まり
を招いて液やガスの流れが著しく悪化してしまうといっ
た問題がある。
By the way, the oxidation tower c for oxidizing the waste liquid which has undergone the hydrothermal reaction has a particle size of about 1 to 5 mm in a vertical tower main body p. Of the granular catalyst q, and the waste liquid introduced from the lower end in the tower body p is subjected to an oxidation treatment while flowing in an upward flow, and then is discharged from the top portion thereof, so that it is dissolved in the waste liquid to be treated. When a large amount of suspended organic matter or inorganic matter is contained as a suspension (solid matter), it becomes clogged in the gaps of the granular catalyst q, leading to an increase in pressure loss and clogging, resulting in liquid or gas. There is a problem that the flow of is significantly deteriorated.

【0005】そのため、粒状触媒qの粒径を大きくして
その隙間を大きくすることで圧損の増大や目詰まりを回
避することも考えられるが、そうすると廃液と触媒qと
の接触面積が減って酸化効率が低下することから、その
分、酸化塔cを従来以上に大型化しなければならないと
いった新たな問題が生ずる。
Therefore, it is possible to avoid an increase in pressure loss and clogging by increasing the particle size of the granular catalyst q and increasing the gap between them, but in that case, the contact area between the waste liquid and the catalyst q is reduced and oxidation is performed. Since the efficiency is lowered, a new problem arises that the oxidation tower c has to be made larger than before by that amount.

【0006】そこで、本発明はこのような課題を有効に
解決するために案出されたものであり、その目的は、目
詰まりや圧力損失の増大を効果的に回避することができ
る新規な湿式触媒酸化塔を提供するものである。
Therefore, the present invention has been devised in order to effectively solve such a problem, and its purpose is to provide a novel wet method capable of effectively avoiding clogging and increase in pressure loss. A catalytic oxidation tower is provided.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る湿式触媒酸化塔は、請求項1に示すよう
に、水熱処理された有機物を含む廃液を酸素と共に導入
し、これを触媒下で酸化分解して流出する湿式触媒酸化
塔において、上記廃液を酸素と共に底部から導入しこれ
を上向流で流して頂部から流出する塔本体内に、その有
機物を酸化分解する酸化触媒を収容すると共に、その酸
化触媒の少なくとも一部を断面ハニカム状のハニカム触
媒で形成したものである。具体的には、請求項2に示す
ように、上記廃液を酸素と共に底部から導入しこれを上
向流で流して頂部から流出する塔本体内に、その有機物
を酸化分解する酸化触媒を収容すると共に、その酸化触
媒が、その底部から頂部に亘って連続して延びる断面ハ
ニカム状のハニカム触媒からなるものである。
In order to solve the above-mentioned problems, the wet catalytic oxidation tower according to the present invention, as shown in claim 1, introduces a waste liquid containing a hydrothermally treated organic substance together with oxygen, and In a wet catalytic oxidation tower that oxidizes and decomposes under a catalyst and flows out, the waste liquid is introduced together with oxygen from the bottom, flows in an upward flow, and flows out from the top. In addition to accommodating, at least a part of the oxidation catalyst is formed of a honeycomb catalyst having a honeycomb shape in cross section. Specifically, as described in claim 2, an oxidation catalyst for oxidatively decomposing the organic matter is accommodated in a tower main body in which the waste liquid is introduced together with oxygen from the bottom, flows in an upward flow and flows out from the top. At the same time, the oxidation catalyst is made of a honeycomb catalyst having a honeycomb-shaped cross section that continuously extends from the bottom to the top.

【0008】これによって廃液は勿論、その廃液中に含
まれている懸濁物(固形物)もその内部をスムーズに流
れるようになるため、圧損の増大や目詰まり現象を効果
的に回避することが可能となる。
As a result, not only the waste liquid but also the suspension (solid matter) contained in the waste liquid can smoothly flow through the inside thereof, so that an increase in pressure loss and a clogging phenomenon can be effectively avoided. Is possible.

【0009】また、請求項3に示すように、上記ハニカ
ム触媒を塔本体の長手方向に複数に分割された分割体で
構成すれば、塔本体内へのハニカム触媒の収納や交換を
容易に行うことができる。
If the honeycomb catalyst is composed of a plurality of divided bodies in the longitudinal direction of the tower body as described in claim 3, the honeycomb catalyst can be easily stored and replaced in the tower body. be able to.

【0010】本発明に係る湿式触媒酸化塔は、請求項4
に示すように、水熱処理された有機物を含む廃液を酸素
と共に導入し、これを触媒下で酸化分解して流出する湿
式触媒酸化塔において、上記廃液を酸素と共に底部から
導入しこれを上向流で流して頂部から流出する塔本体内
に、その有機物を酸化分解する酸化触媒を収容すると共
に、その酸化触媒が、その底部側に収容される断面ハニ
カム状のハニカム触媒と、そのハニカム触媒の上方に充
填される粒状触媒とからなるものである。
The wet catalytic oxidation tower according to the present invention comprises:
In a wet catalytic oxidation tower in which a waste liquid containing a hydrothermally treated organic substance is introduced together with oxygen, and is oxidatively decomposed under a catalyst to flow out, the waste liquid is introduced together with oxygen from the bottom, and the upward flow In the main body of the tower flowing out from the top, while containing an oxidation catalyst that oxidatively decomposes the organic matter, the oxidation catalyst, the honeycomb catalyst having a cross-section honeycomb shape accommodated on the bottom side, and above the honeycomb catalyst. And a granular catalyst filled in.

【0011】すなわち、本発明者らは従来の湿式触媒酸
化塔において、その圧損の増大や目詰まり現象を詳しく
検討した結果、その現象を起こす箇所は酸化塔全体では
なく、主に酸化塔の底部、つまり廃液の入口部分である
ことが判明した。そこで、本発明は上記の如くこの酸化
塔の底部に位置する触媒を従来の粒状触媒に代えて断面
ハニカム状のハニカム触媒を用いたものであり、これに
よって本来の酸化効率を殆ど犠牲にすることなく圧損の
増大や目詰まり現象を効果的に回避することが可能とな
る。
That is, the inventors of the present invention have studied in detail the increase of pressure loss and the clogging phenomenon in the conventional wet catalytic oxidation tower, and as a result, the place where the phenomenon occurs is not the entire oxidation tower but mainly the bottom of the oxidation tower. That is, it turned out to be the inlet part of the waste liquid. Therefore, the present invention uses a honeycomb catalyst having a honeycomb cross-section instead of the conventional granular catalyst as the catalyst located at the bottom of the oxidation tower as described above, thereby sacrificing the original oxidation efficiency. It is possible to effectively avoid an increase in pressure loss and a clogging phenomenon.

【0012】そして、より具体的には請求項5に示すよ
うに、上記ハニカム触媒と粒状触媒との高さ方向の比率
を1:9〜3:7の範囲に設定すれば、上記の効果を顕
著に発揮することが可能となる。
More specifically, when the ratio of the honeycomb catalyst to the granular catalyst in the height direction is set in the range of 1: 9 to 3: 7, the above effect can be obtained. It becomes possible to exert outstandingly.

【0013】[0013]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】第1の実施の形態に係る湿式触媒酸化塔1
の縦断面概略図を図1に、図1における湿式触媒酸化塔
のハニカム触媒を示す一部破断斜視図を図2に、図2に
おけるハニカム触媒の他の例を示す縦断面図を図3に、
図2におけるハニカム触媒のハニカム形状の変形例を示
す断面図を図4に示す。
Wet catalytic oxidation tower 1 according to the first embodiment
1 is a schematic vertical sectional view of the honeycomb catalyst of the wet catalytic oxidation tower in FIG. 1, and FIG. 3 is a vertical sectional view of another example of the honeycomb catalyst in FIG. ,
FIG. 4 is a sectional view showing a modification of the honeycomb shape of the honeycomb catalyst shown in FIG.

【0015】図1に示すように、本実施の形態の湿式触
媒酸化塔1は、垂直方向に立設された耐食性の金属(ス
テンレス等)からなる筒状の塔本体2内に酸化触媒3を
収容したものであり、前述した水熱塔bから出た廃液を
塔本体2の底部に設けられた廃液入口4から導入しその
内部を上向流で流しながらその頂部に設けられた廃液出
口5から流出するようになっている。ここで、この塔本
体2のサイズとしては設置するエリアの大きさや処理す
る廃液の量等応じて異なってくるため特に限定するもの
ではないが、廃液と酸化触媒3の接触時間を多くすべく
図示するように例えば高さ1000mm、内径36mm
程度の細長のパイプ体が従来から一般的に多用されてい
る。また、この塔本体2は通常、数本〜数十本纏めた状
態で直列に接続して設けられる(本実施の形態にあって
は4本)。
As shown in FIG. 1, the wet catalytic oxidation tower 1 of the present embodiment has an oxidation catalyst 3 in a cylindrical tower body 2 made of corrosion-resistant metal (stainless steel or the like) which is vertically installed. The waste liquid discharged from the hydrothermal tower b is introduced from the waste liquid inlet 4 provided at the bottom of the tower main body 2, and the waste liquid outlet 5 is provided at the top of the inside while flowing in the upward flow. It is supposed to flow out from. Here, the size of the tower main body 2 is not particularly limited because it varies depending on the size of the area to be installed, the amount of waste liquid to be treated, etc., but is shown in order to increase the contact time between the waste liquid and the oxidation catalyst 3. For example, height 1000mm, inner diameter 36mm
A long and narrow pipe body has been widely used conventionally. Further, the tower main bodies 2 are usually provided by connecting several to several tens of them in series in a connected state (four in the present embodiment).

【0016】一方、この酸化触媒3は、図2に示すよう
に、その底部から頂部に亘って連続して延びる断面ハニ
カム状のハニカム触媒からなっている。すなわち、この
ハニカム触媒3は、図示するように、その外径が塔本体
2の内径よりもやや小さい筒状の触媒本体6内に断面矩
形状をした直線状の流路7をハニカム状に多数貫通させ
たものであり、その一端面から流入してきた廃液をそれ
ら各流路7,7…を通過させて他端面から排出可能とな
っている。尚、この触媒本体6自体は、微小な細孔を有
する多孔質体からなっている。例えば、チタニア粉末と
酸性白土に結合剤や可塑剤,潤滑剤,水等を適量混合・
混練した杯土を断面ハニカム状に押出成形して焼成し、
この焼成体に酸化触媒機能を有するルテニウム金属を担
持させることで、触媒本体6を容易に得ることができ
る。
On the other hand, as shown in FIG. 2, the oxidation catalyst 3 is composed of a honeycomb catalyst having a honeycomb-shaped cross section which continuously extends from the bottom to the top. That is, as shown in the figure, the honeycomb catalyst 3 has a large number of linear channels 7 having a rectangular cross section in a honeycomb shape in a tubular catalyst body 6 whose outer diameter is slightly smaller than the inner diameter of the tower body 2. It is made to pass through, and the waste liquid that has flowed in from one end face thereof can be passed through the respective flow paths 7, 7 ... And discharged from the other end face. The catalyst body 6 itself is made of a porous material having fine pores. For example, mix titania powder and acid clay with an appropriate amount of binder, plasticizer, lubricant, water, etc.
The kneaded clay is extruded into a honeycomb section and fired.
By supporting ruthenium metal having an oxidation catalyst function on this fired body, the catalyst body 6 can be easily obtained.

【0017】そして、このような構成をした湿式触媒酸
化塔1にあっては、前述した水熱塔b側から延びる廃液
供給ラインL1から導入される廃液を、酸素供給ライン
gから供給される酸素(空気)と共にその底部の廃液入
口4から導入し、その内部を上向流で流しながら酸化触
媒3によって含んでいる有機物を酸化触媒反応によって
無害な水とガスとに分解した後、その頂部の廃液出口5
から排水ラインL2側へ流出することになるが、本実施
の形態にあっては、この酸化触媒3として従来の粒状の
ものに代えて断面ハニカム状のハニカム触媒を用いたこ
とから、流入してきた廃液は勿論、その廃液中に含まれ
ている懸濁物もスムーズに流れるようになるため、目詰
まりによる圧力損失の増大を回避することが可能とな
る。
In the wet catalytic oxidation tower 1 having such a structure, the waste liquid introduced from the waste liquid supply line L1 extending from the side of the hydrothermal tower b is supplied with the oxygen supplied from the oxygen supply line g. It is introduced together with (air) from the waste liquid inlet 4 at the bottom thereof, and while flowing through the inside thereof in an upward flow, the organic matter contained by the oxidation catalyst 3 is decomposed into harmless water and gas by the oxidation catalytic reaction, and then the Waste liquid outlet 5
It flows out to the drain line L2 side from this, but in the present embodiment, since a honeycomb catalyst having a honeycomb cross section is used as the oxidation catalyst 3 instead of the conventional granular catalyst, it has flowed in. Since not only the waste liquid but also the suspension contained in the waste liquid flows smoothly, it is possible to avoid an increase in pressure loss due to clogging.

【0018】すなわち、前述したように目詰まりによる
圧力損失の増大といった現象は、水熱塔bで溶解しきれ
なかった有機物の一部やそもそも水熱反応では溶解しな
い無機物が固形物(懸濁物)の状態でそのまま塔本体2
内に送り込まれた後、さらにその一部が廃液の流れに乗
り切れずにそのまま粒状触媒の隙間に滞留して目詰まり
を起こすものであるが、本実施の形態のようにこの塔本
体2内に断面ハニカム状のハニカム触媒3を備えること
により、塔本体2内の底部での廃液の流れがスムーズと
なり、廃液と共に流出しきれなかった懸濁物もそのまま
塔本体2内を通過して流出することが可能となる。
That is, as described above, the phenomenon of increase in pressure loss due to clogging is caused by the fact that some of the organic substances that cannot be completely dissolved in the hydrothermal tower b and inorganic substances that are not dissolved in the hydrothermal reaction in the first place are solid (suspension). ) As it is, the tower body 2
After being sent into the column, a part of it does not survive the flow of the waste liquid and stays in the gaps of the granular catalyst as it is to cause clogging. By providing the honeycomb catalyst 3 having a honeycomb shape in cross section, the flow of the waste liquid at the bottom of the tower main body 2 becomes smooth, and the suspension that could not be completely discharged together with the waste liquid also passes through the tower main body 2 as it is and flows out. Is possible.

【0019】この結果、圧力損失の増大や目詰まり現象
を効果的に回避することが可能となり、長期安定性及び
信頼性が大幅に向上することになる。
As a result, an increase in pressure loss and a clogging phenomenon can be effectively avoided, and long-term stability and reliability are greatly improved.

【0020】尚、本実施の形態では、この酸化触媒3と
して用いるハニカム触媒は、塔本体2の底部から頂部に
亘って連続して延びる1本のロッドで形成しているが、
図3(B)に示すように、このロッドをその長手方向に
複数本に分割した分割体3a,3a…で形成しても良
い。すなわち、上記実施の形態にあっては、図3(A)
に示すように、これを塔本体2内に収容・交換等するに
際して、その上部あるいは下部にその長さ以上の空間を
必要とするが、このロッドをその長手方向に複数本に分
割した分割体3a,3a…で形成すれば、図3(B)に
示すように、一つの分割体3a毎に収容・交換作業を行
うことができるため、狭いスペースであっても容易にそ
の作業を行うことが可能となる。しかも、通常、圧力損
失増大の原因となる目詰まり現象は、塔本体2内の一
部、特に廃液入口4付近で発生することが多いことか
ら、仮に目詰まりが発生した場合でもその部分の分割体
3aのみを交換すれば良く、効率的な触媒利用を図るこ
とができる。また、製造上も、1本の連続したものより
も、分割体3a,3a…で構成した方が、安価、かつ、
容易に製造することが可能となる。
In this embodiment, the honeycomb catalyst used as the oxidation catalyst 3 is formed by one rod continuously extending from the bottom to the top of the tower body 2.
As shown in FIG. 3 (B), this rod may be formed of a plurality of divided bodies 3a, 3a ... In the longitudinal direction. That is, in the above embodiment, FIG.
As shown in Fig. 4, when accommodating and exchanging this in the tower body 2, a space more than the length is required at the upper part or the lower part, but this rod is divided into a plurality of pieces in the longitudinal direction. 3a, 3a ... As shown in FIG. 3 (B), since it is possible to carry out the accommodation / replacement work for each one of the divided bodies 3a, the work can be performed easily even in a narrow space. Is possible. Moreover, usually, the clogging phenomenon that causes the increase of the pressure loss often occurs in a part of the tower body 2, especially in the vicinity of the waste liquid inlet 4, so that even if the clogging occurs, that part is divided. Only the body 3a needs to be replaced, and efficient catalyst utilization can be achieved. Also, in terms of manufacturing, it is cheaper and more costly to configure the divided bodies 3a, 3a ...
It can be easily manufactured.

【0021】本実施の形態では、ハニカム触媒3として
断面矩形状の流路7を有するものを用いたが、その流路
形状は、例えば図4に示すように、断面六角形状、その
他の多角形状、又は断面円形状であってもよいことは勿
論である。また、その流路7のサイズも、例えば50〜
100メッシュ程度のものが多用されるものと考えられ
る。
In the present embodiment, the honeycomb catalyst 3 having the flow passage 7 having a rectangular cross section is used, but the flow passage shape is, for example, as shown in FIG. 4, a hexagonal cross section and other polygonal shapes. Of course, the cross section may be circular. Also, the size of the flow path 7 is, for example, 50 to
It is considered that the one with about 100 mesh is often used.

【0022】次に、本発明の他の実施の形態を添付図面
に基いて説明する。
Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

【0023】第2の実施の形態に係る湿式触媒酸化塔の
縦断面概略図を図5に、図5における湿式触媒酸化塔の
ハニカム触媒を示す一部破断斜視図を図6に示す。尚、
図1〜図4と同様の部材には同じ符号を付しており、同
様の部材についての説明は省略する。
FIG. 5 is a schematic vertical sectional view of a wet catalytic oxidation tower according to the second embodiment, and FIG. 6 is a partially cutaway perspective view showing a honeycomb catalyst of the wet catalytic oxidation tower in FIG. still,
The same members as those in FIGS. 1 to 4 are denoted by the same reference numerals, and the description of the same members will be omitted.

【0024】図5に示すように、本実施の形態の湿式触
媒酸化塔51は、塔本体2内に酸化触媒53を収容した
ものであり、前述した水熱塔bから出た廃液を、塔本体
2の底部に設けた廃液入口4から導入して塔本体2内部
を上向流で流し、その頂部に設けた廃液出口5から流出
するようになっている。
As shown in FIG. 5, the wet catalytic oxidation tower 51 of this embodiment has an oxidation catalyst 53 accommodated in the tower main body 2, and the waste liquid discharged from the hydrothermal tower b is converted into a tower. It is adapted to be introduced from a waste liquid inlet 4 provided at the bottom of the main body 2, flow upward in the tower main body 2, and flow out from a waste liquid outlet 5 provided at the top thereof.

【0025】一方、この酸化触媒53は、チタニア担体
やαアルミナ担体等からなる断面ハニカム状のハニカム
触媒57と、粒径が1〜5mm程度の粒状触媒58とか
らなっており、そのハニカム触媒57が塔本体2内の廃
液入口4部分に収容され、粒状触媒58がその上部から
廃液出口5に亘って充填されるように収容されている。
On the other hand, the oxidation catalyst 53 comprises a honeycomb catalyst 57 having a honeycomb-shaped cross section made of a titania carrier or α-alumina carrier, and a granular catalyst 58 having a particle size of about 1 to 5 mm. Is housed in the waste liquid inlet 4 portion in the tower body 2, and the granular catalyst 58 is housed so as to be filled from the upper portion to the waste liquid outlet 5.

【0026】このハニカム触媒57は、例えば図6に示
すように、その外径が塔本体2の内径よりもやや小さい
筒状の触媒本体56内に、断面矩形状をした直線状の流
路69をハニカム状に多数貫通させたものであり、その
一端面から流入してきた廃液をそれら各流路69,69
…を通過させて他端面から排出可能となっている。尚、
この触媒本体56自体は、微小な細孔を有する多孔質体
からなっている。例えば、酸化触媒機能を有するチタニ
ア粉末と酸性白土に結合剤や可塑剤,潤滑剤,水等を適
量混合・混練した杯土を断面ハニカム状に押出成形して
焼成し、この焼成体に酸化触媒機能を有するルテニウム
金属を担持させることで、触媒本体56を容易に得るこ
とができる。
For example, as shown in FIG. 6, the honeycomb catalyst 57 has a straight channel 69 having a rectangular cross section in a tubular catalyst body 56 having an outer diameter slightly smaller than the inner diameter of the tower body 2. A large number of honeycombs are passed through, and the waste liquid flowing in from one end face of each of the channels 69, 69
It can be discharged from the other end surface after passing through. still,
The catalyst body 56 itself is made of a porous body having fine pores. For example, a cup clay obtained by mixing and kneading titania powder having an oxidation catalyst function and acid clay with an appropriate amount of a binder, a plasticizer, a lubricant, water, etc. is extruded into a honeycomb shape in cross section and fired. By supporting a ruthenium metal having a function, the catalyst main body 56 can be easily obtained.

【0027】また、図5に示すように、このハニカム触
媒57の長さは、塔本体2の1/10程度の約100m
m程度となっており、その上部の粒状触媒7に対して
9:1〜7:3の範囲の比率となっている。すなわち、
ハニカム触媒4の比率が1/9より小さすぎると、後述
するように目詰まり防止効果が乏しく、反対にその比率
が3/7より大きすぎると、触媒全体と廃液との接触面
積が減少して酸化効率が悪化するおそれがあるからであ
る。
Further, as shown in FIG. 5, the length of the honeycomb catalyst 57 is about 1/10 of the tower body 2 and is about 100 m.
It is about m, and the ratio is in the range of 9: 1 to 7: 3 with respect to the granular catalyst 7 above it. That is,
When the ratio of the honeycomb catalyst 4 is less than 1/9, the effect of preventing clogging is poor as described later, and when the ratio is more than 3/7, the contact area between the entire catalyst and the waste liquid decreases. This is because the oxidation efficiency may deteriorate.

【0028】そして、このような構成をした湿式触媒酸
化塔51にあっては、前述した水熱塔b側から延びる廃
液供給ラインL1から導入される廃液を、酸素供給ライ
ンgから供給される酸素(空気)と共にその底部の廃液
入口4から導入し、その内部を上向流で流しながら酸化
触媒53によって含んでいる有機物を酸化触媒反応によ
って無害な水とガスとに分解した後、その頂部の廃液出
口5から排水ラインL2側へ流出することになるが、本
実施の形態にあっては、この廃液入口4付近の酸化触媒
53として断面ハニカム状のハニカム触媒57を用いた
ことから、目詰まりによる圧力損失の増大を起こすこと
なく、長期間に亘ってスムーズに廃液を通過させること
ができる。
In the wet catalytic oxidation tower 51 having such a structure, the waste liquid introduced from the waste liquid supply line L1 extending from the side of the hydrothermal tower b is supplied with the oxygen supplied from the oxygen supply line g. It is introduced together with (air) from the waste liquid inlet 4 at the bottom thereof, and while flowing through the inside thereof in an upward flow, the organic substances contained by the oxidation catalyst 53 are decomposed into harmless water and gas by the oxidation catalytic reaction, and then the Although it flows out from the waste liquid outlet 5 to the drain line L2 side, in the present embodiment, since the honeycomb catalyst 57 having a honeycomb shape in cross section is used as the oxidation catalyst 53 near the waste liquid inlet 4, clogging occurs. The waste liquid can be smoothly passed over a long period of time without causing an increase in pressure loss due to.

【0029】すなわち、前述したように目詰まりによる
圧力損失の増大といった現象は、水熱塔bで溶解しきれ
なかった有機物の一部やそもそも水熱反応では溶解しな
い無機物が、固形物(懸濁物)の状態でそのまま塔本体
2内に送り込まれた後、さらにその一部が廃液の流れに
乗れ切れずにそのまま塔本体2内の底部に溜まることで
生じるものである。ところが、本実施の形態のように、
この塔本体2内の底部に直線流路69を多数有するハニ
カム触媒57を備えることにより、塔本体2内の底部で
の廃液の流れがスムーズとなり、廃液と共に流出しきれ
なかった懸濁物もそのまま塔本体2内を通過して流出す
ることが可能となる。
That is, as described above, the phenomenon such as an increase in pressure loss due to clogging is caused by the fact that a part of the organic matter which could not be completely dissolved in the hydrothermal tower b or the inorganic matter which is not dissolved in the hydrothermal reaction in the first place is solid (suspended After being sent as it is into the tower main body 2, a part of it is not collected in the flow of the waste liquid and remains at the bottom of the tower main body 2 as it is. However, like this embodiment,
By providing the honeycomb catalyst 57 having a large number of linear flow paths 69 at the bottom of the tower body 2, the flow of the waste liquid at the bottom of the tower body 2 becomes smooth, and the suspended matter that cannot be completely discharged together with the waste liquid remains as it is. It becomes possible to pass through the tower main body 2 and flow out.

【0030】この結果、本来の酸化効率を殆ど犠牲にす
ることなく、圧力損失の増大や目詰まり現象を効果的に
回避することが可能となり、長期安定性及び信頼性が大
幅に向上することになる。
As a result, the increase in pressure loss and the clogging phenomenon can be effectively avoided without sacrificing the original oxidation efficiency, and the long-term stability and reliability are significantly improved. Become.

【0031】本実施の形態では、ハニカム触媒53とし
て断面矩形状の流路69を有するものを用いたが、その
流路形状は、例えば図4に示したように、断面六角形
状、その他多角形状、又は断面円形状であってもよいこ
とは勿論である。また、その流路69のサイズも、粒状
触媒58がそのまま入り込まないような大きさであれば
良く、例えば50〜100メッシュ程度のものが多用さ
れるものと考えられる。
In the present embodiment, the honeycomb catalyst 53 having the flow passage 69 having a rectangular cross section is used, but the flow passage shape is, for example, as shown in FIG. 4, a hexagonal cross section and other polygonal shapes. Of course, the cross section may be circular. Further, the size of the flow path 69 may be any size as long as the granular catalyst 58 does not enter as it is, and it is considered that, for example, a size of about 50 to 100 mesh is often used.

【0032】[0032]

【実施例】以下、本発明の具体的実施例及び比較例を説
明する。
EXAMPLES Specific examples and comparative examples of the present invention will be described below.

【0033】(実施例1)高さ約1000mmの塔本体
内に、100メッシュのRu担持のTiO2ハニカム触
媒をその全体に亘って配置すると共に、6%固形分を含
む下水汚泥を280℃,9MPaで10分水熱処理して
固形分を可溶化させた。この水熱処理した廃液中には、
水熱反応で分解されなかった無機物や有機物の懸濁物
が、10000mg/L残存していた。次に、塔本体の
底部から、この廃液を220℃,3MPaで毎分0.5
L/minで、かつ、空気を80L/minで同時に流
し込み、廃液入口と出口との圧力損失の変化を調べた。
(Example 1) In a tower body having a height of about 1000 mm, a 100-mesh Ru-supported TiO 2 honeycomb catalyst was placed all over, and sewage sludge containing 6% solids was added at 280 ° C. The solid content was solubilized by hydrothermal treatment at 9 MPa for 10 minutes. In this waste liquid that has been hydrothermally treated,
A suspension of inorganic substances and organic substances that was not decomposed by the hydrothermal reaction remained at 10000 mg / L. Next, from the bottom of the tower main body, this waste liquid was heated at 220 ° C. and 3 MPa for 0.5 minutes per minute.
At the same time, air was flown at L / min and 80 L / min, and changes in pressure loss between the waste liquid inlet and the outlet were examined.

【0034】この結果、廃液入口と出口との圧力損失
(0.3Kg/cm2)に変化はみらなかった。また、
圧力損失測定後に、湿式触媒酸化塔を解体したところ、
ハニカム触媒に目詰まりはみられなかった。
As a result, there was no change in the pressure loss (0.3 Kg / cm 2 ) between the waste liquid inlet and the outlet. Also,
After dismantling the wet catalytic oxidation tower after measuring the pressure loss,
No clogging was found in the honeycomb catalyst.

【0035】(実施例2)50メッシュのRu担持のT
iO2ハニカム触媒を用いると共に、水熱処理後の廃液
を毎分1.0L/min、空気を160L/minで同
時に流し込む以外は、実施例1と同様の条件で、廃液入
口と出口との圧力損失の変化を調べた。その結果、実施
例1と同様に、廃液入口と出口との圧力損失に変化はみ
られなかった。また、圧力損失測定後に、湿式触媒酸化
塔を実際に解体した結果、目詰まりはみられなかった。
(Embodiment 2) T supported on Ru of 50 mesh
The pressure loss between the waste liquid inlet and the outlet was the same as in Example 1 except that the iO 2 honeycomb catalyst was used and the waste liquid after the hydrothermal treatment was simultaneously flowed at 1.0 L / min and air at 160 L / min. I examined the change of. As a result, similar to Example 1, no change was seen in the pressure loss between the waste liquid inlet and the outlet. Further, as a result of actually dismantling the wet catalytic oxidation tower after measuring the pressure loss, no clogging was observed.

【0036】(実施例3)高さ約1000mmの塔本体
の廃液入口部分に、高さ約100mm,100メッシュ
のRu担持のTiO2ハニカム触媒を配置し、その上部
空間内に、直径約2mmのRu担持のTiO2粒状触媒
を充填した湿式触媒酸化塔を作製した。次に、この塔本
体の底部から、実施例1と同じ廃液を220℃,3MP
aで毎分0.5L/minで、かつ、空気を80L/m
inで同時に流し込み、廃液入口と出口との圧力損失の
変化を調べた。
(Example 3) A TiO 2 honeycomb catalyst having a height of about 100 mm and 100 mesh and carrying Ru was placed in the waste liquid inlet portion of a tower body having a height of about 1000 mm, and the upper space thereof had a diameter of about 2 mm. A wet catalytic oxidation tower filled with Ru-supported TiO 2 granular catalyst was prepared. Next, from the bottom of the tower body, the same waste liquid as in Example 1 was added at 220 ° C. and 3 MP.
a at 0.5 L / min and air at 80 L / m
In, the mixture was poured at the same time and the change in pressure loss between the waste liquid inlet and the outlet was examined.

【0037】この結果、廃液入口と出口との圧力損失
(1Kg/cm2)に変化はみらなかった。また、圧力
損失測定後に、湿式触媒酸化塔を解体したところ、ハニ
カム触媒及び粒状触媒共に目詰まりはみられなかった。
As a result, there was no change in the pressure loss (1 Kg / cm 2 ) between the waste liquid inlet and the outlet. When the wet catalytic oxidation tower was disassembled after the pressure loss measurement, neither the honeycomb catalyst nor the granular catalyst was found to be clogged.

【0038】(実施例4)50メッシュのRu担持のT
iO2ハニカム触媒を用いると共に、直径約4mmのR
u担持のTiO2粒状触媒を用い、また、水熱処理後の
廃液を毎分1.0L/min、空気を160L/min
で同時に流し込む以外は、実施例3と同様の条件で、廃
液入口と出口との圧力損失の変化を調べた。その結果、
実施例3と同様に、廃液入口と出口との圧力損失に変化
はみられなかった。また、圧力損失測定後に、湿式触媒
酸化塔を実際に解体した結果、ハニカム触媒及び粒状触
媒のいずれにも目詰まりはみられなかった。
(Example 4) Ru-supported T of 50 mesh
R2 with a diameter of about 4 mm is used with an iO 2 honeycomb catalyst
Using a TiO 2 granular catalyst supported by u, the waste liquid after hydrothermal treatment was 1.0 L / min, and the air was 160 L / min.
The change in pressure loss between the waste liquid inlet and the outlet was examined under the same conditions as in Example 3 except that they were simultaneously poured in. as a result,
Similar to Example 3, there was no change in the pressure loss between the waste liquid inlet and the outlet. In addition, as a result of actually dismantling the wet catalytic oxidation tower after measuring the pressure loss, no clogging was observed in either the honeycomb catalyst or the granular catalyst.

【0039】(比較例1)実施例1で示した塔本体全体
に、直径約2mmのRu担持のTiO2粒状触媒を充填
した湿式触媒酸化塔を作製する以外は、実施例1と同様
の条件で廃液を流し込み、廃液入口と出口との圧力損失
の変化を調べた。その結果、15分後に廃液入口部と廃
液出口部に5kg/cm2以上の圧力損失が生じた。ま
た、圧力損失測定後に、湿式触媒酸化塔を実際に解体し
た結果、主に廃液入口付近の粒状触媒間に、懸濁物によ
る目詰まりが生じていた。
(Comparative Example 1) The same conditions as in Example 1 except that a wet catalytic oxidation tower was prepared by filling the entire tower body shown in Example 1 with a TiO 2 granular catalyst having a diameter of about 2 mm and carrying Ru. The waste liquid was poured in and the change in pressure loss between the waste liquid inlet and the outlet was examined. As a result, after 15 minutes, a pressure loss of 5 kg / cm 2 or more occurred at the waste liquid inlet and the waste liquid outlet. In addition, as a result of actually dismantling the wet catalytic oxidation tower after measuring the pressure loss, clogging due to the suspended matter occurred mainly between the granular catalysts near the waste liquid inlet.

【0040】[0040]

【発明の効果】以上要するに本発明によれば、塔本体内
の少なくとも一部にハニカム触媒を配置したため、塔本
体内の廃液の流れがスムーズとなり、圧力損失の増大や
目詰まり現象を効果的に回避することが可能となるとい
う優れた効果を発揮する。
In summary, according to the present invention, since the honeycomb catalyst is arranged in at least a part of the tower body, the flow of the waste liquid in the tower body becomes smooth, and the increase of the pressure loss and the clogging phenomenon are effectively prevented. It has an excellent effect that it can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態に係る湿式触媒酸化塔の縦断
面概略図である。
FIG. 1 is a schematic vertical cross-sectional view of a wet catalytic oxidation tower according to a first embodiment.

【図2】図1における湿式触媒酸化塔のハニカム触媒を
示す一部破断斜視図である。
FIG. 2 is a partially cutaway perspective view showing a honeycomb catalyst of the wet catalytic oxidation tower in FIG.

【図3】図2におけるハニカム触媒の他の例を示す縦断
面図である。
FIG. 3 is a vertical cross-sectional view showing another example of the honeycomb catalyst shown in FIG.

【図4】図2におけるハニカム触媒のハニカム形状の変
形例を示す断面図である。
FIG. 4 is a cross-sectional view showing a modification of the honeycomb shape of the honeycomb catalyst shown in FIG.

【図5】第2の実施の形態に係る湿式触媒酸化塔の縦断
面概略図である。
FIG. 5 is a schematic vertical sectional view of a wet catalytic oxidation tower according to a second embodiment.

【図6】図5における湿式触媒酸化塔のハニカム触媒を
示す一部破断斜視図である。
6 is a partially cutaway perspective view showing a honeycomb catalyst of the wet catalytic oxidation tower in FIG.

【図7】従来の有機性廃棄物水熱処理システムの一例を
示す全体構成図である。
FIG. 7 is an overall configuration diagram showing an example of a conventional organic waste hydrothermal treatment system.

【符号の説明】[Explanation of symbols]

1,51 湿式触媒酸化塔 2 塔本体 3,53 酸化触媒(ハニカム触媒) 3a 分割体 4 廃液入口(底部) 5 廃液出口(頂部) 57 ハニカム触媒 58 粒状触媒 1,51 Wet catalytic oxidation tower 2 tower body 3,53 Oxidation catalyst (Honeycomb catalyst) 3a division 4 Waste liquid inlet (bottom) 5 Waste liquid outlet (top) 57 Honeycomb catalyst 58 Granular catalyst

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三輪 敬一 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 Fターム(参考) 4D050 AA12 AB11 BB01 BC06 BD02 BD03 BD06 CA01 CA20 4D059 AA03 BC01 DA47 DA70 4G069 AA03 AA11 BA04A BA04B BB02A BB02B BC70A BC70B CA05 CA07 DA06 EA02X EA02Y EA18 EB14Y EB18Y EE08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Keiichi Miwa             Stone, Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa             Kawashima Harima Heavy Industries Co., Ltd. Machinery and plant opening             In the departure center F term (reference) 4D050 AA12 AB11 BB01 BC06 BD02                       BD03 BD06 CA01 CA20                 4D059 AA03 BC01 DA47 DA70                 4G069 AA03 AA11 BA04A BA04B                       BB02A BB02B BC70A BC70B                       CA05 CA07 DA06 EA02X                       EA02Y EA18 EB14Y EB18Y                       EE08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水熱処理された有機物を含む廃液を酸素
と共に導入し、これを触媒下で酸化分解して流出する湿
式触媒酸化塔において、上記廃液を酸素と共に底部から
導入しこれを上向流で流して頂部から流出する塔本体内
に、その有機物を酸化分解する酸化触媒を収容すると共
に、その酸化触媒の少なくとも一部を断面ハニカム状の
ハニカム触媒で形成したことを特徴とする湿式触媒酸化
塔。
1. In a wet catalytic oxidation tower in which a waste liquid containing a hydrothermally treated organic substance is introduced together with oxygen, and this is oxidatively decomposed under a catalyst to flow out, the waste liquid is introduced together with oxygen from the bottom, and this is flowed upward. Wet catalytic oxidation characterized by accommodating an oxidation catalyst for oxidatively decomposing the organic matter in the tower body flowing at the top and flowing at the top, and at least a part of the oxidation catalyst is formed by a honeycomb catalyst having a honeycomb shape in cross section. Tower.
【請求項2】 水熱処理された有機物を含む廃液を酸素
と共に導入し、これを触媒下で酸化分解して流出する湿
式触媒酸化塔において、上記廃液を酸素と共に底部から
導入しこれを上向流で流して頂部から流出する塔本体内
に、その有機物を酸化分解する酸化触媒を収容すると共
に、その酸化触媒が、その底部から頂部に亘って連続し
て延びる断面ハニカム状のハニカム触媒からなることを
特徴とする湿式触媒酸化塔。
2. In a wet catalytic oxidation tower in which a waste liquid containing a hydrothermally treated organic substance is introduced together with oxygen, and this is oxidatively decomposed under a catalyst to flow out, the waste liquid is introduced together with oxygen from the bottom, and this is flowed upward. In the tower body flowing at the top and flowing out from the top, while accommodating the oxidation catalyst for oxidative decomposition of the organic matter, the oxidation catalyst is composed of a honeycomb catalyst having a cross-section honeycomb shape continuously extending from the bottom to the top. A wet catalytic oxidation tower characterized by:
【請求項3】 上記ハニカム触媒が長手方向に複数に分
割された分割体で形成されていることを特徴とする請求
項2に記載の湿式触媒酸化塔。
3. The wet catalytic oxidation tower according to claim 2, wherein the honeycomb catalyst is formed of a plurality of divided bodies divided in the longitudinal direction.
【請求項4】 水熱処理された有機物を含む廃液を酸素
と共に導入し、これを触媒下で酸化分解して流出する湿
式触媒酸化塔において、上記廃液を酸素と共に底部から
導入しこれを上向流で流して頂部から流出する塔本体内
に、その有機物を酸化分解する酸化触媒を収容すると共
に、その酸化触媒が、その底部側に収容される断面ハニ
カム状のハニカム触媒と、そのハニカム触媒の上方に充
填される粒状触媒とからなることを特徴とする湿式触媒
酸化塔。
4. In a wet catalytic oxidation tower in which a waste liquid containing a hydrothermally treated organic substance is introduced together with oxygen, and is oxidatively decomposed under a catalyst to flow out, the waste liquid is introduced together with oxygen from the bottom portion, and the waste liquid is upwardly flowed. In the main body of the tower flowing out from the top, while containing an oxidation catalyst that oxidatively decomposes the organic matter, the oxidation catalyst, the honeycomb catalyst having a cross-section honeycomb shape accommodated on the bottom side, and above the honeycomb catalyst. 1. A wet catalytic oxidation tower comprising a granular catalyst filled in
【請求項5】 上記ハニカム触媒と粒状触媒との高さ方
向の比率が1:9〜3:7の範囲であることを特徴とす
る請求項4に記載の湿式触媒酸化塔。
5. The wet catalytic oxidation tower according to claim 4, wherein the ratio of the honeycomb catalyst and the granular catalyst in the height direction is in the range of 1: 9 to 3: 7.
JP2002152187A 2002-05-27 2002-05-27 Wet catalytic oxidation column Pending JP2003340471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002152187A JP2003340471A (en) 2002-05-27 2002-05-27 Wet catalytic oxidation column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002152187A JP2003340471A (en) 2002-05-27 2002-05-27 Wet catalytic oxidation column

Publications (1)

Publication Number Publication Date
JP2003340471A true JP2003340471A (en) 2003-12-02

Family

ID=29769570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002152187A Pending JP2003340471A (en) 2002-05-27 2002-05-27 Wet catalytic oxidation column

Country Status (1)

Country Link
JP (1) JP2003340471A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118702A1 (en) * 2012-02-10 2013-08-15 栗田工業株式会社 Method for treating waste water containing organic compound
JP2016019942A (en) * 2014-07-14 2016-02-04 株式会社リコー Fluid processing apparatus
CN111573897A (en) * 2020-05-27 2020-08-25 新奥科技发展有限公司 Water purification method of circulating water system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118702A1 (en) * 2012-02-10 2013-08-15 栗田工業株式会社 Method for treating waste water containing organic compound
JP2016019942A (en) * 2014-07-14 2016-02-04 株式会社リコー Fluid processing apparatus
CN111573897A (en) * 2020-05-27 2020-08-25 新奥科技发展有限公司 Water purification method of circulating water system

Similar Documents

Publication Publication Date Title
JP5889389B2 (en) Wastewater treatment method using wastewater treatment catalyst
KR101000482B1 (en) Catalyst for treating waste water and method for treating waste water using the same
JP4932547B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JP5399235B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
KR100546739B1 (en) Method of treating waste water and apparatus for treating waste water using the method
CN102908839A (en) Catalytic filter system
JP3739902B2 (en) Gas-liquid dispersion device, gas-liquid contact device, and wastewater treatment device
JP6187858B2 (en) Fluid purification device
JP4895215B2 (en) Method for treating wastewater containing inorganic sulfur compounds
JP2003340471A (en) Wet catalytic oxidation column
EP1726565A1 (en) Carbon material and flue gas treatment apparatus
JP3742290B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
CN107915311A (en) A kind of efficient mass transfer catalytic ozonation fluidizes bed waste water treatment system
US20060060083A1 (en) Installation and method for mixing and distributing a liquid phase and a gaseous phase
JP4173708B2 (en) Wastewater wet oxidation method and equipment
CN105036294B (en) A kind of novel packed tower for improving gas utilization efficiency
JP6522916B2 (en) Waste water treatment catalyst and waste water treatment method using the same
JP2002079091A (en) Catalyst for treating wastewater and wastewataer treatment method using the same
JP3226565B2 (en) Wastewater treatment method
CN212292963U (en) Sewage treatment oxidation catalysis equipment
JPH07185569A (en) Treatment of nitrate radical-containing waste water
JP3318131B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
CN220098708U (en) Wet oxidation reactor
KR100256547B1 (en) Apparatus for purifying organic waste water
JP6476622B2 (en) Fluid processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120