JP4173708B2 - Wastewater wet oxidation method and equipment - Google Patents

Wastewater wet oxidation method and equipment Download PDF

Info

Publication number
JP4173708B2
JP4173708B2 JP2002267149A JP2002267149A JP4173708B2 JP 4173708 B2 JP4173708 B2 JP 4173708B2 JP 2002267149 A JP2002267149 A JP 2002267149A JP 2002267149 A JP2002267149 A JP 2002267149A JP 4173708 B2 JP4173708 B2 JP 4173708B2
Authority
JP
Japan
Prior art keywords
liquid
gas
wet oxidation
dispersion
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267149A
Other languages
Japanese (ja)
Other versions
JP2004098023A (en
Inventor
純一 三宅
高明 橋本
徹 石井
正次 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2002267149A priority Critical patent/JP4173708B2/en
Publication of JP2004098023A publication Critical patent/JP2004098023A/en
Application granted granted Critical
Publication of JP4173708B2 publication Critical patent/JP4173708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化学プラント、電子部品製造設備、食品加工設備、印刷製版設備、発電設備、写真処理設備、金属加工設備、金属メッキ設備、金属精錬設備、紙パルプ製造設備などの各種産業プラントから排出される排水や、屎尿、下水などの生活排水、廃棄物焼却炉排水、埋立地浸出水などの如き様々の排水を浄化処理するための方法と装置に関し、特に、固体触媒を用いて気液下向流方式で上記排水を湿式酸化処理する際に、気体と液体の分散効率を高めることによって気液と触媒の接触効率を向上せしめ、処理性能を高め得る様に改善された湿式酸化処理法と装置に関するものである。
【0002】
【従来の技術】
従来、気体と液体を反応塔へ供給する際には、反応塔の入口部分に気液分散部材を設けることが多く、液体が連続相となる気液上向流方式の場合は、反応塔内の下部に気液分散部材としてスパージャリング、焼結管、あるいは多孔オリフィス板、単孔オリフィス板などを設置することがある(例えば、特許文献1参照)。また、気体が連続相となる気液下向流方式の場合にも、スプレーノズル、ノッチトラフ、多孔板などを設置することが考えられる。
【0003】
ところで触媒を用いた湿式酸化処理では、上記特許文献1などに見られる如く液体を連続相とするため通常は気液上向流方式が採用されている。ちなみに、気液下向流方式で触媒湿式酸化処理を行った場合、気液と触媒の接触効率が低く大量の触媒を必要とするため、設備費や運転費が高騰し、或いは固体触媒の耐久性にも問題を生じることがあり、また、触媒を用いた湿式酸化処理を気液下向流方式で行うと、触媒層で気液が偏流を起こし処理性能が低下することが予測されるからである。
【0004】
しかし本出願人が知る限りにおいては、触媒を用いて気液下向流方式で排水を湿式酸化処理する際に、触媒充填層へ供給される被処理流体の分散を均一化するための具体的な手段は提示されていない。
【0005】
【特許文献1】
特開平10-118473号公報(特許請求の範囲など)。
【0006】
【発明が解決しようとする課題】
本発明は上記の様な状況の下で、特に、被酸化性物質を含む排水を、固体触媒を用いて気液下向流方式で湿式酸化処理する方法に焦点を合せ、排水の湿式酸化処理効率をより一層高めると共に、湿式酸化触媒の寿命も延長し、延いては、設備費を低減すると共に運転効率も高めることのできる湿式酸化処理法と装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る湿式酸化処理法とは、被酸化性物質を含む排水を、固体触媒を用いて気液下向流方式で湿式酸化処理するに当り、湿式酸化反応塔内における固体触媒充填層の上部に気液分散部材を設置し、触媒充填層の上部で該充填層の流路幅方向に排水を分散させるところに要旨が存在する。
【0008】
上記方法を実施するに当っては、気液分散部材をオーバーフロー型とし、液体をオーバーフローさせて下方の触媒充填層方向へ分散供給するようにすれば、分散効率をより確実に高めることができるので好ましく、また、上記気液分散部材の上部に気液分離部を設けて気液を予め分離し、該気液分離部から液導通管を通して液体を気液分散部材へ供給する様にすれば、分散効率を一段と向上できるので好ましい。
【0009】
また本発明に係る湿式酸化処理装置とは、上記処理法の実施に好適な装置を提供するもので、上記湿式酸化反応塔内における固体触媒充填層の上部に気液分散部材が設置されているところに要旨が存在する。この装置においても、上記固体触媒充填層の上部に設置される気液分散部材は、オーバーフロー型のものが特に好ましく、また、該気液分散部材の上部に、予め気液を分離する気液分離部を設け、該気液分離部から液導通管を通して液体を気液分散部材へ供給できる様にしたものは、一層優れた気液分散効率を発揮し得るものとして推奨される。
【0010】
【発明の実施の形態】
本発明者らは、前述した課題の解決を期して鋭意研究を重ねた結果、被酸化性物質を含む排水を、固体触媒を用いて気液下向流方式で湿式酸化処理する際に、湿式酸化反応塔内の上部に気液分散部材を設置しておけば、固体触媒充填層における被処理流体の偏流が抑制されると共に気液と触媒の接触効率も向上し、処理効率が大幅に改善されることを見出し、上記本発明を完成するに至った。
【0011】
以下、本発明の方法と装置について詳細に説明していく。
【0012】
本発明は、被酸化性物質を含む排水を被処理液とし、固体触媒を用いて気液下向流方式で湿式酸化処理する際に、特に、湿式酸化反応塔内における固体触媒充填層の上部に気液分散部材を設置し、触媒充填層の上部で該充填層の流路幅方向へ排水を分散させるところに最大の特徴を有している。
【0013】
固体触媒を用いて気液下向流方式で排水を湿式酸化処理する場合、湿式酸化反応塔(以下、単に反応塔ということがある)内の上部に気液分散部材を設置しておくと、触媒充填層への気体と液体の分散効率が向上し、気液と触媒の接触効率が高まって処理性能が向上する。これにより湿式酸化処理効率が向上し、延いては設備費や運転費を低減することが可能となる。しかも、反応塔内に充填された固体触媒は全体が万遍なく均等に湿式酸化に供されることから、局部的な失活などが起こり難く、触媒の耐久性も向上する。
【0014】
なお、処理対象となる排水中にSS(Suspended Solids;浮遊物質)成分や触媒湿式酸化処理工程で固形物を生成するイオン等が含まれている場合は、気液分散部材としてオーバーフロー型のものを使用することが好ましい。この様な排水の場合、オーバーフロー型以外(例えば、液穴型など)の気液分散部材を使用すると、液体が流下するための液穴を固形物が塞ぎ、気液を均一に分散できなくなる恐れがあるからである。
【0015】
また、オーバーフロー型の気液分散部材を用いた場合の分散効率をより一層高めるには、該分散部材の上面側に形成される液溜り部分の液面の乱れをできるだけ抑えることが好ましい。即ち、気液を上方から直接気液分散部材へ供給した場合、液溜り部分の液面が乱れることが多いので、気液分散効果をより一層高めるには、気液分散部材の上方で気液を予め分離し、液溜り部分の液面が乱れないように液体を供給することが好ましい。
【0016】
従って、後で詳述する如く、気液分散部材の上方に気液分離部を設け、該気液分離部で予め気液分離してから液体を気液分散部材方向へ送る様にすることは、本発明を実施する際の好ましい態様として推奨される。
【0017】
本発明が適用される排水としては、例えば、化学プラント、電子部品製造設備、食品加工設備、印刷製版設備、発電設備、写真処理設備、金属加工設備、金属メッキ設備、金属精錬設備、紙パルプ製造設備などの各種産業プラントから排出される排水や、屎尿、下水などの生活排水、湿式洗煙排水などの廃棄物焼却炉排水、埋立地浸出水など、種々の排水が挙げられる。有害物質を含む土壌を清浄化するため、該土壌中の有害物質を水等で抽出した抽出液も、本発明の処理対象排水として扱うことができる。
【0018】
それらの中でも本発明は、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステルの如き脂肪族カルボン酸や脂肪族カルボン酸エステルの製造設備;テレフタル酸やテレフタル酸エステルの如き芳香族カルボン酸や芳香族カルボン酸エステルの製造設備;EOG製造設備;メタノール、エタノール、高級アルコールなどのアルコール製造設備;もしくは食品添加物や医薬品、工業薬品製造設備などから排出される有機物含有排水、あるいは更に、発電設備や電子部品製造設備などから排出されるアンモニア含有排水などに対して有効に活用できる。
【0019】
上記排水に含まれる「被酸化性物質」とは、酸化・分解処理によって浄化できる有機質および/または無機質の化合物を意味し、種々の有機化合物、硫黄化合物、窒素化合物、更には有機ハロゲン化合物、有機燐化合物などが包含される。具体的には、例えばメタノール、エタノール、アセトアルデヒド、ギ酸、アセトン、酢酸、プロピオン酸、テトラヒドロフラン、フェノールなどの有機化合物;アンモニア、ヒドラジン、亜硝酸塩、ジメチルホルムアミド、モノエタノールアミン、ピリジン、尿素などの窒素化合物;チオ硫酸塩、硫化ナトリウム、ジメチルスルホキシド、アルキルベンゼンスルホン酸塩などの硫黄化合物;過酸化水素などが挙げられるが、勿論これらに限定されるものではない。これらの被酸化性物質は、排水中に溶解していてもよく、或いは懸濁物質として含まれていてもよい。
【0020】
ここでいう酸化・分解処理とは、例えばエタノールを酢酸に変える酸化処理、酢酸を二酸化炭素と水に分解する酸化分解処理、酢酸を二酸化炭素とメタンに変える脱炭酸分解処理、各種有機物を低分子量化する酸化分解処理、尿素をアンモニアと二酸化炭素に分解する加水分解処理、アンモニアやヒドラジンを窒素ガスと水に変える酸化分解処理、硝酸イオンや亜硝酸イオンを窒素ガスに変える分解処理、有機ハロゲン化合物の脱塩素処理などを包含し、排水中の有害物質を実質的に無害なものに変換する処理を意味する。
【0021】
本発明において「液体」とは液状のものを意味し、水、各種排水、有機溶媒、無機および/または有機物質の水溶液、油水混合分散液や懸濁液、スラリーなどが全て包含され、種類や性状などは一切制限されない。
【0022】
また、本発明でいう「気体」の種類も特に限定されるものではなく、酸素含有ガス、水蒸気、有機蒸気、二酸化炭素などが包含される。
【0023】
以下、図面を参照しつつ本発明の湿式酸化処理法と装置について具体的に説明していくが、本発明はもとよりそれら図示例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に設計を変更して実施することも勿論可能である。
【0024】
図1は、本発明の湿式酸化処理が適用される排水処理の基本的な処理フロー図であり、排水供給ライン1から処理対象となる排水をポンプ2で昇圧して供給する。一方、酸素含有ガス供給ライン3からは酸素含有ガスを導入し、圧縮機4で昇圧してから被処理排水に混入させる。得られる気液混合流体は、熱交換器5で加熱し更に加熱器6で所定温度にまで加熱した後、固体触媒が充填された湿式酸化反応塔7へ導入し、ここで湿式酸化処理が行われる。
【0025】
ポンプ2で昇圧してから供給する際の空間速度(LHSV)は特に限定されず、反応塔の湿式酸化処理能力に応じて適宜決定すればよいが、通常は0.1hr-1以上、好ましくは0.15hr-1以上、より好ましくは0.2hr-1以上で、10hr-1以下、より好ましくは7hr-1以下、更に好ましくは5hr-1以下となるように調整するのがよい。ちなみに空間速度が0.1hr-1未満では、単位時間当りの処理量が不十分で過大な設備が必要になることがあり、逆に10hr-1を超えて空間速度を高め過ぎると、湿式酸化による浄化作用が不十分になる恐れがある。
【0026】
図示する如く本発明を採用した湿式酸化処理は、酸素含有ガスの存在下で行われる。酸素含有ガスの種類は特に限定されず、純酸素、酸素富化ガス、空気、オゾン、過酸化水素などを用いることができ、また、他のプラントで生じた酸素含有ガスを利用することもできる。これらの中でも経済性の観点から最も好ましいのは空気である。また純酸素やオゾンなどを使用する場合は、空気や不活性ガスなどで希釈して使用することもできる。
【0027】
酸素含有ガスの供給量にも格別の制限はなく、排水中の有害物質を酸化・分解処理するのに必要な量を供給すればよい。酸素含有ガスの好ましい供給量は、排水の理論酸素要求量の0.4倍以上、より好ましくは0.5倍以上で、好ましくは5.0倍以下、より好ましくは3.0倍以下である。酸素含有ガスの供給量が理論酸素要求量に対して0.4倍未満の場合は、排水中に含まれる有害物質の酸化分解が不十分になることがあり、一方5.0倍を超えて過度に供給してもそれ以上に湿式酸化処理性能が高まるわけではなく、酸素含有ガスの消費量がいたずらに増大するばかりでなく設備も無為に大型化するので無駄である。ここで「理論酸素要求量」とは、排水中の被酸化性物質を窒素、二酸化炭素、水、あるいは硫酸塩などの灰分にまで分解するのに必要な酸素量をいう。
【0028】
なお図示例では、排水に酸素含有ガスを混入させた気液混合流体を、熱交換器5で予備加熱した後、更に加熱器6で所定温度にまで昇温してから反応塔7へ供給する例を示したが、加熱方法は勿論これに限定されるものではなく、熱交換器5や加熱器6の一方だけで加熱してもよく、或いはパイプラインや反応塔7にヒーター(図示せず)などの加熱手段を設けて加熱してもよい。これらの加熱手段は単独で採用してもよく、或いは2種以上の加熱手段を任意に組み合わせて採用することもできる。
【0029】
また、熱交換器5へ供給される気液混合流体を、反応塔7で湿式酸化処理されてから排出されてくる高温の処理液との間で熱交換し、あるいは他のプラントから排出される高温のガスや液体との間で熱交換させてもよく、気液混合流体を加熱するための熱媒体や加熱手段は一切制限されない。
【0030】
反応塔7では、気液下向流方式で触媒湿式酸化処理が行われる。反応塔7で触媒湿式酸化を行う際の好ましい温度は、他の条件(排水中に含まれる被酸化性物質の種類や濃度、排水の流速、触媒の種類など)にも影響されるが、370℃を超えると排水を液相状態に保持し難くなり、設備が大型化する他、ランニングコストも上昇する恐れが生じてくるので、処理温度は370℃以下、より好ましく300℃以下、更に好ましくは280℃以下とするのがよい。また、触媒に炭素等の可燃性成分が含まれている場合は、加熱温度を触媒が燃焼しない温度に抑える必要があり、好ましくは200℃以下、より好ましくは170℃以下に抑えることが望ましい。但し加熱温度が30℃未満では、湿式酸化反応が効率よく進行し難くなることがあるので、好ましくは30℃以上、より好ましくは40℃以上、更に好ましくは45℃以上とすることが望ましい。
【0031】
本発明装置を用いて行う触媒湿式酸化反応では、排水が液相を保持できる圧力条件に調節することが望ましく、具体的な圧力は処理温度との関係も考慮して適宜に選定すればよい。
【0032】
本発明で用いる上記反応塔7の種類や形状・構造などにも格別の制限はなく、単管式、多管式のいずれの型式であってもよい。場合によっては、同種もしくは異種の構造のものを複数組み合わせて用いることもできる。
【0033】
本発明では、上記反応塔7内に固体触媒を充填し、該触媒充填層に排水を通すことによって、排水中の被酸化性物質を湿式酸化処理する。ここで使用される固体触媒としては、湿式条件下で酸化・分解能を発揮するものであれば全て使用でき、湿式酸化処理に汎用されている公知の固体触媒も勿論使用できる。好ましい具体例としては、湿式酸化条件下で酸化活性と耐久性を兼ね備えた触媒として、例えば、チタン、ケイ素、アルミニウム、ジルコニウム、マンガン、鉄、コバルト、ニッケル、セリウム、タングステン、銅、銀、金、白金、パラジウム、ロジウム、ルテニウム、イリジウム等から選ばれる少なくとも1種の元素、および/または活性炭を含む触媒が挙げられる。ここでいう活性炭としては、通常の活性炭は勿論のこと、活性コークスやグラファイトカーボン、活性炭素繊維なども包含される。
【0034】
それらの中でも特に好ましいのは、次に示す触媒成分Aと触媒成分Bとを含む固体触媒である。即ち、好ましい触媒成分Aとしては、鉄、チタン、ケイ素、アルミニウム、ジルコニウムよりなる群から選ばれる少なくとも1種の元素の酸化物、または活性炭であり、また触媒成分Bとしては、マンガン、コバルト、ニッケル、セリウム、タングステン、銅、銀、金、白金、パラジウム、ロジウム、ルテニウム、イリジウムよりなる群から選ばれる少なくとも1種の金属および/またはそれらの化合物である。
【0035】
触媒成分Aのより好ましい具体例としては、チタン酸化物、鉄酸化物、ジルコニウム酸化物などの金属酸化物;チタン酸化物−ジルコニウム酸化物、チタン酸化物−鉄酸化物などの2元系または多元系酸化物(複合酸化物も含む);活性炭もしくは金属酸化物と活性炭の混合物などが挙げられる。これら触媒成分Aの固体触媒中に占める比率は30〜99.95質量%の範囲が好ましい。触媒成分Aを30質量%以上の比率で配合すると、固体触媒の耐久性が向上するからである。
【0036】
触媒成分Bの好ましい具体例としては、前述した元素からなる金属や酸化物および複合酸化物が挙げられる。固体触媒中に占めるこれら触媒成分Bの比率は0.05〜70質量%の範囲が好ましい。その配合比率を0.05質量%以上とすることで、排水中の有害物質の酸化および/または分解をより効率よく進めることができるからである。
【0037】
尚、前記元素のうち、銀、金、白金、パラジウム、ロジウム、ルテニウムおよびイリジウム(以下、「B-1成分」という)を選択する場合は、当該金属および/または化合物の合計量を、固体触媒中に占める比率で0.05〜10質量%とするのがよい。10質量%を超える比率で使用しても、それに相応した湿式酸化効率の向上は認められず、高価な原料であるため固体触媒がコスト高になり経済的に不利となるからである。上記以外の金属、即ちマンガン、コバルト、ニッケル、セリウム、タングステンおよび銅(以下、「B-2成分」という)を選択する場合は、当該金属および/または化合物の合計量を、固体触媒中に占める比率で0.05〜70質量%とするのがよい。合計量が0.05〜70質量%の範囲であれば、上記B-1成分とB-2成分とを各々0.05〜10質量%および0.05〜70質量%の範囲で適宜組み合わせて用いることもできる。
【0038】
上記固体触媒の中でも、触媒成分BとしてB-1成分を含有するものは、とりわけ優れた触媒活性を示すので好ましい。またB-1成分の中でも、特に、白金、パラジウム、ロジウム、ルテニウムおよびイリジウムから選ばれる少なくとも1種の元素の金属および/または化合物を含有するものは、高レベルの触媒活性を発揮するので好ましい。B-2成分の中では、マンガン、コバルト、ニッケルおよび銅が好ましく使用される。
【0039】
固体触媒の形状は特に制限がなく、例えば粒状、球状、ペレット状、リング状、破砕片状、ハニカム状など種々の形状のものを使用できる。しかし、コストや取扱い性などを考慮すると、球状やペレット状に成形したものが最適である。
【0040】
本発明において、反応塔内へ固体触媒を充填するに当っては、その前段部に、気液を効率よく撹拌して接触効率を高めつつ、且つ気液の偏流を抑えるため、充填物を充填することも有効である。充填物としては、気液接触効率を高め得るものであれば、材質、種類、大きさ等は一切制限されず、種々の充填物を用いることができる。充填物の材質の例としては、例えば金属やセラミック、ガラス、樹脂などが挙げられる。また、充填物の形状としては、例えばペレット状、球状、粒状、リング状(ラシヒリング、レッシングリング、ボールリングなど)、ハニカム状、網状、網や板を織物構造に成形したものなどが挙げられる。充填物の大きさも特に限定されないが、ペレット状、球状、粒状、リング状の充填物の場合は3mm〜50mm程度のものが好ましい。
【0041】
本発明の湿式酸化処理装置においては、上記反応塔7内の上部、すなわち反応塔7の気液入口部に気液分散部材を設置し、触媒充填層の流路幅方向への液体の分散効率を高めることにより、連続層を構成する気体(酸素含有ガス)と液体および触媒との接触効率を高め、湿式酸化処理効率の向上を図る。以下、図面を参照しつつ本発明の主体となる気液分散部材について説明を進める。
【0042】
図2,3は液穴型の気液分散部材を例示する概略平面図及び縦断面説明図であり、反応塔7内の上部に流路を遮断するように分散板16が配置されており、該分散板16には、液体が流下するための液穴14と、気体が通過するためのガス導通部15が設けられている。液穴14の形状には特に制限がなく、円形、楕円形、多角形など種々の形状のものを採用できる。液穴14の相当径や数は、液体の通過線速で好ましくは0.02m/s以上10m/s以下、より好ましくは0.05m/s以上5m/s以下、更に好ましくは0.1m/s以上2m/s以下となるように決定すればよい。液体の通過線速が10m/sを超えると、圧力損失が大きくなるため好ましくない。一方、通過線速が0.02m/s未満では、ガスの通り抜けが生じ易くなるため好ましくない。
【0043】
なお上記でいう相当径とは、断面形状の全辺長を4で除した数値を意味する。例えば、1辺が1000mmの正方形では1000×4/4=1000mmとなり、相当径は1000mmとなる。以下、特に断りのない限り、径、内径、直径の意味には、相当径も含まれる。
【0044】
液穴14の数は、1枚の分散板16当りに少なくとも1個/m2以上、好ましくは5個/m2以上、更に好ましくは10個/m2以上で、かつ500個/m2以下、より好ましくは400個/m2以下、更に好ましくは300個/m2以下とするのがよい。また、液穴14の相当径は0.1mm〜分散板径の1/4とするのがよく、更に好ましくは1mm〜分散板径の1/10、特に好ましく3mm〜分散板径の1/20の範囲である。該液穴14の開口率は、反応塔7の内径断面積に対して0.005〜30%の範囲が好ましく、より好ましくは0.05〜10%、更に好ましくは0.1〜3%である。液穴14の孔径が小さいほど分散効率は向上するが、小さ過ぎると排水中に含まれる固形物などによって目詰まりを起こす原因になる他、分散板16に液穴14を穿設するための加工も煩雑になる。なお、各液穴14の相当径は同一とするのが一般的であるが、異なる径の液穴14を設けた場合でも基本的に同じ分散効果を得ることができる。
【0045】
ガス導通部15の構造も特に限定されないが、上方から供給される気液混合流体が直接通過することのない様、開口部15aを側面に設けることが好ましい。開口部15aの面積も特に限定されないが、当該気液分散部材の前後の圧力損失が0〜0.3MPaの範囲となる様に設計することが望ましい。ガス導通部15の形状にも格別の制限はなく、角柱状、円柱状、角錐状、円錐状など何れであってもよい。
【0046】
また、ガス導通部15の側面に形成される開口部15aの位置は、分散板16上に形成される液溜りの液面より高い位置にする必要がある。液体が開口部15aから流出すると、本発明で意図する気液分散状態が得られなくなるからである。開口部15aの位置は、液溜りの液面より10mm以上高くすることが好ましく、30mm以上高くすることがより好ましく、50mm以上高くすることが更に好ましい。
【0047】
図4,5は、オーバーフロー型の気液分散部材を例示する平面説明図及び縦断面説明図であり、前記図2,3の例と同様に、反応塔7内の上部に気液流路を遮断する様に分散板18が配置され、該分散板18には、気液が流下するためのオーバーフローパイプ17が設けられている。オーバーフローパイプ17は、分散板18に穿設した穴の上方に、該穴と同じ断面形状の管を延設することによって形成する。オーバーフローパイプ17の断面形状は特に限定されるものではなく、円形、楕円形、多角形など種々の形状のものを用いることができる。
【0048】
オーバーフローパイプ17の数は、1枚の分散板18につき少なくとも1本/m2以上、好ましくは5本/m2以上、更に好ましくは10本/m2以上で、かつ500本/m2以下、より好ましくは400本/m2以下、更に好ましくは300本/m2以下とするのがよく、また、該オーバーフローパイプ17の相当径は10mm〜分散板径の1/4、より好ましくは15mm〜分散板径の1/10、更に好ましくは20mm〜分散板径の1/20とするのがよい。該オーバーフローパイプ17の開口率は、反応塔7の内径断面積に対して5〜50%、より好ましくは7〜45%、更に好ましく10〜40%の範囲が望ましい。
【0049】
気液のうち、液体は分散板18上に液溜りを形成し、オーバーフローパイプ17の内壁を伝って流下する。オーバーフローパイプ17の上端には、液体の溢流を円滑にするため切込み(ノッチ)を設けておくことが好ましい。切込みの形に格別の制限はなく、例えば、角状、V字状、円弧状などが挙げられる。また、オーバーフローパイプ17の下端にも、液体を円滑に流下させるため角状やV字状の足を設けることも有効である。
【0050】
各オーバーフローパイプ17の断面形状や相当径は同一とするのが一般的であるが、これに限らず、異なる形状や相当径のものを複数本設けた場合でも、基本的に同じ分散効果を得ることができる。
【0051】
上記図示例の如く触媒充填層の上方に気液分散部材を設置し、該気液分散部材によって液体を触媒充填層の流路幅方向に分散させて供給すると、液体が該触媒充填層の一部を偏って流れることがなく全面を万遍なく流れる。その結果、液体は連続層を構成する気体(酸化性ガス)および触媒とも均等に接触し、触媒充填層全体で湿式酸化が効率よく進行することになる。
【0052】
よって本発明で使用する気液分散部材は、上記均一分散効果を有効に発揮し得る限り具体的な形状、構造などは特に制限されず、図示したもの以外にも様々の形状・構造のものを使用できる。
【0053】
上記の様に本発明では、反応塔内における触媒充填層の上方に気液分散部材を配置し、該分散部材により触媒充填層へ供給される液体を触媒充填層の流路幅方向に極力均一に分散させることによって、触媒と被処理流体との接触効率を高め得る様にしたところに特徴を有しているが、こうした効果を一層高めるための更なる手段として、該気液分散部材の上方には、予め気液を分離する気液分離部を設け、該気液分離部から液導通管を通して液体が気液分散装置へ供給されるようにすることも、好ましい実施形態として推奨される。気液分離部の形状は、反応塔上部から供給される気液を分離し、気液分散部材上面側の液溜り部の液面を乱さない様に液体をスムーズに供給し得る構造のものが好ましく、その具体的な構造は特に限定されない。
【0054】
気液分離部の一例を図6,7に示す。図6では、気液導入管19を通して上方から供給されてくる気液混合流体をトレイ20で受ける。トレイ20の下面には液導通管21が設けられており、液体は液導通管21を通って下方へ供給され、気体はトレイ20の開放された上面から放出される。トレイ20は1段だけでもよいが、液面の乱れを極力少なくするには複数段設けることが好ましい。トレイ20や液導通管21の形状は特に限定されず、円形、楕円形、多角形など如何なる形状のものであっても構わない。液導通管21の数や相当径にも格別の制限はないが、液導通管21内に気体が混入すると、該導通管21の下端から気体が噴出し、分散板18上に形成されている液溜り部の液面を乱すので、こうした現象を防止するには、トレイ20上に液溜りができるように考慮することが望ましい。
【0055】
トレイ20を複数段設ける場合、各段のトレイ20の大きさや形状は同一であってもよく、異形であってもよい。またトレイ20を複数段設ける場合、最下段のトレイ20には液導通管21を設けて下方の気液分散装置へ液体を供給するが、最下段以外のトレイ20には液導通管21を設けず、トレイ20から液体をオーバーフローさせて下段へ流下するようにすることもできる。この場合、下段側のトレイは上段側のトレイよりも大きめに設計すべきであり、また該トレイの上側周縁部に液体の溢流用として角状やV字型の切込み(ノッチ)を設けること有効である。
【0056】
図7の例では、気液導入管22の上面に開口部22aが設けられている。そして、気体はこの開口部22aから排出され、液体は、気液導入管22の下面側に設けられた液導通管23を通って下方へ供給される。液導通管23の形状は特に限定されるものではなく、円形、楕円形、多角形などいずれの形であってもよい。液導通管23の数や相当径も任意に設定できるが、該液導通管23に気体が混入するのを防止するには、気液導入管22内に液溜りができるように配慮するのがよい。また、液導通管23の下方に図6に示した様なトレイ20を設けておけば、気液分散効果を更に高めることができるので好ましい。
【0057】
反応塔7内に充填される固体触媒(および/または充填物)の充填層が長い場合は、該充填層を複数層に分割することも有効である。具体的には、固体触媒(および/または充填物)充填層の層長が2500mm以上、特に3000mm以上である場合は、該充填層を複数に分割することが望ましい。そして、複数に分割した各充填層の上部に、前述したのと同様の気液分散部材や気液分離部を設け、夫々の充填層で気液の偏流を低減し得る様にすることが好ましい。
【0058】
再び図1に沿って説明を進めると、反応塔7で処理された処理液は、必要に応じて熱交換器5や冷却器8で冷却された後、気液分離器9で気体と液体に分離される。この際、熱交換器5と冷却器8は両方設けてもよく、場合によっては一方だけで済ませることも可能である。
【0059】
また、図1に示した様な設備を自動運転する際には、気液分離器9に液面コントローラーLCを設けて液面を検出し、液面制御弁10によって気液分離器9内の液面が一定となるように制御することが望ましい。ここで「一定」とは、液面が一定位置あるいは一定の範囲内であることを意味する。
【0060】
なお、処理を終えた水は冷却した後、圧力調節弁(図示せず)を経て排出し、気液分離器9によって気体と液体に分離してもよい。
【0061】
気液分離器9で分離された液体は処理水排出ライン11を通して排出されるが、この処理水は処理液タンク(図示せず)へ送液してもよく、あるいは生物処理など公知の方法で更に浄化処理してもよい。
【0062】
気液分離器9における気体側の圧力は圧力コントローラーPCによって検知し、圧力制御弁12を作動させて圧力を適正値に維持することが望ましい。気液分離器9で分離された気体は、排ガス排出ライン13から大気中に放出してもよく、あるいは更に他の方法で処理してもよい。
【0063】
【実施例】
以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0064】
実施例1
排水中の有害物質を処理するため、図1に示したフロー図に従って湿式酸化処理を行った。処理に供した排水は、化学プラントから排出された排水であり、アルコールやアルデヒド、カルボン酸などの化合物を含み、COD(Cr)濃度は25,000mg/リットル、pHは7.5であった。
【0065】
反応塔7としては、内径400mm、長さ3,000mmの円筒状のものを用いた。反応塔7の内部には、触媒充填層長が2,000mmとなる様に触媒250リットルを充填した。なお触媒としては、チタン−鉄系酸化物に白金0.3質量%を担持した触媒(形状は直径5mm、長さ5mmのペレット状)を使用した。
【0066】
反応塔7内の触媒充填層の上部には、図2,3に示した様な気液分散部材と図7に示した様な気液分離部を配置した。但し、気液分散部材の液穴は内径3mmの円形とし、個数は12個(95個/m2)とした。
【0067】
排水を排水供給ライン1からポンプ2を経て250リットル/hrの流量で昇圧フィードする一方、酸素含有ガス供給ライン3からは酸素含有ガスとして空気を23m3 N/hr(理論酸素要求量の1.1倍相当量)の流量で導入し、圧縮機4で昇圧してから排水に混入させた。得られる気液混合流体を熱交換器5で加熱し、更に加熱器6で210℃に昇温してから反応塔7へ導入し、同温度で湿式酸化処理を行った。反応塔7で処理された処理流体は、熱交換器5および冷却器8で冷却してから気液分離器9へ導入した。気液分離器9では、液面コントローラー(LC)で液面を検出しつつ液面制御弁10を作動させることによって液面を一定に保持すると共に、圧力コントローラー(PC)で圧力を検出しつつ圧力制御弁12を作動させることによって、圧力を3.0MPaに保持し、処理液は処理水排出ライン11から排出した。
【0068】
処理水のCOD(Cr)濃度は860mg/リットルであり、COD(Cr)処理効率は96.6%であった。
【0069】
実施例2
反応塔7内の触媒充填層の上部に、前記図4,5に示した構造の気液分散部材と図6に示した構造の気液分離部を設置し、それ以外は前記実施例1と同様にして化学プラントからの排水処理を行った。但し、気液分散部材のオーバーフローパイプは、内径25mmの円柱状のもので、数は35本(279本/m2)とし、長さは分散板上面から150mmとした。その結果、処理水のCOD(Cr)濃度は790mg/リットル、COD(Cr)処理効率は96.8%であった。
【0070】
比較例1
反応塔7内の触媒充填層の上部に気液分散部材を設置しなかった以外は、前記実施例1と全く同様にして化学プラントからの排水処理を行った。その結果、処理水のCOD(Cr)濃度は11,900mg/リットル、COD(Cr)処理効率は52.4%であった。
【0071】
【発明の効果】
本発明は以上の様に構成されており、排水を気液下向流方式で固体触媒を用いて湿式酸化処理する際に、触媒充填層の上方に気液分散部材を設け、或いは更にその上方に気液分離部を配置し、触媒充填層方向へ供給される流体を当該触媒充填層の流路幅方向に分散させることによって、気液と触媒の接触効率を高めることができるので、気体中に含まれる酸素と液体中に含まれる被酸化性物質の接触効率が向上すると共に、気液と触媒の接触効率も向上し、排水の湿式酸化処理効率を大幅に高めることができ、延いては、設備費や運転費を低減し得ると共に、固体触媒の耐久性も向上し得ることになった。
【図面の簡単な説明】
【図1】本発明に係る排水処理法の一例を示すフロー図である。
【図2】本発明で使用する気液分散部材の一例を示す平面説明図である。
【図3】本発明で使用する気液分散部材の一例を示す縦断面説明図である。
【図4】本発明で使用する他の気液分散部材を例示する平面説明図である。
【図5】本発明で使用する他の気液分散部材を例示する縦断面説明図である。
【図6】本発明で使用する気液分離部の一例を示す斜視説明図である。
【図7】本発明で使用する気液分離部の他の例を示す斜視説明図である。
【符号の説明】
1 排水供給ライン
2 ポンプ
3 酸素含有ガス供給ライン
4 圧縮機
5 熱交換器
6 加熱器
7 反応塔
8 冷却器
9 気液分離器
10 液面制御弁
11 処理水排出ライン
12 圧力制御弁
13 排ガス排出ライン
14 液穴
15 ガス導通部
16 分散板
17 オーバーフローパイプ
18 分散板
19 気液導入管
20 トレイ
21 液導通管
22 気液導入管
23 液導通管
[0001]
BACKGROUND OF THE INVENTION
The present invention is discharged from various industrial plants such as chemical plants, electronic component manufacturing facilities, food processing facilities, printing plate making facilities, power generation facilities, photo processing facilities, metal processing facilities, metal plating facilities, metal refining facilities, and paper pulp manufacturing facilities. And methods for purifying various wastewaters such as domestic wastewater such as human waste, sewage and sewage, waste incinerator wastewater, landfill leachate, etc. An improved wet oxidation method that improves the contact efficiency between gas and liquid by increasing the dispersion efficiency of gas and liquid when the above wastewater is wet-oxidized in the countercurrent system, and can improve the treatment performance. It relates to the device.
[0002]
[Prior art]
Conventionally, when supplying a gas and a liquid to a reaction tower, a gas-liquid dispersion member is often provided at the inlet of the reaction tower, and in the case of a gas-liquid upward flow method in which the liquid becomes a continuous phase, A sparger ring, a sintered tube, a porous orifice plate, a single-hole orifice plate or the like may be installed as a gas-liquid dispersion member at the lower part of the plate (for example, see Patent Document 1). Also, in the case of the gas-liquid downward flow method in which the gas becomes a continuous phase, it is conceivable to install a spray nozzle, a notch trough, a perforated plate, and the like.
[0003]
By the way, in the wet oxidation treatment using a catalyst, a gas-liquid upward flow system is usually employed in order to make the liquid a continuous phase as seen in Patent Document 1 and the like. By the way, when the catalytic wet oxidation process is performed by the gas-liquid down-flow method, the contact efficiency between the gas-liquid and the catalyst is low and a large amount of catalyst is required, so the equipment cost and operating cost increase, or the durability of the solid catalyst In addition, if wet oxidation using a catalyst is performed in a gas-liquid down-flow system, it is predicted that gas-liquid will drift in the catalyst layer and the processing performance will decrease. It is.
[0004]
However, as far as the present applicant knows, when the wastewater is wet-oxidized by a gas-liquid downflow method using a catalyst, a specific method for uniformizing the dispersion of the fluid to be treated supplied to the catalyst packed bed is used. No means are presented.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-118473 (claims, etc.).
[0006]
[Problems to be solved by the invention]
The present invention focuses on a method of wet oxidation treatment of wastewater containing an oxidizable substance in a gas-liquid downflow system using a solid catalyst under the circumstances as described above. An object of the present invention is to provide a wet oxidation method and apparatus capable of further improving the efficiency and extending the life of the wet oxidation catalyst, thereby reducing the equipment cost and increasing the operation efficiency.
[0007]
[Means for Solving the Problems]
The wet oxidation method according to the present invention, which has solved the above-mentioned problems, refers to a wet oxidation reaction when a wastewater containing an oxidizable substance is subjected to a wet oxidation treatment in a gas-liquid downflow system using a solid catalyst. The gist lies in that a gas-liquid dispersion member is installed above the solid catalyst packed bed in the tower and the waste water is dispersed in the flow path width direction of the packed bed above the catalyst packed bed.
[0008]
In carrying out the above method, if the gas-liquid dispersion member is of an overflow type and the liquid is overflowed and dispersedly supplied in the direction of the catalyst packed bed below, the dispersion efficiency can be improved more reliably. Preferably, if a gas-liquid separation unit is provided above the gas-liquid dispersion member to separate the gas and liquid in advance, and the liquid is supplied from the gas-liquid separation unit to the gas-liquid dispersion member through the liquid conduction pipe, It is preferable because the dispersion efficiency can be further improved.
[0009]
The wet oxidation treatment apparatus according to the present invention provides an apparatus suitable for carrying out the treatment method, and a gas-liquid dispersion member is installed above the solid catalyst packed bed in the wet oxidation reaction tower. There is a gist there. Also in this apparatus, the gas-liquid dispersion member installed on the upper part of the solid catalyst packed bed is particularly preferably an overflow type, and the gas-liquid separation that separates the gas-liquid in advance on the gas-liquid dispersion member It is recommended that the gas can be supplied to the gas-liquid dispersion member from the gas-liquid separation part through the liquid conducting tube so that the gas-liquid dispersion efficiency can be further improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have conducted wet oxidation treatment of wastewater containing an oxidizable substance by a gas-liquid downflow system using a solid catalyst. If a gas-liquid dispersion member is installed in the upper part of the oxidation reaction tower, the drift of the fluid to be treated in the solid catalyst packed bed is suppressed and the contact efficiency between the gas and the liquid and the catalyst is improved, so that the processing efficiency is greatly improved. As a result, the present invention has been completed.
[0011]
Hereinafter, the method and apparatus of the present invention will be described in detail.
[0012]
The present invention uses waste water containing an oxidizable substance as a liquid to be treated, and performs wet oxidation treatment in a gas-liquid downflow system using a solid catalyst. A gas-liquid dispersion member is installed in the upper part of the catalyst packed bed to disperse the drainage in the flow path width direction of the packed bed.
[0013]
In the case where the wastewater is wet-oxidized by a gas-liquid downward flow method using a solid catalyst, a gas-liquid dispersion member is installed at the upper part in the wet oxidation reaction tower (hereinafter sometimes simply referred to as a reaction tower). Dispersion efficiency of gas and liquid in the catalyst packed bed is improved, contact efficiency between the gas and liquid is increased, and processing performance is improved. As a result, the efficiency of the wet oxidation treatment is improved, and as a result, the equipment cost and the operating cost can be reduced. Moreover, since the entire solid catalyst packed in the reaction tower is uniformly and uniformly subjected to wet oxidation, local deactivation is unlikely to occur, and the durability of the catalyst is improved.
[0014]
If the wastewater to be treated contains SS (Suspended Solids) components or ions that generate solids in the catalytic wet oxidation process, an overflow type gas-liquid dispersion member should be used. It is preferable to use it. In the case of such drainage, if a gas-liquid dispersion member other than the overflow type (for example, liquid hole type) is used, the solid hole may block the liquid hole for the liquid to flow down, and the gas liquid may not be uniformly dispersed. Because there is.
[0015]
In order to further increase the dispersion efficiency when the overflow type gas-liquid dispersion member is used, it is preferable to suppress as much as possible the disturbance of the liquid surface of the liquid reservoir formed on the upper surface side of the dispersion member. That is, when the gas / liquid is supplied directly from above to the gas / liquid dispersion member, the liquid level of the liquid reservoir portion is often disturbed. Therefore, in order to further enhance the gas / liquid dispersion effect, the gas / liquid is disposed above the gas / liquid dispersion member. Is preferably separated in advance, and the liquid is supplied so that the liquid level in the liquid reservoir is not disturbed.
[0016]
Therefore, as will be described in detail later, it is possible to provide a gas-liquid separation unit above the gas-liquid dispersion member, and perform gas-liquid separation in advance at the gas-liquid separation unit before sending the liquid toward the gas-liquid dispersion member. It is recommended as a preferred embodiment when practicing the present invention.
[0017]
Examples of the wastewater to which the present invention is applied include chemical plants, electronic component manufacturing equipment, food processing equipment, printing plate making equipment, power generation equipment, photo processing equipment, metal processing equipment, metal plating equipment, metal refining equipment, and paper pulp manufacturing. Various types of wastewater such as wastewater discharged from various industrial plants such as facilities, domestic wastewater such as manure and sewage, waste incinerator wastewater such as wet smoke washing wastewater, and landfill leachate. In order to clean the soil containing harmful substances, an extract obtained by extracting the harmful substances in the soil with water or the like can also be treated as the wastewater to be treated of the present invention.
[0018]
Among them, the present invention is an apparatus for producing aliphatic carboxylic acids such as acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester and aliphatic carboxylic acid ester; aromatic carboxylic acid such as terephthalic acid and terephthalic acid ester; Production equipment for aromatic carboxylic acid esters; equipment for EOG production; equipment for producing alcohol such as methanol, ethanol, and higher alcohol; or wastewater containing organic matter discharged from food additives, pharmaceuticals, industrial chemical production equipment, etc. It can be effectively used for ammonia-containing wastewater discharged from electronic parts manufacturing facilities.
[0019]
The “oxidizable substance” contained in the waste water means an organic and / or inorganic compound that can be purified by oxidation / decomposition treatment, and various organic compounds, sulfur compounds, nitrogen compounds, organic halogen compounds, organic compounds. Phosphorus compounds and the like are included. Specifically, organic compounds such as methanol, ethanol, acetaldehyde, formic acid, acetone, acetic acid, propionic acid, tetrahydrofuran and phenol; nitrogen compounds such as ammonia, hydrazine, nitrite, dimethylformamide, monoethanolamine, pyridine and urea ; Sulfur compounds such as thiosulfate, sodium sulfide, dimethyl sulfoxide, alkylbenzene sulfonate; hydrogen peroxide and the like, of course, but not limited thereto. These oxidizable substances may be dissolved in the waste water or may be contained as a suspended substance.
[0020]
Oxidation / decomposition treatment here refers to, for example, oxidation treatment that converts ethanol into acetic acid, oxidative decomposition treatment that decomposes acetic acid into carbon dioxide and water, decarboxylation treatment that converts acetic acid into carbon dioxide and methane, and low molecular weights of various organic substances. Oxidative decomposition treatment, hydrolytic treatment to decompose urea into ammonia and carbon dioxide, oxidative decomposition treatment to convert ammonia and hydrazine into nitrogen gas and water, decomposition treatment to convert nitrate ion and nitrite ion into nitrogen gas, organic halogen compounds Including the dechlorination treatment of toxic substances in the wastewater, it means a treatment that converts the harmful substances in the wastewater into substantially harmless ones.
[0021]
In the present invention, “liquid” means liquid, and includes all of water, various wastewaters, organic solvents, inorganic and / or organic substance aqueous solutions, oil-water mixed dispersions and suspensions, slurries, etc. There are no restrictions on properties.
[0022]
In addition, the type of “gas” in the present invention is not particularly limited, and includes oxygen-containing gas, water vapor, organic vapor, carbon dioxide, and the like.
[0023]
Hereinafter, the wet oxidation method and apparatus of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited by the illustrated examples, and can be adapted to the purpose described above and below. Of course, it is possible to implement the design with appropriate changes within the range.
[0024]
FIG. 1 is a basic processing flow diagram of wastewater treatment to which the wet oxidation treatment of the present invention is applied, and wastewater to be treated is supplied from a wastewater supply line 1 after being boosted by a pump 2. On the other hand, an oxygen-containing gas is introduced from the oxygen-containing gas supply line 3, and the pressure is increased by the compressor 4 and then mixed into the wastewater to be treated. The obtained gas-liquid mixed fluid is heated by the heat exchanger 5 and further heated to a predetermined temperature by the heater 6, and then introduced into the wet oxidation reaction tower 7 filled with the solid catalyst, where the wet oxidation treatment is performed. Is called.
[0025]
The space velocity (LHSV) when the pressure is increased after being pumped by the pump 2 is not particularly limited, and may be appropriately determined according to the wet oxidation treatment capability of the reaction tower.-1Or more, preferably 0.15 hr-1Or more, more preferably 0.2 hr-110hr-1Or less, more preferably 7 hr-1Or less, more preferably 5 hr-1It is good to adjust so that it may become the following. By the way, space velocity is 0.1hr-1Less than 10 hours, the amount of processing per unit time may be insufficient and excessive equipment may be required.-1If the space velocity is excessively increased beyond this value, the purification action by wet oxidation may be insufficient.
[0026]
As shown in the drawing, the wet oxidation process employing the present invention is performed in the presence of an oxygen-containing gas. The type of oxygen-containing gas is not particularly limited, and pure oxygen, oxygen-enriched gas, air, ozone, hydrogen peroxide, etc. can be used, and oxygen-containing gas generated in other plants can also be used. . Among these, air is most preferable from the viewpoint of economy. When pure oxygen, ozone, or the like is used, it can be diluted with air or an inert gas.
[0027]
There is no particular limitation on the supply amount of the oxygen-containing gas, and an amount necessary for oxidizing and decomposing the harmful substances in the wastewater may be supplied. A preferable supply amount of the oxygen-containing gas is 0.4 times or more, more preferably 0.5 times or more, preferably 5.0 times or less, more preferably 3.0 times or less the theoretical oxygen demand of the waste water. If the supply amount of oxygen-containing gas is less than 0.4 times the theoretical oxygen demand, the oxidative decomposition of hazardous substances contained in the waste water may be insufficient, while the supply amount exceeds 5.0 times. However, the wet oxidation performance does not increase further, and not only the consumption of the oxygen-containing gas increases unnecessarily, but also the equipment is unnecessarily increased in size, which is useless. Here, the “theoretical oxygen demand” refers to the amount of oxygen necessary for decomposing the oxidizable substance in the wastewater into ash such as nitrogen, carbon dioxide, water, or sulfate.
[0028]
In the illustrated example, the gas-liquid mixed fluid in which oxygen-containing gas is mixed into the waste water is preheated by the heat exchanger 5, further heated to a predetermined temperature by the heater 6, and then supplied to the reaction tower 7. Although an example is shown, the heating method is of course not limited to this, and it may be heated by only one of the heat exchanger 5 and the heater 6, or a heater (not shown) in the pipeline or the reaction tower 7 may be used. ) Or the like may be provided for heating. These heating means may be employed alone, or two or more heating means may be arbitrarily combined and employed.
[0029]
Further, the gas-liquid mixed fluid supplied to the heat exchanger 5 is heat-exchanged with the high-temperature processing liquid discharged after being wet-oxidized in the reaction tower 7 or discharged from another plant. Heat exchange may be performed with a high-temperature gas or liquid, and the heat medium and heating means for heating the gas-liquid mixed fluid are not limited at all.
[0030]
In the reaction tower 7, catalytic wet oxidation is performed in a gas-liquid downward flow system. The preferred temperature for performing catalytic wet oxidation in the reaction tower 7 is affected by other conditions (type and concentration of oxidizable substances contained in the waste water, flow rate of waste water, type of catalyst, etc.), but 370 If it exceeds ℃, it becomes difficult to maintain the wastewater in the liquid phase state, and the equipment becomes larger, and the running cost may increase, so the processing temperature is 370 ° C or less, more preferably 300 ° C or less, more preferably It should be 280 ° C or lower. Further, when the catalyst contains a combustible component such as carbon, it is necessary to suppress the heating temperature to a temperature at which the catalyst does not burn, preferably 200 ° C. or less, more preferably 170 ° C. or less. However, when the heating temperature is less than 30 ° C., the wet oxidation reaction may not easily proceed efficiently. Therefore, it is preferably 30 ° C. or more, more preferably 40 ° C. or more, and further preferably 45 ° C. or more.
[0031]
In the catalytic wet oxidation reaction performed using the apparatus of the present invention, it is desirable to adjust the pressure condition so that the wastewater can maintain the liquid phase, and the specific pressure may be appropriately selected in consideration of the relationship with the treatment temperature.
[0032]
The type, shape, and structure of the reaction tower 7 used in the present invention are not particularly limited, and may be either a single tube type or a multi-tube type. In some cases, a plurality of the same or different structures can be used in combination.
[0033]
In the present invention, the reaction tower 7 is filled with a solid catalyst, and waste water is passed through the catalyst packed bed, whereby the oxidizable substance in the waste water is subjected to wet oxidation treatment. As the solid catalyst used here, any solid catalyst that exhibits oxidation and resolution under wet conditions can be used, and a known solid catalyst widely used for wet oxidation treatment can also be used. As a preferred specific example, as a catalyst having both oxidation activity and durability under wet oxidation conditions, for example, titanium, silicon, aluminum, zirconium, manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, gold, Examples thereof include a catalyst containing at least one element selected from platinum, palladium, rhodium, ruthenium, iridium and the like, and / or activated carbon. The activated carbon here includes not only ordinary activated carbon but also activated coke, graphite carbon, activated carbon fiber and the like.
[0034]
Among them, particularly preferred is a solid catalyst containing the following catalyst component A and catalyst component B. That is, the preferred catalyst component A is an oxide of at least one element selected from the group consisting of iron, titanium, silicon, aluminum, and zirconium, or activated carbon, and the catalyst component B is manganese, cobalt, nickel And at least one metal selected from the group consisting of cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium and / or a compound thereof.
[0035]
More preferable specific examples of the catalyst component A include metal oxides such as titanium oxide, iron oxide, and zirconium oxide; binary systems such as titanium oxide-zirconium oxide and titanium oxide-iron oxide; System oxide (including composite oxide); activated carbon or a mixture of metal oxide and activated carbon. The ratio of the catalyst component A in the solid catalyst is preferably in the range of 30 to 99.95% by mass. This is because when the catalyst component A is blended at a ratio of 30% by mass or more, the durability of the solid catalyst is improved.
[0036]
Preferable specific examples of the catalyst component B include metals, oxides and composite oxides composed of the elements described above. The ratio of the catalyst component B in the solid catalyst is preferably in the range of 0.05 to 70% by mass. It is because the oxidation and / or decomposition | disassembly of the harmful substance in waste_water | drain can be advanced more efficiently by the mixture ratio being 0.05 mass% or more.
[0037]
In addition, when selecting silver, gold | metal | money, platinum, palladium, rhodium, ruthenium, and iridium (henceforth "B-1 component") among the said elements, the total amount of the said metal and / or compound is solid catalyst. It is good to set it as 0.05-10 mass% in the ratio for which it occupies. Even if it is used at a ratio exceeding 10% by mass, the corresponding improvement in wet oxidation efficiency is not recognized, and since it is an expensive raw material, the cost of the solid catalyst is increased, which is economically disadvantageous. When a metal other than the above, ie, manganese, cobalt, nickel, cerium, tungsten, and copper (hereinafter referred to as “B-2 component”) is selected, the total amount of the metal and / or compound is occupied in the solid catalyst. The ratio is preferably 0.05 to 70% by mass. If the total amount is in the range of 0.05 to 70% by mass, the above B-1 component and B-2 component can be used in appropriate combinations in the range of 0.05 to 10% by mass and 0.05 to 70% by mass, respectively.
[0038]
Among the solid catalysts, those containing the B-1 component as the catalyst component B are preferable because they exhibit particularly excellent catalytic activity. Among the components B-1, those containing at least one elemental metal and / or compound selected from platinum, palladium, rhodium, ruthenium and iridium are particularly preferable because they exhibit a high level of catalytic activity. Among the components B-2, manganese, cobalt, nickel and copper are preferably used.
[0039]
The shape of the solid catalyst is not particularly limited, and various shapes such as a granular shape, a spherical shape, a pellet shape, a ring shape, a crushed piece shape, and a honeycomb shape can be used. However, in consideration of cost, handling properties, etc., those molded into a spherical shape or a pellet shape are optimal.
[0040]
In the present invention, when filling the solid catalyst into the reaction tower, the front stage is filled with a packing material in order to efficiently stir the gas and liquid to increase the contact efficiency and suppress the gas-liquid drift. It is also effective to do. As a filler, as long as the gas-liquid contact efficiency can be improved, the material, type, size and the like are not limited at all, and various fillers can be used. Examples of the material for the filler include metal, ceramic, glass, and resin. Examples of the shape of the filler include pellets, spheres, granules, rings (such as Raschig rings, Lessing rings, and ball rings), honeycombs, nets, and nets or plates formed into a woven structure. The size of the packing is not particularly limited, but in the case of a pellet-shaped, spherical, granular, or ring-shaped packing, a size of about 3 mm to 50 mm is preferable.
[0041]
In the wet oxidation treatment apparatus of the present invention, a gas-liquid dispersion member is installed in the upper part of the reaction tower 7, that is, the gas-liquid inlet of the reaction tower 7, and the liquid dispersion efficiency in the channel width direction of the catalyst packed bed As a result, the contact efficiency between the gas (oxygen-containing gas) constituting the continuous layer, the liquid and the catalyst is increased, and the wet oxidation treatment efficiency is improved. Hereinafter, the gas-liquid dispersion member that is a main component of the present invention will be described with reference to the drawings.
[0042]
2 and 3 are a schematic plan view and a longitudinal sectional explanatory view illustrating a liquid hole type gas-liquid dispersion member, and a dispersion plate 16 is disposed at the upper part in the reaction tower 7 so as to block the flow path, The dispersion plate 16 is provided with a liquid hole 14 through which liquid flows and a gas conduction part 15 through which gas passes. The shape of the liquid hole 14 is not particularly limited, and various shapes such as a circle, an ellipse, and a polygon can be employed. The equivalent diameter and number of the liquid holes 14 are preferably 0.02 m / s or more and 10 m / s or less, more preferably 0.05 m / s or more and 5 m / s or less, and further preferably 0.1 m / s or more and 2 m in terms of the linear velocity of the liquid. / S or less may be determined. If the linear velocity of the liquid exceeds 10 m / s, the pressure loss increases, which is not preferable. On the other hand, a passage linear velocity of less than 0.02 m / s is not preferable because gas can easily pass through.
[0043]
The equivalent diameter mentioned above means a numerical value obtained by dividing the total side length of the cross-sectional shape by 4. For example, a square with a side of 1000 mm has a size of 1000 × 4/4 = 1000 mm, and the equivalent diameter is 1000 mm. Hereinafter, unless otherwise specified, the meaning of diameter, inner diameter, and diameter includes equivalent diameter.
[0044]
The number of liquid holes 14 is at least 1 / m per one dispersion plate 16.2Or more, preferably 5 / m2Or more, more preferably 10 pieces / m2More than 500 pieces / m2Or less, more preferably 400 pieces / m2Or less, more preferably 300 / m2The following is recommended. The equivalent diameter of the liquid hole 14 is preferably 0.1 mm to 1/4 of the dispersion plate diameter, more preferably 1 mm to 1/10 of the dispersion plate diameter, particularly preferably 3 mm to 1/20 of the dispersion plate diameter. It is a range. The opening ratio of the liquid hole 14 is preferably in the range of 0.005 to 30%, more preferably 0.05 to 10%, and still more preferably 0.1 to 3% with respect to the inner diameter cross-sectional area of the reaction tower 7. The dispersion efficiency improves as the hole diameter of the liquid hole 14 is smaller, but if it is too small, clogging may occur due to solids contained in the drainage, and processing for drilling the liquid hole 14 in the dispersion plate 16 It becomes complicated. Although the equivalent diameters of the liquid holes 14 are generally the same, even when the liquid holes 14 having different diameters are provided, basically the same dispersion effect can be obtained.
[0045]
The structure of the gas conduction part 15 is not particularly limited, but the opening 15a is preferably provided on the side surface so that the gas-liquid mixed fluid supplied from above does not pass directly. The area of the opening 15a is not particularly limited, but it is desirable to design the pressure loss before and after the gas-liquid dispersion member to be in the range of 0 to 0.3 MPa. The shape of the gas conduction portion 15 is not particularly limited, and may be any shape such as a prismatic shape, a cylindrical shape, a pyramid shape, or a conical shape.
[0046]
Further, the position of the opening 15a formed on the side surface of the gas conduction part 15 needs to be higher than the liquid level of the liquid pool formed on the dispersion plate 16. This is because when the liquid flows out from the opening 15a, the gas-liquid dispersion state intended in the present invention cannot be obtained. The position of the opening 15a is preferably 10 mm or more higher than the liquid level of the liquid reservoir, more preferably 30 mm or more, and still more preferably 50 mm or more.
[0047]
4 and 5 are a plan explanatory view and a vertical cross-sectional explanatory view illustrating an overflow type gas-liquid dispersion member, and a gas-liquid flow path is formed in the upper part of the reaction tower 7 in the same manner as in the examples of FIGS. A dispersion plate 18 is disposed so as to be blocked, and the dispersion plate 18 is provided with an overflow pipe 17 for allowing gas and liquid to flow down. The overflow pipe 17 is formed by extending a pipe having the same cross-sectional shape as the hole above the hole formed in the dispersion plate 18. The cross-sectional shape of the overflow pipe 17 is not particularly limited, and various shapes such as a circle, an ellipse, and a polygon can be used.
[0048]
The number of overflow pipes 17 is at least 1 / m per dispersion plate 18.2Or more, preferably 5 / m2Or more, more preferably 10 / m2More than 500 / m2Or less, more preferably 400 / m2Or less, more preferably 300 / m2The equivalent diameter of the overflow pipe 17 is 10 mm to 1/4 of the dispersion plate diameter, more preferably 15 mm to 1/10 of the dispersion plate diameter, and further preferably 20 mm to 1 of the dispersion plate diameter. / 20 is recommended. The opening ratio of the overflow pipe 17 is 5 to 50%, more preferably 7 to 45%, and still more preferably 10 to 40% with respect to the inner diameter cross-sectional area of the reaction tower 7.
[0049]
Of the gas and liquid, the liquid forms a liquid pool on the dispersion plate 18 and flows down along the inner wall of the overflow pipe 17. It is preferable to provide a notch at the upper end of the overflow pipe 17 in order to make the liquid overflow smoothly. There is no particular limitation on the shape of the cut, and examples thereof include a square shape, a V shape, and an arc shape. It is also effective to provide a square or V-shaped leg at the lower end of the overflow pipe 17 so that the liquid flows smoothly.
[0050]
In general, the cross-sectional shape and equivalent diameter of each overflow pipe 17 are the same, but not limited to this, even when a plurality of different shapes and equivalent diameters are provided, basically the same dispersion effect is obtained. be able to.
[0051]
When a gas-liquid dispersion member is installed above the catalyst packed bed as shown in the above example, and the liquid is dispersed and supplied in the flow path width direction of the catalyst packed bed by the gas-liquid dispersing member, the liquid is one of the catalyst packed bed. It flows evenly over the entire surface without flowing unevenly. As a result, the liquid contacts the gas (oxidizing gas) and the catalyst constituting the continuous layer evenly, and the wet oxidation proceeds efficiently in the entire catalyst packed bed.
[0052]
Therefore, the specific shape and structure of the gas-liquid dispersion member used in the present invention are not particularly limited as long as the uniform dispersion effect can be effectively exhibited, and there are various shapes and structures other than those illustrated. Can be used.
[0053]
As described above, in the present invention, the gas-liquid dispersion member is disposed above the catalyst packed bed in the reaction tower, and the liquid supplied to the catalyst packed bed by the dispersing member is as uniform as possible in the flow path width direction of the catalyst packed bed. It is characterized in that the contact efficiency between the catalyst and the fluid to be treated can be increased by dispersing the catalyst in the upper part of the gas-liquid dispersion member. It is also recommended as a preferred embodiment that a gas-liquid separation unit that separates the gas-liquid in advance is provided so that the liquid is supplied from the gas-liquid separation unit to the gas-liquid dispersion device through the liquid conduction pipe. The shape of the gas-liquid separation unit is such that the gas-liquid supplied from the upper part of the reaction tower is separated and the liquid can be smoothly supplied so as not to disturb the liquid level of the liquid reservoir on the gas-liquid dispersion member upper surface side. Preferably, the specific structure is not particularly limited.
[0054]
An example of the gas-liquid separator is shown in FIGS. In FIG. 6, the gas-liquid mixed fluid supplied from above through the gas-liquid introduction pipe 19 is received by the tray 20. A liquid conducting tube 21 is provided on the lower surface of the tray 20, the liquid is supplied downward through the liquid conducting tube 21, and the gas is released from the opened upper surface of the tray 20. The tray 20 may have only one stage, but it is preferable to provide a plurality of stages in order to minimize the liquid level disturbance. The shapes of the tray 20 and the liquid conducting tube 21 are not particularly limited, and may be any shape such as a circle, an ellipse, or a polygon. There are no particular restrictions on the number or equivalent diameter of the liquid conduction pipes 21, but when gas is mixed into the liquid conduction pipe 21, the gas is ejected from the lower end of the conduction pipe 21 and formed on the dispersion plate 18. Since the liquid level of the liquid reservoir is disturbed, it is desirable to consider so that the liquid can be accumulated on the tray 20 in order to prevent such a phenomenon.
[0055]
When a plurality of trays 20 are provided, the size and shape of the trays 20 in each step may be the same or different. When multiple trays 20 are provided, a liquid conduction pipe 21 is provided on the lowermost tray 20 to supply liquid to the gas-liquid dispersion device below, but liquid conduction pipes 21 are provided on the trays 20 other than the lowermost stage. Alternatively, the liquid may overflow from the tray 20 and flow down to the lower stage. In this case, the lower tray should be designed to be larger than the upper tray, and it is effective to provide a square or V-shaped notch for overflowing the liquid at the upper peripheral edge of the tray. It is.
[0056]
In the example of FIG. 7, an opening 22 a is provided on the upper surface of the gas-liquid introduction tube 22. The gas is discharged from the opening 22a, and the liquid is supplied downward through the liquid conduction pipe 23 provided on the lower surface side of the gas-liquid introduction pipe 22. The shape of the liquid conducting tube 23 is not particularly limited, and may be any shape such as a circle, an ellipse, or a polygon. The number and the equivalent diameter of the liquid conduction pipes 23 can be arbitrarily set. However, in order to prevent gas from being mixed into the liquid conduction pipes 23, consideration should be given so that liquid can be accumulated in the gas-liquid introduction pipes 22. Good. Further, it is preferable to provide a tray 20 as shown in FIG. 6 below the liquid conduction tube 23 because the gas-liquid dispersion effect can be further enhanced.
[0057]
When the packed bed of the solid catalyst (and / or packed material) packed in the reaction tower 7 is long, it is also effective to divide the packed bed into a plurality of layers. Specifically, when the layer length of the solid catalyst (and / or packing) packed bed is 2500 mm or more, particularly 3000 mm or more, it is desirable to divide the packed bed into a plurality of layers. And it is preferable to provide a gas-liquid dispersion member and a gas-liquid separation part similar to those described above at the upper part of each packed bed divided into a plurality, so that the gas-liquid drift can be reduced in each packed bed. .
[0058]
Referring again to FIG. 1, the processing liquid processed in the reaction tower 7 is cooled by the heat exchanger 5 and the cooler 8 as necessary, and then converted into gas and liquid by the gas-liquid separator 9. To be separated. At this time, both the heat exchanger 5 and the cooler 8 may be provided. In some cases, only one of them may be used.
[0059]
In addition, when the equipment as shown in FIG. 1 is automatically operated, the liquid level controller LC is provided in the gas / liquid separator 9 to detect the liquid level, and the liquid level control valve 10 detects the liquid level inside the gas / liquid separator 9. It is desirable to control the liquid level to be constant. Here, “constant” means that the liquid level is at a certain position or within a certain range.
[0060]
The water that has been treated may be cooled, then discharged through a pressure control valve (not shown), and separated into gas and liquid by the gas-liquid separator 9.
[0061]
The liquid separated by the gas-liquid separator 9 is discharged through the treated water discharge line 11, and this treated water may be sent to a treated liquid tank (not shown) or by a known method such as biological treatment. Further purification treatment may be performed.
[0062]
It is desirable that the pressure on the gas side in the gas-liquid separator 9 is detected by the pressure controller PC and the pressure control valve 12 is operated to maintain the pressure at an appropriate value. The gas separated by the gas-liquid separator 9 may be discharged from the exhaust gas discharge line 13 into the atmosphere, or may be processed by another method.
[0063]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by the following examples, and may be appropriately changed within a range that can meet the purpose described above and below. It is also possible to implement them, and they are all included in the technical scope of the present invention.
[0064]
Example 1
In order to treat harmful substances in the waste water, wet oxidation treatment was performed according to the flow chart shown in FIG. The wastewater used for the treatment was wastewater discharged from a chemical plant, contained compounds such as alcohol, aldehyde, and carboxylic acid, had a COD (Cr) concentration of 25,000 mg / liter, and a pH of 7.5.
[0065]
As the reaction tower 7, a cylindrical one having an inner diameter of 400 mm and a length of 3,000 mm was used. The reaction tower 7 was filled with 250 liters of catalyst so that the catalyst packed layer length was 2,000 mm. In addition, as a catalyst, the catalyst (The shape is a pellet shape 5 mm in diameter and 5 mm in length) which supported platinum 0.3 mass% on the titanium- iron type oxide was used.
[0066]
A gas-liquid dispersion member as shown in FIGS. 2 and 3 and a gas-liquid separation part as shown in FIG. 7 are arranged above the catalyst packed bed in the reaction tower 7. However, the liquid holes of the gas-liquid dispersion member are circular with an inner diameter of 3 mm, and the number is 12 (95 / m2).
[0067]
The wastewater is fed from the drainage supply line 1 through the pump 2 at a flow rate of 250 liters / hr, while the oxygen-containing gas supply line 3 is supplied with 23 m of air as an oxygen-containing gas.Three NIt was introduced at a flow rate of / hr (1.1 times the theoretical oxygen demand), increased in pressure by the compressor 4, and mixed into the waste water. The obtained gas-liquid mixed fluid was heated with the heat exchanger 5 and further heated to 210 ° C. with the heater 6 and then introduced into the reaction tower 7 and subjected to wet oxidation at the same temperature. The processing fluid processed in the reaction tower 7 was cooled by the heat exchanger 5 and the cooler 8 and then introduced into the gas-liquid separator 9. The gas-liquid separator 9 keeps the liquid level constant by operating the liquid level control valve 10 while detecting the liquid level with the liquid level controller (LC) and also detects the pressure with the pressure controller (PC). By operating the pressure control valve 12, the pressure was maintained at 3.0 MPa, and the treatment liquid was discharged from the treated water discharge line 11.
[0068]
The COD (Cr) concentration of the treated water was 860 mg / liter, and the COD (Cr) treatment efficiency was 96.6%.
[0069]
Example 2
The gas-liquid dispersion member having the structure shown in FIGS. 4 and 5 and the gas-liquid separation part having the structure shown in FIG. 6 are installed on the upper part of the catalyst packed bed in the reaction tower 7. Similarly, wastewater from the chemical plant was treated. However, the overflow pipe of the gas-liquid dispersion member has a cylindrical shape with an inner diameter of 25 mm, and the number is 35 (279 / m2And the length was 150 mm from the upper surface of the dispersion plate. As a result, the COD (Cr) concentration of the treated water was 790 mg / liter, and the COD (Cr) treatment efficiency was 96.8%.
[0070]
Comparative Example 1
Exhaust treatment from the chemical plant was performed in the same manner as in Example 1 except that no gas-liquid dispersion member was installed above the catalyst packed bed in the reaction tower 7. As a result, the COD (Cr) concentration of the treated water was 11,900 mg / liter, and the COD (Cr) treatment efficiency was 52.4%.
[0071]
【The invention's effect】
The present invention is configured as described above, and when the waste water is wet-oxidized using a solid catalyst in a gas-liquid downward flow system, a gas-liquid dispersion member is provided above or further above the catalyst packed bed. Since the gas-liquid separation part is disposed in the catalyst and the fluid supplied in the direction of the catalyst packed bed is dispersed in the flow path width direction of the catalyst packed bed, the contact efficiency between the gas and the liquid can be increased. The contact efficiency between the oxygen contained in the liquid and the oxidizable substance contained in the liquid is improved, the contact efficiency between the gas-liquid and the catalyst is improved, and the wet oxidation efficiency of the waste water can be greatly increased. Thus, the facility cost and the operating cost can be reduced, and the durability of the solid catalyst can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of a wastewater treatment method according to the present invention.
FIG. 2 is an explanatory plan view showing an example of a gas-liquid dispersion member used in the present invention.
FIG. 3 is a longitudinal sectional view illustrating an example of a gas-liquid dispersion member used in the present invention.
FIG. 4 is an explanatory plan view illustrating another gas-liquid dispersion member used in the present invention.
FIG. 5 is an explanatory longitudinal cross-sectional view illustrating another gas-liquid dispersion member used in the present invention.
FIG. 6 is a perspective explanatory view showing an example of a gas-liquid separator used in the present invention.
FIG. 7 is an explanatory perspective view showing another example of the gas-liquid separator used in the present invention.
[Explanation of symbols]
1 Wastewater supply line
2 Pump
3 Oxygen-containing gas supply line
4 compressors
5 Heat exchanger
6 Heater
7 reaction tower
8 Cooler
9 Gas-liquid separator
10 Liquid level control valve
11 treated water discharge line
12 Pressure control valve
13 Exhaust gas emission line
14 Liquid hole
15 Gas conduction part
16 Dispersion plate
17 Overflow pipe
18 Dispersion plate
19 Gas-liquid inlet tube
20 trays
21 Liquid conduit
22 Gas-liquid inlet tube
23 Liquid conduit

Claims (4)

被酸化性物質を含む排水を、固体触媒を用いて気液下向流方式で湿式酸化処理するに当り、
湿式酸化反応塔内における固体触媒充填層の上部に、液体をオーバーフローさせることにより分散供給を行う気液分散部材を設置し、
前記気液分散部材の上部に気液分離部を設けて気液を予め分離し、
気液分離部から液導通管を通して液体を気液分散部材へ供給し、
触媒充填層の上部で該充填層の流路幅方向へ排水を分散させる排水の湿式酸化処理法であって、
前記気液分散部材が、気液流路を遮断する分散板とオーバーフローパイプからなり、
前記オーバーフローパイプが、前記分散板に穿設した穴の上方に、該穴と同じ断面形状の管を前記液導通管の下端よりも上方まで延設することによって形成され、
液体が分散板上に液溜りを形成し、
液体がオーバーフローパイプの内壁を伝って流下することにより、固体触媒充填層の上部に液体を分散供給することを特徴とする排水の湿式酸化処理法。
In wet oxidation treatment of wastewater containing oxidizable substances using a solid catalyst in a gas-liquid downflow system,
A gas-liquid dispersion member that performs dispersion supply by overflowing the liquid is installed on the upper part of the solid catalyst packed bed in the wet oxidation reaction tower,
A gas-liquid separation unit is provided on the gas-liquid dispersion member to previously separate the gas and liquid,
Supply the liquid from the gas-liquid separator to the gas-liquid dispersion member through the liquid conducting tube,
A wastewater wet oxidation method for dispersing wastewater in the flow path width direction of the packed bed at the top of the catalyst packed bed ,
The gas-liquid dispersion member consists of a dispersion plate and an overflow pipe that block the gas-liquid flow path,
The overflow pipe is formed by extending a pipe having the same cross-sectional shape as the hole above the hole drilled in the dispersion plate to a position higher than the lower end of the liquid conduction pipe,
The liquid forms a liquid pool on the dispersion plate,
A wet oxidation method for wastewater, characterized in that the liquid flows down along the inner wall of the overflow pipe to disperse and supply the liquid to the upper part of the solid catalyst packed bed .
前記気液分離部で液溜りができるようにする請求項1に記載の湿式酸化処理法。  The wet oxidation method according to claim 1, wherein the liquid-liquid separation unit enables liquid accumulation. 被酸化性物質を含む排水を、固体触媒を用いて気液下向流方式で湿式酸化処理するための装置であって、
湿式酸化反応塔内における固体触媒充填層の上部に気液分散部材が設置され、
前記気液分散部材が、気液流路を遮断する分散板とオーバーフローパイプからなり、液体をオーバーフローさせることにより分散供給を行う気液分散部材であり、
前記気液分散部材の上部に予め気液を分離する気液分離部を有し、
前記気液分離部の下面に液導通管が設けられており、前記気液分離部から液導通管を通して液体気液分散部材へ供給され、
前記オーバーフローパイプが、前記分散板に穿設した穴の上方に、該穴と同じ断面形状の管を前記液導通管の下端よりも上方まで延設することによって形成されていることを特徴とする排水の湿式酸化処理装置。
An apparatus for wet-oxidizing wastewater containing oxidizable substances by a gas-liquid counter-current system using a solid catalyst,
A gas-liquid dispersion member is installed above the solid catalyst packed bed in the wet oxidation reaction tower,
The gas-liquid dispersion member is a gas-liquid dispersion member comprising a dispersion plate and an overflow pipe for blocking the gas-liquid flow path, and performing dispersion supply by overflowing the liquid,
A gas-liquid separation unit that separates the gas-liquid in advance on the gas-liquid dispersion member;
A liquid conduction pipe is provided on the lower surface of the gas-liquid separation part, and the liquid is supplied from the gas-liquid separation part through the liquid conduction pipe to the gas-liquid dispersion member ,
The overflow pipe is formed by extending a pipe having the same cross-sectional shape as the hole above the hole drilled in the dispersion plate to a position higher than the lower end of the liquid conducting pipe. Wastewater wet oxidation treatment equipment.
前記気液分離部が液溜りを形成するものである請求項に記載の湿式酸化処理装置。The wet oxidation processing apparatus according to claim 3 , wherein the gas-liquid separation unit forms a liquid pool.
JP2002267149A 2002-09-12 2002-09-12 Wastewater wet oxidation method and equipment Expired - Fee Related JP4173708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267149A JP4173708B2 (en) 2002-09-12 2002-09-12 Wastewater wet oxidation method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267149A JP4173708B2 (en) 2002-09-12 2002-09-12 Wastewater wet oxidation method and equipment

Publications (2)

Publication Number Publication Date
JP2004098023A JP2004098023A (en) 2004-04-02
JP4173708B2 true JP4173708B2 (en) 2008-10-29

Family

ID=32265756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267149A Expired - Fee Related JP4173708B2 (en) 2002-09-12 2002-09-12 Wastewater wet oxidation method and equipment

Country Status (1)

Country Link
JP (1) JP4173708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436603A (en) * 2019-07-09 2019-11-12 中北大学 The method and device of heterogeneous catalysis ozone degradation phenolic waste water in a kind of super gravity field

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257117A (en) * 2005-03-15 2006-09-28 Trial Corp Granulation apparatus and granulation method
US10800691B2 (en) * 2014-05-08 2020-10-13 Hindustan Petroleum Corporation Ltd. Removal of sulfides in spent caustic stream over active solid phase catalysts
JP6663302B2 (en) * 2016-05-31 2020-03-11 日立Geニュークリア・エナジー株式会社 Organic acid solution decomposition apparatus and organic acid solution decomposition method
TWI738985B (en) 2017-03-15 2021-09-11 日商日本觸媒股份有限公司 Apparatus and method for wastewater treatment
CN107746135A (en) * 2017-11-04 2018-03-02 张瑁珈 A kind of Waste Water Treatment
CN114262112B (en) * 2022-03-01 2022-05-20 北京惠宇乐邦环保科技有限公司 Method for treating 2-chloro-5-chloromethyl pyridine production wastewater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524731A (en) * 1968-09-30 1970-08-18 Exxon Research Engineering Co Mixed-phase flow distributor for packed beds
US3824081A (en) * 1972-04-27 1974-07-16 Texaco Inc Vertical reactor for two-phase vapor-liquid reaction charge
US4743433A (en) * 1982-10-15 1988-05-10 Mobil Oil Corporation Catalytic reactor system
JPH0780277A (en) * 1993-09-10 1995-03-28 Mitsui Bussan Kagaku Plant Kk Dispersion device for reaction tower
JP2001276855A (en) * 2000-03-30 2001-10-09 Nippon Shokubai Co Ltd Treatment method of drain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436603A (en) * 2019-07-09 2019-11-12 中北大学 The method and device of heterogeneous catalysis ozone degradation phenolic waste water in a kind of super gravity field

Also Published As

Publication number Publication date
JP2004098023A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
KR101000482B1 (en) Catalyst for treating waste water and method for treating waste water using the same
JP4895215B2 (en) Method for treating wastewater containing inorganic sulfur compounds
JP4907289B2 (en) Wastewater treatment method
JP4703227B2 (en) Wastewater treatment method
JP4173708B2 (en) Wastewater wet oxidation method and equipment
JP2004105831A (en) Method of treating waste water
KR102457127B1 (en) Waste water processing apparatus and Waste water processing method
JP3321142B2 (en) Wastewater treatment method
JP2008207103A (en) Wastewater treatment method
JP2008207102A (en) Wastewater treatment method
JP3652618B2 (en) Wastewater treatment method
JP2000117272A (en) Waste water treatment
JP3515627B2 (en) Wastewater treatment method
JP4024999B2 (en) Treatment method of dioxin-containing liquid
JPH11300374A (en) Treatment of waste water
JP3543025B2 (en) Wastewater treatment method
JP5099950B2 (en) Wastewater treatment method
JP4223706B2 (en) Wastewater treatment method
JP2003236567A (en) Treating method for wastewater containing inorganic sulfur compound
JP2003094074A (en) Method for treating waste water
JP2012206122A (en) Method for treating waste water
JP2008093538A (en) Wastewater treatment method
JP2001276855A (en) Treatment method of drain
JP2002253966A (en) Catalyst for waste water treatment and manufacturing method thereof and method of treating waste water
JP3548492B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080814

R150 Certificate of patent or registration of utility model

Ref document number: 4173708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees