JP2013237944A - Cross-linked catalase immobilized fiber and ultrapure water producing apparatus - Google Patents

Cross-linked catalase immobilized fiber and ultrapure water producing apparatus Download PDF

Info

Publication number
JP2013237944A
JP2013237944A JP2012110727A JP2012110727A JP2013237944A JP 2013237944 A JP2013237944 A JP 2013237944A JP 2012110727 A JP2012110727 A JP 2012110727A JP 2012110727 A JP2012110727 A JP 2012110727A JP 2013237944 A JP2013237944 A JP 2013237944A
Authority
JP
Japan
Prior art keywords
catalase
hydrogen peroxide
cross
fiber
linked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012110727A
Other languages
Japanese (ja)
Inventor
Kyoichi Saito
恭一 斎藤
Mai Sugiyama
まい 杉山
Ariyuki Takeda
有之 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Chiba University NUC
Original Assignee
Nippon Rensui Co
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co, Chiba University NUC filed Critical Nippon Rensui Co
Priority to JP2012110727A priority Critical patent/JP2013237944A/en
Publication of JP2013237944A publication Critical patent/JP2013237944A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide new hydrogen peroxide decomposition means that can be inexpensively obtained, and to provide an ultrapure water producing apparatus provide with the new hydrogen peroxide decomposition means.SOLUTION: The ultrapure water producing apparatus comprises: a pretreatment device (A) of raw water; a primary purified water producing device (B); a secondary purified water producing device (C) including a low-pressure ultraviolet oxidation device; and further a hydrogen peroxide decomposition device arranged after the low-pressure ultraviolet oxidation device, and uses a cross-linked catalase immobilized fiber as a decomposition catalyst in the hydrogen peroxide decomposition device.

Description

本発明は架橋カタラーゼ固定化繊維および超純水製造装置に関するものである。   The present invention relates to a crosslinked catalase-immobilized fiber and an ultrapure water production apparatus.

半導体などの電子産業分野では、洗浄水として、有機物、イオン成分、微粒子、細菌等が高度に除去された超純水等の純水が使用されている。   In the field of electronic industries such as semiconductors, pure water such as ultrapure water from which organic substances, ionic components, fine particles, bacteria, and the like are highly removed is used as cleaning water.

従来より、超純水製造装置として数多くの提案がなされているが、過酸化水素分解手段を備えたものがある。斯かる過酸化水素は、有機物成分の除去のために被処理水中に添加される酸化剤としての過酸化水素や酸化分解手段の紫外線照射に起因して発生する。   Conventionally, many proposals have been made as ultrapure water production apparatuses, but there are those equipped with hydrogen peroxide decomposition means. Such hydrogen peroxide is generated due to hydrogen peroxide as an oxidizing agent added to the water to be treated for removal of organic components or ultraviolet irradiation of the oxidative decomposition means.

過酸化水素の分解手段としては、パラジウム等の白金族金属触媒を担持したアニオン交換樹脂が使用されている(特許文献1及び2)。しかしながら、白金族金属触媒は高価である。また、過酸化水素の分解手段として、活性炭による分解法もあるが、超純水の製造用との場合には、活性炭からの不純物の溶出もあるため、使用には適さない場合が多い。   As a means for decomposing hydrogen peroxide, an anion exchange resin carrying a platinum group metal catalyst such as palladium is used (Patent Documents 1 and 2). However, platinum group metal catalysts are expensive. In addition, as a means for decomposing hydrogen peroxide, there is a decomposition method using activated carbon. However, in the case of production of ultrapure water, impurities are eluted from the activated carbon, so that it is often not suitable for use.

特開2011−167633号公報JP 2011-167633 A 特開2011−218248号公報JP 2011-218248 A

本発明は、上記実情に鑑みなされたものであり、その目的は、安価に入手することが出来る新規な過酸化水素分解手段を提供することにある。また、本発明の他の目的は、新規な過酸化水素分解手段を備えた超純水製造装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a novel hydrogen peroxide decomposition means that can be obtained at low cost. Another object of the present invention is to provide an ultrapure water production apparatus provided with a novel hydrogen peroxide decomposition means.

すなわち、本発明の第1の要旨は架橋カタラーゼ固定化繊維に存し、本発明の第2の要旨は、原水の前処理装置(A)、一次純水製造装置(B)、低圧紫外線酸化装置を含む二次純水製造装置(C)を備え、更に、低圧紫外線酸化装置の後に過酸化水素分解装置を配置して成り、そして、過酸化水素分解装置の分解触媒として架橋カタラーゼ固定化繊維を使用したことを特徴とする超純水製造装置に存する。   That is, the first gist of the present invention resides in a cross-linked catalase-immobilized fiber, and the second gist of the present invention is a raw water pretreatment device (A), a primary pure water production device (B), and a low-pressure ultraviolet oxidation device. A secondary pure water production apparatus (C) including a hydrogen peroxide decomposition apparatus after the low-pressure ultraviolet oxidation apparatus, and a crosslinked catalase-immobilized fiber as a decomposition catalyst for the hydrogen peroxide decomposition apparatus. It exists in the ultrapure water production apparatus characterized by using.

本発明によれば前記の課題が達成される。   According to the present invention, the above-described problems are achieved.

図1は本発明で使用する超純水製造装置の一例を示す系統図である。FIG. 1 is a system diagram showing an example of an ultrapure water production apparatus used in the present invention. 図2は過酸化水素の酵素分解装置の一例の断面説明図である。FIG. 2 is a cross-sectional explanatory view of an example of an enzymatic decomposition apparatus for hydrogen peroxide.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

<架橋カタラーゼ固定化繊維> <Cross-linked catalase immobilized fiber>

本発明の架橋カタラーゼ固定化繊維における繊維としては、例えば、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ナイロン、ポリテトラフルオロエチレン等が挙げられるが、強度やコストの点から、ナイロン繊維が好適である。カタラーゼの固定担体が繊維であることから、カタラーゼは担体表面にて固定される。従って、担体が多孔性中空糸膜の場合に惹起される問題、すなわち、被処理液の内部拡散によって過酸化水素の分解速度が影響されると言う問題は生じない。   Examples of the fiber in the cross-linked catalase-immobilized fiber of the present invention include polyolefin (polyethylene, polypropylene, etc.), nylon, polytetrafluoroethylene and the like, and nylon fiber is preferable from the viewpoint of strength and cost. Since the catalase fixing carrier is a fiber, the catalase is fixed on the surface of the carrier. Therefore, the problem caused when the carrier is a porous hollow fiber membrane, that is, the problem that the decomposition rate of hydrogen peroxide is influenced by the internal diffusion of the liquid to be treated does not occur.

本発明の架橋カタラーゼ固定化繊維は、例えば、陰イオン交換官能基をグラフト重合により固定した繊維(陰イオン交換グラフト鎖搭載繊維)にカタラーゼを固定化した後、更にトランスグルタミナーゼでカタラーゼを架橋する方法により得ることが出来る。以下に詳細に説明する。   The crosslinked catalase-immobilized fiber of the present invention is, for example, a method in which catalase is immobilized on a fiber in which an anion exchange functional group is immobilized by graft polymerization (anion exchange graft chain-equipped fiber), and then catalase is further crosslinked with transglutaminase. Can be obtained. This will be described in detail below.

先ず、放射線グラフト重合法に従って、繊維に例えば電子線を照射してラジカルを形成させた後、陰イオン交換グラフト鎖を導入する。陰イオン交換グラフト鎖の導入に使用する単量体としては、特に制限されないが、例えば、アミノ基を有する炭素数1〜10の脂肪族アルコールとα、β−不飽和カルボン酸とから導かれるα、β−不飽和カルボン酸エステル、すなわち、N、N−ジエチルアミノエチルアクリレート、N、N−ジエチルアミノエチルメタクリレート、N、N−ジメチルアミノエチルアクリレート、N、N−ジメチルアミノエチルメタクリレート、N−メチル−N−エチルアミノエチルアクリレート、N−メチル−N−エチルアミノエチルメタクリレート等が挙げられる。これらの中では、N、N−ジメチルアミノエチルメタクリレート(DMAEMA)が好ましい。   First, in accordance with a radiation graft polymerization method, the fiber is irradiated with, for example, an electron beam to form radicals, and then an anion exchange graft chain is introduced. Although it does not restrict | limit especially as a monomer used for introduction | transduction of an anion exchange graft chain, For example, (alpha) derived | led-out from C1-C10 aliphatic alcohol which has an amino group, and (alpha), (beta) -unsaturated carboxylic acid. , Β-unsaturated carboxylic esters, ie, N, N-diethylaminoethyl acrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N-methyl-N -Ethylaminoethyl acrylate, N-methyl-N-ethylaminoethyl methacrylate and the like. Among these, N, N-dimethylaminoethyl methacrylate (DMAEMA) is preferable.

放射線としては、α、β、γ線、電子線などがあり何れも使用可能であるが、電子線が適している。また、放射線を照射した後、生成したラジカルを起点として単量体と接触させる前照射法や、単量体溶液中で放射線を照射する同時照射法があるが、安定した製造が可能になるのは、前照射法である。照射線量は、通常50〜300kGyである。重合溶媒は特に制限されないが、通常は水で十分である。単量体濃度は、通常1〜10(v/v)%、重合温度は通常25〜60℃、重合時間は通常1〜30時間である。また、次の式(1)で表されるグラフト率は通常15〜50%でり、次の式(2)で表されるグラフト基密度は0.5〜5(mmol/g−dry)である。   Examples of radiation include α, β, γ rays, and electron beams, and any of them can be used, but electron beams are suitable. In addition, after irradiation, there are pre-irradiation methods in which the generated radicals are brought into contact with the monomer as a starting point, and simultaneous irradiation methods in which radiation is irradiated in a monomer solution, but stable production becomes possible. Is a pre-irradiation method. The irradiation dose is usually 50 to 300 kGy. The polymerization solvent is not particularly limited, but water is usually sufficient. The monomer concentration is usually 1 to 10 (v / v)%, the polymerization temperature is usually 25 to 60 ° C., and the polymerization time is usually 1 to 30 hours. The graft ratio represented by the following formula (1) is usually 15 to 50%, and the graft group density represented by the following formula (2) is 0.5 to 5 (mmol / g-dry). is there.

[数1]
グラフト率[(w/w)%]=(付与したグラフト鎖重量)/(重合前繊維重量)×100・・式(1)
[Equation 1]
Graft rate [(w / w)%] = (weight of graft chain imparted) / (fiber weight before polymerization) × 100 (1)

[数2]
グラフト基密度[(mmol/g−dry)]=(付与したグラフト基モル数)/(陰イオン交換グラフト鎖搭載繊維重量)・・式(2)
[Equation 2]
Graft group density [(mmol / g-dry)] = (number of moles of graft group imparted) / (weight of fiber loaded with anion exchange graft chain) Formula (2)

次いで、陰イオン交換グラフト鎖搭載繊維にカタラーゼを吸着させることにより固定する。この際、カタラーゼは、適当な緩衝液、例えば、pH7.0の20mM Tris−HCl緩衝液に溶解して溶液として使用される。吸着方法は、特に制限されないが、適当長さに切断した陰イオン交換グラフト鎖搭載繊維をカラムに充填しカラム上部からカタラーゼ溶液を供給するカラム方式を採用するならば、カラムの流出液中のカタラーゼ濃度を追跡することにより、カタラーゼの吸着状況を容易に把握することが出来る。カラム上部から供給するカタラーゼ溶液の濃度は通常0.01〜0.5(w/v)%である。   Next, catalase is adsorbed on the anion exchange graft chain-loaded fiber and fixed. In this case, catalase is used as a solution by dissolving in a suitable buffer, for example, 20 mM Tris-HCl buffer having a pH of 7.0. The adsorption method is not particularly limited, but if a column system in which an anion exchange graft chain-loaded fiber cut to an appropriate length is packed in a column and a catalase solution is supplied from the top of the column is adopted, catalase in the effluent of the column is used. By tracking the concentration, it is possible to easily grasp the adsorption state of catalase. The concentration of the catalase solution supplied from the top of the column is usually 0.01 to 0.5 (w / v)%.

次いで、トランスグルタミナーゼ等の酵素的架橋剤によってカタラーゼを架橋する。酵素的架橋剤溶液の濃度は通常0.001〜0.1(w/v)%である。架橋反応は、上記のカラム方式によるカタラーゼの吸着操作に引き続き行うのが簡便であり、適当なポンプを使用してカラムに酵素的架橋剤溶液を循環させることによって行う。架橋温度は通常25〜60℃、架橋時間は通常1〜10時間である。   The catalase is then cross-linked by an enzymatic cross-linking agent such as transglutaminase. The concentration of the enzymatic crosslinker solution is usually 0.001 to 0.1 (w / v)%. It is easy to carry out the cross-linking reaction following the catalase adsorption operation by the above-mentioned column system, and the cross-linking reaction is carried out by circulating the enzymatic cross-linking agent solution through the column using an appropriate pump. The crosslinking temperature is usually 25 to 60 ° C., and the crosslinking time is usually 1 to 10 hours.

その後、未架橋のカタラーゼを溶出除去する。溶出には例えば0.1〜1M濃度のNaCl水溶液を使用することができる。この操作は、前記のカラム方式を採用し、カラム上部からNaCl水溶液を供給して行うのが簡便である。カラムの流出液中のカタラーゼ濃度を追跡することにより、未架橋のカタラーゼの溶出除去状況を容易に把握することが出来る。   Thereafter, uncrosslinked catalase is eluted and removed. For elution, for example, a 0.1-1M NaCl aqueous solution can be used. This operation is easy to carry out by adopting the above column system and supplying an aqueous NaCl solution from the upper part of the column. By tracking the concentration of catalase in the effluent of the column, it is possible to easily grasp the elution and removal status of uncrosslinked catalase.

カタラーゼの架橋固定容量と架橋率とは次の式(3)及び(4)によって算出することが出来る。   The cross-linking fixation capacity and the cross-linking rate of catalase can be calculated by the following formulas (3) and (4).

[数3]
カタラーゼの架橋固定容量(mmol/mL−bed)=[(カタラーゼ吸着量)−(カタラーゼ洗浄および溶出量)]/(陰イオン交換グラフト鎖搭載繊維のカラム充填体積)・・式(3)
[Equation 3]
Catalase cross-linking fixation capacity (mmol / mL-bed) = [(catalase adsorption amount) − (catalase washing and elution amount)] / (column packing volume of anion-exchange graft chain-loaded fiber) Formula (3)

[数4]
架橋率(%)=[(カタラーゼ吸着量)−(カタラーゼ洗浄および溶出量)]/(カタラーゼ吸着量)×100・・式(4)
[Equation 4]
Cross-linking rate (%) = [(catalase adsorption amount) − (catalase washing and elution amount)] / (catalase adsorption amount) × 100 ·· Formula (4)

本発明の架橋カタラーゼ固定化繊維は、水系液体中に存在する過酸化水素を分解処理する方法に使用することが出来る。上記の水系液体としては、例えば、過酸化水素を使用する重合反応もしくは酸化反応による重合体もしくは有機化合物の製造工程由来の過酸化水素を含有する液体、過酸化水素を含有する排水などが挙げられる。更に、半導体製造工程排水、繊維の漂白工程排水、染料の脱色工程排水、パルプの漂白工程排水または過酸化水素により殺菌、脱臭あるいは漂白もしくは脱色処理を施した排水が挙げられる。本発明の架橋カタラーゼ固定化繊維の好ましい使用態様は、食品製造工程で殺菌を目的として使用される過酸化水素を含有する排水の処理装置、純水製造装置などの純度の高い水を製造する装置における過酸化水素分解装置における分解触媒としての使用である。特に好ましい使用態様は、以下に説明する本発明の超純水製造装置における使用態様である。   The crosslinked catalase-immobilized fiber of the present invention can be used in a method for decomposing hydrogen peroxide present in an aqueous liquid. Examples of the aqueous liquid include a liquid containing hydrogen peroxide derived from a production process of a polymer or an organic compound by a polymerization reaction or an oxidation reaction using hydrogen peroxide, and a wastewater containing hydrogen peroxide. . Furthermore, there may be mentioned semiconductor manufacturing process wastewater, fiber bleaching process wastewater, dye decolorization process wastewater, pulp bleaching process wastewater, or wastewater that has been sterilized, deodorized, bleached or decolorized with hydrogen peroxide. A preferred use mode of the cross-linked catalase-immobilized fiber of the present invention is an apparatus for producing high-purity water such as a wastewater treatment apparatus containing hydrogen peroxide used for the purpose of sterilization in a food production process or a pure water production apparatus. As a decomposition catalyst in a hydrogen peroxide decomposition apparatus. A particularly preferable usage mode is a usage mode in the ultrapure water production apparatus of the present invention described below.

<超純水製造装置> <Ultrapure water production equipment>

本発明の超純水製造装置の基本的構成は、図1に示すように、原水の前処理装置(A)、一次純水製造装置(B)、低圧紫外線酸化装置を含む二次純水製造装置(C)から成る。   As shown in FIG. 1, the basic configuration of the ultrapure water production apparatus of the present invention is a secondary pure water production system including a raw water pretreatment device (A), a primary pure water production device (B), and a low-pressure ultraviolet oxidation device. It consists of device (C).

原水の前処理装置(A)は、除濁UF装置(1)と活性炭塔(2)とを順次に設けて構成されている。なお、活性炭塔(2)は任意の設備であり、状況によっては省略することが出来る。   The raw water pretreatment device (A) is configured by sequentially providing a turbidity UF device (1) and an activated carbon tower (2). The activated carbon tower (2) is an optional facility and can be omitted depending on the situation.

一次純水製造装置(B)は、RO膜装置(3)と電気再生式イオン交換装置(4)とを順次に設けて構成されている。電気再生式イオン交換装置(4)の代わりにRO膜装置を使用し、2段の膜分離装置を配置することも可能である。一次純水製造装置(B)で得られた一次純水は一次純水槽(5)にて貯留される。   The primary pure water production apparatus (B) is configured by sequentially providing an RO membrane apparatus (3) and an electric regeneration type ion exchange apparatus (4). It is also possible to use a RO membrane device instead of the electric regenerative ion exchange device (4) and arrange a two-stage membrane separation device. The primary pure water obtained by the primary pure water production apparatus (B) is stored in the primary pure water tank (5).

二次純水製造装置(C)は、低圧紫外線酸化装置(6)、過酸化水素分解装置(7)、脱気装置(8)、混床式イオン交換装置(9)及びUF膜装置(10)を順次に設けて構成されている。低圧紫外線酸化装置(6)はTOCをイオン化ないし分解する機能を有する。この際に生じた過酸化水は過酸化水素分解装置(7)にて酸素と水とに分解され、酸素は脱気装置(7)で除去される。   The secondary pure water production apparatus (C) includes a low-pressure ultraviolet oxidation apparatus (6), a hydrogen peroxide decomposition apparatus (7), a degassing apparatus (8), a mixed bed ion exchange apparatus (9), and a UF membrane apparatus (10). ) In sequence. The low-pressure ultraviolet oxidizer (6) has a function of ionizing or decomposing TOC. The peroxide water generated at this time is decomposed into oxygen and water by the hydrogen peroxide decomposition device (7), and the oxygen is removed by the deaeration device (7).

なお、上記の前処理装置(A)、一次純水製造装置(B)および二次純水製造装置(C)の各構成要素は、何れも、超純水製造装置の分野では周知であり、例えば、特開平6−86997号公報の記載を参照することが出来る。   In addition, each component of said pre-processing apparatus (A), primary pure water manufacturing apparatus (B), and secondary pure water manufacturing apparatus (C) is well-known in the field | area of an ultrapure water manufacturing apparatus, For example, reference can be made to the description of JP-A-6-86997.

本発明の超純水製造装置の特徴は、過酸化水素分解装置(7)の分解触媒として架橋カタラーゼ固定化繊維を使用した点にある。   The ultrapure water production apparatus of the present invention is characterized in that a crosslinked catalase-immobilized fiber is used as a decomposition catalyst for the hydrogen peroxide decomposition apparatus (7).

図2に例示した過酸化水素の酵素分解装置(7)は、内部に架橋カタラーゼ固定化繊維(15)が収容され、被処理水流入管(11)に接続された散水管(12)が上部に配置され、処理水流出管(13)に接続された集水管(14)が下部に配置された装置構造を有する。過酸化水素を含む被処理水は、散水管(12)の通水孔から加圧状態で供給され、架橋カタラーゼ固定化繊維(15)と降下流で接触し、集水管(14)のスリットを介して取り出される。そして、被処理水中の過酸化水素はカタラーゼにより酸素と水に分解される。   In the hydrogen peroxide enzyme decomposition apparatus (7) illustrated in FIG. 2, a cross-linked catalase-immobilized fiber (15) is accommodated inside, and a sprinkling pipe (12) connected to the treated water inflow pipe (11) is disposed at the top. A water collecting pipe (14) arranged and connected to the treated water outflow pipe (13) has an apparatus structure in which the water collecting pipe (14) is arranged at the lower part. Water to be treated containing hydrogen peroxide is supplied in a pressurized state from the water passage hole of the water spray pipe (12), contacts the cross-linked catalase-immobilized fiber (15) in descending flow, and passes through the slit of the water collecting pipe (14). Is taken out through. Then, hydrogen peroxide in the water to be treated is decomposed into oxygen and water by catalase.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
<架橋カタラーゼ固定化繊維の製造>
窒素雰囲気下、太さ25μmの市販のナイロン−6(Ny)繊維1.0gの表面に200kGyの電子線を照射した後、濃度3(v/v)%のDMAEMA水溶液に40℃で24h浸漬し、Ny繊維にグラフト鎖を付与し、陰イオン交換グラフト鎖搭載繊維を得た。前記の式(1)のグラフト率は33%であった。
Example 1:
<Manufacture of cross-linked catalase-immobilized fiber>
In a nitrogen atmosphere, a surface of 1.0 g of commercially available nylon-6 (Ny) fiber having a thickness of 25 μm was irradiated with a 200 kGy electron beam, and then immersed in a DMAEMA aqueous solution having a concentration of 3 (v / v)% at 40 ° C. for 24 hours. A graft chain was imparted to the Ny fiber to obtain an anion exchange graft chain-loaded fiber. The graft ratio of the formula (1) was 33%.

次いで、上記の陰イオン交換グラフト鎖搭載繊維0.11gを1cm毎に切断し、内径5.5mmのカラムに充填し、カラムの上部からシリンジポンプにより、SV:20h−1の条件下にカタラーゼ溶液(1.0g/L、Tris−HCl緩衝液 pH7.0)を供給し、陰イオン交換グラフト鎖搭載繊維にカタラーゼを吸着させた。この際、カラムから流出する溶液中のカタラーゼ濃度を追跡し、カタラーゼの流出濃度が供給濃度の90%となった時点でカタラーゼの吸着操作を終了した。 Next, 0.11 g of the above-mentioned anion exchange graft chain-loaded fiber is cut every 1 cm, packed into a column having an inner diameter of 5.5 mm, and a catalase solution under a condition of SV: 20 h −1 by a syringe pump from the top of the column. (1.0 g / L, Tris-HCl buffer pH 7.0) was supplied, and catalase was adsorbed on the anion exchange graft chain-loaded fiber. At this time, the catalase concentration in the solution flowing out from the column was traced, and the catalase adsorption operation was terminated when the catalase outflow concentration reached 90% of the supply concentration.

次いで、上記のシリンジポンプの代わりにペリスタポンプを使用し、カラムの上部からSV:30h−1の条件下にトランスグルタミナーゼ(TG)溶液(0.04wt%、Tris−HCl緩衝液 pH7.0)を供給して2h循環させ、カタラーゼ間を酵素架橋し、グラフト鎖に固定した。 Next, a peristaltic pump is used in place of the above syringe pump, and a transglutaminase (TG) solution (0.04 wt%, Tris-HCl buffer pH 7.0) is supplied from the top of the column under the condition of SV: 30h −1. Then, the mixture was circulated for 2 hours, the enzyme was cross-linked between catalase and fixed to the graft chain.

次いで、上記のペリスタポンプの代わりにシリンジポンプを使用し、濃度1.0MのNaCl水溶液をカラムの上部からSV:20h−1の条件下に供給して未架橋のカタラーゼを溶出除去し、架橋カタラーゼ固定化繊維を得た。前記の式(3)のカタラーゼの架橋固定容量は18(mg/mL−bed)であり、前記の式(4)の架橋率は69%であった。 Next, a syringe pump is used in place of the peristaltic pump, and a 1.0 M NaCl aqueous solution is supplied from the top of the column under the condition of SV: 20 h −1 to elute and remove uncrosslinked catalase to fix the cross-linked catalase. A modified fiber was obtained. The cross-linking fixation capacity of the catalase of the formula (3) was 18 (mg / mL-bed), and the cross-linking ratio of the formula (4) was 69%.

<架橋カタラーゼ固定化繊維の過酸化水素分解性能の評価>
上記の製造における未架橋のカタラーゼを溶出除去操作の後、シリンジポンプから濃度170(μg-H2O2/L)の過酸化水素水溶液を供給し、架橋カタラーゼ固定化繊維による過酸化水素の分解試験を行った。試験は過酸化水素水溶液の供給速度(SV)を変えて行った。SVが50〜200h−1においては過酸化水素の分解率はSVに依存せず100%であった。また、過酸化水素水溶液の濃度を変更して上記と同様の評価を行った結果、上記のSVの範囲において、濃度510(μg-H2O2/L)における分解率はSVに依存せず100%であり、濃度1050(μg-H2O2/L)における分解率はSVに依存せず96%であった。
<Evaluation of hydrogen peroxide decomposition performance of cross-linked catalase immobilized fiber>
After the elution and removal operation of uncrosslinked catalase in the above production, a hydrogen peroxide aqueous solution having a concentration of 170 (μg-H 2 O 2 / L) is supplied from a syringe pump, and the hydrogen peroxide is decomposed by the crosslinked catalase-immobilized fiber. A test was conducted. The test was conducted by changing the supply rate (SV) of the aqueous hydrogen peroxide solution. When the SV was 50 to 200 h −1 , the decomposition rate of hydrogen peroxide was 100% without depending on the SV. Further, as a result of changing the concentration of the aqueous hydrogen peroxide solution and performing the same evaluation as described above, the decomposition rate at the concentration 510 (μg-H 2 O 2 / L) does not depend on the SV in the SV range. The decomposition rate at a concentration of 1050 (μg-H 2 O 2 / L) was 96% independent of SV.

実施例2及び比較例1:
図1及び図2に示す、処理水量3m/hの超純水製造装置を使用した。図2に示す過酸化水素の酵素分解装置の架橋カタラーゼ固定化繊維(15)には、実施例1と同様な方法で得られたものを1cm毎切断して使用した。原水としては横浜市水を使用し、架橋カタラーゼ固定化繊維(15)に対する被処理水の通水SVは200h−1とした。処理水と酵素分解装置入口水の過酸化水素濃度の分析結果を表1に示した。また、比較のために、酵素分解装置を使用しない以外は上記と同様に行った場合の結果を併せて示した。
Example 2 and Comparative Example 1:
The ultrapure water production apparatus with a treated water amount of 3 m 3 / h shown in FIGS. 1 and 2 was used. As the cross-linked catalase-immobilized fiber (15) of the hydrogen peroxide enzymatic decomposition apparatus shown in FIG. 2, one obtained by the same method as in Example 1 was cut every 1 cm. As raw water, Yokohama city water was used, and the water flow SV of the treated water with respect to the cross-linked catalase-immobilized fiber (15) was 200h- 1 . Table 1 shows the analysis results of the hydrogen peroxide concentration of the treated water and the water in the enzyme decomposition apparatus. In addition, for comparison, the results obtained in the same manner as described above except that the enzyme decomposing apparatus is not used are also shown.

Figure 2013237944
Figure 2013237944

A:前処理装置
B:一次純水製造装置
C:二次純水製造装置
1:除濁UF装置
2:活性炭塔
3:RO膜装置
4:電気再生式イオン交換装置
5:一次純水槽
6:低圧紫外線酸化装置
7:過酸化水素分解装置
8:脱気装置
9:混床式イオン交換装置
10:UF膜装置
11:被処理水流入管
12:散水管
13:処理水流出管
14:集水管
15:架橋カタラーゼ固定化繊維
A: Pretreatment device B: Primary pure water production device C: Secondary pure water production device 1: Turbidity UF device 2: Activated carbon tower 3: RO membrane device 4: Electric regenerative ion exchange device 5: Primary pure water tank 6: Low-pressure ultraviolet oxidation device 7: Hydrogen peroxide decomposition device 8: Deaeration device 9: Mixed bed type ion exchange device 10: UF membrane device 11: treated water inflow pipe 12: sprinkling pipe 13: treated water outflow pipe 14: collecting pipe 15 : Cross-linked catalase immobilized fiber

Claims (4)

架橋カタラーゼ固定化繊維。   Cross-linked catalase immobilized fiber. 陰イオン交換官能基をグラフト重合により固定した繊維にカタラーゼを固定化した後、更にトランスグルタミナーゼでカタラーゼを架橋して得られたものである請求項1に記載の架橋カタラーゼ固定化繊維。   The crosslinked catalase-immobilized fiber according to claim 1, which is obtained by immobilizing catalase on a fiber in which an anion exchange functional group is immobilized by graft polymerization, and further crosslinking catalase with transglutaminase. 架橋カタラーゼ固定化繊維の繊維がナイロン繊維である請求項1又は2に記載の架橋カタラーゼ固定化繊維。   The cross-linked catalase-immobilized fiber according to claim 1 or 2, wherein the cross-linked catalase-immobilized fiber is a nylon fiber. 原水の前処理装置(A)、一次純水製造装置(B)、低圧紫外線酸化装置を含む二次純水製造装置(C)を備え、更に、低圧紫外線酸化装置の後に過酸化水素分解装置を配置して成り、そして、過酸化水素分解装置の分解触媒として架橋カタラーゼ固定化繊維を使用したことを特徴とする超純水製造装置。   A raw water pre-treatment device (A), a primary pure water production device (B), and a secondary pure water production device (C) including a low-pressure ultraviolet oxidation device, and a hydrogen peroxide decomposition device after the low-pressure ultraviolet oxidation device An ultrapure water production apparatus comprising a cross-linked catalase-immobilized fiber as a decomposition catalyst for a hydrogen peroxide decomposition apparatus.
JP2012110727A 2012-05-14 2012-05-14 Cross-linked catalase immobilized fiber and ultrapure water producing apparatus Pending JP2013237944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110727A JP2013237944A (en) 2012-05-14 2012-05-14 Cross-linked catalase immobilized fiber and ultrapure water producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110727A JP2013237944A (en) 2012-05-14 2012-05-14 Cross-linked catalase immobilized fiber and ultrapure water producing apparatus

Publications (1)

Publication Number Publication Date
JP2013237944A true JP2013237944A (en) 2013-11-28

Family

ID=49763206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110727A Pending JP2013237944A (en) 2012-05-14 2012-05-14 Cross-linked catalase immobilized fiber and ultrapure water producing apparatus

Country Status (1)

Country Link
JP (1) JP2013237944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199435A1 (en) * 2015-06-11 2016-12-15 野村マイクロ・サイエンス株式会社 Ultrapure water manufacturing system and ultrapure water manufacturing method
JP2018096879A (en) * 2016-12-14 2018-06-21 野村マイクロ・サイエンス株式会社 Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measuring device for processing target material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586299A (en) * 1981-06-30 1983-01-13 リガツツオ・ピエ−ル・ジオルジオ Purification of water containing organic pollutants
JPH0889938A (en) * 1994-09-28 1996-04-09 Showa Denko Kk Treatment of water-based liquid containing hydrogen peroxide
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
JP2013034962A (en) * 2011-08-09 2013-02-21 Nippon Rensui Co Ltd Manufacturing method of ultrapure water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586299A (en) * 1981-06-30 1983-01-13 リガツツオ・ピエ−ル・ジオルジオ Purification of water containing organic pollutants
JPH0889938A (en) * 1994-09-28 1996-04-09 Showa Denko Kk Treatment of water-based liquid containing hydrogen peroxide
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
JP2013034962A (en) * 2011-08-09 2013-02-21 Nippon Rensui Co Ltd Manufacturing method of ultrapure water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016016740; 第27回日本イオン交換研究発表会・第30回溶媒抽出討論会 講演要旨集,2011,p.85(IP-121) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199435A1 (en) * 2015-06-11 2016-12-15 野村マイクロ・サイエンス株式会社 Ultrapure water manufacturing system and ultrapure water manufacturing method
JP2018096879A (en) * 2016-12-14 2018-06-21 野村マイクロ・サイエンス株式会社 Deterioration diagnosis method for solid catalyst carrier, deterioration diagnosis device, and measuring device for processing target material

Similar Documents

Publication Publication Date Title
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
US20070221581A1 (en) Ultrapure Water Production Plant
EP0281940A1 (en) Process for decomposing organic matter and/or germs in pretreated feed water for extremely pure water circuits
JP2007185587A (en) Method and device for removing hydrogen peroxide
US20180222781A1 (en) Water purification using porous carbon electrode
CN109890766B (en) Water treatment method and apparatus
CN109906206B (en) Water treatment method and apparatus
JP5446400B2 (en) Hydrogen peroxide water treatment equipment
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP2011212520A (en) Wastewater treatment method and wastewater treatment apparatus
JP5838645B2 (en) Production method of ultra pure water
JP2018089587A (en) Apparatus for producing ultrapure water and method for operating the same
JP2013237944A (en) Cross-linked catalase immobilized fiber and ultrapure water producing apparatus
JP2011167606A (en) Method for producing chelate forming group-containing adsorbing material
WO2016199435A1 (en) Ultrapure water manufacturing system and ultrapure water manufacturing method
JP2000015272A (en) Method and apparatus for producing ozone water
JPS61101292A (en) Apparatus for making pure water
JP5919960B2 (en) Treatment method for organic water
RU2502682C1 (en) Method of water purification
TW202212269A (en) Pure water production device and pure water production method
JP2015199050A (en) Method of removing metal ion in saturated salt water
JP6007282B2 (en) Waste water treatment method and waste water treatment equipment
JPH10113659A (en) Purifying method of water
JP2002307080A (en) Apparatus for producing ultrapure water
CN115806372B (en) Method for deeply removing high-concentration nitrate nitrogen in wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108