KR102047212B1 - Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid - Google Patents

Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid Download PDF

Info

Publication number
KR102047212B1
KR102047212B1 KR1020190079751A KR20190079751A KR102047212B1 KR 102047212 B1 KR102047212 B1 KR 102047212B1 KR 1020190079751 A KR1020190079751 A KR 1020190079751A KR 20190079751 A KR20190079751 A KR 20190079751A KR 102047212 B1 KR102047212 B1 KR 102047212B1
Authority
KR
South Korea
Prior art keywords
sulfuric acid
hydrogen peroxide
activated carbon
decomposition
tank
Prior art date
Application number
KR1020190079751A
Other languages
Korean (ko)
Inventor
정영남
Original Assignee
정영남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정영남 filed Critical 정영남
Priority to KR1020190079751A priority Critical patent/KR102047212B1/en
Application granted granted Critical
Publication of KR102047212B1 publication Critical patent/KR102047212B1/en
Priority to TW109116378A priority patent/TWI740505B/en
Priority to PCT/KR2020/007315 priority patent/WO2021002601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/90Separation; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • B01J35/1023
    • B01J35/1028
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The present invention relates to a method for decomposing a remaining activated carbon catalyst for removing hydrogen peroxide in sulfuric acid waste, and more particularly, to a method for purifying sulfuric acid by decomposing hydrogen peroxide in sulfuric acid waste generated in a wafer cleaning process during a semiconductor manufacturing process through an activated carbon catalyst. A domestic semiconductor industry has been developed and increased to the highest level of the world. Herein, sulfuric acid waste containing hydrogen peroxide is inevitably generated but currently, a recycling technique is not sufficiently developed except for disposal through a calcium neutralization method or preparation of iron sulfate and a water treatment agent. According to the technique of the present invention, diluted sulfuric acid is produced to be used for an industrial resource in a method for removing and purifying impurities of the sulfuric acid waste, thereby having excellent pollution prevention and industrial economical cost reduction effects.

Description

황산폐산 내의 과산화수소를 제거하기 위한 활성탄 촉매 분해방법{Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid}Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid}

본 발명은 황산폐산 내의 과산화수소를 제거하기 위한 활성탄 촉매 분해방법에 관한 것으로서, 더욱 상세하게는 반도체 제조과정 중 웨이퍼 세정공정에서 발생하는 황산폐산에 포함되는 과산화수소를 활성탄 촉매를 통해 분해하여 황산을 정제하는 방법에 관한 것이다.The present invention relates to a method of catalytic decomposition of activated carbon for removing hydrogen peroxide in spent acid, and more particularly, to purify sulfuric acid by decomposing hydrogen peroxide contained in spent sulfuric acid generated in a wafer cleaning process during semiconductor manufacturing process through an activated carbon catalyst. It is about a method.

반도체 제조 공정에서 과산화수소(H2O2)는 흔히 사용하는 일종의 산화제로서 늘 황산(H2SO4)과 함께 사용되어 포토 레지스트(photo resist)의 제거액 또는 식각액으로 이용할 수 있으므로 반도체 제조 공정의 폐액 중의 황산폐산이 30~40% 이상을 차지한다.In the semiconductor manufacturing process, hydrogen peroxide (H 2 O 2 ) is a commonly used oxidant and is always used together with sulfuric acid (H 2 SO 4 ) to be used as a removal or etching solution of photoresist. Sulfate sulfate accounts for more than 30-40%.

황산폐산은 강한 산화성을 가지므로 저장 및 회수 재활용에 유리하도록 반드시 과산화수소를 제거하여 산화성을 낮추어야 하며 일반적인 과산화수소 처리방법은 하기와 같은 내용으로 처리된다.Since waste acid has strong oxidative properties, hydrogen peroxide must be removed to lower oxidative properties in order to favor storage and recovery recycling. The general method of treating hydrogen peroxide is as follows.

(1) 가열 분해 : 하기 식 1에 나타난 바와 같이, 140℃ 이상의 고온으로 가열하면 과산화수소는 급격히 분해되어 산소 기체를 방출한다. 이 방법의 가장 문제로 되는 결점은 고온 발열반응의 위험성이다.(1) Heat decomposition: As shown in the following formula 1, when heated to a high temperature of 140 ℃ or more hydrogen peroxide is rapidly decomposed to release oxygen gas. The most problematic drawback of this method is the risk of high temperature exothermic reactions.

(2) 자외선 분해 : 과산화수소 분자는 파장이 3200~3800Å인 자외선을 흡수하면 분해반응이 진행된다. 이 방법의 결점은 용액 중의 기타 구성 성분이 자외선을 흡수할 가능성이 있으므로, 자외선에 대한 과산화수소의 흡수효과가 저하된다. 따라서, 자외선 광원의 강도를 강하게 하여야 하며, 그 외에 기타 광화학 부산물이 발생될 가능성이 있어 바람직하지 못하다.(2) Ultraviolet decomposition: Hydrogen peroxide molecules undergo a decomposition reaction when they absorb ultraviolet rays with a wavelength of 3200 to 3800Å. The drawback of this method is that the other constituents in the solution may absorb ultraviolet rays, so that the effect of hydrogen peroxide on ultraviolet rays is reduced. Therefore, the intensity of the ultraviolet light source should be strengthened, and other photochemical by-products may be generated, which is undesirable.

(3) 질산 분해 : 과산화수소를 포함하는 황산용액에 질산(HNO3)을 첨가하여 분해 반응을 발생함으로써 산소 기체를 방출한다. 이 방법은 분해반응시 높은 발열온도가 동반되기에 황산가스가 방출될 수 있으며 또한, 반응의 촉매로 이용된 질산을 제거하는 추가공정이 요구된다.(3) Nitric Acid Decomposition: Nitric acid (HNO 3 ) is added to sulfuric acid solution containing hydrogen peroxide to cause decomposition reaction to release oxygen gas. This process is accompanied by a high exothermic temperature in the decomposition reaction, so sulfuric acid gas can be released, and additional processes for removing nitric acid used as catalysts of the reaction are required.

(4) 기타 유기물 또는 무기물을 환원제로 첨가하여 과산화수소와 작용시키는 것으로서, 이 방법은 반응온도를 적당한 온도로 제어해야만 안전성과 반응 효율성을 겸비할 수 있고, 이와 동시에 반응에 따른 부산물이 후속의 폐용액 처리 과정을 추가시키는지 여부도 반드시 고려해야 한다.(4) To react with hydrogen peroxide by adding other organic or inorganic materials as a reducing agent, this method can combine safety and reaction efficiency only when the reaction temperature is controlled to an appropriate temperature, and at the same time, the by-products of the reaction are used for subsequent waste solution. You must also consider whether to add processing.

이에 본 발명자들은 상기와 같은 문제를 극복하기 위해 황산폐산 내의 과산화수소를 제거하기 위한 방법을 연구하던 중, 단순히 기존의 활성탄 또는 질산을 첨가하여 과산화수소를 분해하는 것(한국공개특허 제10-2018-0051250호, 한국등록특허 제10-1641959호)보다 활성탄의 함량을 다르게 하여 단계적으로 투입하는 단계를 거치면 보다 발열온도가 낮고, 과산화수소 분해시간이 단축된다는 것을 확인하여 본 발명을 완성하였다. 또한, 기존의 활성탄보다 산화철에 함침한 활성탄을 사용함으로써 과산화수소 분해시간이 단축되는 효과를 나타내는 것을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors while studying a method for removing hydrogen peroxide in waste acid to overcome the above problems, simply decomposing hydrogen peroxide by adding existing activated carbon or nitric acid (Korean Patent Publication No. 10-2018-0051250 No., Korean Patent Registration No. 10-1641959) was completed by the step of adding a different content of activated carbon step by step to confirm that the exothermic temperature is lower, hydrogen peroxide decomposition time is shortened. In addition, by using activated carbon impregnated with iron oxide than conventional activated carbon, it was confirmed that the decomposition time of hydrogen peroxide was shortened, thereby completing the present invention.

한국등록특허 제10-1641959호(발명의 명칭 : 황산-과산화수소 용액으로부터 과산화수소를 제거하는 방법 및 그 처리제, 출원인 : 트러스발 테크놀러지 컴퍼니, 리미티드, 등록일자 : 2016.07.18.)Korean Registered Patent No. 10-1641959 (Invention name: Method for removing hydrogen peroxide from sulfuric acid-hydrogen peroxide solution and its treating agent, Applicant: Trussval Technology Company, Limited, Date of registration: 2016.07.18.) 한국공개특허 제10-2018-0051250호(발명의 명칭 : 과산화수소 분해 촉매 및 그 제조방법, 상기 촉매를 이용한 과산화수소 분해 장치 및 방법, 출원인 : 한국과학기술연구원, 공개일자 : 2018.05.16.)Korean Patent Publication No. 10-2018-0051250 (Invention name: hydrogen peroxide decomposition catalyst and its preparation method, hydrogen peroxide decomposition device and method using the catalyst, Applicant: Korea Institute of Science and Technology, published date: May 16, 2018) 한국등록특허 제10-1237919호(발명의 명칭 : 과산화수소에 오염된 폐황산의 재활용 장치, 출원인 : 소광민, 등록일자 : 2013.02.21.)Korean Registered Patent No. 10-1237919 (Invention name: Recycling device for waste sulfuric acid contaminated with hydrogen peroxide, Applicant: So Kwang Min, Date of registration: 2013.02.21.)

본 발명의 목적은 황산폐산 내의 과산화수소를 제거하기 위한 활성탄 촉매 분해방법을 제공하는 것으로서, 더욱 상세하게는 반도체 제조과정 중 웨이퍼 세정공정에서 발생하는 황산폐산에 포함되는 과산화수소를 활성탄 촉매를 통해 분해하여 황산을 정제하는 방법을 제공하는 데에 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide an activated carbon catalytic decomposition method for removing hydrogen peroxide in waste acid, and more particularly, sulfuric acid by decomposition of hydrogen peroxide contained in waste acid generated in a wafer cleaning process during semiconductor manufacturing process through an activated carbon catalyst. It is to provide a method for purifying.

또 다른 발명의 목적은 활성탄에 철염을 함침하여 과산화수소 분해반응을 촉진하며 또한, 활성탄을 나누어 투입하여 과산화수소 분해시간을 단축보다 짧게 하고, 반응온도를 낮추어 안정적으로 황산폐산 내의 과산화수소를 분해하여 황산을 정제하는 방법을 제공하는 데에 있다.Another object of the present invention is to impregnate activated carbon with iron salts to promote hydrogen peroxide decomposition reactions, and by dividing activated carbon to shorten hydrogen peroxide decomposition time shorter, and to lower the reaction temperature to stably decompose hydrogen peroxide in waste acid sulfate to purify sulfuric acid. To provide a way to do it.

본 발명은 (제1단계) 반도체 산업에서 발생하는 황산폐산을 수집하는 단계;The present invention comprises the steps of collecting the spent sulfuric acid generated in the (first step) semiconductor industry;

(제2단계) 체류형 분해조에 황산폐산을 투입하는 단계;(Second step) adding spent sulfuric acid to the retention type digestion tank;

(제3단계) 상기 제2단계의 체류형 분해조에 활성탄을 투입하여 황산폐산 내의 과산화수소를 분해하는 단계; 및(Third step) decomposing hydrogen peroxide in spent acid by adding activated carbon to the retention type digestion tank of the second step; And

(제4단계) 상기 제3단계에서 과산화수소 분해가 완료된 황산을 체류형 분해조 내의 여과장치를 통하여 황산 저장탱크로 이송하는 단계;를 포함하는 것을 특징으로 하는 과산화수소 제거방법에 관한 것이다.(Fourth step) Transferring the sulfuric acid in which the hydrogen peroxide decomposition is completed in the third step to the sulfuric acid storage tank through a filtration device in the retention type decomposition tank; hydrogen peroxide removal method comprising a.

상기 제2단계의 체류형 분해조는 하나 또는 둘 이상 설치되어 연속식으로 과산화수소를 제거하는 것일 수 있다.The retention type digestion tank of the second stage may be one or more installed to continuously remove hydrogen peroxide.

상기 제3단계의 활성탄은 비표면적 500 내지 3000㎡/g의 입상 형태인 것을 이용하는 것일 수 있다.The activated carbon of the third step may be a granular form having a specific surface area of 500 to 3000 m 2 / g.

상기 제3단계의 활성탄은 철염용액에 함침하고 열처리를 하여 산화철이 함침된 활성탄을 이용하는 것일 수 있다.The activated carbon of the third step may be to use the activated carbon impregnated with iron salt solution and heat-treated impregnated iron oxide.

상기 제3단계의 황산폐산 내의 과산화수소를 분해하는 단계는 과산화수소 분해시 발열 온도가 30℃ 이하를 유지하는 것일 수 있다.Decomposing hydrogen peroxide in the spent sulfuric acid of the third step may be to maintain an exothermic temperature of less than 30 ℃ during hydrogen peroxide decomposition.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

상기 제1단계에서 과산화수소를 포함한 황산폐산은 반도체 생산과정에서 발생하는 부산물 중 황산에 과산화수소가 포함된 용액이며 일반적으로는 황산 50~70중량%, 과산화수소 1~10중량% 및 물 20~40중량%를 포함하는 것일 수 있다.In the first step, spent sulfuric acid containing hydrogen peroxide is a solution containing hydrogen peroxide in sulfuric acid among by-products generated during the semiconductor production process. Generally, sulfuric acid 50-70 wt%, hydrogen peroxide 1-10 wt% and water 20-40 wt% It may be to include.

상기 제2단계에서 체류형 분해조는 활성탄 촉매를 여과할 수 있는 여과장치를 포함한 내산 내질의 탱크, 내산 코팅된 스틸 및 콘트리트 탱크를 포함하며 한 개의 분해조를 사용하는 회분식 분해조와 두 개 이상의 분해조를 연결하여 황산폐산을 지속적으로 공급과 배출할 수 있는 방법의 연속식 분해조를 사용할 수 있다. 가장 바람직하게는 세 개의 분해조를 연결한 연속식 분해조를 사용하는 것이 좋다. 이때 연속식 분해조에서 연결된 각각의 분해조에는 활성탄의 함량이 다르게 투입될 수 있다. 바람직하게는 황산폐산 100 중량부 기준 활성탄이 0.5~1 중량부, 1~2중량부, 2~5중량부씩 각각의 분해조에 투입되어 황산폐산 내의 과산화수소를 순차적으로 분해할 수 있다. 황산폐산은 활성탄이 적게 투입된 분해조부터 유입되어 순차적으로 과산화수소가 분해되어 제거되는 것이 바람직하다. 또한, 연속식 분해조를 통해서 과산화수소를 제거하는 방법인 경우 황산폐산은 각각의 분해조에서의 체류시간이 2 내지 5시간인 것이 바람직하다. 체류시간이 2시간 미만이면 충분히 과산화수소가 분해될 수 없어 바람직하지 못하며, 체류시간이 5시간 초과이면 설비의 운영시간이 길어져 생산효율이 떨어지므로 경제적이지 못하다.In the second stage, the retention type cracking tank includes an acid resistant tank including a filtering device capable of filtering activated carbon catalyst, an acid coated steel and a concrete tank, and a batch cracking tank and two or more cracking tanks using one cracking tank. The continuous digestion tank can be used to continuously supply and discharge spent sulfuric acid. Most preferably, it is preferable to use a continuous digester in which three digesters are connected. In this case, the content of activated carbon may be added differently to each decomposition tank connected in the continuous decomposition tank. Preferably, based on 100 parts by weight of spent sulfuric acid, activated carbon is added to each decomposition tank by 0.5 to 1 part by weight, 1 to 2 parts by weight, and 2 to 5 parts by weight to sequentially decompose hydrogen peroxide in spent acid. Waste acid is introduced from a decomposition tank in which less activated carbon is introduced, and hydrogen peroxide is sequentially decomposed and removed. In addition, in the case of removing hydrogen peroxide through a continuous decomposition tank, it is preferable that the spent acid of waste acid is 2 to 5 hours in each decomposition tank. If the residence time is less than 2 hours, hydrogen peroxide cannot be decomposed sufficiently, and if the residence time is more than 5 hours, the operation time of the equipment is long, and thus the production efficiency is not economical.

또한, 황산폐산 내의 과산화수소를 제거하기 위한 체류형 분해방법은 분해조의 설비 및 설치비용과 운전비용이 매우 낮아 경제적으로 우수하며, 과산화수소가 제거된 황산은 다양한 산업에 재활용되도록 제공할 수 있어 폐기물을 산업자원으로 재순환하는 친환경적 방법이다.In addition, the residence-type decomposition method for removing hydrogen peroxide in waste acid is economically low due to the low installation and installation costs and operation costs of the digestion tank, and sulfuric acid from which hydrogen peroxide has been removed can be provided for recycling to various industries. It is an environmentally friendly way to recycle resources.

상기 제3단계에서 활성탄은 비표면적이 500~3,000㎡/g인 것을 이용하는 것이 바람직하며, 보다 바람직하게는 1,000~2,000㎡/g인 것을 이용하는 것이 좋다. 활성탄의 비표면적이 500㎡/g 미만이면 과산화수소 분해반응이 잘 일어나지 않거나 분해가 오래걸릴 수 있어 바람직하지 못하며, 비표면적이 3,000㎡/g 초과인 것을 이용하면 과산화수소 분해반응이 너무 활발하게 일어나서 반응비율 제어에 어려움이 있으며 가격이 비싸 경제적으로 바람직하지 못하다.In the third step, it is preferable that the activated carbon has a specific surface area of 500 to 3,000 m 2 / g, more preferably 1,000 to 2,000 m 2 / g. If the specific surface area of the activated carbon is less than 500 m 2 / g, hydrogen peroxide decomposition reaction may not occur well or it may take a long time, and if the specific surface area is more than 3,000 m 2 / g, the hydrogen peroxide decomposition reaction may occur so actively that the reaction rate Difficult to control and expensive, economically undesirable.

상기 활성탄은 산화철에 함침시킨 활성탄을 이용할 수 있다. 더욱 상세하게는 비표면적이 500~3,000㎡/g인 활성탄을 철염을 포함하는 에탄올 용액에 넣어서 상기 철염을 포함하는 에탄올 용액이 활성탄에 함침될 수 있도록 할 수 있다.The activated carbon may be activated carbon impregnated with iron oxide. More specifically, the activated carbon having a specific surface area of 500 to 3,000 m 2 / g may be put in an ethanol solution containing iron salt so that the ethanol solution containing iron salt may be impregnated in the activated carbon.

활성탄은 100 중량부 기준 에탄올 용액 150 내지 300 중량부에 혼합되어 함침될 수 있으며, 또한, 상기 에탄올 용액은 질산철, 염화철, 수산화철 및 황산철 중 어느 하나 이상을 포함할 수 있으며, 에탄올 용액 100 중량부 기준 0.01 내지 2 중량부가 포함되는 것이 바람직하다. 가장 바람직하게는 삼질산철이 0.01 내지 2 중량부가 포함되는 것이 좋다. 상기 철염이 0.01 중량부 미만이면 표면에 입혀지는 철염이 충분하지 않을 수 있고, 2 중량부 초과이면 철염의 농도가 너무 높아 경제적으로 바람직하지 못하다.Activated carbon may be impregnated by mixing 150 to 300 parts by weight of an ethanol solution based on 100 parts by weight, and the ethanol solution may include any one or more of iron nitrate, iron chloride, iron hydroxide, and iron sulfate, and 100 weight of ethanol solution. It is preferable to include 0.01 to 2 parts by weight based on parts. Most preferably, 0.01 to 2 parts by weight of iron trinitrate is included. If the iron salt is less than 0.01 parts by weight may not be sufficient iron salt on the surface, if the iron salt is more than 2 parts by weight concentration of the iron salt is too high economically undesirable.

또한, 상기 철염을 포함하는 에탄올 용액이 상기 활성탄에 함침되도록 하는 것은 초음파세척기에서 진동을 주는 방법으로 수행되는 것이 바람직하다.In addition, the ethanol solution containing the iron salt is preferably impregnated in the activated carbon is performed by a method of giving a vibration in the ultrasonic cleaner.

상기 철염을 포함하는 에탄올 용액으로부터 활성탄을 분리하여 물로 세척하여 에탄올 용액을 제거할 수 있다. 상기 에탄올 용액을 제거하는 방법은 물로 1~3회 세척하는 것이 바람직하다. 물로 충분히 세척하지 않으며 함침되지 않은 철염이 활성탄에 부착되어 황산폐산 내의 과산화수소 분해단계시 함침되지 않고 부착되어 잔류한 철염이 황산을 오염시킬 수 있어 바람직하지 못하다.Activated carbon may be separated from the ethanol solution containing the iron salt and washed with water to remove the ethanol solution. The method for removing the ethanol solution is preferably washed 1 to 3 times with water. Iron salts that are not sufficiently washed with water and which are not impregnated are attached to activated carbon and are not impregnated during the hydrogen peroxide decomposition step in waste acid so that the remaining iron salts can contaminate sulfuric acid.

이후, 상기 에탄올 용액을 제거한 활성탄을 300 내지 500℃에서 열처리하여 활성탄 표면에 산화철이 함침되도록 할 수 있다. 상기 열처리 온도가 300℃ 미만이면 철의 산화가 충분하지 않을 수 있고, 500℃를 초과하면 가열 에너지를 낭비할 수 있다.Thereafter, the activated carbon from which the ethanol solution is removed may be heat-treated at 300 to 500 ° C. to impregnate iron oxide on the surface of the activated carbon. If the heat treatment temperature is less than 300 ℃ iron oxidation may not be sufficient, if it exceeds 500 ℃ may be a waste of heating energy.

상기 열처리 후 산화철의 종류는 철염을 포함하는 에탄올 용액에서 철염의 종류에 따라 달라질 수 있으나, 과산화수소 분해반응에 사용될 수 있는 산화철이 함침되면 되고, 3가 산화철이 함침되는 것이 바람직하다.The type of iron oxide after the heat treatment may vary depending on the type of iron salt in the ethanol solution containing iron salt, but may be impregnated with iron oxide, which may be used for hydrogen peroxide decomposition, and trivalent iron oxide is preferably impregnated.

상기 함침재료로는 순수 산화철뿐만 아니라 과산화수소 분해반응의 효율을 높일 수 있는 다른 원소도 함께 함침될 수 있다.The impregnating material may be impregnated with pure iron oxide as well as other elements that may increase the efficiency of the hydrogen peroxide decomposition reaction.

본 발명에 따른 산화철이 함침된 활성탄은 황산폐산 내의 과산화수소를 분해하여 제거하는데 효과를 나타낼 수 있다.Activated carbon impregnated with iron oxide according to the present invention may have an effect in decomposing and removing hydrogen peroxide in waste acid.

본 발명은 황산폐산 내의 과산화수소를 제거하기 위한 활성탄 촉매 분해방법에 관한 것으로 기존의 황산폐산을 가열하여 제거하는 방법 또는 단순히 질산만을 첨가하여 제거하는 방법보다 위험성이 낮으며, 과산화수소 분해반응 온도가 낮아 대량의 황산폐산을 처리하기에 안정적인 효과가 있다.The present invention relates to a catalytic decomposition method of activated carbon for removing hydrogen peroxide in waste acid, and has a lower risk than a conventional method of removing waste acid by heating or simply adding nitric acid to remove hydrogen peroxide. It has a stable effect on the treatment of waste acid.

도 1은 황산폐산 내의 과산화수소를 체류형 연속식 분해조 제거방법으로 황산을 정제하는 흐름도이다.
도 2는 황산폐산에 활성탄을 투입 시 과산화수소 분해 후 발생하는 산소가스량을 측정한 그래프이다.
1 is a flow chart of purifying sulfuric acid in a method of removing hydrogen peroxide in spent sulfuric acid by a continuous continuous digestion tank removal method.
2 is a graph measuring the amount of oxygen gas generated after hydrogen peroxide decomposition when activated carbon is added to waste acid.

이하 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해지도록, 당업자에게 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다.Hereinafter, a preferred embodiment of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, it is provided to fully convey the spirit of the present invention to those skilled in the art so that the contents introduced herein are thoroughly and completely.

실시예 1. 황산폐산 수집 및 활성탄 준비Example 1 Waste Sulfate Collection and Activated Carbon Preparation

본 발명의 황산폐산은 반도체 산업에서 발생하는 과산화수소를 포함한 황산폐산을 사용하였으며, 더욱 상세하게는 황산 60중량%, 과산화수소 5중량%, 물 35중량%인 것을 사용하였다. 또한, 활성탄은 비표면적이 최소 950㎡/g 이상의 석탄계로 8×30 mesh 크기인 것을 준비하였다.Waste sulfuric acid of the present invention was used as a sulfuric acid containing hydrogen peroxide generated in the semiconductor industry, more specifically, 60% by weight sulfuric acid, 5% by weight hydrogen peroxide, 35% by weight of water was used. In addition, activated carbon was prepared to have a specific surface area of at least 950㎡ / g coal-based 8 × 30 mesh size.

실시예 2. 산화철이 함침된 활성탄 제조Example 2 Preparation of Activated Carbon Impregnated with Iron Oxide

상기 실시예 1에서 준비한 활성탄에 산화철을 함침시킨 활성탄을 제조하였다. 더욱 상세하게는 상기 실시예 1에서 준비한 활성탄을 우선 산용액에서 식각 및 산화시켰다. 산용액은 95%(v/v) 황산과 70%(v/v) 질산을 3:1의 비율로 제조하였으며 이렇게 준비된 산용액에 활성탄을 25℃에서 24시간 침지하였다. 이후 산용액 처리된 활성탄은 증류수로 반복 세척하여 pH를 중성으로 맞췄다. 중화된 활성탄에 산화철을 함침시키는 과정은 다음과 같이 진행되었다.Activated carbon impregnated with activated carbon prepared in Example 1 was prepared. More specifically, the activated carbon prepared in Example 1 was first etched and oxidized in an acid solution. The acid solution was prepared with 95% (v / v) sulfuric acid and 70% (v / v) nitric acid in a ratio of 3: 1. Activated carbon was soaked at 25 ° C. for 24 hours. The acid solution treated activated carbon was washed repeatedly with distilled water to adjust the pH to neutral. Impregnation of the iron oxide on the neutralized activated carbon proceeded as follows.

삼(Ⅲ)질산철(Fe(NO3)9H2O)을 에탄올에 넣고 3중량% 철염용액을 만들었다. 이후 상기 철염용액에 상기 활성탄을 넣고, 철염용액을 초음파세척기에 넣어 10분간 진동을 주어 철염용액이 활성탄에 함침되도록 하였다. 이후 철염용액이 함침된 활성탄을 100℃에서 1시간 열처리하여 에탄올을 제거한 후, 400℃에서 4시간 열처리하여 철염을 산화시켜 산화철이 함침된 활성탄을 제조하였다.Tri (III) iron nitrate (Fe (NO 3 ) 3 · 9H 2 O) was added to ethanol to prepare a 3 wt% iron salt solution. Thereafter, the activated carbon was added to the iron salt solution, and the iron salt solution was placed in an ultrasonic cleaner to vibrate for 10 minutes so that the iron salt solution was impregnated with the activated carbon. Thereafter, the activated carbon impregnated with the iron salt solution was heat-treated at 100 ° C. for 1 hour to remove ethanol, and then heat-treated at 400 ° C. for 4 hours to oxidize the iron salt to prepare activated carbon impregnated with iron oxide.

실험예 1. 활성탄 투입량에 따른 과산화수소 분해시간 확인Experimental Example 1. Confirmation of hydrogen peroxide decomposition time according to the amount of activated carbon

활성탄 또는 질산 투입량에 따른 과산화수소 분해시간을 확인하기 위한 실험을 실시하였다. 본 실험을 위해 내산 재질로 제작된 체류형 분해조를 제작하였으며, 상기 체류형 분해조에 활성탄 1g, 2g, 3g, 4g, 5g씩을 각각 넣어 준비하고, 실시예 1에서 수집한 황산폐산 100g을 각 체류형 분해조에 부은 후 기포 포집장치를 통해 기포발생 개수를 측정하였으며, 이를 하기 표 1에 나타내었다. 한편, 기포가 더 이상 발생하지 않으면 과산화수소 분해가 완료된 것으로 판단하고 분해완료시간을 확인하였다.An experiment was conducted to determine the decomposition time of hydrogen peroxide according to the activated carbon or nitric acid input. For this experiment, a retention type digestion tank made of acid-resistant material was prepared, and 1 g, 2 g, 3 g, 4 g, and 5 g of activated carbon were prepared in the retention type digestion tank, respectively, and 100 g of spent sulfuric acid collected in Example 1 was retained. After pouring into the mold decomposition tank was measured the number of bubbles generated by the bubble collecting device, which is shown in Table 1 below. On the other hand, if bubbles no longer occur, it was determined that hydrogen peroxide decomposition was completed and the decomposition completion time was confirmed.

활성탄 투입량Activated Carbon Input 실험예 1-1Experimental Example 1-1 실험예 1-2Experimental Example 1-2 실험예 1-3Experimental Example 1-3 실험예 1-4Experimental Example 1-4 실험예 1-5Experimental Example 1-5 활성탄 1g1 g of activated carbon 활성탄 2gActivated carbon 2g 활성탄 3gActivated carbon 3g 활성탄 4gActivated carbon 4g 활성탄 5g5 g of activated carbon 경과시간(시)Elapsed time (hours) 기포발생 개수(개/분)Number of bubble generation (pieces / minute) 1One 77 1313 1818 2424 3030 22 88 1414 1818 2121 2323 33 88 1010 1515 2020 1010 44 66 88 1111 1313 00 55 44 77 99 77 -- 66 44 44 77 66 -- 77 33 33 55 33 -- 88 22 22 22 00 -- 99 22 22 22 -- -- 1010 22 1One 22 -- -- 분해완료시간(시)Disassembly completion time (hours) 2020 1616 1111 88 44

표 1을 참고하면, 활성탄의 투입량이 증가할수록 과산화수소의 분해완료시간이 단축되는 것을 확인할 수 있으며, 실험예 1-5에서는 분해완료시간이 4시간인 것을 알 수 있다. 활성탄 1g 투입 시에는 분해완료시간이 20시간이며 기포발생 개수 2개 이하로 11시간을 유지하였다. 따라서 활성탄의 투입량이 증가할수록 분해시간이 빠르다는 것을 확인할 수 있었다.Referring to Table 1, it can be seen that the decomposition completion time of hydrogen peroxide is shortened as the amount of activated carbon is increased, and in Experimental Example 1-5, the decomposition completion time is 4 hours. When 1 g of activated carbon was added, the decomposition completion time was 20 hours, and 11 hours were maintained at 2 or less bubbles. Therefore, as the amount of activated carbon increased, it was confirmed that the decomposition time was faster.

실험예 2. 활성탄 투입량에 따른 발열비교 확인Experimental Example 2. Confirmation of heat generation according to the amount of activated carbon

상기 실시예 1에서 준비한 활성탄의 투입량에 따른 과산화수소 분해과정에서 발생하는 발열을 확인하기 위해 실험을 실시하였다.The experiment was carried out to check the exotherm generated in the hydrogen peroxide decomposition process according to the amount of activated carbon prepared in Example 1.

본 실험을 위해 내산 재질의 탱크로 제작된 체류형 분해조를 제작하였으며, 상기 체류형 분해조에 활성탄 1g, 2g, 3g, 4g, 5g씩을 각각 넣어 준비하고, 실시예 1에서 수집한 황산폐산 100g을 각 체류형 분해조에 부은 후 시간에 따른 온도 변화를 측정하여 하기 표 2에 나타내었다.For this experiment, a retention type decomposition tank made of a acid-resistant tank was prepared, and 1 g, 2 g, 3 g, 4 g, and 5 g of activated carbon were prepared in the retention type decomposition tank, respectively, and 100 g of waste sulfate collected in Example 1 was prepared. The temperature change with time after pouring into each retention type digestion tank was measured, and is shown in Table 2 below.

구분division 활성탄
투입량
Activated carbon
input
온도 변화Temperature change
투입시When 1시간1 hours 3시간3 hours 5시간5 hours 10시간10 hours 실험예 2-1Experimental Example 2-1 1g1 g 24℃24 ℃ 24℃24 ℃ 25℃25 ℃ 26℃26 ℃ 26℃26 ℃ 실험예 2-2Experimental Example 2-2 2g2 g 24℃24 ℃ 25℃25 ℃ 26℃26 ℃ 27℃27 ℃ 26℃26 ℃ 실험예 2-3Experimental Example 2-3 3g3 g 24℃24 ℃ 25℃25 ℃ 28℃28 ℃ 30℃30 ℃ 30℃30 ℃ 실험예 2-4Experimental Example 2-4 4g4 g 24℃24 ℃ 30℃30 ℃ 32℃32 ℃ 34℃34 ℃ -- 실험예 2-5Experimental Example 2-5 5g5 g 24℃24 ℃ 33℃33 ℃ 35℃35 ℃ -- --

표 2를 참고하면, 실험예 2-1 내지 2-3은 투입 후 반응 종료시까지 30℃ 이하를 나타내어 과산화수소 분해과정 중 발열이 미비한 것을 확인할 수 있었으며, 반면, 실험예 2-4 및 2-5에서는 발열온도가 30℃를 초과한 것을 확인할 수 있었다. 또한, 황산폐산 100g 기준 활성탄을 3g 이상 투입하였을 때는 분해과정에서 활성탄 손상으로 인한 황산이 오염되었으며, 황산가스가 발생하여 안정성이 떨어지는 것을 알 수 있었다.Referring to Table 2, Experimental Examples 2-1 to 2-3 represented 30 ° C. or less until the end of the reaction after the addition, and it was confirmed that heat generation was insufficient during the hydrogen peroxide decomposition process, whereas in Experimental Examples 2-4 and 2-5, It was confirmed that the exothermic temperature exceeded 30 ° C. In addition, when 3g or more of activated carbon based on 100g of sulfuric acid was added, sulfuric acid was contaminated due to activated carbon damage during decomposition, and sulfuric acid gas was generated, indicating that the stability was deteriorated.

상기 실험예 1에서 실시한 과산화수소 분해시간 측정과 실험예 2를 통해 활성탄 투입량이 증가하면 분해시간이 단축되지만 발열온도 또한 높아지게 된다는 것을 알 수 있다. 따라서, 단순히 활성탄 투입량을 늘리는 것은 과산화수소 분해에 있어 안정성이 떨어지며, 활성탄을 적게 투입하면 과산화수소 분해시간이 너무 길어져 효율적이지 못하다는 것을 확인할 수 있었다.Determination of the hydrogen peroxide decomposition time carried out in Experimental Example 1 and Experimental Example 2 shows that when the amount of activated carbon is increased, the decomposition time is shortened but the exothermic temperature is also increased. Therefore, simply increasing the amount of activated carbon is less stable in the decomposition of hydrogen peroxide, it can be confirmed that the addition of less activated carbon is not efficient because the hydrogen peroxide decomposition time is too long.

실험예 3. 활성탄을 단계적으로 나누어 과산화수소를 분해Experimental Example 3 Dividing Activated Carbon Stepwise to Decompose Hydrogen Peroxide

본 실험예에서는 활성탄을 단계적으로 나누어 황산폐산 내의 과산화수소를 분해하는 실험을 실시하였다. 본 실험은 체류형 분해조를 연결한 연속식 분해조를 이용하여 실시하였다. 더욱 상세하게는 상기 체류형 분해조는 활성탄을 여과할 수 있는 여과장치를 포함하고 내산 재질의 탱크로 제작되었으며, 3개의 체류형 분해조를 연결하여 황산폐산을 지속적으로 공급과 배출할 수 있는 연속식 분해조를 사용하였다. 3개의 체류형 분해조는 각각 분해조(1), 분해조(2) 및 분해조(3)으로 하여 각각의 분해조에는 활성탄의 함량을 다르게 하여 투입하였다.In this experimental example, an experiment was conducted to decompose hydrogen peroxide in waste acid by dividing activated carbon in stages. This experiment was carried out using a continuous digester connected with a retention digester. More specifically, the retention type digestion tank includes a filter device for filtering activated carbon and is made of an acid resistant tank, and is connected to three retention type digestion tanks to continuously supply and discharge spent sulfuric acid. A digestion tank was used. The three staying digestion tanks were digested (1), digested (2) and digested tanks (3), respectively, and the content of activated carbon was added to each digestion tank.

각 분해조의 활성탄 투입량은 분해조(1)은 1g, 분해조(2)는 2g, 분해조(3)은 4g씩 투입하였다. 이후 상기 실시예 1에서 수집한 황산폐산 100g을 분해조(1)에 붓고 4시간 동안 과산화수소 분해반응 후에 활성탄을 여과하고 분해조(1)의 황산폐산을 다음 분해조(2)로 이동시켜 이어서 과산화수소 분해반응을 진행하였다. 분해조(2)에서 추가로 4시간 반응 후 활성탄 4g이 투입된 분해조(3)으로 이동시켜 과산화수소 분해반응을 진행하였다. 활성탄 투입량을 다르게 한 분해조에서 각각 황산폐산 내의 과산화수소 분해반응을 단계적으로 실시하였으며 상기 실험예 1 및 2와 같은 방법으로 분해시간 및 온도변화를 측정하여 하기 표 3 및 4에 나타내었다.The amount of activated carbon in each cracking tank was 1g for the cracking tank 1, 2g for the cracking tank 2, and 4g for the cracking tank 3, respectively. Then, 100 g of spent sulfuric acid collected in Example 1 was poured into a decomposition tank (1), and after 4 hours of hydrogen peroxide decomposition reaction, the activated carbon was filtered and the spent sulfuric acid of the decomposition tank (1) was moved to the next decomposition tank (2), followed by hydrogen peroxide. The decomposition reaction was carried out. After 4 hours of further reaction in the decomposition tank (2), 4 g of activated carbon was transferred to the decomposition tank (3), where hydrogen peroxide decomposition reaction was performed. The decomposition of hydrogen peroxide in spent sulfuric acid was carried out step by step in the decomposition tank with the activated carbon input differently, and the decomposition time and the temperature change were measured in the same manner as in Experimental Examples 1 and 2, and the results are shown in Tables 3 and 4 below.

구분division 기포발생 개수(개/분)Number of bubble generation (pieces / minute) 활성탄이 1g 투입된
분해조(1)
1 g of activated carbon
Disassembling tank (1)
활성탄이 2g 투입된
분해조(2)
2g of activated carbon
Disassembling tank (2)
활성탄이 4g 투입된
분해조(3)
4g activated carbon
Disassembling tank (3)
투입 초기Initial input 77 1시간1 hours 88 2시간2 hours 88 3시간3 hours 88 4시간4 hours 분해조(2)로 옮김 ⇒Moved to disintegration tank (2) ⇒ 1010 5시간5 hours 99 6시간6 hours 88 7시간7 hours 44 8시간8 hours 분해조(3)로 옮김 ⇒Moved to digester (3) ⇒ 88 9시간9 hours 22 10시간10 hours 00

구분division 온도 변화Temperature change 투입 초기Initial input 1시간1 hours 3시간3 hours 6시간6 hours 9시간9 hours 활성탄이 1g 투입된 분해조(1)Decomposition tank with 1g of activated carbon (1) 24℃24 ℃ 24℃24 ℃ 25℃25 ℃ -- -- 활성탄이 2g 투입된 분해조(2)Decomposing tank with 2g of activated carbon (2) -- -- -- 27℃27 ℃ -- 활성탄이 4g 투입된 분해조(3)Decomposing tank with 4g of activated carbon (3) -- -- -- -- 30℃30 ℃

표 3 및 4를 참고하면, 황산폐산 내의 과산화수소 분해를 3단계로 구분하여 실시하였을 때 10시간 이내에 분해가 완료된 것을 확인할 수 있다. 상기 실험예 1-1 내지 1-3의 과산화수소 분해시간과 비교하면 보다 시간이 단축된 것을 확인할 수 있으며, 이를 통해 황산폐산 내의 과산화수소의 분해가 진행되는 중 함량이 낮아지는 시점에서 활성탄 투입량을 증가시키는 방법을 통해 과산화수소 분해시간을 단축할 수 있다는 것을 알 수 있다.Referring to Tables 3 and 4, it can be seen that decomposition was completed within 10 hours when the hydrogen peroxide decomposition in waste acid was divided into three stages. Compared with the decomposition time of hydrogen peroxide of Experimental Examples 1-1 to 1-3, it can be seen that the time is shortened, thereby increasing the amount of activated carbon input at the time when the content of the hydrogen peroxide in the sulfuric acid is lowered during the decomposition. It can be seen that the method can reduce the hydrogen peroxide decomposition time.

한편, 상기 실험예 1-4 및 1-5보다 과산화수소 분해시간이 단축되진 않았으나 실험예 1-4 및 1-5에서 발생한 활성탄에 의한 황산 오염 및 황산가스가 상기 실험예 3에서는 발생하지 않았고, 또한, 발열온도 역시 30℃ 이하를 나타내어 안정적인 상태에서 과산화수소를 분해한다는 것을 확인하여, 보다 효과적으로 황산폐산 내의 과산화수소를 제거하는 방법인 것을 알 수 있다.On the other hand, hydrogen peroxide decomposition time was not shorter than Experimental Examples 1-4 and 1-5, but sulfuric acid contamination and sulfuric acid gas by activated carbon generated in Experimental Examples 1-4 and 1-5 did not occur in Experimental Example 3, and In addition, the exothermic temperature is also shown below 30 ℃ to confirm that the decomposition of hydrogen peroxide in a stable state, it can be seen that the method of more effectively removing the hydrogen peroxide in waste acid sulfate.

실험예 4. 산화철이 함침된 활성탄을 단계적으로 나누어 과산화수소를 분해Experimental Example 4 Hydrogen Peroxide Decomposed by Dividing Activated Carbon Impregnated with Iron Oxide Stepwise

본 실험예에서는 산화철이 함침된 활성탄을 단계적으로 나누어 황산폐산 내의 과산화수소를 분해하는 실험을 실시하였다. 상기 실험예 3과 같은 방법으로 실시하되 활성탄 대신에 실시예 2에서 제조한 산화철이 함침된 활성탄을 투입하고, 황산폐산 투입후 3시간 간격으로 비커를 바꾸어주며 실험을 실시하였다. 이에 따른 분해시간 및 온도변화를 하기 표 5 및 6에 나타내었다.In this experimental example, an experiment was conducted to decompose hydrogen peroxide in waste acid sulfate by dividing activated carbon impregnated with iron oxide in stages. The experiment was carried out in the same manner as in Experimental Example 3, but instead of activated carbon, activated carbon impregnated with iron oxide prepared in Example 2 was added, and beaker was changed at intervals of 3 hours after the addition of spent sulfuric acid. The decomposition time and temperature change accordingly are shown in Tables 5 and 6 below.

구분division 기포발생 개수(개/분)Number of bubble generation (pieces / minute) 산화철이 함침된 활성탄이 1g 투입된 분해조(1)Decomposition tank containing 1 g of activated carbon impregnated with iron oxide (1) 산화철이 함침된 활성탄이 2g 투입된 분해조(2)Decomposing tank with 2g of activated carbon impregnated with iron oxide (2) 산화철이 함침된 활성탄이 4g 투입된 분해조(3)Decomposition tank containing 4 g of activated carbon impregnated with iron oxide (3) 투입 초기Initial input 88 1시간1 hours 99 2시간2 hours 88 3시간3 hours 분해조(2)로 옮김 ⇒Moved to disintegration tank (2) ⇒ 1212 4시간4 hours 1010 5시간5 hours 99 6시간6 hours 분해조(3)로 옮김 ⇒Moved to digester (3) ⇒ 99 7시간7 hours 33 8시간8 hours 00 9시간9 hours -- 10시간10 hours --

구분division 온도 변화Temperature change 투입 초기Initial input 1시간1 hours 3시간3 hours 5시간5 hours 7시간7 hours 산화철이 함침된 활성탄이 1g 투입된 분해조(1)Decomposition tank containing 1 g of activated carbon impregnated with iron oxide (1) 24℃24 ℃ 24℃24 ℃ -- -- -- 산화철이 함침된 활성탄이 2g 투입된 분해조(2)Decomposing tank with 2g of activated carbon impregnated with iron oxide (2) -- -- 26℃26 ℃ 26℃26 ℃ -- 산화철이 함침된 활성탄이 4g 투입된 분해조(3)Decomposition tank containing 4 g of activated carbon impregnated with iron oxide (3) -- -- -- -- 29℃29 ℃

표 5 및 6을 참고하면, 황산폐산 내의 과산화수소 분해를 3단계로 구분하여 실시하였을 때 8시간 이내에 분해가 완료된 것을 확인할 수 있다. 상기 실험예 3과 비교해보면 과산화수소 분해시간이 보다 단축되고 발열온도 또한 30℃ 이하를 나타내어 보다 더 효과적인 것을 확인할 수 있다. 활성탄 손상에 의한 오염도 발생하지 않았으며, 발열온도가 낮아 황산가스 또한 발생하지 않았다.Referring to Tables 5 and 6, it can be seen that decomposition was completed within 8 hours when the hydrogen peroxide decomposition in spent acid was divided into three stages. Comparing with Experimental Example 3 it can be confirmed that the hydrogen peroxide decomposition time is shorter and the exothermic temperature is also 30 ° C or less, which is more effective. There was no pollution due to the activated carbon damage, and no sulfuric acid gas was generated due to the low exothermic temperature.

Claims (5)

(제1단계) 반도체 산업에서 발생하는 황산폐산을 수집하는 단계;
(제2단계) 체류형 분해조에 황산폐산을 투입하는 단계;
(제3단계) 상기 제2단계의 체류형 분해조에 비표면적 500 내지 3000 m2/g의 입상 형태인 활성탄을 투입하여 황산폐산 내 과산화소수를 분해하는 단계; 및
(제4단계) 상기 제3단계에서 과산화수소 분해가 완료된 황산을 체류형 분해조 내의 여과장치를 통하여 황산 저장탱크로 이송하는 단계;를 포함하며,
상기 체류형 분해조는 세 개의 분해조를 연결한 연속식 분해조이며, 상기 연속식 분해조는 황산폐산 100 중량부 기준 활성탄이 0.5~1 중량부가 투입된 분해조, 황산폐산 100 중량부 기준 1~2 중량부가 투입된 분해조 및 황산폐산 100 중량부 기준 2~5 중량부가 투입된 분해조가 연속적으로 연결되는 것을 특징으로 하는 과산화수소 제거방법.
(First step) collecting spent sulfuric acid generated in the semiconductor industry;
(Second step) injecting sulfuric acid into the retention type digestion tank;
(Step 3) Decomposing hydrogen peroxide in the waste acid sulfuric acid by adding activated carbon in the granular form of the specific surface area 500 to 3000 m 2 / g to the retention type decomposition tank of the second step; And
(4th step) the step of transferring the sulfuric acid in which the hydrogen peroxide decomposition is completed in the third step to the sulfuric acid storage tank through a filtration device in the retention type decomposition tank;
The retention type digestion tank is a continuous digestion tank connecting three digestion tanks, and the continuous digestion tank is a digestion tank containing 0.5 to 1 parts by weight of activated carbon based on 100 parts by weight of spent sulfuric acid, and 1 to 2 parts by weight based on 100 parts by weight of spent sulfuric acid. Method for removing hydrogen peroxide, characterized in that the decomposition tank is added and 2 to 5 parts by weight based on 100 parts by weight of spent sulfuric acid continuously connected.
삭제delete 삭제delete 제1항에 있어서,
상기 제3단계의 활성탄은 철염용액에 함침하고 열처리를 하여 산화철이 함침된 활성탄인 것을 특징으로 하는 과산화수소 제거방법.
The method of claim 1,
The method of claim 3, wherein the activated carbon of step 3 is activated carbon impregnated with an iron salt solution and heat-treated to impregnate iron oxide.
제1항에 있어서,
상기 제3단계의 황산폐산 내 과산화수소를 분해하는 단계는 과산화수소 분해시 발열 온도가 30℃ 이하를 유지하는 것을 특징으로 하는 과산화수소 제거방법.
The method of claim 1,
Decomposing hydrogen peroxide in the spent sulfuric acid of the third step, the hydrogen peroxide removal method characterized in that the exothermic temperature is maintained at 30 ℃ or less when hydrogen peroxide decomposition.
KR1020190079751A 2019-07-03 2019-07-03 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid KR102047212B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190079751A KR102047212B1 (en) 2019-07-03 2019-07-03 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid
TW109116378A TWI740505B (en) 2019-07-03 2020-05-18 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid
PCT/KR2020/007315 WO2021002601A1 (en) 2019-07-03 2020-06-05 Activated carbon catalyst decomposition method for removing hydrogen peroxide in sulfuric acid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190079751A KR102047212B1 (en) 2019-07-03 2019-07-03 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid

Publications (1)

Publication Number Publication Date
KR102047212B1 true KR102047212B1 (en) 2019-11-20

Family

ID=68728935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190079751A KR102047212B1 (en) 2019-07-03 2019-07-03 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid

Country Status (3)

Country Link
KR (1) KR102047212B1 (en)
TW (1) TWI740505B (en)
WO (1) WO2021002601A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002601A1 (en) * 2019-07-03 2021-01-07 정영남 Activated carbon catalyst decomposition method for removing hydrogen peroxide in sulfuric acid waste
WO2022235164A1 (en) 2021-05-07 2022-11-10 Kuijpers Kunststoftechniek B.V. Apparatus for neutralizing acid solution
KR20230016916A (en) * 2021-07-27 2023-02-03 주식회사 프로그린테크 Method of removing phthalide derivatives contained in waste sulfuric acid solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116253421B (en) * 2022-11-29 2024-05-28 嘉兴沃特泰科环保科技股份有限公司 Hydrogen peroxide remover for water treatment, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014014A (en) * 2012-04-09 2013-02-06 소광민 Recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
KR101641959B1 (en) 2014-02-11 2016-07-22 트러스발 테크놀로지 컴퍼니, 리미티드 Removing method of hydrogen peroxide from sulfuric acid-hydrogen peroxide solution and treatment agent thereof
KR20180051250A (en) 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990022224A (en) * 1995-06-05 1999-03-25 제프리 엘. 웬트 On-site mixing systems and methods for ultra-pure chemicals for semiconductor processes
US6050283A (en) * 1995-07-07 2000-04-18 Air Liquide America Corporation System and method for on-site mixing of ultra-high-purity chemicals for semiconductor processing
KR101165323B1 (en) * 2011-10-26 2012-07-18 소광민 recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
KR102047212B1 (en) * 2019-07-03 2019-11-20 정영남 Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130014014A (en) * 2012-04-09 2013-02-06 소광민 Recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
KR101237919B1 (en) 2012-04-09 2013-02-28 소광민 recycling device of waste contaminated with hydrogen peroxide to sulfuric acid
KR101641959B1 (en) 2014-02-11 2016-07-22 트러스발 테크놀로지 컴퍼니, 리미티드 Removing method of hydrogen peroxide from sulfuric acid-hydrogen peroxide solution and treatment agent thereof
KR20180051250A (en) 2016-11-08 2018-05-16 한국과학기술연구원 Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002601A1 (en) * 2019-07-03 2021-01-07 정영남 Activated carbon catalyst decomposition method for removing hydrogen peroxide in sulfuric acid waste
WO2022235164A1 (en) 2021-05-07 2022-11-10 Kuijpers Kunststoftechniek B.V. Apparatus for neutralizing acid solution
NL2028174B1 (en) 2021-05-07 2022-11-24 Kuijpers Kunststoftechniek B V Apparatus for neutralizing acid solution
KR20230016916A (en) * 2021-07-27 2023-02-03 주식회사 프로그린테크 Method of removing phthalide derivatives contained in waste sulfuric acid solution
KR102630759B1 (en) 2021-07-27 2024-01-30 주식회사 프로그린테크 Method of removing phthalide derivatives contained in waste sulfuric acid solution

Also Published As

Publication number Publication date
WO2021002601A1 (en) 2021-01-07
TWI740505B (en) 2021-09-21
TW202108499A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
KR102047212B1 (en) Active carbon catalyst decomposition method for elimination of hydrogen peroxide in waste sulfuric acid
Xu et al. Advancements in the Fenton process for wastewater treatment
CN104891713B (en) Catalytic ozonation process for treatment of organic wastewater
Mahtab et al. Zero Fenton sludge discharge: a review on reuse approach during wastewater treatment by the advanced oxidation process
Bi et al. Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process
WO2016115790A1 (en) Ozone-photocatalysis reactor and water treatment method
Ghime et al. Heterogeneous Fenton degradation of oxalic acid by using silica supported iron catalysts prepared from raw rice husk
JPH05503242A (en) Process and equipment for purifying contaminated water with activated ozone
WO2013132294A1 (en) Process for treatment of waste water from nitro-aromatic production
CN114409054B (en) Water treatment method for removing organic pollutants by activating persulfate and cooperatively controlling halogenated byproducts
WO2018188407A1 (en) Advanced treatment and reuse method for bio-chemical effluent of chemical industrial wastewater
JPH05345188A (en) Method for decomposition of hydrogen peroxide
JP2000065986A (en) Method and device for treating radioactive organic waste
JP5208476B2 (en) Waste liquid treatment apparatus and treatment method thereof
KR101623032B1 (en) catalytic composite for catalytic ozonation process and the method of removing non-degradable organic material using the same
CN106955686A (en) Preparation method and application of ozone oxidation catalyst of diatomite-loaded multi-metal oxide
JPH1199394A (en) Method for removing organic matter in water
US20220194817A1 (en) Device and method for degrading chlorinated hydrocarbons in polluted groundwater
KR100390652B1 (en) Method for treating a waste water using a photocatalytic reaction
KR102091728B1 (en) Retention type continuous digestion apparatus that removes hydrogen peroxide from spent sulfuric acid using activated carbon
Li et al. The removal optimization of reactive red x-3b through UV photocatalysis based on the response surface methodology
Wu Photodegradation of toluic acid isomers by UV/TiO 2
CN110066005A (en) A kind of advanced waste treatment method based on ozone oxidation and solid catalysis Fenton
KR20030068367A (en) Method of a sewage, waste water disposal
JPS5834080A (en) Treatment of acid-digested waste liquid

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant