KR102086992B1 - 핀홀 어레이를 사용하는 물체의 공초점형 이미징 - Google Patents

핀홀 어레이를 사용하는 물체의 공초점형 이미징 Download PDF

Info

Publication number
KR102086992B1
KR102086992B1 KR1020170161560A KR20170161560A KR102086992B1 KR 102086992 B1 KR102086992 B1 KR 102086992B1 KR 1020170161560 A KR1020170161560 A KR 1020170161560A KR 20170161560 A KR20170161560 A KR 20170161560A KR 102086992 B1 KR102086992 B1 KR 102086992B1
Authority
KR
South Korea
Prior art keywords
pinhole array
pinhole
imaging device
array
light
Prior art date
Application number
KR1020170161560A
Other languages
English (en)
Other versions
KR20180062402A (ko
Inventor
우이 펑 스제
지앙웬 뎅
Original Assignee
에이에스엠 테크놀러지 싱가포르 피티이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 filed Critical 에이에스엠 테크놀러지 싱가포르 피티이 엘티디
Publication of KR20180062402A publication Critical patent/KR20180062402A/ko
Application granted granted Critical
Publication of KR102086992B1 publication Critical patent/KR102086992B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0028Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders specially adapted for specific applications, e.g. for endoscopes, ophthalmoscopes, attachments to conventional microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Abstract

물체를 검사하기 위한 공초점형 이미징 장치는 상기 물체를 조명하기 위해 광을 투영하도록 작동되는 광원, 및 상기 물체 및 이미징 디바이스 사이에 위치한 광 경로를 따라 상기 물체로부터 반사된 광을 수광하기 위한 상기 이미징 디바이스를 포함한다. 복수의 핀홀들을 포함하는 핀홀 어레이는 상기 물체로부터 반사된 광이 상기 핀홀 어레이를 통과하도록 상기 광 경로를 따라 배치된다. 기구는 상기 물체의 실질적인 접촉 영역에 대응하는 이미지를 상기 이미징 디바이스 상으로 투과시키기 위한 상기 광 경로를 가로지르는 선형 방향으로 단일축을 따라서 상기 핀홀 어레이를 이동시키도록 작동한다.

Description

핀홀 어레이를 사용하는 물체의 공초점형 이미징{CONFOCAL IMAGING OF AN OBJECT UTILISING A PINHOLE ARRAY}
본 발명은 검사 장치에 관한 것으로서, 특히 물체의 표면을 이미징하기 위한 공초점형 검사 장치에 관한 것이다.
전자 패키징 적용에 있어서, 물체 또는 작업편의 검사는 최종 제품의 품질을 체크하기 위해 일반적으로 요구된다. 이러한 검사에 대해서, 공초점형 이미징 기술은 고해상도의 2차원 이미지들을 제공할 수 있다. 추가로, 3차원 프로파일의 고정확성의 검사는 와이어 접합 프로세스 제어에서 볼 두께 측정과 같은 전자 패키징에 대한 많은 검사 적용예에 대해서 바람직하다.
공초점형 이미징에 대한 하나의 접근 방안에 대해서, 하나 이상의 핀홀들을 포함하는 판의 사용은 이미징을 위해 사용되는 광학 시스템으로 진입하는 초점이탈 광선을 제거하는 것을 보조하기 때문에 중요한 진전이다. 그럼에도 불구하고, 이러한 핀홀 판은 우수한 품질의 이미징 데이터를 얻기 위하여 공초점형 시스템에 의해서 캡처되는 광을 제한한다. 조밀한 영역의 이미지를 얻기 위하여, 더욱 우수한 이미지 데이터를 획득하는데 일반적으로 차후 스캐닝이 요구된다. 스캐닝 속도를 개선시키는 것을 고려할 때, 다중 핀홀들을 포함하는 스피닝 디스크의 사용은 영역 이미징 공초점형 시스템에서 광범위하게 채택된다.
이러한 스피닝 디스크는 도 1에 도시된 닙코 디스크(Nipkow disk;100)를 포함할 수 있다. 닙코 디스크(100)는 일반적으로 관측될 물체(116)를 조명하기 위한 광원(102) 및 마이크로렌즈 디스크(106) 및 회전축(108) 주위를 회전하는 핀홀 디스크(110)를 포함한다. 마이크로렌즈 디스크(106)는 마이크로렌즈(104)를 수용하고 핀홀들(112)을 수용하는 핀홀 디스크(110) 앞에 배치된다. 모든 핀홀(112)은 관련 마이크로렌즈(104)를 가진다. 각각의 마이크로렌즈(104)는 광대역의 광을 캡처하고 이를 각각의 핀홀(112) 안으로 초점맞추도록 구성되므로, 각각의 핀홀(112) 안으로 지향된 광의 양을 증가시키고 스피닝 핀홀 디스크(110)에 의해서 차단된 광이 양을 감소시킨다.
광원(102)으로부터의 조명은 마이크로렌즈 디스크(106) 및 핀홀 디스크(110) 사이에 배치된 빔 분할기(122)를 통과하고, 그 다음 대물 렌즈(114)에 의해서 물체(116) 상으로 초점맞추어진다. 물체(116)의 이미지는 물체(116)의 이미지를 센서 또는 카메라(120) 상으로 초점맞추는 포커싱 렌즈(118)를 향하여 빔 분할기(122)에 의해서 반사된다. 닙코 디스크(100)는 핀홀 디스크(110)가 일정한 각속도에서 스핀될 때 이미지를 연속적으로 캡처할 수 있는 영역 스캐닝 공초점형 시스템에 대해서 가장 일반적으로 채택된 구성이다.
핀홀 디스크(110)는 금속, 플라스틱 또는 카드보드와 같은 임의의 적당한 물질로 제조될 수 있고 서로로부터 동일 거리만큼 분리된 동일 직경의 핀홀(112)의 패턴을 가진다. 핀홀(112)은 원형 또는 사각형일 수 있다. 이들 핀홀(112)은 핀홀 디스크(110)의 외부 방사상 지점으로부터 개시되고 핀홀 디스크(110)의 중심으로 진행되는 단일 턴 나선형을 실질적으로 형성하도록 배치될 수 있다. 핀홀 디스크(110)가 회전할 때, 핀홀(112)은 원형 링 패턴을 추적하고, 그 내경 및 외경은 핀홀 디스크(110) 상의 각각의 핀홀(112)의 위치에 의존하고 두께는 각각의 핀홀(112)의 직경과 동일하다. 원형 링 패턴은 핀홀 디스크(110)의 정확한 구성에 따라서 부분적으로 중첩되거나 또는 중첩되지 않을 수 있다. 대물 렌즈(114)는 대물 렌즈(114)의 전방에 있는 물체(116)의 이미지를 직접 핀홀 디스크(110) 상으로 투영한다.
나선형에서 각각의 핀홀(112)은 카메라(120)에 의해서 광 패턴 및 암 영역으로서 픽업되는 이미지의 섹션을 추적한다. 핀홀 디스크(110)를 통해서 핀홀 디스크(110)의 비교적 작은 섹터, 예를 들어, 디스크의 각도 1/4 또는 1/8을 통해서 물체(116)을 관측하는 동안 핀홀 디스크(110)를 스핀시킬 때, 물체(116)는 관측을 위해 선택된 정확한 섹터에 따라서 나란하게, 먼저 길이 또는 높이에 의해서 또는 비록 사선으로 스캔되도록 나타난다. 핀홀 디스크(110)를 충분히 빠르게 스핀시킴으로써, 물체(116)는 완성된 것으로 보이고 물체의 전체 영역을 캡처할 수 있다. 재생된 이미지의 크기는 핀홀 디스크(110)의 크기에 의해서 결정되고, 큰 디스크는 큰 이미지를 생산한다.
닙코 디스크(100)의 디자인은 핀홀 디스크(110)의 회전을 필요로 하고 그 장점은 이러한 검사 시스템은 핀홀 디스크(110)가 일정한 각속도로 스핀될 때 이미지들을 연속적으로 캡처할 수 있다는 것이다. 그러나, 핀홀 패턴은 핀홀 디스크(110)의 회전축(108) 주위로 회전하거나 이동할 필요가 있기 때문에, 핀홀 디스크(110)가 이미지화되는 영역에 대해서 매우 큰 직경을 갖는 것이 요구된다. 더우기, 핀홀(112)은 핀홀 디스크(110)를 가로질러 분산되고 회전축(108)으로부터 상이한 거리에 있기 때문에, 이들은 다른 속도로 이동하는데, 그 이유는 각각의 핀홀(112)의 속도는 회전축(108)으로부터 각속도 및 그 반경의 배수이기 때문이다. 이와 같이, 노출은 핀홀(112)의 속도와 반비례하기 때문에, 이들은 이미징 센서 또는 카메라(120)로 다른 노출 시간을 효과적으로 제공한다. 스피닝 핀홀 디스크(110)의 치수들을 억제하는 각형 개구가 매우 좁을 때에만, 어쨋든 우수한 균일도가 달성될 수 있다.
따라서, 스피닝 디스크 접근방안은 검사 시스템, 특히 다른 해상도, 시야 및 시야 깊이를 갖는 광학 성분을 포함하는 검사 시스템에 대해서는 바람직하지 않다. 이러한 검사 시스템은 고해상도 광학기기를 사용하여 볼 본드를 검사하고 저해상도일 수 있는 큰 깊이의 필드 광학기기를 사용하여 볼 본드에 부착된 접합 와이어를 모두 검사할 필요가 있는 와이어 접합 볼 본드 검사와 같은 적용예에서 요구된다.
따라서, 본 발명의 목적은 상술한 종래 기술의 단점들 중 적어도 일부를 회피하는 비교적 컴팩트한 검사 장치를 제공하는 것이다.
본 발명의 제 1 형태에 따라서, 물체를 검사하기 위한 공초점형 이미징 장치가 제공되고, 상기 이미징 장치는: 상기 물체를 조명하기 위해 광을 투영하도록 작동되는 광원; 상기 물체 및 이미징 디바이스 사이에 위치한 광 경로를 따라 상기 물체로부터 반사된 광을 수광하기 위한 상기 이미징 디바이스; 상기 물체로부터 반사된 광이 핀홀 어레이를 통과하도록 상기 광 경로를 따라 배치된 복수의 핀홀들을 포함하는 상기 핀홀 어레이; 및 상기 물체의 실질적인 접촉 영역에 대응하는 이미지를 상기 이미징 디바이스 상으로 투과시키기 위한 상기 광 경로를 가로지르는 선형 방향으로 단일축을 따라서 상기 핀홀 어레이를 이동시키기 위한 기구를 포함한다.
본 발명의 제 2 형태에 따라서, 공초점형 이미징 장치를 사용하여 물체를 검사하기 위한 방법이 제공되고, 상기 검사 방법은: 광원으로부터의 광을 상기 물체 상으로 투영함으로써 상기 물체를 조명하는 단계; 상기 물체 및 이미징 디바이스 사이에 위치한 광 경로를 따라 상기 물체로부터 반사된 광을 상기 이미징 디바이스에 의해서 수광하는 단계로서, 상기 물체로부터 반사된 광이 상기 광 경로를 따라 배치된 복수의 핀홀들을 포함하는 핀홀 어레이를 통과하는, 상기 수광 단계; 그리고 상기 물체를 검사하기 위해 상기 물체의 실질적인 접촉 영역에 대응하는 이미지를 상기 이미징 디바이스 상으로 투과시키기 위한 상기 광 경로를 가로지르는 선형 방향으로 단일축을 따라서 상기 핀홀 어레이를 이동시키는 단계를 포함한다.
본 발명의 특정 양호한 실시예를 도시하는 첨부된 도면을 참조하여 하기에 본 발명을 더욱 상세하게 기술하는 것이 편리하다. 특정 도면 및 관련 설명은 청구범위에 규정된 바와 같이 본 발명의 넓은 인식의 일반성을 대체하는 것으로 이해되지 않아야 한다.
본 발명에 따른 공초점형 검사 장치의 예는 첨부된 도면을 참조하여 하기에 기술될 것이다.
도 1은 물체 표면을 스캔하기 위해 사용되는 종래 기술의 닙코 디스크의 등면도이다.
도 2는 본 발명의 양호한 실시예에 따른 공초점형 검사 장치의 등면도이다.
도 3은 도 2에 도시된 공초점형 검사 장치와 함께 사용가능한 핀홀 어레이의 평면도이다.
도 4는 핀홀 어레이의 사용과 연계된 예시적인 이미지 캡처 시퀀스를 도시하는 그래프이다.
도 5a 및 도 5b는 본 발명의 양호한 실시예에 따른 공초점형 검사 장치에 의해서 각각 얻어진 공초점형 이미지 및 정적 핀홀 어레이의 이미지들이다.
도 2는 본 발명의 양호한 실시예에 따른 공초점형 이미징 원리들을 사용하는 공초점형 검사 장치(10)의 등면도이다. 공초점형 검사 장치(10)는 물체(36)를 조명하기 위해 광을 투영하도록 작동되는 광원(12)을 포함한다. 광원(12)은 콘덴서 렌즈(14)를 통과하고 이어서 프레넬 렌즈(16)를 통과하는 광선을 발생시킨다. 광선은 그때 편광 빔 분할기(20)를 향하여 제 1 거울(18)에 의해서 반사된다.
편광 빔 분할기(20)는 광 경로를 따라서 핀홀 어레이(22)[복수의 핀홀(24)을 갖는 핀홀 판을 포함함] 및 튜브 렌즈(26)를 통해서 제 2 거울(28) 상으로 광선을 지향한다. 제 2 거울(28)은 크로매틱 요소(30), 1/4 파장의 파장판(32) 및 검사될 물체(36) 상으로 광선을 모으는 대물 렌즈(34)를 통해서 광선을 반사시킨다. 공초점형 검사 장치(10)는 단일 핀홀 대신에 핀홀 어레이 패턴이 핀홀 판에 제조된다는 점에서 종래의 크로매틱 공초점형 시스템과 상이하다. 편광 빔 분할기(20) 및 1/4 파장의 파장판(32)은 여러 렌즈들의 표면 상의 내부 스트레이 광선을 억제하도록 작용한다.
물체(36)로부터 반사되는 광선은 대물 렌즈(34), 1/4 파장의 파장판(32), 크로매틱 요소(30), 제 2 거울(28), 튜브 렌즈(26) 및 핀홀 어레이(22)를 통해서 편광 빔 분할기(20)를 향하여 광 경로를 따라서 뒤로 지향된다. 따라서, 광원(12)으로부터 투영된 광은 물체(36)를 조명하기 전 그리고 물체(36)로부터 반사된 후의 모두에 핀홀 어레이(22)를 통과한다. 이러한 반사된 광선은 편광 빔 분할기(20)를 통과하여 이미징 렌즈(38) 상으로 가고, 결과적 이미지는 CCD 카메라(40)와 같은 이미징 디바이스에 의해서 이미지화된다.
도 3은 도 2에 도시된 공초점형 검사 장치(10)와 함께 사용될 수 있는 핀홀 어레이(22)의 평면도이다. 핀홀 어레이(22)를 사용할 때, 핀홀(24)의 어레이를 통합하는 전체 영역은 단일 축을 따라 핀홀 어레이(22)의 모션에 의해서 공초점형 이미지를 얻기 위해 효과적으로 사용될 수 있다. 그러므로, 최종 시스템은 크기가 작게 구성될 수 있다.
핀홀 어레이(22)의 구성에서, 핀홀(24)들은 직경(D)을 각각 가지며 사각형 매트릭스 패턴 또는 배열로 배열되고, 각각의 핀홀(24)은 방향 X의 폭(X) 및 방향 Y의 높이(Y)만큼 다른 핀홀로부터 분리된다. 다시 말해서, 투과비(transmission ratio;T)는:
T = πD2/(4XY). (1)
핀홀(24)은 매트릭스 패턴이 도 3에 도시된 바와 같이, 핀홀 어레이(22)에 의해서 이동한 선형 방향에 대해서 임의의 각도 θ로 경사질 때 이동해야 하므로, 이미지의 시야는 핀홀 어레이(22)의 단일 축 모션에 의해서 완전히 채워질 수 있다. θ의 계산은 다음과 같다:
1. 방향 X에서 2개의 이웃한 핀홀들(A,B)에 의해서 얻어진 2개의 스캔 라인들 사이의 거리는 X·sin θ,
2. 방향 Y에서 2개의 이웃한 핀홀들(A,C)에 의해서 얻어진 2개의 스캔 라인들 사이의 거리는 Y·cos θ,
균일하게 분포된 스캔 라인들을 갖기 위하여, Y·cos θ는 X·sin θ의 피승수의 정수가 되어야 한다. 즉,
Y·cos θ = N·X·sin θ이고,
이는
θ = tan-1(Y/(N·X)). (2)
값 N은 핀홀이 원하는 시야의 전체를 완전히 채울 수 있도록 선택되어야 한다. N·X의 값은 또한 Y·cos θ보다 커야 한다. 예를 들어, 2개의 인접한 스캔 라인들이 폭의 절반과 중첩되면, 우리는
N·X
Figure 112017119094444-pat00001
2Y·cos θ를 필요로 하고
θ가 작을 때, cos θ
Figure 112017119094444-pat00002
1이고 따라서:
N = [2Y/D] (3)
중첩 량은 스캔 라인들(42)과 직각인 방향으로 이미지의 강도의 균일성에 영향을 미칠 수 있다는 것이 관측된다. 그러나, 강도의 패턴은 일정하기 때문에, 균일성에서의 이러한 변화는 눈금보정에 의해서 보상될 수 있다.
선택된 영역의 완전한 스캔을 생성하기 위하여, 핀홀(24)의 이동 거리 Td
Td = K·(N·X·cos θ + Y·sin θ) - D. (4)
여기서, K는 양의 정수이다.
예를 들어, 각각 10㎛의 직경을 갖는 원형 핀홀(24)을 포함하는 핀홀 매트릭스는 약 1/40의 목표 투과비를 가질 수 있다. 인접한 핀홀(24)들은 서로 영향을 미칠 수 있고 인공결함(artifact)을 유발할 수 있기 때문에, 투과비의 값은 너무 크지 않아야 한다. 일반적으로, 방향 X의 인접 핀홀(24)들 사이의 분리 거리(X)는 방향 X과 직각인 방향 Y의 인접 핀홀(24)들 사이의 분리 거리(Y)와 동일해야 하므로, 핀홀(24)들 사이의 임의의 혼선(cross-talk)은 방향 X 및 방향 Y 모두를 따라 동위요소(isotopic)이다. 그러므로, 방정식(1)로부터,
X= Y= (40 x π x102/4)1/2
= 56 ㎛;
이고 방정식(3)으로부터
N = [2x56/10]
= 11.
방정식(2)에 따르면, 선형 모션 축에 대한 핀홀 어레이(22)의 경사각은:
θ = tan-1(Y/(N·X))
= tan-1(1/11) = 5.19o 이어야 한다.
방정식(4)에서 K = 1에 대해서, 핀홀 어레이(22)에 대한 스캐닝 거리는:
Td > (11·56·cos(5.19o) + 56·sin(5.19o) - 10) = 608.5㎛
상술한 바와 같이, 각도 θ는 물체의 실질적인 접촉 영역의 전체가 선형 방향으로만 핀홀 어레이(22)의 상기 모션을 사용하여 CCD 카메라(40) 상으로 투과될 수 있도록 선택된다. 더우기, 각도 θ는 물체(36)의 실질적인 접촉 영역의 이미지의 시야가 선형 방향으로 핀홀 어레이(22)의 모션에 의해서 완전히 채워지도록 선택된다.
양방향의 주기적 모션은 양호하게는 핀홀 어레이(22)의 상기 구성 하에서 실행된다. 이는 핀홀(24)을 포함하는 핀홀 판이 각각의 스캐닝 동작에 대하여 실질적으로 일정한 속도로 광 경로에 대하여 선형 방향으로 전방 및 후방으로 교대로 이동하는 것을 의미한다.
도 4는 핀홀 어레이(22)의 사용과 연계하여 예시적 이미지 캡처 시퀀스를 도시하는 그래프이다. 이미지 캡처 시퀀스는 일반적으로 3개의 단계를 포함할 것이다.
제 1 단계 중에, 핀홀 어레이(22)는 스캐닝 방향(42)을 따라서 원하는 속도로 가속된다. CCD 카메라(40)의 제 1 이미지 노출은 도면부호 "44"에서 개시되고, 그 동안 핀홀 어레이(22)의 속도는 전방(46)으로 일정하게 유지된다.
제 2 단계 중에, 핀홀 어레이(22)가 일정 속도로 이동할 때, 카메라 노출은 작동하고 사전 결정된 이동 거리가 핀홀 어레이(22)에 의해서 도달할 때까지 지속된다. 그 지점에서, 제 1 이미지 단부(48)에 대한 카메라 노출 및 CCD 카메라(40)로부터의 데이터는 처리를 위하여 프로세서로 전달된다.
제 3 단계 중에, 핀홀 어레이(22)는 완전히 정지할 때까지 감속될 것이다. 핀홀 어레이(22)의 이동 방향을 후방으로 반전시키는데 임의의 시간량이 필요하다. 이러한 시간 간격은 수직 스캐닝(50)을 위한 카메라의 높이 수준을 변화시키거나 또는 시야를 전환시키는 것과 같이 다른 동기화 모션을 위해 사용될 수 있다.
그후, 핀홀 어레이(22)는 지정된 일정한 속도까지 후방 방향으로 가속되고, CCD 카메라(40)의 제 2 이미지 노출은 도면부호 "52"에서 개시된다. 핀홀 어레이(22)가 후방 방향(54)으로 일정한 속도로 이동할 때, 카메라 노출은 사전 결정된 이동 거리가 핀홀 어레이(22)에 의해서 도달될 때까지 지속된다. 그 지점에서, 제 2 이미지 단부(56)에 대한 카메라 노출 및 핀홀 어레이(22)는 완전히 정지될 때까지 감속된다.
상술한 사이클은 물체(36)의 원하는 이미지들이 캡처될 때까지 지속될 것이다.
도 5a 및 도 5b는 본 발명의 양호한 실시예에 따른 공초점형 검사 장치에 의해서 각각 얻어진 공초점형 이미지 및 정적 핀홀 어레이의 이미지들이다. 도 5a에서, 이미지(60)는 핀홀(24)의 경사 매트릭스를 도시한다. 도 5b에서, 캡처된 이미지(62)는 핀홀 어레이(22)가 이미지 캡처의 프로세스 중에 스캐닝 방향(42)을 따라 이동한 후에 검사될 전체 영역을 포함하는 시야를 도시한다.
본 발명의 양호한 실시예에 따른 공초점형 검사 장치(10)는 핀홀 어레이(22)의 크기를 상당히 감소시킬 수 있는 단일 축 모션 시스템을 사용하는 핀홀 스캐닝 구성을 제공하고, 따라서 공초점형 검사 장치(10)의 전체 크기를 감소시킨다는 것을 이해해야 한다. 핀홀 어레이(22)의 영역은 효과적으로 사용될 수 있다. 특히, 종래 기술에서 사용된 회전 모션 시스템과 비교될 때, 선형 모션 시스템의 크기는 더욱 컴팩트하게 구성될 수 있다. 결과적으로, 공초점형 광학 시스템의 전체 크기는 감소될 수 있다. 더우기, 핀홀 패턴은 또한 규칙적 그리드 패턴과 같은 단순 분포를 포함할 수 있다.
또한, 도시된 공초점형 검사 장치(10)는 강도의 우수한 균일성이 검사될 전체 시야에 대해서 얻어질 수 있도록 설계되는 핀홀 패턴을 가진다.
본원에 기술된 본 발명은 구체적으로 기술된 것과 다른 변형, 수정 및/또는 추가될 수 있고 본 발명은 상술한 설명의 정신 및 범주 내에 있는 이러한 변형, 수정 및/또는 추가사항을 포함한다는 것을 이해해야 한다.

Claims (19)

  1. 물체를 검사하기 위한 공초점형 이미징 장치에 있어서,
    상기 물체를 조명하기 위해 광을 투영하도록 작동되는 광원;
    상기 물체 및 이미징 디바이스 사이에 위치한 광 경로를 따라 상기 물체로부터 반사된 광을 수광하기 위한 상기 이미징 디바이스;
    상기 물체로부터 반사된 광이 핀홀 어레이를 통과하도록 상기 광 경로를 따라 배치된 복수의 핀홀들을 포함하는 상기 핀홀 어레이; 및
    상기 물체의 실질적으로 연속적인 영역에 대응하는 이미지를 상기 이미징 디바이스 상으로 투과시키기 위한 상기 광 경로를 가로지르는 선형 방향으로 단일축을 따라서 상기 핀홀 어레이를 이동시키기 위한 기구를 포함하고,
    상기 핀홀 어레이는 직사각형의 매트릭스 배열로 분포된 복수의 핀홀들을 구비한 핀홀 판을 포함하고, 상기 직사각형의 매트릭스 배열은 상기 핀홀 어레이에 의해서 이동한 상기 선형 방향에 대해서 일정각도로 경사지는, 공초점형 이미징 장치.
  2. 제 1 항에 있어서,
    상기 핀홀 어레이는 상기 광원으로부터 투영된 광이 상기 물체를 조명하기 전에 상기 핀홀 어레이를 통과하도록 배치되는, 공초점형 이미징 장치.
  3. 삭제
  4. 삭제
  5. 제 1 항에 있어서,
    상기 각도는 상기 물체의 실질적으로 연속적인 영역의 전체가 단지 상기 선형 방향으로 상기 핀홀 어레이의 이동에 의해서 상기 이미징 디바이스 상으로 투과될 수 있도록 선택되는, 공초점형 이미징 장치.
  6. 제 1 항에 있어서,
    상기 각도는 상기 물체의 실질적으로 연속적인 영역의 이미지의 시야가 상기 선형 방향으로 상기 핀홀 어레이의 이동에 의해서 완전히 채워지도록 선택되는, 공초점형 이미징 장치.
  7. 제 1 항에 있어서,
    상기 매트릭스 배열의 제 1 방향(X)으로의 인접 핀홀들 사이의 분리 거리는 상기 제 1 방향과 직각인 제 2 방향(Y)으로의 인접 핀홀들 사이의 분리 거리와 동일한, 공초점형 이미징 장치.
  8. 제 1 항에 있어서,
    상기 핀홀 어레이는 각각의 검사 동작에 대해 실질적으로 일정한 속도에서 상기 광 경로에 대한 상기 선형 방향으로 전방 및 후방으로 교대로 이동되도록 구성되는, 공초점형 이미징 장치.
  9. 제 8 항에 있어서,
    상기 이미징 디바이스의 이미지 노출은 사전 결정된 이동 거리가 상기 핀홀 어레이에 의해서 도달될 때까지 실질적으로 일정한 속도에서 상기 핀홀 어레이의 이동 중에 작동되는, 공초점형 이미징 장치.
  10. 제 1 항에 있어서,
    상기 핀홀 어레이 및 상기 물체 사이에서 상기 광 경로를 따라 배치된 1/4 파장의 파장판 및 크로매틱 요소를 추가로 포함하는, 공초점형 이미징 장치.
  11. 제 1 항에 있어서,
    상기 이미징 디바이스는 CCD 카메라를 포함하는, 공초점형 이미징 장치.
  12. 공초점형 이미징 장치를 사용하여 물체를 검사하기 위한 방법에 있어서,
    광원으로부터의 광을 상기 물체 상으로 투영함으로써 상기 물체를 조명하는 단계;
    상기 물체 및 이미징 디바이스 사이에 위치한 광 경로를 따라 상기 물체로부터 반사된 광을 상기 이미징 디바이스에 의해서 수광하는 단계로서, 상기 물체로부터 반사된 광이 상기 광 경로를 따라 배치된 복수의 핀홀들을 포함하는 핀홀 어레이를 통과하는, 상기 수광 단계; 그리고
    상기 물체를 검사하기 위해 상기 물체의 실질적으로 연속적인 영역에 대응하는 이미지를 상기 이미징 디바이스 상으로 투과시키기 위한 상기 광 경로를 가로지르는 선형 방향으로 단일축을 따라서 상기 핀홀 어레이를 이동시키는 단계를 포함하고,
    상기 핀홀 어레이는 직사각형의 매트릭스 배열로 분포된 복수의 핀홀들을 구비한 핀홀 판을 포함하고, 상기 직사각형의 매트릭스 배열은 상기 핀홀 어레이에 의해서 이동한 상기 선형 방향에 대해서 일정각도로 경사지는, 물체 검사 방법.
  13. 제 12 항에 있어서,
    상기 핀홀 어레이는 상기 광원으로부터 투영된 광이 상기 물체를 조명하기 전에 상기 핀홀 어레이를 통과하도록 배치되는, 물체 검사 방법.
  14. 삭제
  15. 삭제
  16. 제 12 항에 있어서,
    상기 각도는 상기 물체의 실질적으로 연속적인 영역의 전체가 단지 상기 선형 방향으로 상기 핀홀 어레이의 이동에 의해서 상기 이미징 디바이스 상으로 투과될 수 있도록 선택될 수 있는, 물체 검사 방법.
  17. 제 12 항에 있어서,
    제 1 검사 동작에서 상기 선형 방향으로 전방으로 상기 핀홀 어레이를 이동시키는 단계, 그리고 그 후에 실질적으로 일정한 속도에서 상기 광 경로에 대하여 제 2 검사 동작에서 상기 선형 방향으로 후방으로 상기 핀홀 어레이를 이동시키는 단계를 추가로 포함하는, 물체 검사 방법.
  18. 제 17 항에 있어서,
    사전 결정된 이동 거리가 상기 핀홀 어레이에 의해서 도달될 때까지 실질적으로 일정한 속도에서 상기 핀홀 어레이의 이동 중에 상기 이미징 디바이스의 이미지 노출을 작동시키는 단계를 추가로 포함하는, 물체 검사 방법.
  19. 제 12 항에 있어서,
    상기 이미징 디바이스는 CCD 카메라를 포함하는, 물체 검사 방법.
KR1020170161560A 2016-11-30 2017-11-29 핀홀 어레이를 사용하는 물체의 공초점형 이미징 KR102086992B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/365,066 2016-11-30
US15/365,066 US10852519B2 (en) 2016-11-30 2016-11-30 Confocal imaging of an object utilising a pinhole array

Publications (2)

Publication Number Publication Date
KR20180062402A KR20180062402A (ko) 2018-06-08
KR102086992B1 true KR102086992B1 (ko) 2020-03-10

Family

ID=62193203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170161560A KR102086992B1 (ko) 2016-11-30 2017-11-29 핀홀 어레이를 사용하는 물체의 공초점형 이미징

Country Status (6)

Country Link
US (1) US10852519B2 (ko)
JP (1) JP6606159B2 (ko)
KR (1) KR102086992B1 (ko)
CN (1) CN108120676B (ko)
MY (1) MY189539A (ko)
TW (1) TWI662637B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307068A (zh) * 2020-04-02 2020-06-19 元素光电智能科技(苏州)有限公司 光学三维测量系统
KR102455520B1 (ko) * 2020-06-05 2022-10-17 한국과학기술원 마이크로렌즈 어레이를 이용한 초박형 카메라 장치 그리고 이의 다기능 이미징 방법
WO2023034780A1 (en) * 2021-08-30 2023-03-09 Nanostring Technologies, Inc. Methods, systems and apparatus for a multi-spectral structured illumination microscope
CN116744123B (zh) * 2022-12-14 2024-01-23 深圳市中图仪器股份有限公司 共焦测量系统的多孔盘
KR102617147B1 (ko) * 2023-07-14 2023-12-27 (주)오로스 테크놀로지 오버레이 계측 장치 및 오버레이 계측 장치의 교정방법
KR102655300B1 (ko) * 2023-08-11 2024-04-05 (주)오로스 테크놀로지 오버레이 계측 장치의 보정 방법 및 오버레이 계측 장치의 보정 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337103A (ja) * 2005-05-31 2006-12-14 Sunx Ltd 光学測定装置
JP2009526216A (ja) * 2006-02-08 2009-07-16 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング クロマティック共焦点三次元計測技術のための迅速かつ強力な方法および装置
JP2014142183A (ja) 2013-01-22 2014-08-07 Takaoka Electric Mfg Co Ltd 共焦点スキャナおよびそれを用いた光学的計測装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3853155T2 (de) * 1987-10-09 1995-06-14 Hitachi Ltd Rastertunnelmikroskop mit einer Vorrichtung zum Berichtigen von Oberflächendaten.
DE19714221A1 (de) 1997-04-07 1998-10-08 Zeiss Carl Fa Konfokales Mikroskop mit einem motorischen Scanningtisch
DE10350918B3 (de) * 2003-10-31 2005-04-14 Evotec Technologies Gmbh Vorrichtung und Verfahren zur Messung der Transmission eines Objekts
GB2419777B (en) * 2004-10-29 2010-02-10 Hewlett Packard Development Co Power transfer for transponder devices
CN102688551A (zh) * 2006-03-06 2012-09-26 泰尔茂株式会社 导丝
US8214007B2 (en) * 2006-11-01 2012-07-03 Welch Allyn, Inc. Body worn physiological sensor device having a disposable electrode module
JP4452815B2 (ja) * 2007-07-31 2010-04-21 レーザーテック株式会社 深さ測定装置
JP5484879B2 (ja) * 2009-12-11 2014-05-07 オリンパス株式会社 超解像顕微鏡
KR101241439B1 (ko) * 2010-11-26 2013-03-18 주식회사 나노프로텍 마이크로 렌즈 어레이를 이용한 공초점 측정 장치
GB201107556D0 (en) * 2011-05-06 2011-06-22 Sheblee Jafer Spatial resolution enhancements in multibeam confocal scanning systems
US9606343B2 (en) * 2011-05-06 2017-03-28 Visitech International Ltd Enhancing spatial resolution utilizing multibeam confocal scanning systems
JP5527625B2 (ja) * 2011-11-22 2014-06-18 横河電機株式会社 顕微鏡装置
US10058246B2 (en) * 2013-03-15 2018-08-28 Neurovision Imaging, Inc. System and method for rejecting afocal light collected from an in vivo human retina
CN105050475B (zh) * 2013-03-29 2017-10-13 索尼公司 激光扫描观察装置和激光扫描方法
US9067278B2 (en) * 2013-03-29 2015-06-30 Photon Automation, Inc. Pulse spread laser
AU2015243218B2 (en) * 2014-04-11 2019-03-21 Covidien Lp Tagged surgical instruments and methods therefor
CN103944225B (zh) * 2014-04-16 2017-04-26 华为技术有限公司 电池智能管理方法、电池智能管理装置及电池
WO2015164844A1 (en) 2014-04-24 2015-10-29 Vutara, Inc. Super resolution microscopy
EP3273225B1 (en) * 2015-01-30 2022-11-23 Japan Science and Technology Agency Multifocal spectroscopic measurement device, and optical system for multifocal spectroscopic measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337103A (ja) * 2005-05-31 2006-12-14 Sunx Ltd 光学測定装置
JP2009526216A (ja) * 2006-02-08 2009-07-16 シロナ・デンタル・システムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング クロマティック共焦点三次元計測技術のための迅速かつ強力な方法および装置
JP2014142183A (ja) 2013-01-22 2014-08-07 Takaoka Electric Mfg Co Ltd 共焦点スキャナおよびそれを用いた光学的計測装置

Also Published As

Publication number Publication date
MY189539A (en) 2022-02-16
KR20180062402A (ko) 2018-06-08
CN108120676B (zh) 2020-08-18
TWI662637B (zh) 2019-06-11
CN108120676A (zh) 2018-06-05
US10852519B2 (en) 2020-12-01
US20180149848A1 (en) 2018-05-31
TW201834099A (zh) 2018-09-16
JP2018092166A (ja) 2018-06-14
JP6606159B2 (ja) 2019-11-13

Similar Documents

Publication Publication Date Title
KR102086992B1 (ko) 핀홀 어레이를 사용하는 물체의 공초점형 이미징
US8610902B2 (en) Apparatus and method for inspecting an object with increased depth of field
US7312920B2 (en) Confocal microscope
WO2002023248A1 (fr) Microscope confocal et procede de mesure de hauteur utilisant ledit microscope
JPH10206740A (ja) 共焦点装置
JP2000180139A (ja) マルチスリット走査撮像装置
WO2014115341A1 (ja) 共焦点スキャナおよびそれを用いた光学的計測装置
JP2000275027A (ja) スリット共焦点顕微鏡とそれを用いた表面形状計測装置
KR20130083453A (ko) 현미경, 화상 취득 장치 및 화상 취득 시스템
KR101428864B1 (ko) 초점 위치 변경 장치 및 이를 이용한 공초점 광학 장치
JP3509088B2 (ja) 3次元形状計測用光学装置
JP6387381B2 (ja) オートフォーカスシステム、方法及び画像検査装置
KR100845284B1 (ko) 두개의 닙코우 디스크를 이용한 공초점 주사 현미경
KR20180091565A (ko) 색수차 렌즈를 이용한 공초점 영상 구현 장치
JP2006235250A (ja) 測定顕微鏡
JPH1068616A (ja) 形状計測装置
US20220291140A1 (en) Defect inspection device and defect inspection method
JP2012163910A (ja) 顕微鏡装置
JP2005017127A (ja) 干渉計および形状測定装置
JP5822067B2 (ja) 顕微鏡装置
KR101592898B1 (ko) 주파수와 스펙트럼의 부호화를 이용한 공초점 현미경 장치 및 이를 이용한 영상 획득 방법
JP4406873B2 (ja) スキャン測定検査装置
JP2011095512A (ja) 共焦点顕微鏡
JP2008145268A (ja) 焦点面傾斜型共焦点表面形状計測装置
JP2007171817A (ja) レーザ顕微鏡

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant