KR102069665B1 - 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법 - Google Patents

기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법 Download PDF

Info

Publication number
KR102069665B1
KR102069665B1 KR1020187010582A KR20187010582A KR102069665B1 KR 102069665 B1 KR102069665 B1 KR 102069665B1 KR 1020187010582 A KR1020187010582 A KR 1020187010582A KR 20187010582 A KR20187010582 A KR 20187010582A KR 102069665 B1 KR102069665 B1 KR 102069665B1
Authority
KR
South Korea
Prior art keywords
vacuum chamber
processing
substrate
permanent magnets
opening
Prior art date
Application number
KR1020187010582A
Other languages
English (en)
Other versions
KR20180116219A (ko
Inventor
세바스티안 군터 장
안드레아스 자우어
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20180116219A publication Critical patent/KR20180116219A/ko
Application granted granted Critical
Publication of KR102069665B1 publication Critical patent/KR102069665B1/ko

Links

Images

Classifications

    • H01L51/56
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/246Replenishment of source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • F16K51/02Other details not peculiar to particular types of valves or cut-off apparatus specially adapted for high-vacuum installations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • H01L51/001
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 개시내용은 기판의 진공 프로세싱을 위한 장치(100)를 제공한다. 장치(100)는 프로세싱 진공 챔버(110), 유지보수 진공 챔버(120), 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이에서 재료 증착 소스의 적어도 일부를 이송하기 위한 개구(130), 및 개구(130)를 자기적으로 폐쇄하기 위한 자기 폐쇄 어레인지먼트(140)를 포함한다.

Description

기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법
[0001] 본 개시내용의 실시예들은 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법에 관한 것이다. 본 개시내용의 실시예들은 특히, 유기 발광 다이오드(OLED) 디바이스들의 제조에서 사용되는 장치들, 시스템들, 및 방법들에 관한 것이다.
[0002] 기판 상의 층 증착을 위한 기법들은, 예컨대, 열 증발, 물리 기상 증착(PVD), 및 화학 기상 증착(CVD)을 포함한다. 코팅된 기판들은 여러 애플리케이션들에서 그리고 여러 기술 분야들에서 사용될 수 있다. 예컨대, 코팅된 기판들은 유기 발광 다이오드(OLED) 디바이스들의 분야에서 사용될 수 있다. OLED들은 정보를 디스플레이하기 위한 텔레비전 스크린들, 컴퓨터 모니터들, 모바일 폰들, 다른 핸드-헬드 디바이스들 등의 제조에서 사용될 수 있다. OLED 디스플레이와 같은 OLED 디바이스는, 모두 기판 상에 증착되는 2개의 전극들 사이에 위치된 유기 재료의 하나 또는 그 초과의 층들을 포함할 수 있다.
[0003] OLED 디바이스들은 여러 유기 재료들의 스택(stack)을 포함할 수 있고, 그 여러 유기 재료들은, 예컨대, 프로세싱 장치의 진공 챔버에서 증발된다. 유기 재료들은 증발 소스들을 사용하여 섀도우 마스크들을 통해 후속하는 방식으로 기판 상에 증착된다. 기판, 섀도우 마스크들, 및 증발 소스들이 진공 챔버 내에 제공된다. 증발 소스들은 때때로 서비싱 및 리필링될(refilled) 필요가 있다. 증발 소스들을 서비싱 및 리필링하기 위해, 프로세싱 장치가 셧다운(shut down)되어야만 하고, 진공 챔버가 통기되어야만 하고, 증발 소스가 진공 챔버로부터 제거되어야만 한다. 이를 고려하면, 증발 소스들을 서비싱 및 리필링하는 것은 상당한 작업 부하를 야기하고, 시간 소모적이며, 그에 따라, 프로세싱 장치의 다운타임을 증가시키게 되고, 프로세싱 효율 또는 처리량을 감소시키게 된다.
[0004] 따라서, 증발 소스들과 같은 재료 증착 소스들의 서비싱 및 리필링을 가능하게 하고, 프로세싱 장치의 다운타임을 감소시키는 장치들, 시스템, 및 방법들이 필요하다.
[0005] 상기된 바를 고려하면, 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법이 제공된다. 본 개시내용의 추가적인 양상들, 이점들, 및 특징들은 청구항들, 상세한 설명, 및 첨부 도면들로부터 명백하다.
[0006] 본 개시내용의 양상에 따르면, 기판의 진공 프로세싱을 위한 장치가 제공된다. 장치는 프로세싱 진공 챔버, 유지보수 진공 챔버, 프로세싱 진공 챔버와 유지보수 진공 챔버 사이에서 재료 증착 소스의 적어도 일부를 이송하기 위한 개구, 및 개구를 자기적으로 폐쇄하기 위한 자기 폐쇄 어레인지먼트를 포함한다.
[0007] 본 개시내용의 다른 양상에 따르면, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템이 제공된다. 시스템은, 본원에서 설명되는 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치, 및 프로세싱 진공 챔버에서의 기판 캐리어와 마스크 캐리어 중 적어도 하나의 비접촉 운송을 위해 구성된 운송 어레인지먼트를 포함한다.
[0008] 본 개시내용의 추가적인 양상에 따르면, 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법이 제공된다. 방법은 자기력을 사용하여 개구에 밀봉 디바이스를 홀딩하는 단계를 포함한다.
[0009] 실시예들은 또한, 개시되는 방법들을 수행하기 위한 장치들에 관한 것이고, 각각의 설명되는 방법 양상을 수행하기 위한 장치 부분들을 포함한다. 이들 방법 양상들은 하드웨어 컴포넌트들에 의해, 적절한 소프트웨어에 의해 프로그래밍된 컴퓨터에 의해, 이들 둘의 임의의 조합에 의해, 또는 임의의 다른 방식으로 수행될 수 있다. 게다가, 본 개시내용에 따른 실시예들은 또한, 설명되는 장치를 동작시키기 위한 방법들에 관한 것이다. 설명되는 장치를 동작시키기 위한 방법들은 장치의 모든 각각의 기능을 수행하기 위한 방법 양상들을 포함한다.
[0010] 본 개시내용의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 개시내용의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있다. 첨부 도면들은 본 개시내용의 실시예들과 관련되고, 아래에서 설명된다.
도 1a 및 도 1b는 본원에서 설명되는 실시예들에 따른, 기판을 진공 프로세싱하기 위한 장치의 개략적인 평면도들을 도시한다.
도 1c는 본원에서 설명되는 추가적인 실시예들에 따른, 기판을 진공 프로세싱하기 위한 장치의 개략적인 평면도를 도시한다.
도 2는 본원에서 설명되는 실시예들에 따른, 밀봉 디바이스를 갖는 장치의 개구를 폐쇄하는 개략적인 시퀀스를 도시한다.
도 3a 및 도 3b는 각각, 본원에서 설명되는 실시예들에 따른, 해제 상태 및 척킹 상태에 있는 자기 폐쇄 어레인지먼트의 개략도들을 도시한다.
도 4a 내지 도 4c는 본원에서 설명되는 더 추가적인 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치의 개략적인 평면도들을 도시한다.
도 5는 본원에서 설명되는 다른 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치의 개략적인 투시도를 도시한다.
도 6은 본원에서 설명되는 실시예들에 따른, 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법의 흐름도를 도시한다.
[0011] 이제, 본 개시내용의 다양한 실시예들이 상세히 참조될 것이고, 그 다양한 실시예들의 하나 또는 그 초과의 예들이 도면들에서 예시된다. 도면들의 아래의 설명 내에서, 동일한 참조 번호들은 동일한 컴포넌트들을 지칭한다. 일반적으로, 개별적인 실시예들에 대한 차이들만이 설명된다. 각각의 예는 본 개시내용의 설명을 통해 제공되고, 본 개시내용의 제한으로 의도되지 않는다. 추가로, 일 실시예의 부분으로서 예시 또는 설명되는 특징들은 더 추가적인 실시예를 산출하기 위해 다른 실시예와 함께 또는 다른 실시예에 대해 사용될 수 있다. 본 설명이 그러한 변형들 및 변화들을 포함하도록 의도된다.
[0012] 본원에서 개시되는 실시예들은 증발 소스들과 같은 재료 증착 소스들의 서비싱 및/또는 리필링을 가능하게 하고, 프로세싱 장치의 다운타임을 감소시킬 수 있다. 특히, 유지보수 진공 챔버는, 재료 증착 소스의 적어도 일부가, 밀봉가능 개구를 통해, 프로세싱 진공 챔버로부터 유지보수 진공 챔버로, 그리고 그 반대로 이송될 수 있도록, 프로세싱 진공 챔버에 연결된다. 유지보수 진공 챔버는 프로세싱 진공 챔버와 독립적으로 통기될 수 있다. 재료 증착 소스는, 예컨대, 진공 시스템을 통기하지 않으면서 그리고/또는 생산을 중단하지 않으면서, 유지보수 진공 챔버에서 재료 증착 소스가 서비싱 및/또는 배출된 후에, 교환될 수 있다.
[0013] 밀봉가능 개구는 자기 폐쇄 어레인지먼트를 사용하여 폐쇄가능하다. 예컨대, 서비스 플랜지와 같은 밀봉 디바이스는 개구를 덮을 수 있고, 개구를 밀봉하도록 개구에 자기적으로 홀딩될 수 있다. 자기 밀봉은 진공 시스템에서 다수의 기계적으로 이동가능한 파트들을 감소시킬 수 있다. 그러한 기계적으로 이동가능한 파트들로 인한 입자들의 생성이 감소될 수 있고, 기판 상에 증착되는 재료 층들의 품질이 개선될 수 있다.
[0014] 도 1a 및 도 1b는 본원에서 설명되는 실시예들에 따른, 기판을 진공 프로세싱하기 위한 장치(100)의 개략적인 평면도들을 도시한다. 장치(100)는, 예컨대 OLED 디바이스들을 제조하기 위해, 기판 상에 유기 재료의 층들을 증착하도록 구성될 수 있다.
[0015] 장치(100)는 프로세싱 진공 챔버(110), 유지보수 진공 챔버(120), 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이에서 재료 증착 소스의 적어도 일부를 이송하기 위한 개구(130), 및 개구(130)를 자기적으로 폐쇄하기 위한 자기 폐쇄 어레인지먼트(140)를 포함한다. 자기 폐쇄 어레인지먼트(140)는 개구(130)에 제공될 수 있다. 장치(100)는 개구(130)를 폐쇄하도록 구성된 밀봉 디바이스, 이를테면 서비스 플랜지를 더 포함할 수 있다. 예시적인 밀봉 디바이스가 도 2에 대하여 설명된다.
[0016] 본원의 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 재료 증착 소스는, 예컨대 유기 재료를 위한 증발 소스(1000)일 수 있다. 증발 소스(1000)는 증발 도가니(1004), 분배 파이프(1006), 그리고 선택적으로, 분배 파이프(1006)를 위한 지지부(1002)를 포함할 수 있다. 증발 도가니(1004)는 기판 상의 증착을 위한 유기 재료를 증발시키도록 구성될 수 있다. 분배 파이프(1006)는 하나 또는 그 초과의 배출구들을 가질 수 있고, 증발 도가니(1004)와 유체 연통할 수 있다. 일부 구현들에서, 분배 파이프(1006)는 증발 동안에 축을 중심으로 회전가능하다.
[0017] 도 1a 및 도 1b는 증발 소스(1000)가 상이한 포지션들에 있는 장치(100)를 도시한다. 도 1a에서, 증발 소스(1000)는 프로세싱 진공 챔버(110)에 포지셔닝되고, 도 1b에서, 증발 소스(1000)는, 예컨대 서비싱 및/또는 리필링을 위해, 유지보수 진공 챔버(120)에 포지셔닝된다. 도 1a 및 도 1b가 하나의 증발 소스를 예시하고 있지만, 일부 예들에서, 2개 또는 그 초과의 증발 소스들이 장치(100)에 제공될 수 있다. 예로서, 제1 증발 소스는 프로세싱 진공 챔버(110)에 포지셔닝될 수 있고, 제2 증발 소스는 유지보수 진공 챔버(120)에 포지셔닝될 수 있다. 제1 증발 소스가 디바이스들, 특히 유기 재료들을 내부에 포함하는 디바이스들을 제조하기 위해 동작될 수 있는 동안에, 유지보수 진공 챔버(120)에 포지셔닝된 제2 증발 소스는 동시에 서비싱 및/또는 리필링될 수 있다. 장치(100)의 다운타임이 더 감소될 수 있거나 또는 심지어 방지될 수 있다.
[0018] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(100)는 증발 소스(1000)와 같은 재료 증착 소스를 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로 이송하도록 구성된 이송 디바이스(미도시)를 포함한다. 이송 디바이스는 이송을 수행하기 위해 재료 증착 소스에 연결가능한 변위 디바이스, 이를테면 액추에이터, 구동부, 또는 암을 포함할 수 있다.
[0019] 증발 소스(1000)는 증발 재료를 포함하도록 적응된 하나 또는 그 초과의 증발 도가니들(1004), 및 하나 또는 그 초과의 분배 파이프들(1006)을 포함할 수 있다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(100), 그리고 특히 증발 소스(1000)는 분배 파이프(1006)를 위한 지지부(1002)를 포함한다. 분배 파이프(1006)는 지지부(1002)에 의해 지지될 수 있다. 추가로, 일부 실시예들에 따르면, 하나 또는 그 초과의 증발 도가니들(1004)이 또한, 지지부(1002)에 의해 지지될 수 있다. 일부 구현들에서, 증발 소스(1000)는, 특히 증발 동안에, 축을 중심으로 회전하도록 구성된다. 일부 구현들에서, 분배 파이프(1006)는 증기 분배 샤워헤드, 특히 선형 증기 분배 샤워헤드이다. 분배 파이프(1006)는 본질적으로 수직으로 연장되는 라인 소스를 제공할 수 있다.
[0020] 일부 실시예들에서, 기판의 표면은, 하나의 기판 치수에 대응하는 하나의 방향으로 연장되는 증발 소스(1000), 및 다른 기판 치수에 대응하는 다른 방향을 따르는 (도 1a에서 화살표에 의해 표시되는) 병진 이동을 사용하여 코팅된다. 증발 도가니(1004)에서 생성된 증기는 상방으로 이동할 수 있고, 분배 파이프(1006)의 하나 또는 그 초과의 배출구들 밖으로 이동할 수 있다. 분배 파이프(1006)의 하나 또는 그 초과의 배출구들은 하나 또는 그 초과의 개구들, 또는 하나 또는 그 초과의 노즐들일 수 있는데, 하나 또는 그 초과의 개구들, 또는 하나 또는 그 초과의 노즐들은, 예컨대, 샤워헤드 또는 다른 증기 분배 시스템에 제공될 수 있다. 증발 소스(1000)는 복수의 노즐들 또는 개구들을 갖는 증기 분배 샤워헤드, 예컨대 선형 증기 분배 샤워헤드를 포함할 수 있다. 본원에서 이해되는 바와 같은 샤워헤드는, 샤워헤드 내의 압력이 샤워헤드 외부의 압력보다 예컨대 적어도 10배만큼 더 높게 되도록, 개구들을 갖는 인클로저를 포함할 수 있다.
[0021] 일부 구현들에서, 층 증착 프로세스 동안에 기판을 마스킹하기 위해, 마스크, 이를테면 에지 배제 마스크 또는 섀도우 마스크가 제공될 수 있다. “마스킹”이라는 용어는 기판의 하나 또는 그 초과의 구역들 상의 재료의 증착을 감소시키는 것 및/또는 저해하는 것을 포함할 수 있다. 마스킹은, 예컨대, 코팅될 영역을 정의하는 데 유용할 수 있다. 일부 애플리케이션들에서, 기판의 부분들만이 코팅되고, 코팅되지 않을 부분들은 마스크에 의해 덮인다.
[0022] 본원에서 설명되는 임의의 다른 실시예와 조합될 수 있는 일부 실시예들에 따르면, 기판은 정전 척과 같은 기판 캐리어에 의해 지지될 수 있다. 마스크는 마스크 캐리어에 의해 지지될 수 있다. 도 1a에서, 2개의 기판들, 예컨대 제1 기판(10A) 및 제2 기판(10B), 및 2개의 마스크들, 예컨대 제1 마스크(20A) 및 제2 마스크(20B)가 예시적으로 도시된다. 기판(들)을 지지하는 기판 캐리어(들)는 기판 캐리어(들)를 운송하도록 구성된 각각의 제1 운송 어레인지먼트들, 이를테면 하나 또는 그 초과의 제1 트랙들 상에 지지될 수 있다. 마스크들을 지지하는 마스크 캐리어들은 마스크 캐리어(들)를 운송하도록 구성된 각각의 제2 운송 어레인지먼트들, 이를테면 하나 또는 그 초과의 제2 트랙들 상에 지지될 수 있다.
[0023] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 기판 캐리어 및/또는 마스크 캐리어의 비접촉 부상 및/또는 비접촉 운송을 위해 구성된 운송 어레인지먼트가 제공될 수 있다. 특히, 제1 운송 어레인지먼트는 기판 캐리어의 비접촉 부상 및/또는 비접촉 운송을 위해 구성될 수 있다. 마찬가지로, 제2 운송 어레인지먼트는 마스크 캐리어의 비접촉 부상 및/또는 비접촉 운송을 위해 구성될 수 있다. 예로서, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템은 본 개시내용의 장치, 및 프로세싱 진공 챔버에서 기판 캐리어와 마스크 캐리어 중 적어도 하나의 비접촉 운송을 위해 구성된 운송 어레인지먼트를 포함할 수 있다. 일부 구현들에서, 운송 어레인지먼트는 장치에 포함될 수 있다.
[0024] 일부 실시예들에서, 운송 어레인지먼트는 기판 캐리어 및/또는 마스크 캐리어의 비접촉 부상을 위해 구성된 가이딩 구조를 포함할 수 있다. 마찬가지로, 운송 어레인지먼트는 기판 캐리어 및/또는 마스크 캐리어의 비접촉 운송을 위해 구성된 구동 구조를 포함할 수 있다.
[0025] 본 개시내용에서, 비접촉 운송을 위해 구성된 트랙 또는 트랙 어레인지먼트는 캐리어, 특히 기판 캐리어 또는 마스크 캐리어의 비접촉 운송을 위해 구성된 트랙 또는 트랙 어레인지먼트로서 이해되어야 한다. “비접촉”이라는 용어는 캐리어, 예컨대 기판 캐리어 또는 마스크 캐리어의 중량이 기계적 접촉 또는 기계력들에 의해 홀딩되는 것이 아니라 자기력에 의해 홀딩된다는 의미로 이해될 수 있다. 특히, 캐리어는 기계력들 대신에 자기력들을 사용하여 부상 또는 플로팅 상태로 홀딩될 수 있다. 예컨대, 일부 구현들에서, 특히 기판 캐리어 및/또는 마스크 캐리어의 부상, 이동, 및 포지셔닝 동안에, 캐리어와 운송 트랙 사이에 기계적 접촉이 전혀 없을 수 있다.
[0026] 캐리어(들)의 비접촉 부상 및/또는 운송은, 예컨대 가이드 레일들과의 기계적 접촉으로 인한 입자들이 운송 동안에 전혀 생성되지 않는다는 점에서 유익하다. 비접촉 부상 및/또는 운송을 사용하는 경우에 입자 생성이 최소화되기 때문에, 기판 상에 증착되는 층들의 개선된 순도 및 균일성이 제공될 수 있다.
[0027] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 기판은, 예컨대 연결 엘리먼트들(152)에 의해 정렬 시스템(150)에 연결될 수 있는 기판 캐리어에 의해 지지된다. 정렬 시스템(150)은 마스크에 대하여 기판의 포지션을 조정하도록 구성될 수 있다. 유기 재료의 증착 동안에 기판과 마스크 사이의 적절한 정렬을 제공하기 위해, 기판이 마스크에 대하여 이동될 수 있다는 것이 이해되어야 한다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 추가적인 실시예에 따르면, 대안적으로 또는 부가적으로, 마스크를 홀딩하는 마스크 캐리어가 정렬 시스템(150)에 연결될 수 있다. 따라서, 마스크가 기판에 대하여 포지셔닝될 수 있거나, 또는 마스크와 기판 둘 모두가 서로에 대하여 포지셔닝될 수 있다. 본원에서 설명되는 바와 같은 정렬 시스템은 증착 프로세스 동안에 마스킹의 적절한 정렬을 가능하게 할 수 있는데, 이는 고 품질 또는 OLED 디스플레이 제조에 대해 유익하다.
[0028] 마스크와 기판의 서로에 대한 정렬의 예들은, 기판의 평면 및 마스크의 평면에 본질적으로 평행한 평면을 정의하는 적어도 2개의 방향들에서의 상대적인 정렬을 가능하게 하는 정렬 유닛들을 포함한다. 예컨대, 정렬은, 적어도, 위에서 설명된 평행한 평면을 정의하는 x-방향 및 y-방향, 즉 2개의 데카르트 방향들에서 실시될 수 있다. 전형적으로, 마스크와 기판은 서로 본질적으로 평행할 수 있다. 구체적으로, 정렬은 추가로, 기판의 평면 및 마스크의 평면에 본질적으로 수직인 방향에서 실시될 수 있다. 따라서, 정렬 유닛은, 적어도, 마스크와 기판의 서로에 대한 X-Y-정렬, 그리고 구체적으로는 X-Y-Z-정렬을 위해 구성된다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 하나의 특정한 예는, 진공 프로세싱 챔버에서 고정된 상태로 홀딩될 수 있는 마스크에 대해 x-방향, y-방향, 및 z-방향에서 기판을 정렬시키는 것이다.
[0029] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 증발 소스(1000)와 같은 재료 증착 소스는, 특히 프로세싱 진공 챔버(110) 내에서의 병진 이동을 위해 구성된다. 예로서, 장치(100)는 증발 소스(1000)의 병진 이동을 위해 구성된 소스 구동부를 포함한다. 일부 실시예들에서, 소스 구동부는 증발 소스(1000)에 연결가능하거나, 또는 증발 소스(1000)에 포함된다. 일부 실시예들에 따르면, 지지부(1002)는 소스 구동부에 연결가능하거나, 또는 소스 구동부를 포함한다. 소스 구동부는 모터 또는 다른 적합한 액추에이터일 수 있다.
[0030] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(100)는, 프로세싱 진공 챔버(110)에 배치되고 적어도 2개의 트랙들(160)을 갖는 소스 지지 시스템을 더 포함하며, 여기서, 소스 지지 시스템의 적어도 2개의 트랙들(160)은, 적어도 프로세싱 진공 챔버(110) 내에서의 재료 증착 소스의 병진 이동을 위해 구성된다. 예로서, 소스 구동부는 적어도 2개의 트랙들(160)을 따라 재료 증착 소스를 이동시키거나 또는 이송하도록 구성될 수 있다.
[0031] 일부 구현들에서, 증발 소스(1000)는 프로세싱 진공 챔버(110)에서 적어도 2개의 트랙들(160), 예컨대 루프형 트랙 또는 선형 가이드 상에 제공된다. 적어도 2개의 트랙들(160)은, 특히 동작, 이를테면 증착 프로세스 동안의, 재료 증착 소스의 병진 이동을 위해 구성된다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 재료 증착 소스의 병진 이동을 위한 소스 구동부는 적어도 2개의 트랙들(160)에, 재료 증착 소스에, 프로세싱 진공 챔버(110) 내에, 또는 이들의 조합으로 제공될 수 있다.
[0032] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(100)는, 예컨대 밸브(105)를 통해, 프로세싱 진공 챔버(110)에 연결된 적어도 하나의 추가적인 진공 챔버(101)를 포함한다. 적어도 하나의 추가적인 진공 챔버(101)는 프로세싱 진공 챔버(110) 내로 그리고 프로세싱 진공 챔버(110) 밖으로의 기판의 운송을 위해 구성될 수 있다. 도 1a 내지 도 1c는 밸브(105), 예컨대 게이트 밸브를 도시한다. 밸브(105)는 프로세싱 진공 챔버(110)와 적어도 하나의 추가적인 진공 챔버(101) 사이의 진공 밀봉을 가능하게 한다. 밸브(105)는 프로세싱 진공 챔버(110) 내로의 또는 프로세싱 진공 챔버(110) 밖으로의 기판 및/또는 마스크의 운송을 위해 개방될 수 있다.
[0033] 일부 구현들에서, 유지보수 진공 챔버(120)는 프로세싱 진공 챔버(110)에 인접하게 제공되고, 유지보수 진공 챔버(120)와 프로세싱 진공 챔버(110)는 연결된다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 유지보수 진공 챔버(120)와 프로세싱 진공 챔버(110)의 연결부는 개구(130)를 포함하고, 여기서, 개구(130)는 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로의 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로의 재료 증착 소스의 부분의 이송을 위해 구성된다. 일부 실시예들에서, 장치(100)는 자기 폐쇄 어레인지먼트를 사용하여 개구(130)를 폐쇄하도록 구성된 밀봉 디바이스를 더 포함한다. 특히, 밀봉 디바이스는 실질적으로 진공-밀폐되는 방식으로 개구(130)를 밀봉하도록 구성될 수 있다. 예로서, 도 4a 내지 도 4c 및 도 5에 대하여 설명되는 바와 같이, 밀봉 디바이스는 증발 소스(1000)에 부착된다. 개구(130)가 자기적으로 폐쇄 또는 밀봉되는 경우에, 유지보수 진공 챔버(120)는, 프로세싱 진공 챔버(110) 내의 진공을 파괴시키지 않으면서, 재료 증착 소스의 유지보수를 위해 통기 및 개방될 수 있다.
[0034] 일부 예들에서, 개구(130), 자기 폐쇄 어레인지먼트, 및 밀봉 디바이스는 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120)를 연결하는 밸브에 포함될 수 있다. 밸브는 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이의 진공 밀봉을 개방 및 폐쇄하도록 구성될 수 있다. 재료 증착 소스의 부분은, 밸브가 개방 상태에 있는 동안에, 즉 개구가 개방되고/덮이지 않는 동안에, 유지보수 진공 챔버(120)로 이송될 수 있다. 그 후에, 밸브는 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이의 진공 밀봉을 제공하기 위해 자기적으로 폐쇄될 수 있다. 개구(130)가 폐쇄되는 경우에, 유지보수 진공 챔버(120)는, 프로세싱 진공 챔버(110) 내의 진공을 파괴시키지 않으면서, 재료 증착 소스의 유지보수를 위해 통기 및 개방될 수 있다.
[0035] 본 개시내용에서, “진공 프로세싱 챔버”는 진공 챔버 또는 진공 증착 챔버로서 이해되어야 한다. 본원에서 사용되는 바와 같이, “진공”이라는 용어는, 예컨대 10 mbar 미만의 진공 압력을 갖는 기술적 진공의 의미로 이해될 수 있다. 본원에서 설명되는 바와 같은 진공 챔버 내의 압력은 10-5 mbar 내지 약 10-8 mbar, 구체적으로는 10-5 mbar 내지 10-7 mbar, 그리고 더 구체적으로는 약 10-6 mbar 내지 약 10-7 mbar일 수 있다. 일부 실시예들에 따르면, 진공 챔버 내의 압력은 진공 챔버 내의 증발된 재료의 부분 압력, 또는 총 압력(이는 증발된 재료만이 진공 챔버에서 증착될 컴포넌트로서 존재하는 경우에 대략 동일할 수 있음)인 것으로 고려될 수 있다. 일부 실시예들에서, 진공 챔버 내의 총 압력은, 특히, 증발된 재료 이외의 제2 컴포넌트(이를테면, 가스 등)가 진공 챔버에 존재하는 경우에, 약 10-4 mbar 내지 약 10-7 mbar의 범위에 있을 수 있다.
[0036] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 캐리어들은 실질적인 수직 배향으로 기판 및 마스크를 홀딩 또는 지지하도록 구성된다. 본 개시내용의 전체에 걸쳐 사용되는 바와 같이, "실질적인 수직"은, 특히 기판 배향을 언급하는 경우에, 수직 방향 또는 배향으로부터의 ± 20° 또는 그 미만, 예컨대 ± 10° 또는 그 미만의 편차를 허용하는 것으로 이해된다. 이러한 편차는, 예컨대, 수직 배향으로부터 약간의 편차를 갖는 기판 지지부가 더 안정적인 기판 포지션을 발생시킬 수 있기 때문에 제공될 수 있다. 추가로, 기판이 전방으로 기울어지는 경우에 더 적은 입자들이 기판 표면에 도달한다. 그러나, 예컨대 진공 증착 프로세스 동안의 기판 배향은 실질적으로 수직인 것으로 고려되고, 이는 ± 20° 또는 그 미만의 수평인 것으로 고려될 수 있는 수평 기판 배향과 상이한 것으로 고려된다.
[0037] "수직 방향" 또는 "수직 배향"이라는 용어는 "수평 방향" 또는 "수평 배향"에 대해 구별하기 위한 것으로 이해된다. 즉, "수직 방향" 또는 "수직 배향"은, 예컨대 캐리어들의 실질적인 수직 배향과 관련되고, 여기서, 정확한 수직 방향 또는 수직 배향으로부터의 수 도, 예컨대 최고 10° 또는 심지어 최고 15°의 편차가 여전히 "실질적인 수직 방향" 또는 "실질적인 수직 배향"으로서 고려된다. 수직 방향은 중력에 실질적으로 평행할 수 있다.
[0038] 본원에서 설명되는 실시예들은, 예컨대 OLED 디스플레이 제조를 위한 대면적 기판들 상의 증발을 위해 활용될 수 있다. 구체적으로, 본원에서 설명되는 실시예들에 따른 구조들 및 방법들이 제공되는 기판들은 대면적 기판들이다. 예컨대, 대면적 기판 또는 캐리어는, 약 0.67 m2(0.73 x 0.92 m)의 표면적에 대응하는 GEN 4.5, 약 1.4 m2(1.1 m x 1.3 m)의 표면적에 대응하는 GEN 5, 약 4.29 m2(1.95 m x 2.2 m)의 표면적에 대응하는 GEN 7.5, 약 5.7 m2(2.2 m x 2.5 m)의 표면적에 대응하는 GEN 8.5, 또는 심지어, 약 8.7 m2(2.85 m x 3.05 m)의 표면적에 대응하는 GEN 10일 수 있다. GEN 11 및 GEN 12와 같은 한층 더 큰 세대들 및 대응하는 표면적들이 유사하게 구현될 수 있다. GEN 세대들의 절반 사이즈들이 또한, OLED 디스플레이 제조에 제공될 수 있다.
[0039] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 기판 두께는 0.1 mm 내지 1.8 mm일 수 있다. 기판 두께는 약 0.9 mm 또는 그 미만, 이를테면 0.5 mm일 수 있다. 본원에서 사용되는 바와 같은 "기판"이라는 용어는 특히, 실질적인 비가요성 기판들, 예컨대 웨이퍼, 사파이어 등과 같은 투명 결정의 슬라이스들, 또는 유리 플레이트를 포함할 수 있다. 그러나, 본 개시내용은 이에 제한되지 않고, "기판"이라는 용어는 또한, 웹 또는 포일과 같은 가요성 기판들을 포함할 수 있다. "실질적인 비가요성"이라는 용어는 "가요성"에 대해 구별하기 위한 것으로 이해된다. 구체적으로, 실질적인 비가요성 기판, 예컨대 0.9 mm 또는 그 미만, 이를테면 0.5 mm 또는 그 미만의 두께를 갖는 유리 플레이트는 어느 정도의 가요성을 가질 수 있는데, 여기서, 실질적인 비가요성 기판의 가요성은 가요성 기판들과 비교하여 작다.
[0040] 본원에서 설명되는 실시예들에 따르면, 기판은 재료 증착에 적합한 임의의 재료로 제조될 수 있다. 예컨대, 기판은, 유리(예컨대, 소다-석회 유리, 붕규산염 유리 등), 금속, 폴리머, 세라믹, 화합물 재료들, 탄소 섬유 재료들, 또는 증착 프로세스에 의해 코팅될 수 있는 임의의 다른 재료 또는 재료들의 조합으로 구성된 그룹으로부터 선택되는 재료로 제조될 수 있다.
[0041] 도 1c는 본원에서 설명되는 추가적인 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치(200)의 개략적인 평면도를 도시한다. 도 1c의 장치는 도 1a 및 도 1b에 대하여 설명된 장치와 유사하고, 차이들만이 아래에서 설명된다.
[0042] 도 1c의 장치에서, 증발 소스(1000)의 분배 파이프(1006) 및 증발 도가니는 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로, 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로 이송되고, 여기서, 분배 파이프(1006)를 위한 지지부(1002)는 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로, 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로 이송되지 않는다. 다시 말하면, 분배 파이프(1006)를 위한 지지부(1002)는 프로세싱 진공 챔버(110)에 유지되는 한편, 증발 소스(1000)의 분배 파이프(1006) 및 증발 도가니(1004)는 이송된다.
[0043] 프로세싱 진공 챔버(110)에 지지부(1002)를 남김으로써, 서비싱 및/또는 교환될 재료 증착 소스의 부분이 유지보수 진공 챔버(120)로 이송될 수 있고, 여기서, 서비싱 및/또는 교환되지 않을 재료 증착 소스의 부분들은 프로세싱 진공 챔버(110)에 유지된다. 이송을 수행하기 위한 노력이 최소화될 수 있다.
[0044] 도 2는 프로세싱 진공 챔버와 유지보수 진공 챔버 사이의 개구(215)를 폐쇄하기 위한 후속 스테이지들 (a), (b), (c)의 개략도이다.
[0045] 본 개시내용에 따른, 기판의 진공 프로세싱을 위한 장치는, 프로세싱 진공 챔버와 유지보수 진공 챔버 사이에서 재료 증착 소스의 적어도 일부, 예컨대 전체 재료 증착 소스를 이송하도록 구성된 개구(215)를 자기적으로 폐쇄하기 위한 자기 폐쇄 어레인지먼트(220)를 포함한다. 본 개시내용 전체에 걸쳐 사용되는 바와 같은 “자기적으로 폐쇄하는”은, 예컨대 본질적으로 진공-밀폐되는 방식으로 개구를 밀봉하기 위해 자기력이 사용된다는 의미로 이해될 수 있다. 예로서, 밀봉 디바이스(230)는 개구를 덮도록 구성될 수 있고, 여기서, 자기 폐쇄 어레인지먼트(220)는 자기력을 사용하여 개구(215)에 밀봉 디바이스(230)를 홀딩하도록 구성될 수 있다. 일부 구현들에서, 자기 폐쇄 어레인지먼트(220)는 전자석 또는 전기영구(electropermanent) 자석 어레인지먼트를 포함할 수 있거나 또는 전자석 또는 전기영구 자석 어레인지먼트일 수 있다. 전기영구 자석 어레인지먼트는 도 3a 및 도 3b에 대하여 더 설명된다.
[0046] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치는 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 분리하도록 구성된 파티션(210)을 포함한다. 파티션(210)은 프로세싱 진공 챔버 및/또는 유지보수 진공 챔버의 챔버 벽일 수 있다. 개구(215)는 파티션(210)에 제공될 수 있다.
[0047] 일부 구현들에서, 자기 폐쇄 어레인지먼트(220)의 적어도 일부가 개구(215)에 제공될 수 있다. 예로서, 자기 폐쇄 어레인지먼트(220)는 개구(215)에 인접하게, 예컨대 파티션(210)에 또는 내에 제공될 수 있다. 자기 폐쇄 어레인지먼트(220)는 개구(215), 예컨대 홀딩 표면(240)을 향하여 밀봉 디바이스(230)를 끌어당기도록 구성될 수 있다.
[0048] 일부 실시예들에 따르면, 밀봉 디바이스(230)는 자기 재료를 포함할 수 있거나 또는 자기 재료로 제조될 수 있다. 자기 폐쇄 어레인지먼트(220)에 의해 생성되는 자기장은 자기 재료 상에 작용하여, 개구(215)를 항하여, 그리고 특히 홀딩 표면(240)을 향하여 밀봉 디바이스(230)를 끌어당기는 자기력을 제공할 수 있다. 일부 구현들에서, 자기 재료는 철, 강, 스테인리스 강, 강자성 재료, 페리자성 재료, 반자성 재료, 및 이들의 임의의 조합으로 구성된 그룹으로부터 선택될 수 있다.
[0049] 일부 실시예들에 따르면, 밀봉 디바이스(230)는 하나 또는 그 초과의 자석 엘리먼트들을 포함할 수 있다. 하나 또는 그 초과의 자석 엘리먼트들은, 자기 폐쇄 어레인지먼트(220)에 의해 생성되는 자기장이 하나 또는 그 초과의 자석 엘리먼트들 상에 작용하여, 개구(215)를 향하여, 그리고 특히 홀딩 표면(240)을 향하여 밀봉 디바이스(230)를 끌어당기는 자기력을 제공할 수 있도록, 자기 폐쇄 어레인지먼트(220)에 대응하여 위치될 수 있다. 하나 또는 그 초과의 자석 엘리먼트들은 밀봉 디바이스(230)에 부착된 또는 밀봉 디바이스(230)에 통합된 영구 자석들일 수 있다. 그러한 경우에서, 밀봉 디바이스(230)는 알루미늄과 같은 비-자기 재료로 제조될 수 있다.
[0050] 일부 실시예들에 따르면, 장치는 개구(215)에 홀딩 표면(240)을 포함한다. 홀딩 표면(240)은, 예컨대 개구(215)에 인접하게, 파티션(210)에 의해 제공될 수 있다. 예로서, 홀딩 표면(240)은 밀봉 디바이스(230)의 표면과 접촉하도록 구성될 수 있다. O-링들과 같은 하나 또는 그 초과의 밀봉 엘리먼트들이, 개구(215)가 본질적으로 진공-밀폐되는 방식으로 밀봉될 수 있도록, 홀딩 표면(240)에 제공될 수 있다.
[0051] 이제 도 2로 넘어가면, 스테이지 (a)에서, 밀봉 디바이스(230)는 개구(215), 예컨대 홀딩 표면(240)을 향하여 이동된다. 예로서, 밀봉 디바이스는 개구(215)를 향하는 본질적인 선형 이동을 수행할 수 있다. 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에서, 자기 폐쇄 어레인지먼트(220)는 척킹 상태(I)와 해제 상태(II) 사이에서 전환가능할 수 있다. 해제 상태(II)에서, 자기 폐쇄 어레인지먼트(220)는 홀딩 표면(240)에 외부 자기장을 전혀 생성하지 않을 수 있거나 또는 작은 외부 자기장을 생성할 수 있다. 척킹 상태(I)에서, 자기 폐쇄 어레인지먼트(220)는 홀딩 표면(240)에 강한 외부 자기장을 생성할 수 있다. 다시 말하면, 해제 상태(II)에서의 홀딩 표면(240)에서의 제2 외부 자기장은 척킹 상태(I)에서의 홀딩 표면(240)에서의 제1 외부 자기장보다 더 작을 수 있다.
[0052] 제1 외부 자기장은 개구(215)에서 밀봉 디바이스(230)를 홀딩하기에 충분할 수 있다. 일부 구현들에서, 자기 폐쇄 어레인지먼트(220)는 10 N/cm2 또는 그 초과, 구체적으로는 50 N/cm2 또는 그 초과, 구체적으로는 100 N/cm2 또는 그 초과, 그리고 더 구체적으로는 150 N/cm2 또는 그 초과의 힘을 제공하도록 구성될 수 있다. 힘은 개구(215)에서, 그리고 특히 홀딩 표면(240)에서 밀봉 디바이스(230)를 홀딩하기 위해 밀봉 디바이스 상에 작용하는 자기력일 수 있다.
[0053] 도 2의 스테이지 (a)에서, 자기 폐쇄 어레인지먼트(220)는 해제 상태(II)로 제공되고, 그 해제 상태(II)에서, 자기 폐쇄 어레인지먼트(220)는 홀딩 표면(240)에 외부 자기장을 전혀 생성하지 않을 수 있거나 또는 작은 외부 자기장만을 생성할 수 있다. 따라서, 밀봉 디바이스(230)는 홀딩 표면(240)을 향하여 끌어당겨지지 않는다.
[0054] 도 2의 스테이지 (b)에서, 밀봉 디바이스(230)는 파티션(210)과 접촉하도록 이동하였다. 자기 폐쇄 어레인지먼트(220)는 여전히 해제 상태(II)에 있고, 그 해제 상태(II)에서, 밀봉 디바이스(230)는 자기 폐쇄 어레인지먼트(220)의 자기력에 의해 홀딩 표면(240)에서 홀딩되지 않는다.
[0055] 도 2의 스테이지 (c)에서, 자기 폐쇄 어레인지먼트(220)는 척킹 상태(I)로 전환되었다. 척킹 상태(I)에서, 자기 폐쇄 어레인지먼트(220)에 의해 생성되는 자기장은 홀딩 표면(240)에서 밀봉 디바이스(230)를 홀딩한다. 프로세싱 진공 챔버와 유지보수 진공 챔버는 본질적으로 진공-밀폐되는 방식으로 서로 밀봉될 수 있다.
[0056] 유사하게, 밀봉 디바이스(230)는, 척킹 상태(I)로부터, 도 2의 스테이지 (b)에서 도시된 바와 같이, 홀딩 표면(240)에 외부 자기장이 전혀 생성되지 않거나 또는 작은 외부 자기장만이 생성되는 해제 상태(II)로 자기 폐쇄 어레인지먼트(220)를 전환시킴으로써, 예컨대 파티션(210)으로부터 분리될 수 있다. 그 후에, 밀봉 디바이스(230)는, 재료 증착 소스, 또는 재료 증착 소스의 부분이 개구(215)를 통해 이동될 수 있도록, 개구(215)로부터 제거될 수 있다.
[0057] 자기 폐쇄 어레인지먼트(220)는, 예컨대 자기 폐쇄 어레인지먼트(220)의 자석 디바이스에 제공되는 전기 펄스에 의해 자기 폐쇄 어레인지먼트(220)의 하나 또는 그 초과의 제1 영구 자석들의 자화의 방향을 변화시킴으로써, 해제 상태(I)와 척킹 상태(II) 사이에서 전환될 수 있다. 특히, 하나 또는 그 초과의 제1 영구 자석들의 극성은 자석 디바이스에 전송되는 전기 펄스에 의해 반전될 수 있다. 일부 실시예들에서, 장치는 자기 폐쇄 어레인지먼트(220)를 위한 전력 공급부(250)를 포함한다. 전력 공급부(250)는 하나 또는 그 초과의 제1 영구 자석들의 자화를 변화시키는데 적합할 수 있는 전기 펄스, 예컨대 전류 펄스를 생성하도록 구성될 수 있다. 이는 도 3a 및 도 3b에 대하여 더 설명된다.
[0058] 도 3a는 해제 상태(II)에 있는 본원에서 설명되는 실시예들에 따른 자기 폐쇄 어레인지먼트(300)의 개략도이다. 도 3b는 척킹 상태(I)에 있는 도 3a의 자기 폐쇄 어레인지먼트(300)의 개략도이고, 그 척킹 상태(I)에서, 디바이스, 예컨대 밀봉 디바이스(230)가 자기 폐쇄 어레인지먼트(300)에 의해 홀딩된다.
[0059] 자기 폐쇄 어레인지먼트(300)는 전기영구 자석 어레인지먼트로서 구성될 수 있다. 전기영구 자석 어레인지먼트는 하나 또는 그 초과의 제1 영구 자석들(320), 하나 또는 그 초과의 제2 영구 자석들(340), 및 자석 디바이스(360)를 포함한다. 전기영구 자석 어레인지먼트는 2개의 자기 평면들을 사용하고, 그 2개의 자기 평면들은 서로에 대하여 약 90°의 각도 하에 배향된다.
[0060] 더 상세하게는, 본원에서 사용되는 바와 같은 전기영구 자석 어레인지먼트(또는 "EPM")는 영구 자석들에 의해 생성되는 자기장이 자석 디바이스(360)의 와인딩(winding)에서의 전기 펄스에 의해, 특히 전류 펄스에 의해 변화될 수 있는 자석 어레인지먼트로서 이해될 수 있다. 특히, 자기장은 홀딩 표면(240)이 제공되는 폐쇄 자기 어레인지먼트(300)의 하나의 측 상에서 스위치 온 또는 오프될 수 있다. 전기영구 자석들은 이중 자석 원리(double magnet principle)에 기초하여 작동할 수 있다. 하나 또는 그 초과의 제1 영구 자석들(320)은 "연질" 또는 "반-경질" 자기 재료, 즉 낮은 보자력(coercivity)을 갖는 재료로 구성될 수 있다. 하나 또는 그 초과의 제2 영구 자석들(340)은 "경질" 자기 재료, 즉 더 높은 보자력을 갖는 재료로 구성될 수 있다. 하나 또는 그 초과의 제1 영구 자석들(320)의 자화의 방향은 자석 디바이스(360)에 제공되는 전기 펄스에 의해 변화될 수 있다. 예컨대, 하나 또는 그 초과의 제1 영구 자석들(320)의 극성은 전기 펄스에 의해 반전가능할 수 있다. 하나 또는 그 초과의 제2 영구 자석들(340)의 자화의 방향은 각각의 재료의 높은 보자력으로 인해 일정하게 유지될 수 있다.
[0061] 하나 또는 그 초과의 제1 영구 자석들(320)의 극성, 및 하나 또는 그 초과의 제2 영구 자석들(340)의 극성은 자기 극성들, 즉 자남극들 및 자북극들이다.
[0062] 일부 실시예들에 따르면, 하나 또는 그 초과의 제1 영구 자석들(320)의 자화를 변화시키기 위한 전기 펄스의 지속기간은 0.1 초 또는 그 초과, 구체적으로는 1 초 또는 그 초과, 그리고 더 구체적으로는 3 초 또는 그 초과이다. 예로서, 전기 펄스의 지속기간은 0.1 초 내지 10 초의 범위, 구체적으로는 0.5 초 내지 5 초의 범위, 그리고 더 구체적으로는 1 초 내지 2 초의 범위에 있다.
[0063] 일부 실시예들에서, 자석 디바이스(360)는 하나 또는 그 초과의 제1 영구 자석들(320) 주위에 적어도 부분적으로 제공되는 와인딩(350), 예컨대 와이어 와인딩 또는 솔레노이드를 포함할 수 있다. 와인딩(350)을 통해 전기 펄스를 공급함으로써, 하나 또는 그 초과의 제1 영구 자석들(320)의 포지션에서의 국부적인 자기장이 생성되는데, 그 국부적인 자기장은 하나 또는 그 초과의 제1 영구 자석들(320)의 자화를 변화시킨다. 특히, 하나 또는 그 초과의 제1 영구 자석들(320)의 극성은 자석 디바이스(360)의 와인딩(350)을 통해 전류 펄스를 공급함으로써 반전될 수 있다.
[0064] 일부 실시예들에서, 복수의 제1 영구 자석들이 제공되고, 여기서, 제1 영구 자석들은 자석 디바이스(360)의 와인딩들에 의해 적어도 부분적으로 둘러싸인다. 예컨대, 도 3a의 실시예에서, 2개의 제1 영구 자석들이 도시되고, 여기서, 와이어 와인딩이 2개의 제1 영구 자석들 각각 주위에서 연장된다. 2개 초과의 제1 영구 자석들이 서로의 바로 옆에 배열될 수 있다. 일부 실시예들에서, 홀딩 표면(240)을 향하여 지향되는 2개의 인접한 제1 영구 자석들의 극성들은 각각 반대 극성들일 수 있다. 따라서, 자기장 라인들은 하나 또는 그 초과의 루프들을 형성할 수 있고, 여기서, 각각의 루프는 반대 방향들로 인접한 제1 영구 자석들을 통해 침투한다.
[0065] 일부 실시예들에서, 복수의 제2 영구 자석들이 제공된다. 예컨대, 도 3a의 실시예에서, 3개의 제2 영구 자석들이 도시된다. 2개, 3개, 또는 그 초과의 제2 영구 자석들이, 예컨대 열 어레인지먼트로 차례로 제공될 수 있다. 제2 영구 자석들은 인접한 제2 영구 자석들의 반대 극성들의 극들이 서로를 향하여 지향될 수 있도록 배열될 수 있다. 따라서, 자기장 라인들은 제2 영구 자석들의 열을 통해 선형적으로 연장되지 않지만, 서로 대면하는 반대 극들로 인해 복수의 별개의 루프들이 형성될 수 있다.
[0066] 일부 실시예들에서, 하나 또는 그 초과의 제1 영구 자석들(320)은 제1 평면에 배열될 수 있고, 하나 또는 그 초과의 제2 영구 자석들(340)은 제2 평면에 배열될 수 있다. 제2 평면은 제1 평면보다 홀딩 표면(240)에 더 근접할 수 있다. 따라서, 하나 또는 그 초과의 제2 영구 자석들(340)은 하나 또는 그 초과의 제1 영구 자석들(320)보다 홀딩 표면(240)에 더 근접하게 배열될 수 있다.
[0067] 일부 실시예들에서, 하나 또는 그 초과의 제1 영구 자석들(320)은 제1 배향을 가질 수 있고, 하나 또는 그 초과의 제2 영구 자석들(340)은 제1 배향과 상이한 제2 배향을 가질 수 있다. 특히, 제1 배향 및 제2 배향은 수직일 수 있다. 예컨대, 하나 또는 그 초과의 제1 영구 자석들(320)은 수평 방향 또는 평면으로 배향될 수 있고, 하나 또는 그 초과의 제2 영구 자석들(340)은 수직 배향 또는 평면으로 배향될 수 있다.
[0068] 일부 실시예들에서, 하나 또는 그 초과의 제2 영구 자석들(340)에 의해 생성되는 자기장은 홀딩 표면(240)과 본질적으로 평행할 수 있는 제1 주 배향(X1)을 가질 수 있다. 하나 또는 그 초과의 제1 영구 자석들(320)에 의해 생성되는 자기장은 홀딩 표면(240)과 본질적으로 수직일 수 있는 제2 주 배향(X2)을 가질 수 있다. 따라서, 하나 또는 그 초과의 제1 영구 자석들(320)의 극성들을 반전시킴으로써, 결과적인 총 자기장은 홀딩 표면(240)에 수직인 방향에서, 즉 밀봉 디바이스(230)의 내부를 향하거나 또는 밀봉 디바이스(230)의 외부를 향하도록 변화될 수 있다. 도 3a의 해제 상태(II)로부터 도 3b의 척킹 상태(I)로 자기 폐쇄 어레인지먼트(300)를 전환시킴으로써, 결과적인 전체 자기장은 홀딩 표면(240)의 외부로, 이를테면 부착될 디바이스 내로 침투하도록 시프트될 수 있다. 특히, 척킹 상태(I)에서, 하나 또는 그 초과의 제1 영구 자석들(320), 및 하나 또는 그 초과의 제2 영구 자석들(340)의 반대 극들은 서로 대면하고 있을 수 있고, 그에 따라, 자기장 라인들은 부착될 디바이스가 배열된 홀딩 표면(240)의 외측 환경을 향하게 강제될 수 있다.
[0069] 밀봉 디바이스(230) 내로 침투하는 외부 자기장(370)은 도 3b에서 개략적으로 도시된다. 외부 자기장(370)은 하나 또는 그 초과의 제1 영구 자석들(320)의 극성이 전기 펄스에 의해 반전될 때까지 밀봉 디바이스(230)에서 유지된다. 척킹된 밀봉 디바이스는 자석 디바이스(360)에 전기 펄스를 제공함으로써 해제될 수 있다. 밀봉 디바이스(230)의 신뢰가능한 부착이 또한 전원 장애의 경우에 획득될 수 있는데, 이는 밀봉 디바이스(230)가 영구 자석들에 의해 생성되는 자기력에 의해 홀딩되기 때문이다. 척킹 상태(I)에서, 척킹된 상태를 유지하기 위해 외부 전력이 요구되지 않을 수 있다. 연속적으로 동작하는 전기 디바이스들로 인한 열이 생성되지 않고, 프로세스 안정성을 유지하기 위해 부가적인 냉각이 요구되지 않는다. 전환 후에 해제 상태(II)로 또는 척킹 상태(I)로 유지되는 쌍안정 자석 어레인지먼트가 제공될 수 있다. 전환은 자동적으로 수행될 수 있다.
[0070] 해제 상태(II)에서 폐쇄 어레인지먼트(300)에 의해 생성되는 내부 자기장(380)이 도 3a에서 개략적으로 도시된다. 자기장 강도를 증가시키기 위한 강 코어와 같은 코어(390)가, 예컨대 인접한 제2 영구 자석들 사이에 각각 제공될 수 있다.
[0071] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에서, 하나 또는 그 초과의 제1 영구 자석들(320)은 연질 또는 반-경질 자기 재료를 포함하고, 그리고/또는 하나 또는 그 초과의 제2 영구 자석들(340)은 경질 자기 재료를 포함한다. 예컨대, 하나 또는 그 초과의 제1 영구 자석들(320)은 AlNiCo를 포함할 수 있고, 그리고/또는 하나 또는 그 초과의 제2 영구 자석들(340)은 네오디뮴을 포함할 수 있다. 특히, 하나 또는 그 초과의 제1 영구 자석들(320)은 AlNiCo-자석들일 수 있고, 그리고/또는 하나 또는 그 초과의 제2 영구 자석들(340)은 네오디뮴-자석들일 수 있다. 낮은 및 높은 보자력들을 갖는 다른 자석들이 사용될 수 있다. 예컨대, 경질 자기 재료는 1,000 kA/m 또는 그 초과, 상세하게는 10,000 kA/m 또는 그 초과의 보자력을 가질 수 있고, 그리고/또는 연질 자기 재료는 1,000 kA/m 또는 그 미만, 상세하게는 100 kA/m 또는 그 미만의 보자력을 가질 수 있다.
[0072] 도 4a 내지 도 4c는 본원에서 설명되는 추가적인 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치(400)의 개략적인 평면도들을 도시한다. 도 4a 내지 도 4c의 장치(400)는 위에서 설명된 장치들과 유사하고, 차이들만이 아래에서 설명된다.
[0073] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 유지보수 진공 챔버(120)와 프로세싱 진공 챔버(110)의 연결부는 개구를 포함하고, 여기서, 개구는 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로의 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로의 재료 증착 소스, 예컨대 증발 소스(1000)의 적어도 일부의 이송을 위해 구성된다.
[0074] 일부 실시예들에서, 장치(400)는 개구를 폐쇄하도록 구성된 밀봉 디바이스(410)를 더 포함한다. 특히, 밀봉 디바이스(410)는 실질적으로 진공-밀폐되는 방식으로 개구를 밀봉하도록 구성된다. 밀봉 디바이스(410)에 의해 개구가 폐쇄 또는 밀봉되는 경우에, 유지보수 진공 챔버(120)는, 프로세싱 진공 챔버(110) 내의 진공을 파괴시키지 않으면서, 증발 소스(1000)의 유지보수를 위해 통기 및 개방될 수 있다.
[0075] 일부 구현들에서, 밀봉 디바이스(410)는 증발 소스(1000)에 부착되거나 또는 포함된다. 예로서, 밀봉 디바이스(410)는 실질적인 수직 배향으로 증발 소스(1000)의 측, 예컨대 지지부(1002)에 탑재될 수 있다. 일부 실시예들에서, 밀봉 디바이스(410)는 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이의 개구를 밀봉 또는 폐쇄하도록 구성된 플레이트일 수 있다. 증발 소스(1000)와 밀봉 디바이스(410)를 통합하는 것은 프로세싱 진공 챔버(110) 및/또는 유지보수 진공 챔버(120) 내의 공간을 절약하는 것을 가능하게 한다.
[0076] 일부 실시예들에 따르면, 증발 소스(1000)는 밀봉 디바이스(410)에 대하여 이동가능하다. 예로서, 적어도 분배 파이프(1006) 및 증발 도가니(1004)가 밀봉 디바이스(410)에 대하여 이동가능하다. 일부 구현들에서, 장치(400)는 증발 소스(1000)와 밀봉 디바이스(410)를 연결하는 연결 디바이스(420)를 포함할 수 있다. 연결 디바이스(420)는 증발 소스(1000)와 밀봉 디바이스(410) 사이의 이동가능한 연결을 제공하도록 구성될 수 있다. 예로서, 밀봉 디바이스(410)는, 이동가능한 연결을 제공하기 위해, 힌지들에 의해 연결된 2개 또는 그 초과의 암 부분들을 포함할 수 있다.
[0077] 일부 구현들에서, 연결 디바이스(420)는 증발 소스(1000)에 대하여, 그리고 특히 분배 파이프(1006) 및 증발 도가니(1004)에 대하여 밀봉 디바이스(410)를 이동시키도록 구성된 병진이동 디바이스일 수 있다. 개구를 폐쇄하기 위해, 증발 소스(1000)는 프로세싱 진공 챔버(110) 또는 유지보수 진공 챔버(120) 내에 적합하게 포지셔닝될 수 있고, 병진이동 디바이스는, 실질적으로 진공-밀폐 방식으로 개구를 폐쇄 또는 밀봉하기 위해, 개구를 향하여 증발 소스(1000)에 대하여 밀봉 디바이스(410)를 이동시킬 수 있다. 밀봉 디바이스(410)는 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로의 그리고 그 반대로의 이송 동안에 증발 소스(1000)에 대하여 고정될 수 있다.
[0078] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(400)는 유지보수 진공 챔버(120)에 제공된 회전가능 디바이스(430)를 포함한다. 회전가능 디바이스(430)는 증발 소스(1000)를 수용하도록 구성될 수 있다. 예로서, 회전가능 디바이스(430)는 회전가능 플랫폼일 수있다.
[0079] 도 4a를 참조하면, 2개의 증발 소스들(1000)이 도시된다. 2개의 증발 소스들 중 제1 증발 소스는 프로세싱 진공 챔버(110)에 포지셔닝되고, 2개의 증발 소스들 중 제2 증발 소스는 유지보수 진공 챔버(120)에 포지셔닝된다. 예로서, 2개의 증발 소스들 중 제2 증발 소스는 회전가능 디바이스(430) 상에 포지셔닝될 수 있다.
[0080] 도 4b에서 도시된 바와 같이, 예컨대 서비싱 또는 교환될 제1 증발 소스가 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로, 그리고 특히 회전가능 디바이스(430) 상으로 이송될 수 있다. 예컨대, 제1 증발 소스와 제2 증발 소스는 회전가능 디바이스(430) 상에서 등을 맞대어 포지셔닝될 수 있는데, 예컨대, 밀봉 디바이스들이 서로를 향하여 배향된 상태로 포지셔닝될 수 있다. 다시 말하면, 밀봉 디바이스들 둘 모두는 제1 증발 소스와 제2 증발 소스 사이에 포지셔닝 또는 샌드위치될 수 있다.
[0081] 증발 소스들, 즉 제1 증발 소스와 제2 증발 소스 둘 모두가 회전가능 디바이스(430) 상에 포지셔닝되는 경우에, 회전가능 디바이스(430)는, 제1 증발 소스와 제2 증발 소스가 포지션들을 교환하도록, 예컨대 약 180 도로 회전된다. 도 4b에서 회전은 화살표들로 표시된다. 그 후에, 제2 증발 소스가 프로세싱 진공 챔버(110) 내로 이송될 수 있고, 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120)를 연결하는 개구는, 예컨대 제2 증발 소스의 밀봉 디바이스(410)에 의해 밀봉될 수 있다. 유지보수 진공 챔버(120)는 제1 증발 소스의 서비싱 또는 제거를 위해 통기될 수 있다. 이는 프로세싱 진공 챔버(110) 내의 진공을 파괴시킬 필요 없이 증발 소스들의 교환을 가능하게 한다.
[0082] 도 5는 본원에서 설명되는 실시예들에 따른, 기판의 진공 프로세싱을 위한 장치(500)의 개략적인 평면도를 도시한다. 도 5의 장치(500)는 도 4a 내지 도 4c를 참조하여 위에서 설명된 장치와 유사하고, 차이들만이 아래에서 설명된다.
[0083] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(500)는, 프로세싱 진공 챔버(110)에 배치되고 적어도 2개의 트랙들(160)을 갖는 증발 소스 지지 시스템을 더 포함하며, 여기서, 소스 증발 소스 지지 시스템의 적어도 2개의 트랙들(160)은, 적어도 프로세싱 진공 챔버(110) 내에서의 증발 소스(1000)의 이동을 위해 구성된다. 적어도 2개의 트랙들(160) 각각은 제1 트랙 섹션(161) 및 제2 트랙 섹션(162)을 포함하고, 여기서, 제1 트랙 섹션(161) 및 제2 트랙 섹션(162)은 분리가능하다. 일부 구현들에서, 제1 트랙 섹션(161)은, 증발 소스(1000)와 함께, 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로, 그리고 유지보수 진공 챔버(120)로부터 프로세싱 진공 챔버(110)로 이송가능하도록 구성된다.
[0084] 일부 실시예들에 따르면, 증발 소스(1000)는 밀봉 디바이스(510)에 대하여 이동가능하다. 예로서, 장치(500)는 증발 소스(1000)와 밀봉 디바이스(510)를 연결하는 연결 디바이스(520)를 포함할 수 있다. 예로서, 연결 디바이스(520)는 증발 소스(1000)에 대한 밀봉 디바이스(510)의 병진 이동을 가이딩하도록 구성된다. 부가적으로 또는 대안적으로, 연결 디바이스(520)는 증발 소스(1000)를 위한 매체 공급부를 제공할 수 있거나 또는 수용할 수 있다. 예로서, 연결 디바이스(520)는 암, 특히 수동 암일 수 있다. 일부 실시예들에서, 연결 디바이스(520)의 적어도 일부는 매체 공급부에 대한 임의의 입자 영향을 방지하기 위해 대기 환경을 제공한다. 예로서, 대기 환경이 연결 디바이스(520) 내부에 제공될 수 있고, 특히 암의 내부에 제공될 수 있다.
[0085] 일부 구현들에서, 암은 증발 소스(1000)와 밀봉 디바이스(510) 사이의 상대적인 이동을 가능하게 하기 위해 각각의 힌지들에 의해 연결된 2개 또는 그 초과의 암 부분들을 포함할 수 있다. 예로서, 연결 디바이스(520)는 제1 암(532) 및 제2 암(534)을 포함한다. 제1 암(532)은 증발 소스(1000)에 연결된 제1 단부 부분, 및 힌지(536)를 통해 제2 암(534)의 제3 단부 부분에 연결된 제2 단부 부분을 갖는다. 제2 암(534)은 프로세싱 진공 챔버(110) 및/또는 유지보수 진공 챔버(120)에 연결된 제4 단부 부분을 갖는다.
[0086] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(500)는 유지보수 진공 챔버(120) 내에 제공된 회전가능 디바이스(530)를 포함한다. 회전가능 디바이스(530)는 제1 트랙 섹션들(161) 및/또는 증발 소스(1000)를 수용하도록 구성될 수 있다. 예로서, 회전가능 디바이스(530)는 회전가능 플랫폼일 수있다. 일부 실시예들에서, 장치(500)는 회전가능 디바이스(530)를 구동 또는 회전시키도록 구성된 구동부를 포함한다. 구동부는 샤프트, 예컨대 중공 샤프트를 통해 회전가능 디바이스(530)에 연결될 수 있다.
[0087] 일부 실시예들에 따르면, 회전가능 디바이스(530)는 2개 또는 그 초과의 증발 소스들을 지지하도록 구성된다. 예로서, 예컨대 서비싱 또는 교환될 제1 증발 소스가 프로세싱 진공 챔버(110)로부터 유지보수 진공 챔버(120)로, 그리고 특히 회전가능 디바이스(530) 상으로 이송될 수 있다. 제2 증발 소스, 예컨대 서비싱된 또는 새로운 증발 소스가 또한, 회전가능 디바이스(530) 상에 제공될 수 있다. 증발 소스들, 즉 제1 증발 소스와 제2 증발 소스 둘 모두가 회전가능 디바이스(530) 상에 포지셔닝되는 경우에, 회전가능 디바이스(530)는, 제1 증발 소스와 제2 증발 소스가 포지션들을 교환하도록, 예컨대 약 180 도로 회전된다. 그 후에, 제2 증발 소스가 프로세싱 진공 챔버(110) 내로 이송될 수 있고, 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120)를 연결하는 개구는, 예컨대 밀봉 디바이스(510) 및 자기 폐쇄 어레인지먼트를 사용하여 자기적으로 밀봉될 수 있다. 유지보수 진공 챔버(120)는, 예컨대 유지보수 진공 챔버(120)의 도어(122)를 개방함으로써, 제1 증발 소스의 서비싱 또는 제거를 위해 통기될 수 있다. 이는 프로세싱 진공 챔버(110) 내의 진공을 파괴시킬 필요 없이 증발 소스들의 교환을 가능하게 한다.
[0088] 본원에서 설명되는 다른 실시예들과 조합될 수 있는 일부 실시예들에 따르면, 장치(500)는 공급 통로, 예컨대 공급 라인을 포함할 수 있다. 공급 통로는, 예컨대 전기 연결들 및/또는 매체들, 이를테면 유체들(예컨대, 물) 및/또는 가스들을 증발 소스(1000)에 공급하도록 구성될 수 있다. 공급 통로는 공급 통로를 통해 하나 또는 그 초과의 라인들 및/또는 케이블들, 이를테면 물 공급 라인들, 가스 공급 라인들, 및/또는 전기 케이블들을 가이딩하도록 구성될 수 있다. 일부 구현들에서, 공급 통로는 대기 환경을 갖는데, 즉, 공급 통로는, 프로세싱 진공 챔버(110) 및/또는 유지보수 진공 챔버(120)와 같은 주변 환경이 기술적 진공으로 진공배기되는 경우에도, 공급 통로 내에 대기압을 유지하도록 구성될 수 있다. 예로서, 공급 통로는 연결 디바이스(520)의 적어도 일부를 포함할 수 있다.
[0089] 일부 구현들에서, 공급 통로는 증발 소스(1000)로부터 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 사이에 제공된 피드스루로 연장된다. 예로서, 피드스루는 프로세싱 진공 챔버(110)와 유지보수 진공 챔버(120) 를 분리하는 벽 부분 또는 밀봉 디바이스(510)에 또는 내에 제공될 수 있다. 일부 실시예들에 따르면, 공급 통로는, 연결 디바이스(520) 및 (대기 박스일 수 있는) 증발기 제어 하우징들을 통해 증발 소스(1000)로부터 피드스루로 연장된다.
[0090] 일부 실시예들에서, 공급 통로는 유지보수 진공 챔버(120) 외부로부터, 예컨대 회전가능 디바이스(530)의 구동부의 중공 샤프트를 통해, 유지보수 진공 챔버 내로, 그리고 회전가능 디바이스(530)의 중간 공간 또는 하단 내로 연장된다. 공급 통로는 회전가능 디바이스(530)의 중간 공간 또는 하단으로부터, 예컨대 파형 호스와 같은 파이프를 통해, 밀봉 디바이스(510)에 또는 내에 제공된 대기 박스로 더 연장될 수 있다. 대기 박스는 밀봉 디바이스(510)에 부착된 “백 팩(back pack)”에 포함될 수 있다. 위에서 언급된 피드스루는 밀봉 디바이스(510)에 또는 내에 제공된 대기 박스에 또는 내에 제공될 수 있다. 예로서, 밀봉 디바이스(510)에 또는 내에 제공된 대기 박스는 피드스루로서 구성될 수 있다. 공급 통로는 밀봉 디바이스(510)에 또는 내에 제공된 대기 박스로부터 연결 디바이스(520)를 통해 증발기 제어 하우징으로 더 연장될 수 있다. 그 후에, 공급 통로는, 적어도 분배 파이프들(1006)을 회전시키도록 구성된 액추에이터의 중공 샤프트를 통해, 증발기 제어 하우징으로부터 증발 소스(1000)로, 예컨대 증발 소스(1000)의 대기 박스로 연장될 수 있다.
[0091] 도 6은 본원에서 설명되는 실시예들에 따른, 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법(600)의 흐름도를 도시한다. 방법(600)은 본원에서 설명되는 장치들 및 시스템들을 사용하여 구현될 수 있다.
[0092] 방법(600)은, 블록(610)에서, 자기력을 사용하여 개구에 밀봉 디바이스를 홀딩하는 단계를 포함한다. 개구는, 증발 소스와 같은 재료 증착 소스의 적어도 일부가 프로세싱 진공 챔버와 유지보수 진공 챔버 사이에서 이송될 수 있도록, 프로세싱 진공 챔버와 유지보수 진공 챔버를 연결할 수 있다. 일부 구현들에서, 방법(600)은, 블록(620)에서, 자기력을 변화시킴으로써, 개구로부터 밀봉 디바이스를 해제시키는 단계를 더 포함한다. 예컨대, 자기력을 변화시키는 것은, 예컨대 전기 펄스를 사용하여 하나 또는 그 초과의 제1 영구 자석들의 극성을 반전시키는 단계를 포함할 수 있다.
[0093] 본원에서 설명되는 실시예들에 따르면, 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법은, 컴퓨터 프로그램들, 소프트웨어, 컴퓨터 소프트웨어 제품들, 및 상관된 제어기들을 사용하여 실시될 수 있는데, 그 상관된 제어기들은 CPU, 메모리, 사용자 인터페이스, 및 장치의 대응하는 컴포넌트들과 통신하는 입력 및 출력 디바이스들을 가질 수 있다.
[0094] 본원에서 개시되는 실시예들은 증발 소스들과 같은 재료 증착 소스들의 서비싱 및/또는 리필링을 가능하게 하고, 프로세싱 장치의 다운타임을 감소시킬 수 있다. 특히, 유지보수 진공 챔버는, 재료 증착 소스의 적어도 일부가, 밀봉가능 개구를 통해, 프로세싱 진공 챔버로부터 유지보수 진공 챔버로, 그리고 그 반대로 이송될 수 있도록, 프로세싱 진공 챔버에 연결된다. 유지보수 진공 챔버는 프로세싱 진공 챔버와 독립적으로 통기될 수 있다. 재료 증착 소스는, 예컨대, 진공 시스템을 통기하지 않으면서 그리고/또는 생산을 중단하지 않으면서, 유지보수 진공 챔버에서 재료 증착 소스가 서비싱 및/또는 배출된 후에, 교환될 수 있다.
[0095] 밀봉가능 개구는 자기 폐쇄 어레인지먼트를 사용하여 폐쇄가능하다. 예컨대, 서비스 플랜지와 같은 밀봉 디바이스는 개구를 덮을 수 있고, 개구를 밀봉하도록 개구에 자기적으로 홀딩될 수 있다. 자기 밀봉은 진공 시스템에서 다수의 기계적으로 이동가능한 파트들을 감소시킬 수 있다. 그러한 기계적으로 이동가능한 파트들로 인한 입자들의 생성이 감소될 수 있고, 기판 상에 증착되는 재료 층들의 품질이 개선될 수 있다.
[0096] 전술한 바가 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 다른 및 추가적인 실시예들이 본 개시내용의 기본적인 범위로부터 벗어나지 않으면서 고안될 수 있고, 본 개시내용의 범위는 다음의 청구항들에 의해 결정된다.

Claims (15)

  1. 기판의 진공 프로세싱을 위한 장치로서,
    프로세싱 진공 챔버 및 유지보수 진공 챔버;
    상기 프로세싱 진공 챔버와 상기 유지보수 진공 챔버 사이에서 재료 증착 소스의 적어도 일부를 이송하기 위한 개구; 및
    상기 개구를 자기적으로 폐쇄하기 위한 자기 폐쇄 어레인지먼트로서, 상기 자기 폐쇄 어레인지먼트는 하나 또는 그 초과의 제1 영구 자석들, 하나 또는 그 초과의 제2 영구 자석들, 및 상기 하나 또는 그 초과의 제1 영구 자석들의 자화를 변화시키도록 구성된 자석 디바이스를 갖는 전기영구 자석(electropermanent magnet) 어레인지먼트를 포함하고, 상기 하나 또는 그 초과의 제1 영구 자석들의 극성은 상기 자석 디바이스에 제공되는 전기 펄스에 의해 반전가능한 것인, 자기 폐쇄 어레인지먼트를 포함하는,
    기판의 진공 프로세싱을 위한 장치.
  2. 제1 항에 있어서,
    상기 개구를 폐쇄하도록 구성된 밀봉 디바이스를 더 포함하는,
    기판의 진공 프로세싱을 위한 장치.
  3. 제2 항에 있어서,
    상기 밀봉 디바이스는 상기 재료 증착 소스에 부착되는,
    기판의 진공 프로세싱을 위한 장치.
  4. 삭제
  5. 제1 항에 있어서,
    상기 하나 또는 그 초과의 제1 영구 자석들은 연질 자기 재료 또는 반-경질 자기 재료를 포함하고, 상기 하나 또는 그 초과의 제2 영구 자석들은 경질 자기 재료를 포함하는,
    기판의 진공 프로세싱을 위한 장치.
  6. 제1 항에 있어서,
    상기 자석 디바이스는 상기 하나 또는 그 초과의 제1 영구 자석들 주위에 적어도 부분적으로 제공되는 와인딩(winding)을 포함하는,
    기판의 진공 프로세싱을 위한 장치.
  7. 삭제
  8. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 자기 폐쇄 어레인지먼트는 상기 개구에 제공되는,
    기판의 진공 프로세싱을 위한 장치.
  9. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 개구에서 홀딩 표면을 더 포함하며,
    상기 자기 폐쇄 어레인지먼트는 척킹 상태와 해제 상태 사이에서 전환가능하고,
    상기 척킹 상태에서, 상기 자기 폐쇄 어레인지먼트는 상기 홀딩 표면에 제1 외부 자기장을 생성하고, 그리고
    상기 해제 상태에서, 상기 자기 폐쇄 어레인지먼트는 상기 홀딩 표면에 상기 제1 외부 자기장보다 더 작은 제2 외부 자기장을 생성하거나, 또는 외부 자기장을 전혀 생성하지 않는,
    기판의 진공 프로세싱을 위한 장치.
  10. 제1 항 내지 제3 항 중 어느 한 항에 있어서,
    상기 재료 증착 소스의 부분은 증발 도가니와 분배 파이프 중 적어도 하나를 포함하고, 상기 재료 증착 소스는 상기 분배 파이프를 위한 지지부를 더 포함하는,
    기판의 진공 프로세싱을 위한 장치.
  11. 제10 항에 있어서,
    상기 재료 증착 소스의 상기 분배 파이프 및 상기 증발 도가니는 상기 프로세싱 진공 챔버로부터 상기 유지보수 진공 챔버로, 그리고 상기 유지보수 진공 챔버로부터 상기 프로세싱 진공 챔버로 이송될 수 있고, 상기 분배 파이프를 위한 지지부는 상기 프로세싱 진공 챔버로부터 상기 유지보수 진공 챔버로, 그리고 상기 유지보수 진공 챔버로부터 상기 프로세싱 진공 챔버로 이송되지 않는,
    기판의 진공 프로세싱을 위한 장치.
  12. 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템으로서,
    제1 항 내지 제3 항 중 어느 한 항에 기재된 장치; 및
    상기 프로세싱 진공 챔버에서의 기판 캐리어와 마스크 캐리어 중 적어도 하나의 비접촉 운송을 위해 구성된 운송 어레인지먼트
    를 포함하는,
    디바이스들의 제조를 위한 시스템.
  13. 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법으로서,
    자기력을 사용하여 개구에 밀봉 디바이스를 홀딩하는 단계, 및
    상기 자기력을 변화시킴으로써 상기 개구로부터 밀봉 디바이스를 해제시키는 단계로서, 상기 자기력을 변화시키는 것은 전기영구 자석 어레인지먼트의 하나 또는 그 초과의 제1 영구 자석들의 극성을 반전시키는 것을 포함하고, 상기 전기영구 자석 어레인지먼트는 하나 또는 그 초과의 제1 영구 자석들, 하나 또는 그 초과의 제2 영구 자석들, 및 상기 하나 또는 그 초과의 제1 영구 자석들의 자화를 변화시키도록 구성된 자석 디바이스를 포함하고, 상기 하나 또는 그 초과의 제1 영구 자석들의 극성은 상기 자석 디바이스로 제공되는 전기 펄스에 의해 반전되는, 단계를 포함하는,
    방법.
  14. 삭제
  15. 삭제
KR1020187010582A 2017-03-17 2017-03-17 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법 KR102069665B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/056372 WO2018166618A1 (en) 2017-03-17 2017-03-17 Apparatus for vacuum processing of a substrate, system for the manufacture of devices having organic materials, and method for sealing a processing vacuum chamber and a maintenance vacuum chamber from each other

Publications (2)

Publication Number Publication Date
KR20180116219A KR20180116219A (ko) 2018-10-24
KR102069665B1 true KR102069665B1 (ko) 2020-01-23

Family

ID=58347393

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187010582A KR102069665B1 (ko) 2017-03-17 2017-03-17 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법

Country Status (6)

Country Link
US (1) US20200240008A1 (ko)
JP (1) JP2019512045A (ko)
KR (1) KR102069665B1 (ko)
CN (1) CN109072412A (ko)
TW (1) TW201839886A (ko)
WO (1) WO2018166618A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110016647B (zh) * 2019-05-29 2020-09-08 昆山国显光电有限公司 蒸镀源清洁设备及蒸镀系统
CN111676454B (zh) * 2020-08-04 2023-09-05 光驰科技(上海)有限公司 一种节省真空镀膜室内空间的蒸发源配置结构及其设计方法
US20220112594A1 (en) * 2020-10-14 2022-04-14 Applied Materials, Inc. Device for sealing a vacuum chamber, vacuum processing system, and method of monitoring a load lock seal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201107639A (en) * 2007-04-27 2011-03-01 Edwards Japan Ltd Plate rotating device, exhaust path opening degree changing device, exhausted device, transfer device, beam device, and gate valve
CN105814231B (zh) * 2013-12-10 2020-03-06 应用材料公司 用于有机材料的蒸发源、用于在真空腔室中沉积有机材料的沉积设备及蒸发有机材料的方法
DE102014008170A1 (de) * 2014-06-10 2015-12-17 Mecatronix Ag Verschluss- oder Schleusenvorrichtung für eine Vakuumkammer

Also Published As

Publication number Publication date
US20200240008A1 (en) 2020-07-30
JP2019512045A (ja) 2019-05-09
WO2018166618A1 (en) 2018-09-20
KR20180116219A (ko) 2018-10-24
TW201839886A (zh) 2018-11-01
CN109072412A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
TWI679081B (zh) 載體、遮罩裝置、真空系統及操作一真空系統之方法
KR101985922B1 (ko) 캐리어에 의해 지지되는 기판 상에 하나 또는 그 초과의 층들을 증착하기 위한 시스템 및 그러한 시스템을 사용하는 방법
KR101927925B1 (ko) 유기 재료를 위한 증발 소스, 유기 재료를 위한 증발 소스를 갖는 진공 챔버에서 유기 재료를 증착하기 위한 증착 장치, 및 유기 재료를 증발시키기 위한 방법
KR102088155B1 (ko) 진공 시스템에서 마스크 디바이스를 핸들링하는 방법들, 마스크 핸들링 장치, 및 진공 시스템
KR102069665B1 (ko) 기판의 진공 프로세싱을 위한 장치, 유기 재료들을 갖는 디바이스들의 제조를 위한 시스템, 및 프로세싱 진공 챔버와 유지보수 진공 챔버를 서로 밀봉하기 위한 방법
TWI687533B (zh) 用於一基板之真空處理之設備、用於具有有機材料之裝置之製造的系統、及用以密封連接二壓力區域之一開孔之方法
US20210269912A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
KR20190087968A (ko) 진공 챔버 내의 기판을 프로세싱하기 위한 장치 및 시스템, 및 마스크 캐리어에 대해 기판 캐리어를 정렬하는 방법
US20210335640A1 (en) Holding device for holding a carrier or a component in a vacuum chamber, use of a holding device for holding a carrier or a component in a vacuum chamber, apparatus for handling a carrier in a vacuum chamber, and vacuum deposition system
KR102123482B1 (ko) 진공 시스템에서 사용하기 위한 캐리어, 진공 프로세싱을 위한 시스템, 및 기판의 진공 프로세싱을 위한 방법
JP6833610B2 (ja) 有機材料用の蒸発源、有機材料用の蒸発源を有する装置、有機材料用の蒸発源を含む蒸発堆積装置を有するシステム、及び有機材料用の蒸発源を操作するための方法
WO2019192680A1 (en) Apparatus for handling a carrier in a vacuum chamber, vacuum deposition system, and method of handling a carrier in a vacuum chamber

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)