KR102068945B1 - 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스 - Google Patents

이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스 Download PDF

Info

Publication number
KR102068945B1
KR102068945B1 KR1020197002757A KR20197002757A KR102068945B1 KR 102068945 B1 KR102068945 B1 KR 102068945B1 KR 1020197002757 A KR1020197002757 A KR 1020197002757A KR 20197002757 A KR20197002757 A KR 20197002757A KR 102068945 B1 KR102068945 B1 KR 102068945B1
Authority
KR
South Korea
Prior art keywords
substrate
error
path
printhead
transport
Prior art date
Application number
KR1020197002757A
Other languages
English (en)
Other versions
KR20190017054A (ko
Inventor
디그비 푼
데이비드 씨. 다로우
로버트 비. 로란스
알렉산더 소우-캉 코
Original Assignee
카티바, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 카티바, 인크. filed Critical 카티바, 인크.
Publication of KR20190017054A publication Critical patent/KR20190017054A/ko
Application granted granted Critical
Publication of KR102068945B1 publication Critical patent/KR102068945B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0208Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/008Controlling printhead for accurately positioning print image on printing material, e.g. with the intention to control the width of margins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J13/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
    • B41J13/0009Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets control of the transport of the copy material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J13/00Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
    • B41J13/0009Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets control of the transport of the copy material
    • B41J13/0027Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets control of the transport of the copy material in the printing section of automatic paper handling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • H01L21/67265Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4679Aligning added circuit layers or via connections relative to previous circuit layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/013Inkjet printing, e.g. for printing insulating material or resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0736Methods for applying liquids, e.g. spraying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/166Alignment or registration; Control of registration

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Ink Jet (AREA)
  • Coating Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Electroluminescent Light Sources (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

인쇄기는, 전자 제품을 위한 제조 프로세스의 일부로서, 기판 상에 물질을 증착한다. 적어도 하나의 기계적 구성요소는 기계적 오차를 경험하는데, 이는, 가령, "이상적인" 운송 경오를 제공하기 위해, 이송된 것의 위치를 균등화하는 트랜스듀서를 사용하여, 완화되고, 기판 운송 시스템 및/또는 인쇄헤드 운송 시스템은 정확한 액적 위치배정을 개선하기 위해 이러한 방식으로 트랜스듀서를 각각 사용할 수 있다. 일 실시예에서, 오차는 미리 측정되고, 교정은 반복가능한 이송 경로 오차를 완화시키기 위해 생산 실행 동안에, "플레이 백"된다. 여전히 좀 더 상세한 실시예에서, 트랜스듀서는 보이스 코일에 입각될 수 있는데, 이는 플로테이션 테이블과 플로팅, 기계적 피봇 어셈블리와 협력하여, 마찰이 없지만, 기계적으로-지지되는 오차 교정을 제공한다.

Description

이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
본 개시물은, "Transport Path Correction Techniques And Related Systems, Methods And Devices"라는 명칭으로, 첫 이름 대표 발명자 Digby Pun의 2017년 7월 5일에 출원된 미국 유틸리티 특허 출원 번호 15/642037, 첫 이름 대표 발명자 Digby Pun의 2017년 4월 25일에 출원된 미국 가출원 번호 62/489768 및 첫 이름 발명자 Digby Pun의 2016년 7월 8일에 출원된 미국 가출원 번호 62/359969 및 ""Precision Position Alignment, Calibration and Measurement in Printing And Manufacturing Systems"라는 명칭으로, 첫 이름 대표 발명자 David C. Darrow의 2017년 2월 15일에 출원된 미국 가특허 출원 번호 62/459402의 우선권을 청구하고, 이들 출원 각각은 본원에 참조로서 포함된다. 또한, 본 개시물은 다음 문헌을 참조로서 포함되는데, 이는, "Techniques for Print Ink Droplet Measurement And Control To Deposit Fluids Within Precise Tolerances"에 대한 첫 발명자 Nahid Harjee의 2014년 7월 24일에 출원서로 제출된 미국 특허 9352561 (USSN 14/340403)와, "Printing System Assemblies and Methods"에 대한 첫 발명자 Robert B. Lowrance의 2015년 6월 12일에 출원서로 제출된 미국 특허 공개물 번호 20150360462 (USSN 14/738785)와, "Techniques for Arrayed Printing of a Permanent Layer with Improved Speed and Accuracy"에 다한 첫 이름 발명자 Michael Baker의 2015년 6월 30일에 출원서로 제출된 미국 특허 공개물 번호 20150298153 (USSN 14/788609)와, 및 "Ink-Based Layer Fabrication Using Halftoning To Control Thickness"에 대한 첫 이름 발명자 Eliyahu Vronsky의 2014년 8월 12일에 출원서로 제출된 미국 특허 번호 8995022이다.
특정 타입의 산업용 인쇄기는 가령, 전자 디바이스의 제작과 같은 정확한 제조에 적용될 수 있다.
하나의 비제한적인 예시를 들면, 잉크젯 인쇄기는 전자 디스플레이 디바이스나 태양 패널 디바이스의 하나 이상의 초박층(super-thin layer)을 증착하는데 사용될 수 있다. 이러한 경우 "잉크"는 원하는 색의 염색과 같은 종래의 잉크 개념과 상이하고, 대신에, 약간 확산되고 함께 용융되지만, 흡수되지 않는 대신에 구조적, 전자기적 또는 광학적 특성을 완성된 디바이스로 전달하는데 도움을 주는, 의도된 층을 유지하는, 분리된 액적으로 증착되는 유기 모너머일 수 있고, 또한 잉크는, 광을 생성 및/또는 전송하는데 사용되는 결과적인 층에 의도적으로 반투명으로 제조되는 것이 일반적이다. 그리고 나서, 인쇄에 의해 증착된 잉크의 연속적인 코팅은 응용예에 의존하여, 매우 엄격하게 조정된 두께, 가령, 1-10 마이크론을 가진 영구적인 층을 형성하기 위해, 적소에서 프로세스(가령, 자외선 광을 사용하여 경화되거나 아니면 베이크 또는 건조됨)된다. 이들 타입의 프로세서는, OLED 픽셀의 홀 주입 층 ("HIL"), 홀 수송 층 ("HTL"), 홀 이송 층 ("HTL"), 발산 또는 발광 층 ("EML"), 전자 이송 층 ("ETL"), 전자 주입 층 ("EIL"), 애노드 또는 캐소드 층과 같은 다양한 전도체, 홀 차단 층, 전자 차단 층, 편광기, 장벽 층, 프라이머, 인캡슐레이션 층 및 다른 타입의 층을 증착하는데 사용될 수 있다. 나열된 물질, 프로세스 및 층은 단지 예시적이다. 하나의 응용예에서, 많은 개개의 전자 구성요소나 구조물의 각각에 대해서, 가령, 개개의 디스플레이 픽셀이나 광전자 셀 층을 형성하기 위해, 개개의 미시적 유체 저장소 내에(가령, "우물" 내에) 층을 생성하기 위해 잉크가 증착될 수 있고, 또 다른 응용예에서, 가령, 이러한 많은 구조물을 커버하는 하나 이상의 인캡슐레이션 층을 형성하기 위해 거시적 치수를 가지도록 잉크가 증착될 수 있다(가령, 수백개의 픽셀을 가진 디스플레이 스크린 영역에 걸침).
요구되는 정확도는 매우 미세할 수 있는데, 가령, 유기 발광 다이오드("OLED") 픽셀의 박층을 제작하기 위한 제조자의 스펙은, 피코리터의 레졸루션으로(또는 심지어 더 높은 레벨의 정확도로) 픽셀 우물 내에서 총합 유체 증착을 명시할 수 있다. 스펙으로부터 증착된 유체의 부피에 있어서, 약간의 국부적 베리에이션이라도 문제를 야기할 수 있다. 예를 들어, 구조물 간(structure-to-structure)(가령, 픽셀 간(pixel-to-pixel))으로부터 잉크 부피의 베리에이션은 색조의 차이나 세기 차이 또는 육안으로 주목할만한 다른 성능 차이를 야기할 수 있고, 인캡슐레이션이나 다른 "거시적" 층에서, 이러한 베리에이션은 층 기능을 위협할 수 있고(가령, 층은 원치않은 입자, 산소 또는 습기에 대해 민감한 전자 구성요소를 신뢰성있게 밀봉하지 않을 수 있음), 아니면, 관측가능한 차이를 야기할 수 있다. 디바이스가 점점 더 작아지므로, 영구적인 층은 더욱 더 얇아지고, 이들 문제는 점점 더 커진다. 전형적은 응용예가 1-30 피코리터("pL")의 부피를 각각 가진 분리된 액적을 증착하는 수많은 노즐을 가진 인쇄기를 특징으로 할 수 있고, 인쇄헤드를 위한 제조 프로세스 코너(process corner)는 작동하지 않은 노즐 및 액적 사이즈, 노즐 위치, 액적 속도나 액적 착지 위치 중 임의의 것에서의 개개의 오차를 야기할 수 있어서, 국부적인 잉크 부피 전달 베리에이션을 야기할 수 있고, 원하는 제조 스펙에 근접하게 추적하는 얇고, 균질한 층을 생산하는데 매우 큰 변화가 있다는 것을 인식해야 한다.
미세한 정확도를 달성하는데 있어서 하나의 오차의 소스는 제조되는 제품의 스케일에 대해 제작 프로세스에 있어서의 기계적 구성요소의 사용에 관한 것이다. 비제한적인 예시로서, 대부분의 인쇄기는 인쇄를 수행하기 위해, 하나 이상의 인쇄헤드, 기판 또는 둘 다를 이동시키는 기계적인 이송 시스템을 가진다. 또한, 일부 인쇄기는 회전 또는 오프셋 구성요소를 위한 이송 시스템을 특징으로 하는데(가령, 노즐들 간에 실질적인 피치를 변경하기 위해, 인쇄헤드를 이동시키거나 회전함), 이들 이송 시스템의 각각은 미세한 기계적 또는 위치적 오차를 전달할 수 있고, 이는 결국 불균일성을 야기할 수 있다. 예를 들어, 이들 이송 시스템이 전형적으로 높은-정확도 부분(가령, 정확도 추적이나 에지 가이드)에 의존하더라도, 이들은, 제조에 사용되는 이송 경로 길이 전반의 균일성과 요구되는 정확도를 달성하기 어렵게 하는, 지터나 병진 또는 회전 부정확(가령, 이송 경로에 있어서, 밀리미터, 마이크론 또는 더 작은 스케일의 이탈)을 여전히 전달할 수 있다. 맥락을 제공하기 위해, 큰 사이즈의 HDTV 스크린을 제작하는데 사용되는 장치는, 나노미터-스케일 조절하기 위해 계획되는 개개의 액적 전달을 사용하여, 미터 너비와 미터 길이의 기판상에 울트라-얇은 물질 층을 증착하기 위해 제어되는 "룸 사이즈(room sized)" 인쇄기를 특징으로 할 수 있고, 이러한 장치에서 이송 경로는 미터 길이 일 수 있다. 가령, 인쇄헤드를 교환하는데 사용되는 이송 경로 시스템, 기판을 정렬하거나 검사하기 위한 카메라 어셈블리 및 다른 타입의 이동 부분과 같은 이러한 시스템에서 어떤 형태의 오차를 야기할 수 있는 다른 많은 기계적 구성요소가 있다는 점을 주목한다. 이러한 시스템에서, 심지어 매우 미세한 정확한 기계적 부분이 방금 언급된 나노미터-스케일 조정에 영향을 주는 이탈을 생성할 수 있다. 그러므로, 요구되는 층은 더욱 더 얇아지고, 요구되는 정확도는 제작되는 제품에 대해 점점 더 작아져서, 잠재적인 위치 오차의 소스를 조심스럽게 제어 및/또는 완화하는 것이 더욱 더 필수적이다.
이러한 타입의 제작 시스템에서 일반적으로 위치 및 병진 오차를 줄이기 위한 어떤 종래의 테크닉이 존재한다. 첫 째, 기판은 인쇄기 이송과 조악하게-정렬될 수 있어서, 수동으로 미세-정렬되고(잠재적으로, 제작 프로세스 동안에 반복적으로), 이러한 프로세스는 시간 소모적인데, 즉, 고객 제품을 생산하는데 자동화되고, 빠르며, 어셈블리-라인 스타일의 프로세스를 가지는 목적을 일반적으로 방해한다. 이러한 수동 프로세스를 가지고, 요구되는 마이크론-정확도나 나노미터-정확도를 획득하기에는 일반적으로 매우 어렵다. 또한, 이러한 테크닉으로 적절하게 해결될 수 없는 일부 오차도 있는데, 가령, 방금 상기에서 도입된 이송 경로 불일치에 의해 야기되는 오차이다(가령, 기판이 정렬된 이후에 자체적으로 나타내는 오차). 두 번째 예시로서, 미국 공개 특허 번호 20150298153는, 기판 위치의 미세한 위치 및/또는 회전 오차를 측정하고, 이들 오차를 가령, 인쇄하는데 사용되는 노즐을 재할당함에 의해, 아니면, 노즐을 발사하는데 사용되는 노즐 구동 파형을 변경함에 의해, 소프트웨어에서의 이들 오차에 대해 교정하는 프로세스에 관한 것인데, 다시 말해, 일반적으로, 이들 테크닉은 미세한 위치 및 회전 오차를 "감수"하려고 하며(그래서, 인쇄 속도를 보존함), 그리고 나서, 이들 테크닉은 어느 노즐이 사용되는지, 언제 그리고 어떻게 이들 노즐이 오차를 치유하기 위해(가령, 오차에 의존하여 스캔 경로를 재조정하지 않으면서 사전계획된 래스터를 사용하여) 전자적으로 제어되는지 조절하려고 한다. 그러나, 소프트웨어의 정렬 오차에 대해 보상하는 유틸리티에도 불구하고, 이러한 오차를 측정하고 설명하며, 소프트웨어에서 수천개의 노즐에 대한 발사 할당을 재-연산하는 것은 실질적으로 연산 자원과 시간이 들 수 있다.
제조 장치에 있어서, 기계적 시스템의 모션 오차, 회전 오차 및 위치 오차에 대해 교정하기 위한 추가적인 테크닉이 필요하다. 또한, "이상적인" 에지 또는 이송 경로를 시뮬레이트하기 위해, 제조 시스템의 이동 구성요소의 오차를 교정하기 위한 테크닉도 필요하다. 정확한 제조 프로세스에 적용된다면, 특히 기술된 타입의 인쇄 시스템과 같은 이러한 테크닉은, 래스터 제어 데이터을 다시 렌더링하기 위한 실질적인 연산 자원과 시간에 대한 필요성을 줄여서, 더 간단하고, 및/또는 더 빠르며, 및/또는 더 정확한 인쇄 프로세스를 야기한다. 본 발명은 이들 필요성을 해결하고, 더 나아가 관련된 이점을 제공한다.
도 1은, 이송 경로(107)를 따라 산업용 인쇄 시스템을 통해 기판이 이송되는 기판(103)을 나타내고, 그 오른편에, 도 1은, 회전 오차와 병진 오차(Δx, Δy, 및 Δθ)에 대한 두 개의 가상 위치(103', 103")에서의 기판을 나타낸다. 이송 경로 오차 및 그와 관련된 기판 회전 오차 및 병진 오차는 설명하는 것을 돕기 위해, 도면 스케일에 비해 과장되게 보인다.
도 2a는 도 1와 관련하여 (즉, 이러한 예시에서, 기판을 전진시키는 "그리퍼"의 일부로서) 언급된 오차에 대해 교정하기 위해 미세한 기계적 조정을 수행하는 하나 이상의 트랜스듀서를 나타내는 개략도이고, 일 실시예에서, 반복가능한 기계적 오차는 미리 측정되고, 하나 이상의 트랜스듀서("T")는 이송 경로 위치의 함수로서 구동되어서, 이상적인(가령, "완전하게 직선" 또는 "지터 없는") 이송 경로에 대한 반복가능한 기판 회전 및 병진 오차에 대해 보정한다.
도 2b는 도 1과 같은 기계적 결점을 가진 이송 경로(107)를 나타내는데, 그러나, 이러한 경우, 도 2a에 관하여 도입된 바와 같이, 트랜스듀서("T")가 사용되어서, 그리퍼가 경로(107) 상에서 전진함에 따라, 기판 위치 및/또는 배향에 대한 미세한 튜닝 조정을 수행한다. 결과는, 가상 직선 에지(223)에 의해 표현된 바와 같이, 이제 기판이 "이상적인" 모션을 따라 (가령, 완전하게 직선이고 "이상적인" 에지 및/또는 지터 없는 경로) 이동한다는 것이다.
도 2c는 이송 경로 오차에 대해 교정을 위해, 트랜스듀서("T")의 사용을 나타낸다는 점에서, 도 2b와 유사하다. 그러나, 이러한 경우, 오차는 제2 이송 경로(256)에서도 잠재적으로 발생하는데, 이러한 경우, 인쇄헤드(또는 카메라 또는 다른 어셈블리)가 화살표(254)의 일반적인 방향을 따라 이동하면서, 비이상적인 모션으로서 나타난다.
도 2d는, 에지 또는 트랙(256)을 따라 인쇄헤드의 모션을 나타낸다는 점에서 도 2c와 유사하지만, 도시된 바와 같이, 인쇄헤드 어셈블리는 이제 그 자체 트랜스듀서 어셈블리(들)를 가져서, 에지 또는 트랙(256)의 오차를 완화시키는 미세한 튜닝 위치 및 회전 교정을 제공하고, 그 결과는, 인쇄헤드가 이제 가상적이고 "이상적인" 경로(225)(또는 이하에서 논의될 바와 같인 269)를 효과적으로 이동한다는 것이다.
도 2e는, 하나의 이송 경로(가령, 인쇄헤드 이송 경로)에서의 오차가 다양한 이송 경로에서 오차 교정 수단에 의해 완화될 수 있는 대안적인 실시예를 나타내는데, 가령, 그리퍼(203)와 관련된 트랜스듀서("T")와 같은 오차 교정 수단은, 다양한 이송 경로(가령, 인쇄헤드 이송 경로와 같은)에서의 오차에 대해 보상하는, 기판 위치나 배향에 대해 미세한 조정을 수행할 수 있다. 교정은 복수의 변수에 의존할 수 있다는 점에 주목하는데, 가령, 교정은 다른 이송 경로를 따라 시변 모션이나 위치 에 의존하도록 만들어질 수 있고, 가령, 그리퍼(203)가 "y" 차원으로 이동됨에 따라, 트랙(256)을 따라 인쇄헤드 어셈블리 위치에 종속적인 방식으로 트랜스듀서("T")는 제어될 수 있어서, 기판은 가상 경로(107"') 또는 가상 경로(107"")(즉, 그리퍼 위치 및 인쇄헤드 어셈블리 위치 모두에 의존함)를 따른다.
도 3a는, 이송된 것이 이송 경로를 따라 전진하면서, 위치 오차 및/또는 회전 오차를 교정하는 것과 관련된 순서도이다.
도 3b는 가령, 최대 6개까지의 다양한 차원(가령, 3개의 병진 차원은 물론, 요, 피치 및/또는 롤을 잠재적으로 포함함)에 있어서, 대응모션(또는 다른 오차 완화)을 보상하는 것을 수행함에 의해, 이송 경로 오차에 대한 교정을 위한 수단을 나타내는 설명적인 다이어그램이다.
도 4a는 기판의 평면도를 제공하고, 래스터 또는 스캐닝 프로세스를 나타내며, 그림자 영역(407)은 하나의 스캔 경로를 나타내는 반면, 깨끗한 영역(408)은 다른 것을 나타낸다. 도면에서 차원적 범례에 의해 표시된 바와 같이, 본 예시에서, "x" 축은 크로스-스캔(cross-scan) 차원에 해당하는 반면, "y" 축은 인-스캔(in-scan) 차원에 해당한다.
도 4b는 복수의 모듈을 포함하는 제작 기계의 개략적인 평면도를 제공하는데, 이들 중 하나(415)는 제어된 분위기에서 인쇄기를 특징으로 한다.
도 4c는 산업용 인쇄 시스템에서 반복가능한 이송 경로 오차를 측정, 기록 및 그리고 나서 교정하는 하나의 방법(431)을 나타내는 블록도이다.
도 4d는, 하나 이상의 인쇄헤드가 개시 프로세스 동안에 그리퍼와 정렬되어서, 인쇄기에 의해 사용되는 기준 좌표계(가령, 인쇄기 지지 테이블에 사용되는 좌표계)를 구축하는 방법을 나타내고, 생산 동안에, 연속하여 새로운 각각의 기판이 인쇄기 내로 도입됨에 따라, 그 기판도 인쇄의 일부로서 이러한 동일한 기준계에 정렬된다. 각각의 인쇄헤드(들)와 각각의 기판을 공통 기준계에 정렬하는 것은, 인쇄헤드(들)와 기판이 인쇄 동안에 항상 서로 적절하게 정렬되도록 허여한다.
도 5는, 본원에 도입된 테크닉을 각각 독립적으로 구현할 수 있는 일련의 선택적인 단계, 제품 또는 서비스를 나타내는 설명적인 뷰인데, 가령, 이들 테크닉은 소프트웨어(번호 503)의 형태로, 또는 기판 상에 인쇄하거나 아니면 반복가능한 오차를 교정하기 위해 인쇄기를 제어하는데 사용될 인쇄기 제어 데이터(번호 507)로, 또는 이들 테크닉에 의지하여 이루어진 제품(가령, 번호 511, 513, 515 또는 517에 의해 예시화됨)으로서 구현될 수 있다.
도 6a는 도 4b의 인쇄 모듈 내부의 인쇄기와 같은 산업용 인쇄기의 일 실시예의 자세한 사시도이다.
도 6b는 그리퍼의 실시예의 자세한 사시도이다.
도 6c는 도 6b의 그리퍼로부터 트랜스듀서 어셈블리의 확대 사시도이다.
도 6d는 도 6b의 그리퍼로부터 플로팅, 기계적 피봇 어셈블리의 확대 사시도이다.
도 6e는 플로팅, 기계적 피봇 어셈블리의 설계를 강조하면서, 도 6b-6d에 의해 표현된 오차 교정 시스템의 개략적인 측면도이다.
도 7a는 기판 및 오차를 측정하는데 사용되는 이송 시스템(가령, 그리퍼)의 사시도이다. 레이져 간섭계 시스템은 대체가능한 그리퍼 또는 "제2 구성요소(705)" 또는 이송되는 것(가령, 기판(705))에 장착된 광학계(707)를 통해 광을 지향하는데, 간섭 테크닉은 매우 약간의(가령, 마이크론/밀리라디안 스케일 또는 그 보다 작은) 위치 편차 또는 각 편차(진동을 포함)를 측정하는데 사용된다.
도 7b는 인쇄헤드(또는 카메라) 트래블러 어셈블리, 즉, 카메라나 인쇄헤드 어셈블리(745)가 카메라나 인쇄헤드 어셈블리에 장착된 광학계(743)를 가진 트래블러(747)를 따라 앞뒤로 이동하여, 어셈블리(745)의 이동 및 배향에 영향을 주는 매우 약간의 위치 편차 또는 각 편차를 측정한다.
특허청구범위에 의해 정의되는 본 발명은 첨부된 도면과 관련하여 판독되어야 할 다음의 상세한 설명을 참조함으로써 더 잘 이해될 수 있다. 특허청구범위에 의해 제공되는 기술의 다양한 구현예를 구축하고 사용하기 위해 이하에서 제공되는 하나 이상의 구체적 실시예에 대한 이러한 기재는 특허청구범위를 제한하려는 것이 아니라 응용예를 예시로 들기 위한 것이다. 비제한적으로, 본 개시물은 장치 또는 인쇄기를 제조하는데 이송 경로 오차를 완화하고, 및/또는 반복가능한 인쇄 프로세스의 일부로서 기판의 하나 이상의 제품에 대해 박막을 제작하기 위한 테크닉의 여러 다양한 예시를 제공한다. 다양한 테크닉은, 가령, 인쇄기의 형태 또는 제조 장치 또는 제조 장치의 구성요소와 같은 다양한 형태, 제어 데이터의 형태(가령, 미리 연산된 교정 데이터나 트랜스듀서 제어 데이터) 또는 이들 테크닉의 결과로 제작된 전자 또는 다른 디바이스(가령, 기술된 테크닉에 따라 생산된 하나 이상의 층을 가진)의 형태로 구현될 수 있다. 구체적인 예시가 제시되지만, 본원에서 기술된 원리는 다른 방법, 디바이스 및 시스템에도 적용될 수 있다.
본 개시물은 높은 정도의 위치적 정확도로, 이송 경로 오차를 교정하고, 및/또는 기판상의 층을 제작하기 위한 개선된 테크닉을 제공한다. 일실시예에서, 이들 테크닉은 전자 디스플레이의 층, 태양 패널 또는 다른 전자 디바이스나 제품을 생산하는 제조 장치 또는 시스템에 적용된다.
좀 더 구체적으로, 본원에서 논의되는 구체적인 실시예에서, 인쇄기는 액체의 액적을 기판 상으로 증착하고, 액적은 녹아서 액체의 연속적인 코팅을 형성할 것이고, 물질의 소스가 원하는 층을 형성하는데 사용될 것이므로 액체가 제공되며, 가령, 액체는 모노머일 수 있고, 그리고 나서, 원 위치에서 폴리머를 형성하기 위해 경화되거나, 액체가 건조되거나 베이크됨에 따라, 액체는 원하는 층을 형성할 물질을 포함할 수 있다. 액적의 증착 동안에, 기판 - 또는 카메라나 인쇄헤드와 같은 인쇄기의 다른 구성요소 - 은 이송 경로를 따라 전진된다. 이송 경로 시스템이나 운송 시스템은, 물질 및/또는 기판상의 개개의 액적의 증착에 영향을 주는 병진 오차나 회전 오차 중 적어도 하나의 오차를 생성하는 매우 약간의 결점을 특징으로 한다. 이들 오차는, 가령 어셈블리-라인 스타일 프로세스에서 반복될 수 있는데, 이송 경로 내의 결점은 예측가능한 방법으로 매 새로운 기판에 영향을 줄 수 있다.
오차를 교정하고 및/또는 완화하기 위해, 일 실시예에서, 미세-위치선정 트랜스듀서는 기계적 결점에 대응하기 위한 고정된 피봇점 없이 구동된다. 이들 트랜스듀서는 기판 위치 및/또는 배향의 미세 튜닝을 수행하여서, 적어도 하나의 차원에서 기계적 결점의 영향에 대응한다. 이러한 방식으로, 운송 시스템(가령, 그리퍼, 기판, 인쇄헤드, 카메라 또는 다른 이송 경로)이 지속적으로 기계적 결점을 특징으로 하더라도, 기판 및/또는 인쇄헤드의 모션은 거의 이상적인 트래블로 이루어진다. 일 실시예에서, 이송 경로는 선형이고, 이송은 제1 차원(가령, "y" 차원)을 따라 발생하지만, 둘 이상의 트랜스듀서는 선형 오프셋을 독립적인 차원(가령, "x" 차원)에 독립적으로 각각 적용한다. 공통 모드에서 구동되면, 이들 트랜스듀서는, 기판의 "x" 차원 위치에 영향을 주는 운송 시스템과 관련된 결정의 오프셋을 허용한다. 예를 들어, 이송된 것은 "y" 차원으로 가상의 직선 에지를 트래블하도록 될 수 있다. 차동 모드에서 구동되면, 이송된 것은 "xy" 평면에서 회전될 수 있어서, 이송 경로의 기계적 결점에 의해 야기된 배향 오차에 대해 교정할 수 있다.
예를 들어, 기판상에서 전자 디바이스를 제작하기 위해 사용되는 스플릿-축 시스템에서, "그리퍼"는 제1 차원(가령, "y" 차원)을 따라 기판을 이동시키는데 사용될 수 있다. 그리퍼는 에지나 트랙을 따라 타는(ride) 제1 구성요소 및 기판에 연결되고 잠그는 제2 구성요소(전형적으로 진공 디바이스)를 가지는데, 트랜스듀서는 이들 구성요소들 간에 작동적으로 위치될 수 있어서, 둘 이상의 각각의 상호작용 점에서 제1 구성요소와 제2 구성요소 간에 선택적인 오프셋을 제공할 수 있어서, 상기에서 언급된 바와 같은 공통 모드 변위 및 차동 모드 변위 모두를 제공한다. 제1 구성요소가 운송 시스템에서 기계적 결점에 의해 야기되는 병진 이탈과 회전 이탈을 경험하므로(가령, 제2 차원에서), 트랜스듀서가 구동되어서, 그 차원에서의 이러한 이탈들을 정확하게 같게하고, 본질적으로 기계적 오차에 의해 특징이 되지 않는 "가상 에지" 또는 "가상 이송 경로"를 제2 구성요소에 제공한다. 오차는 선형 또는 비선형일 수 있고, 이에 따라 교정은 선형 또는 비선형일 수 있다는 점을 주목한다. 선택적인 실시예에서, 이러한 타입의 시스템은 인쇄기 또는 인쇄 시스템에서 구현될 수 있는데, 가령, y 차원은 기판 이송 차원, 및/또는 "인-스캔" 또는 "크로스-스캔" 차원 중 하나이며, x 차원은 인쇄헤드 이송 차원 및/또는 "인-스캔" 또는 "크로스-스캔" 차원 중 다른 것이다. 이러한 시스템에서 기술된 테크닉 조차도 인쇄헤드/기판 이송에 제한되지 않고, 가령, 제한 없이, 카메라, 측정 디바이스 또는 다른 구성요소의 모션에 대한 교정에 적용될 수 있다는 점을 주목하고, 다양하게 언급된 차원, 축 및 관련 기준 프레임은 임의적이고, 다른 기준 프레임이나 다른 자유도를 위해 반전되거나 바뀔수 있다는 점을 주목한다.
일 실시예에서, 기계적 결점은 미리 측정될 수 있고, 교정하고 저장되고, 연산되며, 각각의 새로운 증착 동안에(가령, 연속을 잇따른 기판 각각에 대해) "플레이 백(played back)" 및/또는 "리드 아웃"하여서, 적어도 하나의 차원에서 반복가능한 기계적 오차에 대응할 수 있다. 이들 교정은 임의의 원하는 변수, 가령, 이송 경로 위치, 온도, 구체적인 인쇄 방안(print recipe) 및/또는 다른 변수에 따라 인덱스될 수 있다. 이러한 실시예에서, 선택적으로, 기계적 결점은 변경 조건(가령, 기계적 부분의 퇴화)을 해결하기 위해 때때로 또는 주기적으로 재측정될 수 있다. 가령, 어셈블리-라인 스타일 제작 프로세스에서, 이러한 테크닉은 저장된 오차 교정을 운송 시스템(가령, 제1 구성요소)의 위치의 함수로서 "플레이"하기 위해 적용될 수 있어서, 반복가능하거나 예측가능한 모션 오차나 위치 오차를 상쇄시킬 수 있다.
제조 시스템에서 복수의 이송 경로가 있을 수 있고, 이들 테크닉은 이들 이송 경로 중 임의의 것 또는 이들의 조합 중 임의의 것에 적용될 수 있으며, 일 차원의 위치 오차(또는 회전 오차) 또는 복수 차원의 오차를 교정하기 위해 적용될 수 있다. 여러 예시가 이 점을 강조하는데 도움을 줄 것이다.
첫 째, 하나의 고려된 실시예에서, 이들 테크닉은, 이송 경로를 따라 그리퍼 위치의 함수로서, 기판 위치의 크로스-스캔 차원 오차에 대해 교정하는데 사용된다. 그리퍼는 상기 언급된 바와 같이, 제1 및 제2 구성요소 및 적어도 두 개의 상호작용 점에서 이들 구성을 작동적으로 연결하는 선형 트랜스듀서를 가지고, 상기 트랜스듀서는 "플로팅(floating)" 피봇 점을 제공하도록 구성된다. 제1 구성요소가 운송 경로 아래로 트래블되면서, 트랜스듀서는. 크로스-스캔 차원의 병진 오프셋과 기판의 회전 조정을 반복적으로 제공하는 "공통-모드" 오프셋 및 "차동-모드" 오프셋을 제공하기 위해 제어된다. 그러므로, 기판은 이송 시스템의 기계적 결점에도 불구하고, 직선 경로로 전진된다. 언급된 트랜스듀서의 다양한 실시예는 이하에, 그러나 간단하게 제공될 것이고, 일 실시예에서, "보이스 코일"은 매우 작은 미세한 쓰로우(microscopic throw)을 제공하기 위해, 이들 트랜스듀서에 사용될 수 있다. 제1 구성요소와 제2 구성요소 간에 구조적 지지부와 상호연결을 제공하는데 도움을 주기 위해, 공통 및 차동 구동 모드와 호환가능한 플로팅, 기계적 피봇 어셈블리가 선택적으로 사용될 수 있다.
둘 째, 이러한 제1 예시에 대한 선택적인 연장선에서, 그리퍼 위치(및/또는 그리퍼의 제2 구성요소의 위치)는 인-스캔 차원에서 교정될 수도 있다. 예를 들어, 일 실시예에서, (그리퍼을 전진하는데 사용되거나 인쇄기 노즐 발사를 트리거하는데 사용되는) 전자 구동 신호는, 인-스캔 차원에서 기판의 위치 오차에 대해 교정하기 위해, 조절된다. 인-스캔 차원에서 제2 구성요소에 대해 제1 구성요소를 오프셋하기 위해, 또 다른 트랜스듀서(가령, 또 다른 보이스 코일이나 다른 트랜스듀서)를 사용할 수도 있다. 제1 테크닉에서, 인-스캔 위치 오차는 측정될 수 있고, 개개의 노즐 발사(즉, 정확하게 교정되고 의도된 인-스캔 위치에서 노즐 발사를 실히하기 위해, 인쇄헤드(들)와 기판이 서로에 대해 움직이면서)를 오프셋하는데 사용될 수 있고, 가령, 노즐 발사의 지연은 계산되고, 각각의 노즐에 대한 인쇄헤드 내로 프로그램될 수 있고, 그리고 나서 발사는 공통 트리거 신호를 떠난다. 제2 테크닉에서, 공통 또는 공유 노즐 트리거 신호는 그리퍼 위치(및/또는 그리퍼의 제1 구성요소의 위치)의 함수로서 생성될 수 있고, 오차에 대해 교정될 수 있어서, 트리거 신호는 그리퍼의 오차 없는 이동을 시뮬레이트하기 위해 생성된다.
또 다른 고려되는 실시예에서, 기본적인 테크닉은 여전히 다른 방법으로 오차에 대해 교정하기 위해 적용될 수 있다. 예를 들어, 크로스-스캔 차원에서 트래블하는 인쇄헤드 어셈블리는 경로나 에지를 따르는 제1 구성요소 및 하나 이상의 인쇄헤드에 장착하는 제2 구성요소를 가지며, 트랜스듀서는, 그리퍼에 대해 상기에서 방금 언급한 바와 같이, "플로팅" 피봇 점을 제공하기 위해 유사하게 구성된 트랜스듀서와 함께, 적어도 두 개의 상호작용 점에서, 제1 구성요소를 제2 구성요소에 연결하는데 사용된다. 제1 구성요소가 운송 경로 아래로 트래블함에 따라, 트랜스듀서는, 인-스캔 차원에 대해 병진 조절과 회전 조절을 반복적으로 제공하는, "공통-모드" 오프셋 및 "차동-모드" 오프셋을 제공하기 위해, 제어된다. 그러므로, 인쇄헤드 위치에서의 오차는 완화되고, 이러한 액적은 인쇄기의 기준 프레임에 대해 교정 위치에서 정확하게 분출된다. 다시 말해, 언급된 트랜스듀서의 다양한 실시예는 일 실시예에서 간단하지만 이하에서 제공될 것이고, 이들 트랜스듀서는 또한, 미세한 쓰로우를 제공하는 보이스 코일일 수 있다.
선택적인 연장선에서, 제1 및 제2 구성요소는와 이러한 제2 예시에서의 트랜스듀서는, 크로스-스캔 차원 교정 또는 인-스캔 및 크로스-스캔 차원 교정 모두를 대신 제공하기 위해 구성될 수 있다. 이전에 암시한 바와 같이, 상기 언급된 제1 예시의 트랜스듀서는, 인-스캔 차원 교정 또는 인-스캔 및 크로스-스캔 차원 교정(즉, 기판 위치의) 모두를 대신 제공하기 위해 구성될 수 있다. 이들 다양한 테크닉은 혼합되고, 임의의 원하는 조합이나 순열로 매칭될 수 있다. 또한, 이전에 암시된 바와 같이, 하나의 가능한 응용예에서, 하나의 운송 시스템(가령, 그리퍼)와 관련된 트랜스듀서는, 또 다른 운송 시스템의 오차에 대해 교정하는데 사용될 수 있고(가령, 독립적인 이송 경로에 따르는 인쇄헤드 위치의 함수로서), 이하에서 더욱 논의될 바와 같이, 이러한 테크닉은 좌표계에서 비직교성 불일치에 대해 교정하기 위해 적용될 수 있다.
이제까지 논의된 원리를 되돌아보면, 적어도 하나의 트랜스듀서는, 공통-모드 및 차동-모드 제어 모두를 사용하여, 이송 방향에 직교인 차원으로 이송되는 것을 이동시킴에 의해, 이송 경로 오차를 교정하는데 사용될 수 있다. 여전히 더욱 자세한 실시예에서, 이러한 타입의 제어는 두 개의 서로 다른 이송 경로의 이송 경로 오차를 교정하는데 적용될 수 있는데, 가령, 각각 트랜스듀서의 세트를 사용하여, 제1 이송 시스템의 "y" 축 모션과 제2 이송 시스템의 "x" 축 모션에 적용될 수 있다. 각각의 이송된 물체로 하여금, 가상 직선 에지를 따르도록 야기하는 이러한 방식으로, 두 개의 서로 다른 이송 경로를 교정하는 것은, 일 실시예에서, 증착 및/또는 제작 파라미터에 걸쳐 정확한 교정을 가능하게 한다. 예를 들어, 상기에서 도입된 스플릿-축 인쇄 시스템의 맥락에서, 그리퍼/기판 경로 및 인쇄 헤드 경로의 교정은 인쇄 격자를 효과적으로 정규화하고, 인쇄 격자 좌표의 시스템의 이해도가 정확하게 교정되고, 이송과 관련된 기계적 시스템에서 오차에 의해 약화되지 않는 시스템을 제공한다. 이들 테크닉 및 이들의 다양한 조합과 순열은, 본원 및/또는 참조로서 포함되는 다양한 문헌에 기술된 테크닉의 다른 것과 함께 선택적으로, 증착된 액적에 걸쳐 정확한 위치 제어를 제공하는데 도움을 준다. 예를 들어, 이들 테크닉은 "z-축"(가령, 높이) 또는 다른 차원적 모션 제어에 적용될 수 있고, 대안적으로, 본원에 기술된 테크닉은, 미국 특허 9352561 및 미국 특허 공개 번호 20150298153에서 기술된 바와 같이, 노즐당 액적 파라미터 및/또는 노즐 파라미터와 결합될 수 있다.
본 개시물은 다음과 같이 대략적으로 조직화될 것이다. (1) 도 1-2f는, 미세한 정렬 오차와 관련 치유책의 원인인, 기판상에 물질을 증착하는 것과 관련된 도입부를 제공하는데 사용될 것이다. (2) 도 3a-4d는 고려된 인쇄 환경에서 오차를 측정/검출 및 대응하는 것과 관련된 온-라인 및 오프-라인 프로세스와 관련된 더 많은 구체적인 테크닉을 도입하는데 사용될 것이다. (3) 도 5-6e는 하나 이상의 상세한 실시예에서 구체적인 기계적 구조를 기술하는데 사용될 것이다. (4) 도 7a-b는 이송 경로에 대한 측정 오차를 측정 및/또는 사전기록하는데 사용되는 시스템을 논의하는데 사용될 것이다.
도입을 진행하기 앞서, 본원에서 사용되는 특정 용어를 우선 소개하는 것이 도움이 될 것이다.
구체적으로 고려된 실시예는 비일시적 기계-판독가능한 매체 상에 저장된 명령어를 포함하는 장치를 포함할 수 있다. 이러한 명령 로직은 특정 구조(아키텍쳐 특징)를 가지는 방식으로 기입 또는 설계될 수 있어서, 명령어가 궁극적으로 실행될 때, 이들이 하나 이상의 범용 기계(가령, 프로세서, 컴퓨터나 다른 기계)가 각각 특수 목적의 기계로서 행동하도록 하고, 구체적인 액션을 취하거나 아니면 구체적인 출력을 생성하기 위한 명령어와 독립적으로, 입력 피연산자에 대한 기술된 임무를 반드시 수행하도록 하는 구조를 가진다. 본원에서 사용된, "비-일시적" 기계-판독가능한 또는 프로세서-액세스가능한 "매체" 또는 "저장소"는, 임의의 유형의(즉, 물리적) 저장 매체를 의미하는데, 이는 그 매체상에 데이터를 저장하는데 사용되는 기술과 무관한데, 가령, 랜덤 액세스 메모리, 하드 디스크 메모리, 광학 메모리, 플로피 디스크, CD, 고체 상태 드라이브(SSD), 서버 저장소, 휘발성 메모리, 비휘발성 메모리 및 명령어가 이후에 기계에 의해 불러올 수 있는 그 밖의 다른 유형의 수단을 제한없이 포함한다. 매체나 저장소는 스탠드어론 형태(가령, 프로그램 디스크나 고체 상태 디바이스) 일 수 있고, 또는 가령 랩톱 컴퓨터, 휴대용 디바이스, 서버, 네트워크, 인쇄기 또는 하나 이상의 디바이스의 다른 형태와 같은 더 큰 수단의 일부로서 구형될 수 있다. 명령어는, 어떤 액션을 작동시키기에 효율적으로 불리는 메타데이터, 자바 코드나 스크립팅, 특수 프로그래밍 언어(가령, C++ 코드)로 기입된 코드, 프로세서-특수 명령어 세트 나 일부 다른 형태와 같은 서로 다른 포맷으로 실행될 수 있고, 명령어는 실시예에 의존하여, 동일한 프로세서나 서로 다른 프로세서 또는 프로세서 코어에 의해 실행될 수 있다. 본 개시물 전반에 걸쳐, 다양한 프로세스가 기술될 것이고, 이들 중 임의의 것은 비-일시적 기계-판독가능한 매체상에 저장된 명령어로서 일반적으로 실행될 수 있고, 이들 중 임의의 것은 제품을 제작하는데 사용될 수 있다. 제품 설계에 의존하여, 이러한 제품은 판매적합한 형태로 제작될 수 있고, 또는 다른 인쇄, 경화, 제조 또는 다른 프로세싱 단계를 위한 준비 단계로서 제작될 수 있는데, 이는, 이들 제품이 특수하게-제작된 층을 포함하여, 판매, 분배, 수출 또는 수입을 위해 완성된 제품을 궁극적으로 만들 것이다. 또한, 실시예에 의존하여, 명령어는 하나의 컴퓨터에 의해 실행될 수 있고, 다른 경우에, 가령, 하나 이상의 서버, 웹 클라이언트 또는 애플리케이션-특수 디바이스와 같이, 분산 기반으로 실행될 수 있다. 본원에서 다양한 도면을 참조하여 언급된 각각의 기능은, 조합된 프로그램의 일부 또는 스탠드얼론 모듈로서 실행될 수 있고, 이들은 단일 매체 표현식(가령, 단일 플로피 디스크)에 함께 저장되거나 또는 복수의 분리된 저장 디바이스에 저장될 수 있다. 본원에서 기술된 프로세스에 따라 생성된 오차 교정 정보도 동일하게 맞는데, 즉, 이송 경로 위치의 함수로서 위치 오차를 나타내는 템플릿은 일시적인 사용이나 영구적인 사용을 위해, 동일한 기계 상에, 또는 하나 이상의 다른 기계 상에서 사용을 위해, 비-일시적 기계-판독가능한 매체에 저장될 수 있는데, 예를 들면, 이러한 데이터는 제1 기계를 사용하여 생성될 수 있고, 그리고 나서, 인쇄기 또는 제조 디바이스로 이송을 위해, 가령, 인터넷(또는 다른 네트워크)을 통해 다운로드를 위해, 또는 다른 기계상에서 사용을 위해 수동 이송(가령, DVD 또는 SSD와 같은 이송 매체를 통해)을 위해, 저장된다. 본원에서 사용되는 "래스터" 또는 "스캔 경로"는 기판에 대한 인쇄헤드 또는 카메라의 모션의 진전을 말하는데, 즉, 모든 실시예에서 선형이거나 연속적일 필요는 없다. 층의 "경화", "굳히기", "프로세싱" 및/또는 "렌더링"과 같이 본원에서 사용되는 용어는, 유체 형태로부터의 그 잉크를 만들어질 물건의 영구적인 구조물로 전환하기 위해 증착된 잉크에 가해지는 프로세스를 말하고, 이들 용어는 상대적인 용어인데, 가령, "경화된"이라는 용어는, 완성된 형태가 인쇄기에 의해 증착된 액체 잉크보다 "더 경화"되는 한, 그 완성된 층은 객관적으로 "경화"되는 것을 반드시 요구하지 않는다. "영구적인 층"에서와 같이, "영구적인"이라는 용어는 막연한 사용을 위해 의도된 것을 말한다(가령, 제조 프로세스의 일부로서 전형적으로 제거되는 마스크 층을 제조하는 것과 반대로). 본 개시물 전반에 걸쳐, 다양한 프로세스가 기술될 것인데, 이들 줄 임의의 것은, 실시예나 특정 설계에 의존하여, 명령어 로직(가령, 비일시적 기계-판독가능한 매체 또는 다른 소프트웨어 로직상에 저장된 명령어와 같이), 하드웨어 로직 또는 이러한 것들의 조합으로서 일반적으로 실행될 수 있다. 본원에서 사용되는 "모듈"은 특정 기능에 전용된 구조물을 말하는데, 가령, 명령어(가령, 컴퓨터 코드)의 맥락에서 사용될 때 상호-배타적인 코드 세트를 말하며, "제1 모듈"은 제1 특정 기능을 수행하고, "제2 모듈"은 제2 특정 기능을 수행한다. 기계 또는 전자기계적 구조물의 맥락에서 사용된다(가령, "암호화 모듈, "모듈"이라는 용어는 하드웨어 및/또는 소프트웨어를 포함할 수 있는 구성요소의 전용 세트를 말함). 모든 경우에, "모듈"이라는 용어는, 나열된 기능을 수행하기 위한 일반적인 플레이스홀더나 "임의의 구조 등"(가령, "한 떼의 소") "수단" 이 아닌, 주제가 특정 분야에서 사용되는 전통적인 구조로서 속하는 기술 분야의 당업자에 의해 이해될 기능이나 동작을 수행하기 위한 특정 구조물을 말하는데 사용된다(가령, 소프트웨어 모듈 또는 하드웨어 모듈). 통신 방법을 언급하기 위해 사용될 때, "전자"는 청각, 광학 또는 다른 통신 기능을 포함할 수도 있는데, 가령, 일 실시예에서, 전자 전송은 정보의 광학 전송(가령, 이미지, 2D 바코드를 통해)을 포함할 수 있고, 이는 카메라나 센서 어레이에 의해 디지털화되어서, 전자 디지털 신호로 전환되고, 그리고 나서, 전자적으로 교환된다.
또한, 각각의 기판상에 인식되는 정렬 마크나 기준 및 검출 수단이, 인쇄기 플래튼이나 이송 경로의 일부 또는 인쇄헤드의 일부로서, 언급된다. 많은 실시예에서, 검출 수단은, 기판상의(및/또는 인쇄기 내의 물리적 구조물상의) 인식가능한 형상 또는 패턴을 검출하기 위한 센서 어레이(가령, 카메라)를 사용하는 광학 검출 수단이다. 기판이 인쇄기 내로 로딩되거나 전진되기 때문에, 다른 실시예는 가령, 라인 센서와 같은, 기준을 센싱하는데 사용될 수 있는 센서 어레이를 서술하지 않는다. 일부 실시예는 전용 패턴(가령, 공간 정렬 마크)에 의존하지만, 다른 실시예는 인식가능한 광학 특징부(인쇄기나 인쇄헤드 내의 물리적 특징이나 기판 상의 이전에 증착된 층의 기하형상을 포함함)에 의존한다는 점에 주목해야 하고, 이들 각각은 "기준"이 된다. 가시광을 사용함에 더하여, 다른 실시예는, 자외선이나 다른 비가시적 광, 자기, 라디오 주파수 또는 예상된 인쇄 위치에 대한 기판 세부사항의 검출의 다른 형태에 의존할 수 있다. 또한, 본원에서의 다양한 실시예는 인쇄헤드, 인쇄헤드들 또는 인쇄헤드 어셈블리를 말할 수 있으나, 이는 본원에서 기술된 인쇄 시스템이 하나 이상의 인쇄헤드로 일반적으로 사용될 수 있다는 것으로 이해되어야 하고, 하나의 고려된 응용예에서, 가령, 산업용 인쇄기는 3개의 인쇄헤드 어셈블리를 특징으로 하고, 각각의 어셈블리는, 위치 조절 및/또는 회전 조절을 허용하는 기계적 장착 시스템을 가진 3개의 별도의 인쇄헤드를 가져서, 구성 인쇄헤드(가령, 인쇄헤드 어셈블리) 및/또는 인쇄헤드 어셈블리는 정확도를 가지고 원하는 격자 시스템에 개별적으로 정렬될 수 있다. 다양한 다른 용어는 이하에서 정의되거나, 맥락으로부터 명백한 방식으로 사용될 것이다.
I. 소개
도 1 및 2a-2f는 본 개시물에서 논의된 여러 테크닉 및 일부 문제를 이들 테크닉이 해결하는 것을 도입하는데 사용된다.
좀 더 구체적으로, 도 1은 어떤 타입의 이송 수단과 관련된 종래의 프로세스(101)를 나타낸다. 이러한 구체적인 예시에서, 인쇄 격자(105)의 선택된 노드에서 증착된 액적으로 인쇄될 기판(103)이 있다고 가정하고, 인쇄 격자(105)는 기판 내에서 중심으로 도시되어서, 이러한 위치에서, 인쇄헤드로부터의 잉크의 액적이 층 균일성으로 해석되는 예측성으로 정확한 위치에 착지할 것을 의도하는 것으로 표시한다. 그러나, 이러한 방식으로 도시되는 인쇄 격자는 인쇄기(반드시 기판일 필요는 없음)에 대해 정의되고, 인쇄가 발생할 수 있는 곳이면 어디든지 연장할 수 있다(가령, 인쇄가능한 영역은 기판보다 더 클 수 있음). 또한, 수직 라인과 수평 라인의 간격은 일반적으로 예측가능하게 이격된 것으로 여겨지나, 이는, 전형적으로, x 및 y 이송 경로를 따른 전진이 정확(및/또는 선형)하다는 가정에 근거한다. 마지막으로, 인쇄기, 기판 및 인쇄 격자가 본원에서 예시화되지만, 이들 문제는 인쇄기에 고유한 것이 아니라는 점을 주목하고, 본원에서 기술된 테크닉은, 어떤 것이 기계적으로 이송되거나, 회전되거나 또는 이동되는 많고 다양한 상황에 적용될 수 있다는 점을 주목한다. 인쇄 프로세스의 맥락에서, 기판 및 인쇄 격자는 본 개시물에 기술된 문제와 테크닉을 도입하기 위해, 비제한적이고 설명적인 예시로서 사용된다.
일반적으로 기판이 화살표(104)로 표현된 바와 같이 이송되면서, 인쇄가 발생할 것이고, 또한, 이송 수단은 경로(107)를 따라 기판을 가이드하는 것으로 가정하고, 이러한 경로는, 본 예시에서 이송 수단의 기계적 결점을 나타내며, 약간 구부러지게 도 1에서 나타난다(가령, 일부 타입의 에지 가이드, 트랙 또는 트래블러, 또는 다른 운송시스템은 기판(103)을 조종하는데 사용됨). 이전에 기술된 바와 같이 OLED 디스플레이 패널을 제조하는 것과 같은 전형적인 산업용 인쇄 프로세스에서, 기판은 대략 2미터 바이 3미터의 크기일 수 있는 반면, 경로(107)에서의 비선형성은 대략 마이크론 또는 심지어 더 작을 수 있다는 점을 주목한다. 도 1에 도시된 바와 같은 경로(107)에서의 구부러짐(또는 그 밖의 다른 오차)은 그러므로, 논의와 설명을 위해 과장되었다. 이러한 스케일의 오차가 많은 응용예에서 하찮을 수 있는 반면, 어떤 제조 프로세스(가령, OLED 디스플레이 및/또는 큰 기판 상의 어떤 다른 전자 디바이스의 제조)에서는, 이러한 타입의 오차는 달성 가능한 제품 크기, 수명, 또는 품질을 제한할 수 있다. 다시 말해, 일반적으로 말하면, 액적은 정확한 위치에 증착되어야 해서, 이러한 액적이 함께 녹아서 갭 또는 핀홀을 남기지 않으면서 균질한 층을 생성해야 하고, 액적은 제한된 정도로만 착지 확산되고, 완성된 층에서의 표면 불규칙은 달성가능한 층 두께를 제한할 수 있고, 아니면 품질 문제를 만들 수 있다. 위치에 착지하는 액적의 약간의 위치 실패라도 제품 품질 및/또는 제조 신뢰성에 영향을 줄 수 있다.
도면인 도 1은 개념적으로 왼쪽 절반과 오른쪽 절반을 포함하는 두 개의 절반으로 분할된다. 도면의 왼쪽 절반은 기판(103) 및 약간 구부러진 이송 경로(107)를 나타낸다. 기판(103)은, 화살표(104)에 의해 참조되며, 일반적으로 "y" 차원으로 지정되는 이 경로(107)를 따라 앞 뒤로 전진된다. 번호 103는, 기판이 인쇄 격자(105)와 적절히 정렬된 어떤 점에 있다는 것을 표시하고, 이 도면에서 도시된 바와 같이 인쇄 격자는, 인쇄헤드와 기판이 서로에 대해 움직임에 따라, 수직선이 인쇄헤드의 각각의 노즐의 명백한 경로를 나타내고, 수평선은 디지털 발사 신호 또는 재충전되어야 하는 노즐의 다른 능력 및 잉크의 반복된 액적을 발사하기 위한 능력을 표시하는 - 이들 수평선들 간의 간격은 전형적으로 노즐이 "얼마나 빨리" 발사될 수 있는지를 나타냄 - 추상적인 개념이다. 아마도, 다르게 진술하면, 인쇄 격자(105)는 노드를 가지는데, 상기 노드의 각각은 잉크의 액적을 분사하기 위한 기회를 나타내며, 이전에 표시된 바와 같이, 포지션에 관하여, 정확하게 제어되고, 핀홀을 남기지 않는 방식으로 잉크를 증착하는 것이 바람직하고, 이는 각각의 액적이 기판에 어디에 착지할 것인지에 관한 정확한 지식을 가지는 것에 따라 부분적으로 달성된다. 액적은 별개의 포지션(discrete position)에서 증착되지만, 점성이 있어서, 전형적으로 갭이나 불규칙성을 갖지 않는 연속적인 액체 코팅물을 형성하기 위해 퍼지고, 단위 면적당 부피는 일반적으로 원하는 두께 또는 최종 층의 다른 특성과 미리 상관되어서, 액적 밀도와 상대적 포지션은, 원하는 효과를 생성하기 위해, 가령, 액적의 확산와 혼합 이후에 원하는 두께의 균일한 층을 촉진하기 위해(이는 본원에 참조로서 포함되는 미국 특허 8995022에서 논의됨), (주어진 예상된 액적 크기)이론상 선택될 수 있다는 점에 더욱 주목해야 한다.
인쇄 격자(105)는 기판(103)과 "스퀘어 업(squared up)" 방식으로 도면의 왼쪽-절반에 그래픽적으로 도시되는데, 이는 인쇄가 원하는 액적 착지 위치에서 일반적으로 발생할 것이라는 점을 나타낸다.
불행하게도, 이송 경로(107)의 오차(즉, 구부러짐)는 인쇄 격자(105)를 효과적으로 왜곡할 수 있고, 이는 액적이 기판에 대해 착지되어야 하는 곳에 착지되지 않아도 된다는 것을 의미하는데, 왜냐하면, 기판이 전진되면서 미세한 위치 오차와 회전 오차를 경험하기 때문이다. 도 1의 오른쪽 측은, 기판이 (가상의) 이상적인 "기준 에지" (109)에 대해 103'으로 표시된 기판 위치 및 요를 포함한 이송 경로(107)를 따른 제1 위치(d0)로부터, 기준 에지(109)에 대해 103"으로 표시된 기판 위치 및 요를 포함한 이송 경로를 따른 제2 위치(d1)까지 전진함에 따라, 병진 오차 및/또는 배향 오차를 도시한다. 볼 수 있는 바와 같이, 이송 경로(107)에서의 오차(가령, 구부러짐) 때문에, 기판은 오프셋과 복수의 차원에서의 회전 오차를 경험하고, 이러한 예시에서의 오차는, 기판이 제1 위치(d0)로 이동되었을 때, 수평 오프셋과 수직 오프셋(Δx0 및 Δy0) 및 각 오프셋(Δθ0)으로 볼 수 있고, 기판이 제2 이송 경로 위치(d1)로 전진되었을 때, 상이한 수평 오프셋과 수직 오프셋(Δx1 및 Δy1) 및 각 오프셋(Δθ1)으로 볼 수 있다. 이들 오차의 성질은, 기판이 전진함에 따라 변화하기 때문에, 이들 오차는 인쇄 격자를 왜곡하는데, 이는, 계획된 인쇄 프로세스가 (이론상) 원하는 층 속성을 생성해야 함에도 불구하고, 사실상, 액적 증착은 왜곡될 수 있고, 잠재적인 품질 문제를 만들 수 있다는 것을 의미한다. 교정되지 않은 채로 두면, 이들 다양한 오차는 핀홀, 얇은 영역 및 다른 결점을 생성할 수 있어서, 인쇄 시스템으로 달성가능한 정확성 및/또는 품질을 제한하는데, 다시 말해, 이는 디바이스 크기를 제한할 수 있다(가령, 매우 얇고 큰 면적의 디스플레이 스크린과 같이 더 우수한 품질이나 해상도를 가진 고품질 소형화된 제품 또는 제품을 생성하는 것이 불가능하여 어려울 수 있음). 언급된 타입의 오차의 효과는 인쇄 격자를 왜곡하는 것인데, 가령, 시스템과 인쇄 계획은 효과적으로 직사각형의 인쇄 격자(도 1에서 105)를 가정하고, "y"-오차 및/또는 지터(즉, 이송 경로에 평행함)는 그 인쇄 격자의 수평선들 간의 간격을 효과적으로 왜곡하고, 마찬가지로, "x"-차원 오차 및/또는 지터는 그 인쇄 격자의 수직선들 간의 간격을 효과적으로 왜곡하고, 이들 오차의 효과는 개개의 액적이 증착되어야 하는 곳의 시스템의 이해도에서의 오차이다. 오차의 이들 타입은 다양한 픽셀 우물에서 너무 적거나 너무 많은 유체 증착, 또는 불균일성을 야기할 수 있고, 완성된 디스플레이에서 밝기 및/또는 색채 베리에이션이나 다른 오차를 잠재적으로 야기할 수 있다.
본 예시에서, 일부의 경우에 도시된 오차는 이송 경로(107)의 반복가능한 기능을 간단하게 할 수 있는데, 즉, 본 예시에서 이송 경로가 만곡된 것으로 보이기 때문에, x-차원에서 비-선형 변위, y-차원에서 비-선형 변위 및 비선형 스큐(skew)가 있고, z-차원 오차, 피치 및 롤과 같은 다른 타입의 오차도 반복가능한 기반에서 잠재적으로 발생할 수 있지만 이러한 특정 도면에서 도시되지 않는다는 것도 주목한다. 그러므로, 언급된 타입의 불균일성에 의존하는 미세한(가령, 마이크론 또는 더 작은 스케일) 전자, 광학 또는 다른 구조물을 생성하는데 사용되는 산업용 인쇄기와 같은 응용예에서, 그리고 일련의 기판이 "어셈블리-라인" 스타일 제작 프로세스의 일부로서 인쇄되어야 하는 응용예에서, 동일한 오차는 기판 마다 잠재적으로 발생할 수 있다.
기판 경로에서의 오차가 도시되지만, 디바이스 품질 및/또는 프로세스 신뢰성에 영향을 줄 수 있는 유사한 오차의 다른 소스가 잠재적으로 있다. 예를 들어, 스플릿-축 인쇄기는 전형적으로, 기판뿐만 아니라 인쇄헤드나 카메라 또는 다른 기계적 구성요소를 이동시킨다. 간단히, 하나 이상의 인쇄헤드를 이동시키는 시스템에서(일반적으로 도 1에 대해 "x" 차원으로), 유사한 경로 오차는 "x", "y" 회전 또는 (도 1의 차원에 대해) 인쇄헤드(들)에서의 다른 오차를 야기할 수 있다. 예를 들어, 인쇄헤드가 서로 다른 위치에서 오차를 가진다면, 이는 전형적으로 인쇄 격자(105)의 수직선을 왜곡하는 효과를 가진다(즉, 수직선들을 불균일하게 이격되도록 함). 유사한 유추(analogy)가 언급된 타입의 산업용 인쇄 시스템 내의 다른 이송 경로 유추에도 진술될 수 있다. 층 제작에서 예측가능성 및 신뢰성을 개선하기 위해, 일반적으로, 더 얇고, 균질한 층을 제작하기 위한 능력을 갖기 위해, 이들 층의 효과를 감소시키는 것이 일반적으로 바람직하다.
도 2a는 이들 문제의 일부를 감소시키거나 제거하기 위한 하나의 실시예(201)를 나타낸다. 좀 더 구체적으로, 도 2a는 도 1로부터의 기판(103)을 도시하는데, 그 기판이 화살표(104)에 의해 표현된 경로를 따라 앞뒤로 전진된다고 다시 한 번 가정한다. 이러한 예시에서, 기판은, 기판(103)의 구석이나 에지를 잡는 그리퍼(203)를 사용하여 전진될 것이고, 그리퍼의 제1 구성요소(204)는 (도 1 로부터의) 경로(107)를 따라, 일반적으로 "y"-차원으로 트래블될 것이다. 또한, 그리퍼는 두 개의 트랜스듀서(T)(205 및 206)를 가지는데, 이들은 제1 구성요소(204)를 기판의 에지에 연결된 제2 구성요소(207)와 작동적으로 연결한다. 하나의 예시적인 경우에서, 기판은 플로테이션 테이블 위의 에어 베어링 상에서 지지되고, 기판의 코너는 거의 마찰없는 지지를 제공하기 위해, 진공 수단을 사용하여 잡히는데, 다른 예시에서, 다른 수단이 지지와 이송을 위해 사용될 수 있다. 두 개의 트랜스듀서 각각이 제어되어서, 화살표(210)에 의해 표현된 바와 같이, 공통 방향에 따라(가령, 도면에서 도시된 바와 같인 "x" 차원으로) 제1 구성 요소에 대해 제2 구성요소를 변위시킨다. 각각의 트랜스듀서는 독립적으로 제어될 수 있어서, "공통-모드" 제어가 각각의 연결점에서 x-차원으로 제1 구성요소(204)로부터 먼 쪽으로 제2 구성요소를 선형적으로 오프셋하는 상황을 야기하는 반면, "차동-모드"제어는 피봇점 "Xpvt"에 대해 제1 구성요소에 대해 제2 구성요소를 피봇한다. 트랜스듀서가 공통 및 차동 구동 구성요소 모두를 가진 방식으로 전자적으로 구동될 수 있기 때문에, 피봇점 "Xpvt"은 플로팅 피봇점으로 보이고, 일부 실시예에서, 플로팅 피봇점은 추상적인 개념일 수 있는 반면, 다른 실시예에서, 기계적 구조물은 이 피봇점을 제공하고, 또한 그리퍼의 두 구성요소 사이에 구조적 연결부를 제공한다. 제1 구성요소(204)는 (도 1의 107)의 오차-지장있는(error-encumbered) 경로를 따르는 반면, 제2 구성요소는 이송되는 것(가령, 이 경우, 진공 락(lock)을 사용하여, 기판(103))에 락킹된다. 트랜스듀서(205 및 206)는 독립적으로 제어가능하여, 화살표(208 및 209)에 의해 표시된 바와 같이, 기판을 이동시키는 것으로 보이고, 경로(107)에서, x-차원-유도된 오차 및 θ-회전-유도된 오차를 정확히 무효로 만들기 위한 방식으로 제어되고, 그 결과, 기판은 이상적인 "기준 에지"(도 1로부터의 선(109) 참조)에 해당하는 방식으로 이동된다. 대안적인 설계에서, 서로 평행한 선형 쓰로우를 가지는 것 대신에, 트랜스듀서(206)가 선형 쓰로우를 실시하거나 트랜스듀서가 기판 위치 오차난 회전 오차를 완화시키는 대응 효과를 가지고, "y" 차원이나 임의의 다른 원하는 차원으로 오프셋을 생성하도록 만들어지는 동안, 트랜스듀서(205)는 회전을 실시할 수 있다는 것에 주목한다. 도 2a에서, 각각의 트랜스듀서(205 및 206)가 각각의 접촉점 "c"에서의 접촉을 통해, "x" 차원을 따른 모션의 선형 범위에 따라 기판을 밀고 당기는 동안, 그리퍼의 제1 구성요소(204)는 "y" 차원을 따라 이동한다. 본 예시에서 각각의 트랜스듀서는 선형 모터, 압전식 트랜스듀서, 보이스 코일 또는 다른 타입의 트랜스듀서일 수 있다는 것에 주목한다.
본 예시에서의 스플릿-축 인쇄 시스템에서, 기판은 특정 "스캔" 또는 래스터 모션을 위해 인쇄헤드(들)에 대해 "y" 차원으로 전진되고, 그러므로, 본 예시에서의 "y" 차원 또한 "인-스캔' 차원을 형성한다는 것에 주목한다. 그리고 나서, 인쇄헤드(들)는 다음의 스캔(즉, "크로스-스캔" 차원으로)을 위해 인쇄헤드(들)을 재위치시키기 위해 "x" 차원으로 이동되고, 그리고 나서, 기판은 다음의 스캔을 위해 반대 방향으로 전진되고, 연속적인 스캔은 전체 액적 코팅물이 생성될 때까지 계속된다. 그리고 나서, 기판은 (전형적으로 인쇄기 외부로, 또 다른 챔버로) 전진될 수 있는데, 그 곳에서 경화, 건조 또는 연속적인 액체 코팅물이 원하는 전기, 광학 및/또는 기계적 속성을 가진 영구적인 구조물로 전환시키기 위해 프로세스된다. 그리고 나서, 인쇄 시스템은, 가령, 공통의, 미리정의된 "방안"에 따라 다음 기판에 유사한 인쇄를 수행하기 위해, 또 다른 기판을 수용할 준비를 한다.
이송 경로(107)(도 1로부터의)에 따른 오차는 복수의 차원에서의 오차를 야기할 수 있다는 것은 이전에 지적되었는데, 즉, x 차원에서 단지 오프셋이 아니다. 예를 들어, 경로(107)를 따른 모션이 일정한 속도에 대해 제어될 수 있고, 그 경로의 각도에서 베리에이션이 기판의 y-위치에서의 비선형성을 야기할 수도 있다. 도 2a의 실시예에 있어서, 이러한 y-차원 오차는, 가령, 인-스캔 차원에서 그리퍼의 제1 및/또는 제2 구성요소의 쓰로우를 실시하기 위한 제3 트랜스듀서(214)를 사용하여, "인-스캔" 차원에서 기판 모션을 교정하기 위한 수단(211)을 사용하여 선택적으로 교정될 수 있어서, 기판의 y-차원 전진을 정상화한다. 다른 실시예에서, 피드백이 그리퍼의 전진을 위한 전자 제어 신호(215)(가령, 피드백 신호, 델타 신호 또는 전자 구동 신호로서)를 조절하는데 대신 사용될 수 있어서, y-차원 에러에 대응하기 위해 약간의 속도 증가 또는 감소(Δv)를 전하거나, 위치 마커(이하에서 더욱 참조)에 매칭되도록 할 수 있다. 또 다른 선택적인 실시예에서, 개개의 y-위치 의존 노즐 발사 지연(박스(217)에 의해 표현된 바와 같이)을 계산하고 프로그램할 수 있는데, 즉, 일부 실시예에서, 인쇄헤드의 노즐은, 인쇄기에 대한 기판의 "y" 차원 위치 오차를 정확히 상쇄하는 방식으로, 기판과 인쇄헤드(들)가 서로에 대해 "y" 차원으로 이동됨에 따라, 약간 빨리 또는 늦게 인쇄되는 것으로 "알려질 수" 있다. 또한, 번호 219에 대해, 또 다른 실시예에서, 인쇄기에 대한 기판의 위치 오차를 상쇄하기 위해, 인쇄 격자(도 1로부터의 번호 105 참조)의 수평선을 시프트하는 효과를 갖기 위해, 노즐 발사 시간을 맞추는데 사용되는 "트리거" 신호를 조절할 수 있다. 그리퍼의 "인-스캔" 또는 "y-축" 구성요소는 모든 실시예에 대해 요구되는 것은 아니라는 점을 주목한다.
도 2a의 주제를 생각해 보면, 기계적 이송 시스템 내의 두 개 이상의 트랜스듀서를 사용함에 의해, 이송 경로에서의 오차 또는 (가령, 비선형 가이드나 트랙 또는 에지에 대한) 다른 모션 오차에 대해 교정할 수 있다는 것이 관측되어야 한다. 경로 오차가 도 1에서 번호 107에 의해 표현된 바와 같이 존재하는 반면, 상기에서 소개된 테크닉과 구조물은, 이송 경로(가령, 그리퍼의 제1 구성요소(204)가 계속하여 이러한 오차-지장있는 경로를 트래블함)에서의 반복가능한 오차를 "감수하려는" 시도를 하지만, 트래스듀서는 쓰로우 또는 다른 교정을 실시하여 적어도 하나의 차원에서 이러한 경로 오차를 무효화하고, 그리하여, 이동되는 것(본 예시에서 기판)은 이상적인 경로(또는 적어도 도 1에서 번호 109에 의해 표현된 바와 같은 이상적인 에지를 시뮬레이트하기 위해 만들어진)를 트래블한다. 일 실시예에서, 이들 교정은 두 개 이상의 트랜스듀서에 의해 실시되는데, 이들 각각은 서로 평행하고, 운송 방향에 실질적으로 직교인, 선형 쓰로우를 가진다(가령, 트랜스듀서(205 및 206) 각각은 화살표(104)의 방향에 실질적으로 직교인 방향(가령, 210)으로 독립적으로 제어가능함).
이들 테크닉이 가상적으로 임의의 기계적 이송 시스템에 적용되는데 반하여, 이들 테크닉으로부터 이익이 될 수 있는 하나의 분야가, 잉크 액적이 매우 정확한 위치에 증착되어야 하는 산업용 인쇄기에 관한 것이라는 점은 이전에 언급되었다. 예를 들어, 하나의 고려되는 실시예는 인쇄기로서, 유기 LED 디스플레이 디바이스(가령, 셀 폰 스크린, HDTV 스크린 및 다른 타입의 디스플레이와 같은 발광 디바이스 및 태양 패널과 같은 "패널" 디바이스를 제작하는데 사용된다. 이와 관련하여, (가령, 미터 너비와 길이의 기판이 인쇄되는) 상기에서 논의된 응용예에서, 복수의 종래 시스템이, 인쇄 동안에, 기판을 전진시키기 위해 에어 플로테이션 테이블에 의존한다. 이러한 시스템에서 가스 들어오는 것과 나가는 것은, 완성된 층 내의 결함을 잠재적으로 생성할 수 있는 기판에 영향을 주는 것(가령, 온도, 정전기적 전하 빌드업 또는 잉크 행동에 영향을 줄 수 있는 다른 영향)을 피하기 위해, 조심스럽게 제어될 수 있다. 다시 말해, 가스 흐름은 기판 아래의 유체 베어링을 생성하는데 사용되어서, 인쇄 동안에 기판이 이동되는 실질적으로 마찰이 없는 표면을 생성하고, 이러한 응용예에서, 도 2a로부터의 그리퍼(203)는, 기판 상의 하나의 접촉점에 효과적으로 연결하는 단일 진공 락(제2 구성요소(207)의 일부로서) 또는 기판을 따라 각각의 접촉점에 연결하는 복수의 진공 락들을 특징으로 갖는 진공 그리퍼일 수 있다. 이러한 응용예에서, 비-선형성을 무효화시키는데 사용되는 "마이크론-스케일"(또는 더 작은) 쓰로우를 달성하고, 경로 전진을 주도하기 위해, 트랜스듀서(205 및 206)는, 인쇄헤드 및 노즐을 기판에 정확하게 정렬되도록 하는데 사용되는 미세한 쓰로우를 실시하기 위해, 압축과 팽창을 사용하는(즉, 플로테이션 테이블의 가스 베어링에 의해 지지되는 힘의 방향에 수직인 방향으로) 보이스 코일로서 바람직하게 형성될 수 있다. 다시 말해, 특히 전자 플랫 패널 제작과 특히 OLED 디스플레이 디바이스 제작을 위해, (마찰이 없는) 플로테이션 지지와 진공 그리퍼의 사용이 결함을 최소화하고 디바이스 수명을 최대화하는데 중요하고, 트랜스듀서로서 보이스 코일의 사용은 이러한 시스템에서 요구되는 쓰로우를 제공하기 위한 효과적인 구성요소를 제공한다는 것이 발견되었다. 그러나, 다른 타입의 트랜스듀서는 가령, 압전식 트랜스듀서, 선형 모터 또는 다른 타입의 트랜스듀서의 사용을 통해, 특정 타입의 응용예에 적절한 쓰로우를 달성하는데 사용될 수도 있다. 이러한 시스템에서, 플로팅, 기계적 피봇 수단은, 오차 교정을 위해 구조적 연결과 기계적 지지를 제공하기 위해, 보이스 코일을 돕기 위해 사용될 수 있다.
도 2b는 도 1의 뷰와 유사한 뷰(221)를 제공하지만, 도 2a의 수단을 사용하여 얻을 수 있는 목적을 더욱 나타낸다. 좀 더 구체적으로, 도 2b는 도 2a로부터의 기판(103)과 그리퍼가 경로(107)를 따라 전진하는 그리퍼(203)를 도시한다. 도 1에서와 같이, 경로(107)는, 구부러짐이나 베리에이션의 어떤 형태로 나타난 오차를 가진다고 다시 한번 가정되고, 다시 말해, 이는 에지 가이드, 트랙 또는 다른 수단에서의 오차일 수 있고, 이러한 오차는 위치 오차 및/또는 회전 오차를 그리퍼(203)에게 전달한다. 그러나, 이러한 경우에, 그리퍼는 이러한 오차에 대응하기 위해 제어되는, 가령, 경로(107)에서 베리에이션을 보상하거나 균등화하는 보이스 코일 변위의 형태인 트랜스듀서 "T"를 가지는 것으로 보인다. 오차의 크기는 도 2b의 스케일에 비해 많이 과장된 것으로 보인다는 것을 다시 주목하고, 실제로, 경로는 미터 길이(가령, 방-크기의 인쇄기를 통해 기판이 이송되는 3미터 길이)이지만, 구부러짐은 대략 마이크론 또는 서브마이크론 스케일일 수 있다.
경로를 따라 그리퍼의 위치(d0)에서, 선천적인 이송 경로 오차가 Δx0, Δy0, 및 Δθ0와 등가였다는 것은 도 1로부터 상기될 것이다. 그러나, 도 2b의 시스템에 있어서, 트랜스듀서는, 도 2b의 우측 하단에서 볼 수 있고, 번호 103'에 의해 표시된 바와 같이, 기판을 변위 및/또는 회전하기 위해 작동된다. 즉, 트랜스듀서 "T"는, 절대 위치(x3, y3 및 θ3)를 갖기 위해, 그리퍼의 제1 구성요소 및 트랙이나 에지 가이드(107)에 대해 그리퍼의 제2 구성요소와 기판을 변위시킨다. 도 2b의 맥락에서, 양(x3)은 오차-지장있는 이송 경로(107)로부터 오프셋된 가상 에지(223)를 효과적으로 정의하는 절대 x-위치를 나타내고, 양(y3)은 인-스캔(또는 이송) 방향에 대해 임의의 "자연스러운" 또는 정상화된 전진으로 기판을 오프셋하기 위해, 기판의 선택적인 위치선정 오프셋에 해당하고, 및 양(θ3)은 기판의 원하는 각 배향에 해당하는데, 도 2b의 예시에 있어서, 지금은 y3 및 θ3가 "제로", 가령, 기판이 정확히 수직(즉, "y"-차원 교정 없이, 플로테이션 지지 테이블에 대해 스퀘어드 오프(squared off)되는, 그러나 이는 반드시 모든 실시예에 대한 경우가 아님)이 되기 위해 배향된다고 가정될 수 있다. 도 2b에서, 인쇄 격자는 번호 105'에서 도시되어서, 기판(103')에 대해 일관된 x 및 θ 관계를 가지는데, 기판이 위치(d0)에서 위치(d1)으로 전진되면서, 트랜스듀서는, 기판과 인쇄 격자의 수직선 간의 이러한 일관된 위치 관계를 유지하기 위해, 제어되는데, 즉, 기판은 절대 위치(x3 및 θ3)를 갖지 위해 정렬되어서(경로(107)를 따른 오차에도 불구하고), 105"에서 인쇄 격자에 대한 이러한 관계를 정확하게 가짐에 따라, 103"에서 도시된다. 이들 예시에서, 인쇄 격자가 기판에 대한 미리결정된 관계를 유지하는 것으로 도시됨에도 불구하고, 인쇄 격자는, 인쇄헤드 위치선정과 기판과 인쇄헤드 운송 수단에 의해 정의되고, 정말로 원하는 것은, 인쇄헤드와 기판 운송 수단이 서로에 대해 일관되고 미리결정된 관계를 유지하고, 제작될 각각의 제품에 대해 정확하게 정렬되는 이러한 연결에 의해 조절 시스템이 된다는 점에 주목하고, 일부 실시예에서, 기판(또는 그 위에서 제작될 제품)은 따라서, 제품 당 또는 기판 당 정렬 프로세스(이는 이하에서 더욱 예시화될 것임)를 통해, 인쇄 격자에 대해 (즉, 인쇄기에 대해) 특별하게 정렬된다. 현재로서는, 기판(가령, 기판의 기준 에지 또는 기판 상의 기준의 병치)은 인쇄 격자에 대해 미리결정된 관계로 유지되는 것으로 가정될 것이다.
등식이 도면의 다양한 위치에서 도시되어서, 일정한 위치 관계가 어떻게 유지되는지를 나타낸다. 좀 더 구체적으로, 위치(d0)에서의 선천적이고 반복가능한 오차가 Δx0, Δy0, 및 Δθ0의 위치 오프셋과 회전 오프셋과 같다는 것이 상기될 것이다. 그러므로, 트랜스듀서 "T"는 Δx2, Δy2, 및 Δθ2의 추가적인 오프셋을 더하기 위해 제어되는데, 여기서, 이들 값은 이송 경로를 따라 위치(d0) 및 대응되는 이송 경로 위치(경로(107)을 따른 위치(d0))에서의 미리-측정된 오차의 함수이다. 즉, 일 실시예에서, 이들 값은 미리 결정(측정)되고, 오차 Δx0, Δy0, 및 Δθ0의 음에 의존하는데, 가령, 이들은 오차를 정확히 취소하고, 선택적으로 기판을 어떤 미리결정된 x/y/θ 값으로 오프셋한다. 이들 값은 저장될 수 있고, 그리고 나서, 많은 기판으로부터의 유사-제품의 제작을 나타내는 미리결정된 "방안"과 조합하여 사용될 수 있어서, 어셈블리-라인 스타일 프로세스에서 연속으로 각각의 기판에 또는 일련의 기판에 정확하게 인쇄할 수 있다. 일 실시예에서, 도시된 트랜스듀서 "T"는 x 및 θ의 기판 위치만 교정한다(가령, 임의의 "y" 차원 교정은, 도면에 도시되지 않은 하나 이상의 다른 트랜스듀서나 수단를 사용하여 선택적으로 실시됨). 위치(d1)에서, 트랜스듀서는, 이송 경로(107) 상의 위치의 함수로서 서로다른 오프셋을 더하기 위해, 즉, Δx4, Δy4, 및 Δθ4의 오프셋을 더하기 위해, 제어된다. 도 2b에서 도시된 바와 같이, 값(x5 및 θ5)은 값(x3 및 θ3)과 정확히 같을 수 있지만, 다시 말해, 이는 모든 실시예에 대한 경우일 필요는 없다.
하나의 고려되는 실시예에서, 인쇄기의 지지 플레이튼(즉, 방금 논의된 예시에서 플로테이션 테이블)은 인쇄기를 위한 위치 기준계를 제공하는 미리정의된 광학 마킹을 가지는 것을 주목해야 하는데, 인쇄 격자는 이 시스템에 연결되고 정의된다. 예를 들어, 광학 마킹은 가령, 접착 테이프를 통해 지지 테이블 상에 물리적으로 형성되거나 추가될 수 있다.
마이크론 스케일에서, 또는 많은 면에서 더 우수한 위치 제어는 보기 보다 덜 직관적인데, 가령, 일 실시예에서, 그리퍼 이송 시스템과 인쇄헤드 이송 시스템의 각각은 카메라를 장착하는데, 이는 공통 정렬 마크를 찾는데 사용되어서, 두 개의 이송 경로를 매칭하는 좌표계에 대한 원점을 구축한다. 이러한 프로세스 및 이러한 시스템에서 인쇄헤드(들) 및 기판의 각각에 대한 운송 시스템은, 인쇄기의 좌표 기준계를 효과적으로 정의한다(그리고, 대부분 액적이 증착될 수 있는 것에 따라 인쇄 격자의 컨피규레이션을 정의함). 이전에 참조로서 포함되는, 미국 가특허 출원 번호 62/459402는 이들 카메라의 사용, 위치 검출 및 관련 캘리브레이션과 관련된 정보를 제공하는데, 기본적으로 말하면, 하나의 개시된 시스템에서 공통 좌표(또는 원) 점을 찾는 것에 더하여, 각각의 운송 시스템은 광학 테이프와 광학 센서를 사용하여, 정확한(가령, 마이크론-바이-마이크론) 위치 검출과 피드백을 제공하고, 그러므로 운송 시스템(가령, 그리퍼의 제1 구성요소)은, 그것이 인쇄기의 좌표계에 대해 어디에 있는지 정확히 "알고", 이들 다양한 구성요소는 완벽한 인쇄기 좌표 시스템을 효과적으로 정의하기 위해 협업하고, 실제로, 이러한 시스템의 사용은 y-차원 그리퍼 경로 교정에 대한 필요성을 제거할 수 있는데, 가령, 그리퍼는 y-차원을 따라 특정 위치로 간단히 구동된다.
"원점"이 언급된 카메라-정렬 프로세스에 의해 구축되면, 두 개의 운송 시스템은, 각각의 운송 시스템의 카메라와 운송 시스템의 기준점(가령, 인쇄헤드 노즐 위치에 대응됨) 간의 상대적인 좌표를 결정하기 위해 표현되고, 그리고 나서, 이는 인쇄기의 좌표계에 대한 임의의 점의 정확한 식별을 허용한다. 이전에 주목된 바와 같이, 이러한 시스템에서, 액적 착지 위치의 인쇄기의 "이해도"는 인쇄 격자에 의존하고, 이는 결국 이 좌표계에 의해 정의되는데, 이러한 시스템의 이송 경로 모션 오차는, 특정 인쇄 격자 위치(가령, 조합된 구체적인 그리퍼/인쇄헤드 위치의 이해도와 관련됨)가 이들 구성요소의 실제 위치에서 벗어난 상황으로 잠재적으로 야기될 수 있다. 본원에서 기술된 방식으로 이송 경로 오차를 교정하고, 본원에서 기술된 다양한 디바이스를 사용함에 의해, 시스템이 그 경로 오차를 교정하여, 기판과 인쇄헤드는 인쇄 격자 가정에 대응되는 방식으로 각각 위치된다. 사실상, 사전기록된 오차 측정에 대하여 상기에서 주목된 바와 같이, 이송 경로들 간의 사소한 비직교성과 같은 오차라도 선택적인 회전 오프셋(가령, θ3 및 θ5에 대한 제로 아닌 값)을 사용하여 교정될 수 있다
도 2b에 의해 제공된 예시를 계속하여 보면, 시스템 내로 도입된 각각의 기판은 인쇄 동안에 기판(또는 그 위의 패널 제품)의 위치를 정확하게 이해하는데 사용되고 식별되는 하나 이상의 기준을 가지는데, 각각의 기판이 도입되면서, 기판의 기준이 검출되고(가령, 하나 이상의 카메라를 사용하여), 기계적 시스템은, 예상된 위치에 대응되기 위해, 기판을 적절히 배향/정렬하는데 사용될 수 있다(이러한 프로세스는 모든 실시예에 대해 필요한 것이 아니라는 점을 주목하는데, 가령, 알려진 기판 정렬 불량이나 배향 불량에 맞추기 위한 인쇄기 제어 정보를 조절할 수 도 있음).
캘리브레이션 프로세스 동안에, 테스트 기판은 원하는 방안에 따른 방식으로, 인쇄기를 통해 전진될 수 있고, 광학 검사 디바이스(가령, 카메라)는 이미지 프로세싱 테크닉이 사용되어서, 각각의 관심 차원에서 위치 오차와 회전 오차를 정확하게 측정할 수 있다. 그리고 나서, 모션 및/또는 인쇄가 원하는 방안에 따라 발생하고, 광학 검사가 연속적으로 또는 단속적으로 수행되어서, 기판이 전진됨에 따라, 위치 오차와 배향 오차를 측정하는데, 가령, 각각의 운송 시스템의 전진에 대하여(이들의 각각의 경로에 따라) 결정된 예상된 위치/배향에서 벗어난 반복가능한 오차를 검출한다. 그리고 나서, 이들 오차 및/또는 대응되는 교정은, 운송 경로 위치에 따라(경로(107)를 따라 그리퍼의 제1 구성요소의 위치), 시간에 따라 인덱스되는 방식으로 또는 다른 방식으로, 시스템의 디지털 메모리(가령, SSD, RAM 또는 다른 비일시적인 매체)에 저장된다. 암시된 바와 같이, 측정된 오차는 트랜스듀서에 대한 반복가능한-오차 교정값을 개발하는데 사용된다.
어셈블리-라인 스타일 프로세스 내의 기판의 "라이브 인쇄(live printing)" 동안에, 각각의 기판 상의 기준은 다시 한 번 사용되어서, 인쇄기에 대한 기판 당 정확한 위치를 결정하고, 및/또는 테스트 기판에 대해 행해졌던 것과 같이 기판을 재정렬/재배향하는데 사용된다. 그리고 나서, 저장된 트랜스듀서 교정은, 그리퍼/인쇄헤드 어셈블리-측정된 위치의 함수로서 메모리로부터 불러오게 되고, (인쇄헤드 및/또는 그리퍼) 오차 교정 수단의 트랜스듀서를 구동하는데 사용되어서, 인쇄헤드에 대해 정확하게 기판을 위치배정하는 보상 모션을 제공한다. 인쇄 동안에, 인쇄헤드 및 그리퍼 위치는, 플로테이션 테이블과 인쇄헤드에 대해 기판의 정확한 "크로스-스캔" 위치(및/또는 다른 위치 또는 배향)로 기판을 구동하기 위해, 저장되고 미리결정된 오차 측정/교정으로 연속적으로 사용된다.
도 2b의 아래 부분은, 그리퍼 상의 두 개의 선형 트랜스듀서(가령, 보이스 코일)가 어떻게 회전 오차는 물론, 이상적인 에지에 대응되는 방식으로(가령, "x" 차원으로의 변위를 통해) 기판을 위치적으로 오프셋에 대해 교정할 수 있는지를 나타낸다. 좀 더 구체적으로, 이송 경로의 국부적인 부분은 상당한 양의 곡면을 가지는 번호 227에 의해 설계되고, 이는 이송 경로의 이상적인 직선 에지(109)에서 벗어난다. 기판과 이송 경로 사이의 두 개의 효과적인 접촉점(각각 "c1" 및 "c2"로 표시됨)에서, 이러한 오차는 "xi"(음의 방향으로 이상적인 직선 에지에 대한 오프셋으로 도시됨) 및 "xj"(양의 방향으로 이상적인 직선 에지에 대한 오프셋으로 도시됨)으로 각각 가정되고, 여기서, 이상적인 이송 경로(가령, 도시된 가상 에지(223)에 해당)로부터 절대 위치 "xk"에 기판의 왼쪽 에지(또는 기판의 인쇄가능한 영역)를 정확하게 위치배정되는 것이 바람직하다고 가정하고, 번호 105'는 시스템에 의해 전해지는 "x" 위치 오차의 전체 범위를 수용하고, 선택적으로 일부 약간의 버퍼를 제공하기 위해, 인쇄 격자의 약간의 오프셋을 표시한다. 이러한 교정을 실시하기 위해, 위치 "c1"에서의 양의 오차(즉, xi)는 "xk - |xi|," 의 양만큼 더욱 오프셋되는 반면, 위치 "c2"에서의 음의 오차(즉, xj)는 "xk + |xi|," 의 양만큼 더욱 오프셋된다. 두 개의 도시된 트랜스듀서 "T"는 이러한 목적을 위해 제어되어서, 이상적인 직선 에지에 대해 기판을 바로하고, 유사한 교정이 관련 위치에서의 오차에 의존하여, 이송 경로(107)를 따라 그리퍼의 이동 동안에 다른 모든 때에 수행되어서, 기판은 절대 위치 "xk"와 관련된 가상 경로를 따른다.
여러 개의 요점들이 이러한 논의에 대해 주목되어야 한다. 첫째, 그리퍼(203)가 이 도면에 단일 유닛으로 도시됨에도 불구하고, 사실상, 많은 부분으로 구성될 수 있다(가령, 상기 언급된 제1 및 제2 구성요소 또는 분산된 일련의 2, 3, 5 또는 다른 수의 그리퍼 또는 다양한 위치에서 기판에 연결되는 그리퍼 구성요소). 둘째, 이러한 실시예에서, 2개의 트랜스듀서는 평행한 선형 작동기(가령, 각각의 보이스 코일 또는 압전식 트랜스듀서)로 도시되는데, 이는 모든 실시예에서 요구되는 것이 아니다. 즉, 실시예에 의존하여, 트랜스듀서 "T"는 직렬로 연결될 수 있고, 회전식, 선형식 또는 다른 타입의 작동기일 수 있고, 여전히 다른 실시예에서, 2개보다 많거나 적은 트랜스듀서가 사용될 수 있다. 셋째, 다양한 다른 실시예나 실행예에서, 이송 경로 위치의 함수로서 트랜스듀서에 의해 전달된 교정은 다양한 방법으로 파생 및/또느 적용될 수 있다는 것이 주목된다. 제1 실시예에서, 위치 센서(가령, 광학, 라디오 주파수 또는 다른 검출기)를 가진 테스트 디바이스(가령, 테스트 기판)는 오프라인 프로세스에서 이송 경로를 따라 전진될 수 있고, 위치 오차 및/또는 회전 오차에 대해 연속적으로 측정될 수 있는데, 이는 이송 경로를 따라 전진의 함수로서 기록된다. 그리고 나서, 일련의 시간-기반 또는 위치-기반의 교정은 트랜스듀서에 대한 제어 신호로서 개발되고 포맷될 수 있고, 그리고 나서, 제조 동안에(또는 이송 경로의 다른 런타임 사용), 이송 경로에 따라 위치에 대응되는 입력이 수신되고(가령, 시간 측정, 위치 측정, 아날로그 신호나 디지털 신호, 또는 어떤 다른 값), 적절한 트랜스듀서 제어 신호(들)을 참고하거나 인덱스하는데 사용되고, 이는 효과적으로 "플레이 백" 아니면, 이송 경로 위치의 함수로서 적용된다(그리고 잠재적으로 복수의 이송 경로 위치). 마지막으로, 상기에서 논의된 바와 같이, 이송 경로에 따라 위치를 식별하기 위한 다양한 수단이 존재하는데, 가령, 번호 228에 의해 표시된 바와 같이, 신호(가령, 구동 신호, 타이밍 신호 등)가 이러한 목적을 위해 사용될 수 있고, 또는 위치 센서(229)가 사용될 수 있으며, 하나의 구체적으로 고려되는 실시예에서, 상기에서 언급되고, 미국 가특허 출원 번호 62/459402에서 논의된 바와 같이, 위치 마킹 시스템 및 위치 검출기는 각각의 운송 경로에 대해 사용되어서, 관련 위치(가령, 인쇄헤드 이송 및 기판 이송)를 측정한다. 명백하게, 많은 대안예가 가능하다.
이전에 언급된 바와 같이, 제작 장치 또는 시스템은 복수의 운송 경로를 가질 수 있는데, 스플릿-축 인쇄기의 맥락에서, 이전에 언급된 것과 같은 하나의 실시예에서, 인쇄기 좌표 기준계는 별개의 인쇄헤드 및 기판 이송 경로에 의존하여 정의될 수 있다. 도 2c는 인쇄헤드 이송 경로와 같은 제2 이송 경로에서의 부정확성으로부터 나온 위치 오차를 논의하는데 사용된다. 이러한 맥락은 일반적으로 도 2c에서 번호 251에 의해 도시된다. 기판은 제1 차원(화살표 104에 의해 표현됨)으로 그리퍼에 의해 전진되고, 인쇄헤드는 제2 차원(즉, 화살표 254에 의해 표현됨)으로 이송 경로(256)를 따라 전진된다. 제2 이송 경로에 따른 인쇄헤드의 제1 위치(253)에서, 인쇄헤드는 Δi0, Δj0, 및 Δφ0의 오차를 경험하고, 변수 i, j 및 φ는 x 및 y 오프셋(그리고 xy 평면에서의 각 회전)을 나타내지만, i, j 및 φ는 본 예시에서 그리퍼 운송 시스템의 변수와 구별하기 위해 x, y 및 θ 대신에 사용된다. 도면에서 팬텀 파인에서 표시된 바와 같이, 인쇄헤드가 위치(253')으로 전진되면서, 오차는 Δi1, Δj1, 및 Δφ1이된다. 다시 말해, 이러한 오차는 이송 경로(256)를 따른 위치의 함수이고, 오차의 변화는 잠재적으로 선형이거나 비선형이다. 교정되지 않은 두면, 이러한 오차는 인쇄를 왜곡하고 이전에 언급된 바와 같이 제조 정확성 문제를 생성할 것이다. 이러한 예시에서, 그리퍼의 이송 경로에 대해 기판(103)의 임의의 모션이 도시된 그리퍼(203)(및 그것의 트랜스듀서 "T")를 사용하여 교정된다고 가정하는데, 문제는 인쇄헤드 트래블러가 오차를 생성할 수 있고, 인쇄헤드의 x, y 또는 θ 오차를 야기하며, 이는 인쇄헤드의 노즐로부터 분사된 액적의 예상된 착징 위치를 변화시킨다. 이들 오차의 영향은 화살표(255)에 의해 표시된 바와 같이, 의도된 인쇄 격자(257)에 대해 예시화되는데, 즉, 의도치 않은 인쇄헤드 회전(및/또는 의도하지 않은 "x" 차원 변위)의 영향은 왜곡된 인쇄 격자(257')를 통해 도시된다(아날로그 형식으로, "y" 차원에서 의도하지 않은 인쇄헤드 회전 변위는 수직 인쇄 격자선의 '함께 스퀴징(squeezing together)'을 효과적으로 야기할 것임).
도면의 맥락에서, 인쇄헤드는 이상적인 모션, 즉, 원하지 않은 기계적 오차에 의해 특징이 되지 않은 모션을 경험한다는 것도 바람직하다. 다시 말해, 본 예시에서, 흔들리지 않는 인쇄 격자(가령, 번호 257에 의해 표시된 바와 같이)에 효과적으로 대응되는 것과 같은, 인쇄헤드가 가상의, 이상적인(가령, 직선의) 이송 경로(225)에 따르는 것이 바람직하고, 이는, 수직선(109)에 의해 표시된 가상의 "이상적인" 그리퍼 모션은 물론 수평선(225)에 의해 표현된 가상의 "이상적인" 인쇄헤드 모션 모두에 의해, 일 실시예에서 달성된다.
그리퍼 경로 교정과 매우 동일한 방식으로, 인쇄헤드 이송 경로에 대한 운송 시스템은, 선택적으로, 이상적인 인쇄헤드 위치선정을 가능하게 하기 위해, 한 세트의 트랜스듀서를 사용할 수도 있는데, 이를 위해, 트랜스듀서는, 일부 약간 버퍼를 옵션으로 제공하는, 인쇄헤드의 "y" 위치 오차의 전체 범위를 수용하는 임의의 "절대" 위치로의 변위를 바람직하게 제공하여서, 인쇄헤드 모션은 고정되고, "오프셋" 인쇄 격자(도 2b로부터의 105')에 대응되는 알려진 위치도 제공하는 가상 경로(269)에 대응된다.
도 2d는 이러한 타입의 오차를 바로 잡기 위해 의도된 시스템의 도면(261)을 제공한다. 즉, 도 2d는 화살표(254)에 의해 표시된 일반적인 방향으로, 하나 이상의 인쇄헤드의 측방 모션을 지원하는데 사용되는 제2 이송 경로(256)를 나타낸다. 인쇄헤드 어셈블리는, 이송 경로(256)를 따라(가령, 트랙이나 가이드를 따라) 라이드하는 제1 구성요소(263) 및 인쇄헤드(들)를 장착하는 제2 구성요소(264)를 포함한다. 이들 제1 및 제2 구성요소는 하나 이상의 트랜스듀서(265)에 의해 작동적으로 연결된다. 이러한 예시에서, 트랜스듀서는 각각 선형 작동기인데, 이들은 "y" 차원으로 제2 구성요소를 오프셋하는 마이크로-쓰로우를 지지하고, 공통-모드 구동 및 차동 모드 구동이 다시 한 번 선형 변위 및/또는 xy 평면 회전(θ)을 선택적으로 실시하는데 사용된다. 번호 267과 번호 267'("크로스-스캔" 또는 "x" 차원을 따라 각각의 위치에서 인쇄헤드(들)을 각각 나타냄) 모두에 의해 표시된 바와 같이, 교정은 인쇄헤드(들)로 하여금, 기계적 오차에 의해 특징되지 않는 가상의 이상적인 경로(269)를 따라가도록 허용한다(즉, 제1 구성요소(263)가 오차-지장있는 제2 이송 경로(256)에 계속하여 트래블함에도 불구하고). 그리퍼 실시예의 경우와 같이, 도 2d의 트랜스듀서는 인쇄헤드를 절대 y 위치(즉, 라인(269)에 해당함)로 오프셋하기 위해 제어될 수 있어서, 인쇄헤드가 위치(267)에 있을 때, 상기 언급된 Δi0, Δj0, 및 Δφ0의 오차는 Δi2, Δj2, 및 Δφ2 만큼 더욱 오프셋되고, 인쇄헤드가 위치(267')에 있을 때, 트랜스듀서는 인쇄헤드를 오프셋하기 위해 제어되어서 오프셋 Δi4, Δj4, 및 Δφ4를 더하고, i 및 φ는 전형적으로 위치(267)과 위치(267')에서 일정한 값을 가지고, 모두 전형적으로 제로이지만, 이는 다시 모든 실시예에 대해 요구되지 않는다. 이전의 그리퍼 예시에서와 같이, 도시된 트랜스듀서 구성은 단지 예시적이고, 다양한 트랜스듀서(가령, 회전식 트랜스듀서)가 사용될 수 있고, 다양한 운송 시스템 및/또는 차원에 적용될 수 있다. 또한, 이전 예시에서와 같이, 본 실시예에서의 도시된 트랜스듀서는 플로팅 피봇점을 실시하기 위해, 공통 모드 제어 및 차동 모드 제어 모두를 사용하여, 인쇄헤드를 오프셋하는데, 결과는, 바람직한 "에러 없는" 이송 경로(225)가 임의의 위치(269)로 오프셋되어서, 제2 이송 경로(256)에서의 결점에 기인하는 임의의 "y" 또는 인-스캔 차원 지터를 포함하기에 충분하다. 번호 255'에 의해 표시된 바와 같이, 이들 교정의 결과(및 이전에 언급된 그리퍼 교정의 선택적인 사용)는 번호 257"에 의해 표시된 바와 같이, 인쇄 격자를 효과적으로 정상화한다. 기능 박스(271)에 의해 언급된 바와 같이, 또 다른 트랜스듀서(273)를 사용하거나, 구동 신호 교정 테크닉(275)를 사용할 수 있어서, 크로스-스캔 위치 오차를 교정하기 위해, 인쇄헤드 어셈블리의 일부 또는 전부의 위치를 오프셋한다는 것을 주목한다.
이제까지 논의된 원리를 생각해보면, 기판 경로를 "가상의" 직선 에지로 및 인쇄헤드 경로를 "가상의" 직선 에지로의 각각의 교정은, 기계적인 시스템에 의해 전달되는 미세한 오차에도 불구하고, 인쇄 격자 가정(가령, 인쇄기의 좌표 기준계)에 순응하기 위한 방식으로, 기판과 인쇄헤드가 모두 위치될 수 있도록 한다. 이들 테크닉은 시스템 정확성을 더욱 개선하기 위해, 구동 제어 테크닉(또는 이송의 차원을 따라 각각 이송되는 것을 교정하기 위한 다른 기술된 테크닉)과 선택적으로 조합될 수 있다. 다시 말해, 이들 테크닉은 또한, 다른 모션 차원 및 제작 및/또는 기계적 시스템에도 확장될 수 있다.
도 2e는 또 다른 예시(281), 즉, 하나의 이송 경로 내의 오차가 제2 이송 경로와 관련된 하나 이상의 트랜스듀서 "T"를 사용하여 교정될 수 있는 대안적인 실시예를 나타낸다. 이러한 경우에, 그리퍼 어셈블리(203)는, 고정된 피봇점 없이 크로스-스캔 및 회전 교정을 실시하기 위해, 공통 구동 모드 또는 차동 구동 모드에서 다시 제어되는 2개의 선형 트랜스듀서를 포함한다고 가정될 수 있다. 이러한 도면의 경우에, 오차는 다시 한 번 마이크론 또는 나노미터 스케일 이라는 점을 주목하는데, 그래서, 도시된 각도와 오차는 설명을 돕기 위해, 도면에서 많이 과장된다. 이러한 경우에, 도면은 "2 개의 그리퍼" (203)를 나타내는데, 이는 실제로, 정확히 동일한 그리퍼 및 2개의 서로 다른 스캔에 대한 "인-스캔" 차원을 따른 그리퍼의 위치를 나타내지만, 이 경우, 운송 경로 중 하나(즉, 인쇄헤드 어셈블리에 대한 경로(256))는 그 자체 오차 교정 시스템을 갖지 않는다. 그러므로, 그리퍼의 오차 교정 시스템은, 이러한 경우, 인쇄헤드 이송 시스템에 대해 교정하기 위한 오프셋을, 스캔에 의존하는 그리퍼 경로에 대해 교정하는데 사용되는 이들 교정에 선형으로 중첩함에 의해, 인쇄헤드 운송 경로 오차에 대해서도 교정하기 위해 제어된다. 다시 말해, 본 실시예에서, 2개의 그리퍼는, 인쇄헤드 위치(273')에서 인쇄헤드 시스템 오차{Δi0, Δj0, 및 Δφ0} 및 인쇄헤드 위치(273")에서 {Δi1, Δj1, 및 Δφ1}에 대해(즉, 각각의 스캔에 대응되는) 각각 교정하는 2개의 대안적인 세트의 트랜스듀서 제어 신호를 나타낸다고 가정되어야 한다. 즉, "y" 차원으로 그리퍼 이송이 이상적인 에지(그리퍼 이송 경로와 관련하여)로 교정되는 도 2b와 관련하여 가정되었더라도, 그리퍼 시스템의 트랜스듀서에 의해 제공되는 오프셋과 각도를 완화시킴을 통해, 일 실시예에서, 이들 동일한 트랜스듀서를 사용하여 인쇄헤드 경로(또는 또 다른 독립적인 이송 경로) 에서의 오차에 대해 교정할 수 있다. 도시된 바와 같이, 추가적인 오프셋 및/또는 회전은, 인쇄헤드에 대해 의도된 위치와 배향을 갖기 위해, 기판을 효과적을 재위치선정하기 위해 추가된다(가령, 교호하는 변환된 에지(107"' 및 107"")에 의해 표시된 바와 같이, 인쇄헤드 오차와 매칭되는 방식으로 모션을 생성하기 위해).
이러한 논의가 의미하는 바와 같이, 이전의 예시는 2개의 이송 경로에서의 오차의 교정을 나타내는데, 도 2e에서 참조되어 기술된 원리는, 단일 구동 경로에(가령, 기판 운송에 사용되는 트랜스듀서에) 또는 더 적은 수의 구동 경로에 적용되는 복수의 이송 경로에 대한 교정을 사용하여, 가령, 1, 2, 3, 4, 5 등과 같은 임의의 수의 이송 경로에서의 미세한 오차에 대해 교정하도록 적용될 수 있다. 이러한 논의는, 그리퍼 및 인쇄헤드 이송 경로가 정확히 90도 분리가 아닌 비직교성에도 적용된다는 점에 주목하고, 이는 측정된 인쇄헤드 x-위치-의존하는 오차의 경우에 등가로 처리될 수 있다. 또한, 용어 "이송 경로"는, 곡면 경로를 따른 위치 변화에 따라 도면에서 예시화되고, 상기에서 논의된 원리 및 미세한 오차 교정 절차는 임의의 이송 차원으로 미세한 오차에 대해 교정하기 위해 적용될 수 있는데, 즉, 회전 및 정확한 각 배향을 포함하고, 가령, 수단이 회전되는 실시예에서는, 변화 또는 배향의 각속도에서의 "지터"를 측정할 수 있고, 이러한 미세한 오차에 대해 교정하기 위해 상기에서 예시된 바와 같이, 트랜스듀서 및/또는 구동 신호 교정을 사용할 수 있다.
II. 제작 장치에서의 오차의 측정 및/또는 검출 및 대응
도 3a는 상기에서 소개된 테크닉의 일부를 실행하는 방법 단계(301)를 나타내는 순서도이다. 번호 303에 의해 표시된 바와 같이, 본 방법은, 미세한 모션, 위치 또는 모션 시스템의 배향 오차에 대해 교정하게 되는 이송 경로를 가진 시스템에서 구현될 수 있는데, 가령, 시스템은, 이전에 소개된 바와 같이, 물질 증착을 위한 인쇄기를 사용하여, 높은 정확성 제품 "어셈블리-라인-스타일" 제조를 수행할 수 있다. 305에 의하면, 오차가 측정되고, 선택적으로 번호 307에 표시된 바와 같이, 하나 보다 많은 차원 또는 하나보다 많은 이송 경로에서 측정된다. 하나 이상의 트랜스듀서에 적용될 이러한 오차 또는 관련된 교정은 309에 의하면, 경로 위치의 함수로서(또는 가령, 경과된 시간과 같은 또 다른 유사한 기준, 구동 신호, 온도 등의 함수로서) 디지털 메모리 내에 저장된다. 번호 311에 의해 표시된 바와 같이, 일 실시예에서, 경로 위치는 가령, 이전에 언급된 바와 같이, 스플릿-축 정확성 인쇄 시스템 내의 카메라 또는 다른 광학 센서를 사용하여 선택적으로 검출되는데, 이러한 센서는 운송 경로에 근접한 접착 테이프 상의 마크, 가령, 이송 경로를 따른 트래블의 모든 마이크론에 대한 정렬 마크를 측정하는데 사용될 수 있다. 이송 동안에(가령, 제품 제조 동안에), 저장된 오차 및/또는 교정은 이러한 위치 및/또는 다른 인자의 함수로서, 메모리에서 판독되고, 번호 313에 의하면, 위치 및/또는 배향 교정을 실시하기 위해 하나 이상의 트랜스듀서를 구동하는데 사용된다. 번호 315 및 317에 의해 표시된 바와 같이, 일 실시예에서, 복수의 트랜스듀서가 있을 수 있고, 이들 각각은, 도 2a에서 소개된 바와 같이, 고정된 피봇점 없이, 선택적으로 평행한 미크로-쓰로우를 실시하기 위해 구성된다. 결과는, 번호 319에 의해 식별된 바와 같이, 그리고 이전에 언급된 바와 같이, 이송되는 것은 가상의, 이상적인 경로를 따른다는 것이다.
도 3b는 번호 351에 의해 일반적으로 표시된 바와 같이, 이송 경로 오차를 교정하기 위해 많고 다양한 형태로 구현될 수 있도록 상기 제시된 테크닉을 나타낸다. 응용예를 제조하기 위한 인쇄기의 맥락에서, 인쇄 방안은, 번호 352에 의해 표시된 바와 같이, 어셈블리-라인-스타일 프로세스의 일부로서 연속적인 기반으로 많은 기판 상에서 반복적으로 인쇄하기 위해 사용되는 방식으로, 미리 저장되거나 캐시될 수 있다. 비제한적인 예시에서, 본원에서 사용되는 테크닉은 기판의 모션, 하나 이상의 인쇄헤드 또는 인쇄헤드 어셈블리의 모션, 카메라 어셈블리 또는 검사 툴 등의 모션에 대응되는 경로에 따라, 반복가능한 미세한 모션 오차에 대한 교정에 적용될 수 있다. 온도, 인쇄헤드 위치 등과 같은 다른 인자도 사용될 수 있다. 이들 테크닉은 미세한 오차에 대해 이들 이송 경로를 따른 모션의 자동화된 교정을 허용하여서, 실제 이송 구동 수단(가령, 그리퍼의 모션, 에지 가이드, 트래블러 등)이 의도하지 않은 오프셋, 비선형성 및 다른 오차를 전달하는 경로 오차에 의한 지장이 여전히 있음에도 불구하고, 기판(또는 선택적으로 이들 시스템의 임의의 것)의 모션이 이상적인 경로에 대응되도록 한다. 일반적으로 말하면, 교정은 인쇄 방안과 독립적인 서브시스템에 의해, 기판이 이상적으로 위치되도록 하기 위한 인쇄 계획을 허용하는 방식으로 행해진다. 예를 들어, 일 실시예에서, 본원에서 기술된 구조물은, 이송 경로에 대해 제1 차원으로 오차 또는 의도하지 않은 오프셋 "Δx"에 대응하기 위한 수단을 제공하는데, 여기서, 제1 차원은 이송 경로로부터 독립적이다(이는, 이송 경로에 직교인 적어도 하나의 성분을 포함한다는 것을 의미함). 이러한 수단은, 이송 경로 위치의 함수로서 제어되는 적어도 하나의 트랜스듀서를 포함할 수 있어서, 도 3b의 번호 353에 의해 표시된 바와 같이, "Δx"를 감소 또는 제거한다. 이러한 수단은 일반적으로, 이송 경로를 따른 함수 및/또는 다른 인자의 함수로서, 위치적 변위를 실시하기 위해 전자적으로 제어되는 트랜스듀서를 포함한다. 번호 354에 의해 표현된 바와 같이, 이들 구조물(또는 서로 다르고 잠재적으로 중첩되는 세트의 구조물)은, 제1 차원(가령, 도 2b의 실시예에서 "x3"에서)으로 구체적이고 임의의 위치에서 가상의 에지를 형성하고, 이러한 위치로 이송 경로에 대해 그리퍼 구성요소(또는 이송되는 구조물)를 오프셋하는 수단을 제공할 수 있는데, 그 전에, 이러한 수단은 또한 일반적으로 트랜스듀서 및 상기 트랜스듀서가 오차를 무효화 하거나 균등화하도록 하는 관련 하드웨어 및/또는 명령적 로직을 포함한다. 번호 355에 의하면, 또 다른 실시예에서, 본원에서 기술된 구조물은 이송 경로에 대해 제2 차원으로 오차 "Δy"에 대응하기 위한 수단을 제공하는데, 이러한 제2 차원은 선택적으로, 이송 경로로부터 독립적이지만, (대신에) 공통 차원을 이송 경로로 나타낼 수 있거나, 아니면, 이송 경로와 일반적으로 동의어일 수 있다. 이러한 수단은, 상기 도시된 실시예에 있어서 이송되는 "것"의 위치를 교정함에 의해, 또는 아니면, 이송 경로에 따른 속도나 모션을 조절함에 의해, "Δy"를 감소 또는 제거하기 위해, 이송 경로 위치(및/또는 다른 인자)의 함수로서 제어되는 적어도 하나의 트랜스듀서를 포함할 수 있다. 또 다른 변형예로서, 번호 356에 의하면, "Δy"에 대응하기 위해 적용될 수 있는 동일한 구조물은, 제2 차원(가령, 상기 실시예에 대해 제로가 아닌 "y3")으로 구체적인(절대적 또는 상대적) 위치에서 가상 에지를 형성하고, 이러한 위치로 이송 경로(또는 이송되는 구조물)를 오프셋하기 위한 수단을 제공할 수 있는데, 또한, 이러한 수단은 일반적으로, 트랜스듀서 및 상기 트랜스듀서가 이송 경로를 따른 위치의 함수로서 위치적 변위를 실시하도록 하는 로직을 포함한다. 일 실시예에서, 이러한 수단은 또 다른 이송 경로 또는 관련된 오차 교정 시스템, 가령, 인쇄헤드 이송과 관련된 오차 교정 시스템(가령, 노즐 분사 시간, 기판, 인쇄헤드 또는 다른 위치 오차 또는 오차의 다른 소스에 대해 보상하기 위해)을 포함할 수 있다. 또 다른 실시예에서(357), 상기에서 논의된 것과 유사한 트랜스듀서는 회전 오차(Δθ)에 대응하기 위해 적용될 수 있는데, 일 실시예에서, 이러한 수단은, 전기 에너지를 구조적 회전으로 전환하는 단일 트랜스듀서 및 다른 실시예에서, 동일한 효과를 위해 적용될 수 있는 2개 이상의 위치 트랜스듀서를 포함할 수 있다. 예를 들어, 상기에서 논의된 바와 같이, 하나의 실행예는, 독립적으로 작동될 때, 보이스 코일의 지지에 있어서 구조적 강성을 제공하는데 사용되는 플로팅, 기계적 피봇 수단으로, 이송되는 것의 회전 조절을 제공하는, 각각이 선형 트랜스듀서인 2개의 보이스 코일을 사용할 수 있다. 이들 구조물(또는 서로 다르고, 잠재적으로 중첩되는 세트의 구조물)은 또한, 상기에서 논의된 제1 및 제2 차원에 대한 구체적인(절대적 또는 상대적) 각 관계(가령, 상기 실시예에서 "θ3")에서 가상의 에지를 형성(358)하고, 이러한 배향에 대응되는 방식으로 이송 경로(또는 이송되는 구조물)를 오프셋하기 위한 수단을 제공할 수 있다. 여전히 또 다른 실시예(359)에서, 본원에서 기술된 구조물은 이송 경로에 대한 제3 차원으로 오프셋 "Δz"에 대응하기 위한 수단을 제공하는데, 여기서, 제3 차원은 선택적으로 이송 경로는 물론 상기 언급된 제1 및 제2 차원으로부터 독립적이다. 이러한 수단은 오차를 감소 또는 제거하기 위해 이송 경로 위치의 함수로서 하드웨어 및/또는 소프트웨어에 의해 제어되는 적어도 하나의 트랜스듀서를 포함할 수 있는데, 트랜스듀서 및 로직을 지원하는 것은 Z3(360)에서 가상 에지를 형성하는데 사용될 수 있다. 번호 361 및 관련 세트의 타원에 의하면, 이들 테크닉은, 임의의 3개의 위치 차원 및 임의의 3개의 회전 차원(즉, 요, 피치 및/또는 롤)의 오프셋 및/또는 교정을 포함하는 복수의 차원에 적용될 수 있다. 일부 실시예에서, 번호 363에 의해 표현된 바와 같이, 정렬 불량에 대해 교정하기 위한 수단은 기판을 인쇄기의 기준계에 정렬하기 위해 적용될 수 있고, 이러한 수단은 카메라와 같은 위치 센서, 핸들러 또는 다른 이송 디바이스, 프로세서 및 관련된 지지 명령적 및/또는 하드웨어 로직을 포함할 수 있다. 번호 365에 의하면, 인쇄헤드(PH) 내의 오차를 교정하고 및/또는 정렬하기 위한 수단은 플로팅 피봇점을 위한 지지부 및/또는 상기에 언급된 바와 같은 공통 및 차동 교정 모드를 가진 트랜스듀서를 포함할 수 있다. 번호 366에 의하면, 오차(또는 트랜스듀서에 대한 교정 제어)를 기록하기 위한 수단은 하드웨어 및/또는 명령적 로직 및 메모리를 포함할 수 있다. 또한, 시스템은, 복수의 오차의 소스(가령, 복수의 이송 경로에 대한)를 교정하기 위하여, 오차 및/또는 교정 신호를 결합하기 위한 수단(367)을 포함할 수 있다.
가령, "x", "y", "θ" 또는 다른 차원에 대해 언급된 차원적 기준 각각은 임의적인데, 즉, 이들은 임의의 차원을 말할 수 있고, 카테시안 또는 정규 또는 직사각 좌표에 제한되지 않는다는 것에 주목해야 하고, 일 실시예에서, "x" 및 "y" 차원은 제작 시스템의 "크로스-스캔" 차원 및 "인-스캔" 차원에 각각 대응되지만, 이는 모든 실시예에 대한 경우일 필요는 없다.
이러한 방식으로 모션 오차에 대해 교정함에 의해, 기계적 모션 시스템이 여전히 지장이 있고, 현존하고, 반복가능한 흠을 계속하여 추적함에도 불구하고, 기술된 프로세스는 "가상의" 및/또는 이상적인 및/또는 직선의 이송 경로를 제공한다. 상기 언급된 산업용 인쇄기와 같은 제조 시스템의 맥락에 적용될 때, 이들 테크닉은 정확한 위치선정과 제조를 가능하게 하기 위한 강력한 툴을 제공한다.
도 4a는 개개의 패널 제품을 나타내는 복수의 파선 박스가 있는 기판(401)을 나타낸다. 도면의 좌측 하단에 보이는 이러한 하나의 제품은 기준 번호 402를 사용하여 표시된다. 일 실시예에서, 각각의 기판(기판의 일련의)은 번호 403에 의해 표현된 것과 같이 복수의 정렬 마크를 가진다. 일 실시예에서, 이러한 2개의 마크(403)는 전체적으로 기판에 대해 사용되어서, 인쇄기의 기계적 구성요소(가령, 그리퍼)에 대하여 기판 위치 오프셋의 측정할 수 있고, 또 다른 실시예에서, 3개 이상의 이러한 마크(403)는 추가적인 조절(가령, 회전 조절)을 가능하게 하는데 사용된다. 또 다른 실시예에서, 이러한 패널(4개의 도시된 패널 중 임의의 것과 같은)은 마크(405)와 같이 패널 당 정렬 마크가 수반되는데, 이러한 후자의 스킴은 그리퍼 정렬을 허용하여, 인쇄되는 개개의 패널이 인쇄기의 좌표 기준계에 정확하게 정렬되도록 한다. 어느 스킴이 사용되던, 하나 이상의 카메라(406)가, 인쇄기의 좌표 기준계에 대한 기판 위치를 식별하기 위해, 정렬 마크를 이미징하는데 사용된다. 하나의 고려된 실시예에서, 단일 모션리스 카메라가 사용되고, 인쇄기의 이송 수단(가령, 핸들러 및/또는 공기 플로테이션 수단)은 각각의 정렬 마크를 단일 카메라의 시계에 순서대로 위치시키기 위해 기판을 이동시키고, 다른 실시예에서, 카메라는 기판에 대해 이송하기 위한 모션 시스템(가령, 이전에 논의된 바와 같은 인쇄헤드 어셈블리)에 장착된다. 카메라는, 실시예에 의존하여, 인쇄헤드의 공통 어셈블리 또는 제2 어셈블리, 인쇄헤드 이송에 사용되는 공통 트래블러 또는 완전히 독립적인 트래블러에 장착될 수 있다. 다른 실시예에서, 저배율 및 고배율 이미지가 찍힐 때, 저배율 이미지는 고해상 배율을 위한 기준을 대략적으로 위치시키고, 고배율 이미지는 인쇄기 좌표계에 따라 정확한 기준 위치를 식별하는데, 라인 또는 CCD 스캐너가 사용될 수 있다. 이전에 논의를 생각해보면, 인쇄기의 이송 수단(들)(및 이와 관련된 피드백/위치 검출 수단)은, 기판을 인쇄기의 좌표 기준계로 정렬(및 선택적으로 기계적으로 재위치선정)하기 위해 기판 당 사용되는 이미징 시스템으로, 모션을 의도된 위치의 약 마이크론 이내로 제어하고, 사전기록된 오차 또는 트랜스듀서 교정 신호는 그리고 나서, 기술된 방식으로 반복가능한 모션 오차에 대해 교정하기 위해 적용될 수 있다.
전형적인 실행예에서, 인쇄는 주어진 물질 층을 한 번에(즉, 복수의 제품을 위한 층을 제공하는 단일 인쇄 프로세스로) 전체 기판에 증착하기 위해 수행될 것이다. 이러한 증착은 우물 내에 광 생성 층을 증착하기 위해, 개개의 픽셀 우물(도 4a에 도시되지 않음, 텔레비젼 스크린에 있어서 이러한 우물은 전형적으로 수백개가 있을 것임) 내에서 수행될 수 있거나, 인캡슐레이션 층과 같은 배리어 또는 장벽 층을 증착하기 위해, "블랭킷" 기반 상에서 수행될 수 있다는 것에 주목한다. 어떠한 증착 프로세스가 문제가 되더라도, 도 4a는 기판의 장축을 따라 2개의 설명적인 스캔(407 및 408)을 나타내고, 스플릿-축 인쇄기에서, 스캔 중간에 인쇄기가 인쇄헤드를 위치적으로 전진시키면서(즉, 도면 페이지에 대해 수직 방향으로), 기판은 전형적으로 앞뒤로(가령, 도시된 화살표의 방향으로) 이동된다. 스캔 경로가 선형으로 도시되지만, 이는 임의의 실시예에서 요구되는 것은 아니라는 점에 주목한다. 또한, 스캔 경로(가령, 407 및 408)가 커버되는 영역 면에서 인접하고 상ㅎ호 배타적으로 도시되지만, 이 또한 임의의 실시예에서 요구되는 것은 아니다(가령, 인쇄헤드(들)는 필요하거나 바람직하다면, 인쇄 스와스(print swath)에 대해 부분적 기반에 적용될 수 있음). 마지막으로, 임의의 주어진 스캔 경로는 전형적으로, 단일 통과로 복수의 제품에 대해 층을 인쇄하기 위해, 기판의 전체 인쇄가능한 길이에 걸쳐 통과한다는 것에 주목한다. 각각의 통과는, 각각의 스캔 내의 각각의 액적이 기판 및/또는 패널 경계에 대해 정확하게 증착되어야 하는 것을 보장하는데 사용되는 트랜스듀서(도 4a에 미도시)에 대한 제어를 사용하여, 인쇄 방안에 따른 노즐 발사 결정을 사용한다.
도 4b는 본원에서 기술된 테크닉을 적용하기 위해 사용될 수 있는 하나의 완성된 멀티-챔버식 제작 장치(411)를 나타낸다. 일반적으로 말하면, 도시된 장치(411)는, 이송 모듈(413), 인쇄 모듈(415) 및 프로세싱 모듈(417)을 포함하는 여러 일반적인 모듈 또는 서브시스템을 포함한다. 각각의 모듈은 제어된 분위기를 유지하여서, 가령, 인쇄는 제1 제어된 분위기에서 인쇄 모듈(415)에 의해 수행될 수 있고, 가령, 유기 인캡슐레이션 층 증착이나 경화 프로세스(가령, 인쇄된 물질에 대한)와 같은 또 다른 증착 프로세스는 제2 제어된 분위기에서 수행될 수 있으며, 이들 분위기는 원하면 같을 수 있다. 장치(411)는 하나 이상의 기계적 핸들러를 사용하여, 기판을 제어되지 않은 분위기에 노출하지 않으면서, 모듈 간에 기판을 이동시킨다. 임의의 주어진 모듈 내에서, 다른 기판 핸들링 시스템 및/또는 구체적인 디바이스를 사용하고, 그 모듈에 대해 수행될 프로세싱을 위해 구성된 시스템을 제어할 수 있다. 인쇄 모듈(415) 내에서, 논의된 바와 같이, 기계적 핸들링은 플로테이션 테이블, 그리퍼 및 정렬/미세 오차 교정 수단의 사용을, 상기에서 논의된 바와 같이, 포함할 수 있다.
이송 모듈(413)의 다양한 실시예는, 입력 로드록(419)(즉, 제어된 분위기를 유지하면서, 다양한 환경들 간의 버퍼링을 제공하는 챔버), 이송 챔버(421)(기판을 이송하기 위한 핸들러를 가진) 및 대기 버퍼 챔버(423)를 포함할 수 있다. 인쇄 모듈(415) 내에서, 인쇄 프로세스 동안에, 기판의 안정된 지지를 위한 플로테이션 테이블과 같은 다른 기판 핸들링 수단을 사용할 수 있다. 또한, xyz-모션 시스템(스플릿-축 또는 갠트리 모션 시스템과 같은)은 인쇄기에 기판을 재위치선정 및/또는 정렬하는데 사용될 수 있어서, 기판에 대해 적어도 하나의 인쇄헤드의 정확한 위치선정을 제공하고, 인쇄 모듈(415)을 통해 기판의 이송을 위한 y-축 운송 시스템을 제공할 수 있다. 또한, 인쇄 챔버 내에서, 가령, 각각의 인쇄헤드 어셈블리를 사용하여 인쇄를 위한 복수의 잉크를 사용할 수 있어서, 가령, 두 개의 서로다른 타입의 증착 프로세스가 제어된 분위기 내의 인쇄 모듈 내에서 수행될 수 있다. 인쇄 모듈(415)은, 비-반응성 대기(가령, 질소 또는 비활성 가스)를 도입하기 위한 수단으로, 아니면, 환경 규제(가령, 온도 및 압력, 가스 성분 및 입자 존재)를 위해 대기를 제어하기 위한 수단으로, 잉크젯 인쇄 시스템을 수용하는 가스 인클로저(425)를 포함할 수 있다.
프로세싱 모듈(417)의 다양한 실시예는 가령, 이송 챔버(426)를 포함할 수 있는데, 이러한 이송 챔버는 기판을 이송하기 위한 핸들러를 포함한다. 또한, 프로세싱 모듈은 출력 로드록(427), 질소 스택 버퍼(428) 및 경화 챔버(429)를 포함할 수 있다. 일부 응용예에서, 경화 챔버는 모노머 필름을 균일한 폴리머 필름으로 경화, 베이크 또는 건조하는데 사용될 수 있는데, 가령, 두 개의 구체적으로 고려되는 프로세스는 가열 프로세스와 UV 조사 경화 프로세스를 포함한다.
하나의 응용예에서, 장치(411)는 액정 디스플레이 스크린이나 OLED 디스플레이 스크린의 대량 제작, 가령, 하나의 큰 기판 상에 (가령)한 번에 8개의 스크린의 어레이의 제작에 적용된다. 장치(411)는 어셈블리-라인 스타일 프로세스를 지원할 수 있어서, 일련의 기판이 연속으로 프로세스되고, 일련의 제2 기판이 인쇄 모듈(415) 내로 동시에 도입되면서, 하나의 기판이 인쇄되고, 그리고 나서, 경화를 위해 전진된다. 하나의 예시에서 제조된 스크린은 텔레비젼을 위해, 그리고 전자 디바이스의 다른 형태를 위한 디스플레이 스크린으로서 사용될 수 있다. 제2 응용예에서, 장치는 훨씬 동일한 방식으로 태양 패널의 대량 생선에 사용될 수 있다.
바람직하게, 인쇄 모듈(415)은 이러한 응용예에서, OLED 디스플레이 디바이스의 센시티브 소자를 보호하는것을 돕는 유기 광 생성 층 또는 인캡슐레이션 층을 증착하는데 사용될 수 있다. 예를 들어, 도시된 장치(411)는 기판과 함께 로딩될 수 있고, 인캡슐레이션 프로세스 동안에 제어되지 않은 분위기에 노출시킴에 의한 중단되지 않는 방식으로, 다양한 챔버들 사이에서 기판을 이동시키기 위해 제어될 수 있다. 기판은 입력 로드록(419)을 통해 로딩될 수 있다. 이송 모듈(413) 내에 위치된 핸들러는 기판을 입력 로드록(419)에서 인쇄 모듈(415)로 이동시킬 수 있고, 인쇄 프로세스의 완성 이후에, 기판을 경화를 위한 프로세싱 모듈(417)로 이동시킬 수 있다. 이후의 층의 반복된 증착에 의해, 제어된 두께의 각각에 있어서, 총합 인캡슐레이션은 임의의 원하는 응용예에 적합하게 하기 위해 빌드업될 수 있다. 상기에서 기술된 테크닉은 인캡슐레이션 프로세스에 제한되지 않고, 많은 다양한 타입의 툴이 사용될 수 있다는 것을 다시 한 번 주목한다. 예를 들어, 장치(411)의 구성은 가변될 수 있어서, 다양한 모듈(413, 415 및 417)을 다양한 병치로 둘 수 있게 되고, 또한, 추가적이거나 더 적거나 상이한 모듈이 사용될 수도 있다. 하나의 실시예에서, 도시된 장치(411)는 다른 모듈 및/또는 시스템과 데이지-체인될 수 있어서, 잠재적으로 원하는 제품(가령, 다양한 프로세스를 통해)의 다른 층을 생성할 수 있다. 일련의 제1 기판이 완성될 때(가령, 당해 기판을 형성할 물질을 증착하기 위해 프로세스되었을 때), 일련의 기판에서 또 다른 기판이 도입되고, 동일한 방식으로, 가령, 동일한 방안에 따라 프로세스된다.
도 4b는 한 세트의 링크된 챔버 또는 제작 구성요소의 예시를 제공하는데, 명백히 다른 많은 가능한 예가 존재한다. 상기에서 소개된 테크닉은 도 4b에 도시된 디바이스로 사용될 수 있거나, 실제로, 다른 임의의 타입의 증착 장비에 의해 수행된 제작 프로세스를 제어할 수 있다.
인쇄가 끝나면, 기판과 습식 잉크(즉, 증착된 액체)는 그리고 나서, 증착된 액체를 영구적인 층으로의 경화 또는 프로세싱을 위해 이송될 수 있다. 예를 들어, 도 4b의 논의로 잠깐 되돌아오면, 기판은 인쇄 모듈(415) 내에서 도포되는 "잉크"를 가질 수 있고, 그리고 나서, 제어된 분위기를 전혀 깨지 않고(즉, 습기, 산소 또는 입자성 오염물을 막기 위해 바람직하게 사용되는) 경화 챔버(429)로 이송될 수 있다. 상이한 실시예에서, UV 스캐너 또는 다른 프로세싱 수단은, 상기 언급된 인쇄헤드/카메라 어셈블리와 훨씬 동일한 방식으로, 원 위치(in situ)에서, 가령, 스플릿-축 트래블러 상에서 사용될 수 있다.
도 4c는 프로세스 흐름(431)을 나타내는데, 이 번에는 스플릿-축 인쇄기(433)의 맥락에서 구체적으로 근원을 두었다. "잉크"로서 액체 모너머의 사용, 제어된 분위기의 존재(증착된 잉크에, 원하지 않은 입자 및/또는 습기의 존재를 최소화하기 위함)에서 인쇄가 발생하도록 하는 인쇄기 인클로저의 사용, 복수의 인쇄헤드, 카메라, UV 또는 다른 어셈블리의 사용, 및 복수의 기판이 순차적으로 통과되고, 동일한 제조 프로세스(들)를 겪게 될 "어셈블리-라인" 스타일 프로세스의 사용과 같은 다양한 프로세스 옵션이 옵션 블록(434-437)에 도시된다. 프로세스 블록(439-456)은 이러한 인쇄기의 환경에서 반복가능한 오차를 사전측정(premeasure)하는데 사용되는 오프라인 캘리브레이션 프로세스를 말한다. 예를 들어, 오차가 측정되기 위한 이송 경로에 대하여, 번호 439에 의하면, 이송되는 것이 도입되고, 위치 오차 및/또는 회전 오차를 측정하기 위해, 그 위에 장착된 적절한 센서도 옵션으로 포함한다. 모든 실행예, 가령 하나의 시스템에 대해 요구되는 것이 아니고, 캘리브레이션 프로세스는 그리퍼 및 증분된 양을 전진시키고, 그리고 나서, 광학 검출 시스템(가령, 고화질 카메라에 입각된)을 사용하여, 기판 기준의 정확한 위치를 측정하고, 보간법(447)이 임의의 중간 위치에 대응되는 오차를 끌어내기 위해 적용된다. 또 다른 고려된 실시예에서, 그리퍼(가령, 그리퍼의 "제2 구성요소")는 광학 디바이스(가령, 거울 세트)에 장착되고, 이는 레이저 빔의 방향을 바꾸고, 하나 이상의 타겟은, 그리퍼가 전진됨에 따라, "수시로" "x 오차"의 크기를 연속적으로 검출하는데 사용된다. 명백하게, 많은 옵션이 기술 분야의 통상의 기술을 가진 자에게 떠오를 것이다.
어느 오차 검출 시스템이 사용되더라도, 특정한 이송 경로는 원하는 인쇄 프로세스(441)에 따라 구동되고, 이송되는 것의 위치가 측정된다(가령, 이송 경로에 따른 전진을 등록하고, 그 전진을 테스트 기판의 각각의 전진과 미세한 오차를 관련시키기 위해)(443). 도면의 우측에서의 옵션 블록에 의해 표현된 바와 같이, 예시적인 프로세스는 위치 신호(444)의 사용(가령, 아날로그 신호 또는 디지털 신호는 이송되는 것의 구동을 나타냄), 위치 센서(445)의 사용 및/또는 위치를 끌어내기 위한 또 다른 수단(446)의 사용을 포함한다. 번호 449에 의하면, 당해 이송 경로에 따른 각각의 위치에 대하여, 오차 및/또는 교정이 계산되고, 사용되어서 트랜스듀서 제어 신호를 생성하는데, 이는 비-일시적 저장소(452)에 저장되어 기록(451)되고, 이송 경로 위치 또는 전진 및/또는 다른 인자에 대해(또는 현재 그리퍼 위치와 인쇄헤드 어셈블리 위치의 함수로서, 복수의 이송 경로에 대한 위치선정을 위해) 인덱스(453)하는 방식이다. 이전의 예시를 지속하면서, 그리퍼가 디지털 위치 신호에 따라 전진된다면, 오차에 대해 교정하기 위한 트랜스듀서 제어 신호는 그리퍼와 관련된 디지털 위치 신호의 디지털 값에 의해 인덱스되는 방식으로 저장될 수 있고, 유사한 값은 각각의 다른 이송 경로 위치 및/또는 관심 있는 다른 인자의 값의 함수로서 옵션으로 저장된다. 복수의 트랜스듀서를 가진 실시예에 대하여, 각각은 경로 위치의 함수로서 독립적으로 구동되고, 각각의 트랜스듀서에 대한 제어 신호는 평행한 트랙(454)으로 옵션으로 저장될 수 있다. 번호 455에 의해 더욱 표시된 바와 같이, 옵션으로. 트랜스듀서 제어 신호는 각각의 독립적인 변환 수단(즉, 제어 신호는 가령, 그리퍼의 오차 완화 시스템을 위한 한 세트의 교정 및 인쇄헤드 어셈블리의 오차 완화 시스템을 위한 한 세트의 교정과 같이, 각각의 세트의 트랜스듀서에 대해 개발됨)에 대해 제2 또는 추가적인 반복으로 계산될 수 있다. 하나의 오차 교정 시스템이 복수의 이송 경로에 대해 교정하는 상황에서, 교정 신호의 어레이는 모든 관련된 이송 경로를 따라 위치의 함수로서 저장될 수 있다. 일 실시예에서, 이전에 주목한 바와 같이, 복수의 운송 경로에서 오차를 커버하기 위해, 오차 완화는 하나의 운성 경로에 대한 교정 시스템에 의해 수행될 것이고, 교정 신호는 각각의 관련 이송 경로 위치에 따라 중첩(아니면, 수학적 공식이나 방정식의 함수로서 개발됨)될 수 있는데, 가령, error (i,j) = fn{gripper:pos(i),printhead assembly:pos(j)}이다. 다른 예시가 기술 분야의 기술을 가진 자에게 떠오를 것이다. 번호 456에 의해 표시된 바와 같이, 교정이 복수의 이송 경로 위치의 함수가 된다면, 교정 신호 사전계산은, 각각의 이송 경로 위치에 대해 또는 각각의 이송 경로 위치의 각각의 조합에 대해 모션/오차 측정의 반복을, 옵션으로, 독립적인 자유도로서 각각의 이송 경로 위치를 다루는 것을 포함할 수 있다.
파선(457)은 런-타임 임무(선 아래)로부터 오프라인 캘리브레이션 임무(선 위)를 구획하는데 사용된다.
런-타임 동안에, 각각의 새로운 생산 기판이 도입되고, 가령, x, y 및 θ 차원에서 각각 정상화된 관계를 가지고 정렬된다(459). 각각의 이송 경로(가령, 기판, 인쇄헤드, 다른 것)는, 번호 460에 의하면, 사전프로그램된 인쇄 명령어에 따라, 즉 방안에 의존하여 구동된다. 번호 461에 의하면(및 각각의, 적절한 관련된 변수) 각각의 이송 경로 물건(가령, 기판, 인쇄헤드 등)의 위치는, 오차, 위치 값, 트랜스듀서 구동 값 또는 교정 및/또는 원하는 위치가 식별되거나 계산되는 어떤 다른 값을 불러오기 위한, 메모리(462)를 직접 인덱스하는데 사용된다. 이들 목적에 적합하고, 빠른 액세스를 위한 임의의 타입의 메모리는, 가령, 하드 드라이브, 고체 상태 저장소, 랜덤 액세스 메모리, 플래시 메모리, 콘텐트 어드레서블 메모리 등, 특정 설계와 관련되어 사용될 수 있다. 또 다른 실시예에서, 언급된 바와 같이, 공식이 저장되고, 런-타임에서 오차/오프셋의 계산을 위한 프로세서나 다른 회로에 제공될 수 있다. 그리고 나서, 트랜스듀서 교정은, 번호 463에 의하면, 운송 경로 위치의 함수로서 출력되어서, 가상의, 완벽한 이송 경로 또는 에지를 제공하고, 이러한 프로세스의 일부로서, 특정 실시예가 복수의 이송 수단 또는 이송 차원에 대해 교정된다면, 각각의 관련된 교정 및/또는 트랜스듀서 제어 값은 이 시점에서, 선택적으로, 중첩되거나, 및/또는 아니면 복수의 이송 경로에 대한 총합 오차(465)에 대한 교정을 생성하기 위해 결합될 수 있다. 번호 466 및 467에 의하면, 하나의 선택적인 설계에서, 시스템은 각각의 이송 경로에서 요 오차 및 병진 오차(가령, "x," "y" 및 "θ")에 대해 교정하는 반면, 다른 실시예에서, 하나 이상의 이송 경로에 대한 이송 구동 신호가 수정될 수 있다(가령, 이송의 주요 차원에서 병진 오차를 발생시키는 결점에 대해 교정하기 위함). 그리고 나서, 트랜스듀서는 하나 이상의 이송 경로에서 기계적 결점을 균등(equalize)하게 하기 위해 적절히 구동된다(468). 이전에 주목된 바와 같이, 일 실시예에서, 트랜스듀서는, 번호 469에 의하면, 그리퍼 경로 이송에 수직 방향으로 기판을 각각 오프셋하는 선형 트랜스듀서들을 포함할 수 있는데, 또 다른 실시예에서, 오프셋은 "가상의 에지" (471)를 생성할 수 있고, 또 다른 실시예(472)에서, 트랜스듀서는 보조 경로(가령, 인쇄헤드 경로, 그리퍼 구동 등)를 오프셋하는데 사용될 수 있다. 인쇄는 재정렬된 기판 상에서 수행되고, 프로세스는 종료되는데(473), 즉 다음 기판이 도입될 때까지 종료된다. 명백한 바와 같이, 이들 프로세스는 연속하여 각각의 기판을 프로세스하는데 사용될 수 있는 반복가능한 프로세스를 제공한다.
도 4d는 시스템 동작에 관련된 또 다른 순서도를 제공하는데, 이번에는 정렬과 관련되고, 일련의 단계가 번호 475를 사용하여 일반적으로 지정된다. 본 방법은 번호 476에 의하여, 시스템 초기화로 시작하는데, 가령, 이러한 초기화는 각각의 파워-업 또는 애드-호크(가령, 사용자-명령된) 또는 주기적 기판으로 수행될 수 있다. 정렬/검출 동작(477)은 그 후로, 이전에 표시된 바와 같이, 가령, 원점이나 공통 기준 프레임을 식별하기 위해, 다양한 운송 경로에 대해 수행되는데, 도면의 좌측에 표시된 바와 같이, 이러한 동작(또는 시스템 초기화)은, 가령, 인쇄헤드 또는 다른 시스템 구성요소의 변경을 야기하는 원하는 다음의 정비 동작이 수행될 수 있다. 번호 478은 전형적인 인쇄헤드 어셈블리 구성을 나타내는데, 즉, 어셈블리는 9개의 인쇄헤드(이는 하나의 큰 어셈블리 또는 가령, 3개의 인쇄헤드에 각각 스태거 구성으로 장착되는 3개의 "잉크-스틱"과 같은 복수의 서브 어셈블리 일 수 있음)를 장착한다는 것에 주목한다. 일 실시예에서, 인쇄헤드 당 256-1024개의 노즐이 있을 수 있다. 선택적으로, 각각의 인쇄헤드가 변경됨에 따라, 캘리브레이션은 계속하여, 번호 479에 의하면, 그리퍼 시스템으로 "상향(upward facing)" 카메라가 인쇄헤드의 하면을 이미징하는데 사용되게 하여, 번호 481에 의해, 인쇄기의 좌표 기준계에 따라 각각의 노즐의 정확한 x, y 위치를 측정하고, 즉, 각각의 인쇄헤드는 검색 알고리즘과 이미지 프로세싱 테크닉을 사용하여 각각의 노즐을 검출하고 식별하는데 사용되는 하나 이상의 기준을 특징으로 할 수 있다. 필요에 따라, 인쇄헤드 위치는 스텝퍼 모터나 기계적 조절의 사용을 통해, 조절될 수 있다(가령, 인쇄헤드 사이의 간격이 조절됨). 번호 483에 의하고, 참조 문헌(번호 62/459402)으로서 이전에 포함되었던 가특허 출원에 의해 참조된 바와 같이, 인쇄헤드 어셈블리에 의해 장착된 카메라 시스템은, 이들 다양한 위치 검출 기능을 가능하게 하기 위해, 그리퍼의 "상향" 카메라의 위치를 식별하는데 유사하게 사용될 수 있다.
각각의 기판이 도입됨에 따라(485), 기판의 위치는 정확히 식별되고, 인쇄기의 좌표 기준계에 따라 기판(및 그 위에 제작되는 임의의 제품)을 정렬하는데 사용된다. 새로운 기판이 로딩되고(487), 인쇄기의 이송 시스템(가령, 에지 정렬되거나, 아니면 초기 이송 프로세스를 사용함)으로 대략적으로 정렬된다. 인쇄헤드 어셈블리에 의해 장착된 "하향" 카메라 시스템은 그리고 나서 사용되는데, 검색 알고리즘과 적절한 이미지 프로세싱을 사용하여, 하나 이상의 기판 기준을 정확하게 찾는데(489), 가령, 이러한 검출은, 정확한 기준 위치 및/또는 배향이 검출될 때까지, 예상된 기준 위치에 대해 검색하는 유사한 검색 패턴이나 공간 패턴을 사용하여 수행될 수 있다. 그리고 나서, 일련의 옵션 및/또는 대안적인 교정 프로세스가 사용될 수 있어서, 기판을 정확하게 위치선정할 수 있는데, 가령, 프로세스 박스(491)에 의해 다양하게 표시된 바와 같이, 일 실시예에서, 상기 언급된 트랜스듀서는, 정확한 기판 위치선정(가령, 그리퍼의 "제2 구성요소"의 진공 록이 조절되지 않지만, 트랜스듀서는, 기판 기준이 정확하게 정확한 시작 위치와 배향을 가질 때까지, 공통-구동 모드 및/또는 차동-구동 모드에서 표현됨)을 제공하기 위해, 구동될 수 있다. 이러한 기판 위치/배향에 대응되는 트랜스듀서 위치는 그리고 나서, 제로 레벨이나 위치로 사용될 수 있고, 그리고 나서, 오차 교정(생산 동안에)은 그 위에서 중첩된다. 대안적으로나 추가적으로, 기계적 핸들러는 필요에 따라 기판을 재위치선정하는데 사용될 수 있다. 여전히 또 다른 대안예로서, 방안은, 미국 특허 공개 번호 20150298153에서 개시된 바와 같이, 소프트웨어에서 조절될 수 있어서, 모든 정렬 오차에 대해 교정할 수 있다(가령, 이전에 언급된 바와 같은, 그리퍼 및/또는 인쇄헤드 운송 시스템과 관련된 트랜스듀서르 위해 남겨진 반복가능한 오차에 대한 교정). 번호 493에 의하면, 그리고 나서, 인쇄가 발생하고, 인쇄 이후에, 방금-인쇄된 기판은 경화를 위해 언로딩되면서, 시스템은 로봇-지시 또는 인간-지시하에서 새로운 기판을 수용할 준비를 한다.
도 5는 참조 번호 501에 의해 집합적으로 지정된 복수의 다양한 실행 단계를 나타내는데, 이들 단계의 각각은 본원에서 소개된 테크닉의 가능한 구체적인 실행예를 나타낸다. 첫째, 본 개시물에서 소개된 테크닉은 그림(503)에 의해 표현된 바와 같이, 비-일시적 기계-판독가능한 매체 상에 저장된 명령어의 형태를 취할 수 있다(가령, 컴퓨터나 인쇄기를 제어하기 위한 실행가능한 명령어나 소프트웨어). 둘째, 컴퓨터 아이콘(505)에 대하여, 이들 테크닉은 가령, 다른 제품에서 사용이나 판매를 위해 구성요소를 설계하거나 제조하는 회사 내에서, 컴퓨터나 네트워크의 일부로서 선택적으로 실행될 수 있다. 셋째, 저장 매체 그림(507)을 사용하여 예시한 바와 같이, 이전에 소개된 테크닉은 저장된 인쇄기 제어 명령어의 형태를 취할 수 있는데, 가령, 실행될 때, 상기 논의한 바에 따라, 인쇄기가 정렬 오차를 완화하기 위해 다양한 잉크 부피나 위치의 사용에 의존하여, 구성요소의 하나 이상의 층을 제작하도록 하는 데이터와 같은 형태를 취할 수 있다. 인쇄기 명령어가 가령, LAN을 통해 인쇄기로 직접 전송될 수 있다는 것에 유의하고, 이러한 맥락에서, 저장 매체 그림은 컴퓨터나 인쇄기 내부 또는 이에 접근가능한 RAM 또는 플래시 드라이브와 같은 휴대용 매체를 (제한 없이) 나타낸다. 넷째, 제작 디바이스 아이콘(509)에 의해 표현된 바와 같이, 상기에 소개된 테크닉은 제작 장치 또는 기계의 일부로서 또는 이러한 장비나 기계 내부의 인쇄기의 형태로 실행될 수 있다. 제작 디바이스(509)의 특정한 도시는 도 4b와 관련하여 논의된 바와 같은, 하나의 예시적인 인쇄기 디바이스를 나타낸다는 것에 유의한다. 또한, 상기에서 소개된 테크닉은 제조된 구성요소의 어셈블리로서 구현될 수 있는데, 가령 도 5에서, 이러한 여러 구성요소는, 분리되고, 최종 소비자 제품으로 통합을 위해 판매될 준-완성된 플랫 패널 디바이스의 어레이(511)의 형태로 도시된다. 도시된 디바이스는 가령, 하나 이상의 광 생성 층 또는 인캡슐레이션 층 또는 상기 소개된 방법에 의존하여 제작된 다른 층을 포함할 수 있다. 상기에서 소개된 테크닉은 언급된 바와 같이, 가령, 휴대용 디지털 디바이스(513)(가령, 전자 패드나 스마트폰), 텔레비젼 디스플레이 스크린(515)(가령, OLED TV), 태양 패널(517) 또는 다른 타입의 디바이스와 같은 최종 소비자 제품의 형태로 구현될 수 있다.
그러므로, 위치적 오차나 이와 관련된 치유책의 자세한 소스에 대해 논의한 후에, 본 개시물은 이제 구체적인 제작 장치의 좀더 자세한 실시예에 대한 논의로 바뀔것이다.
III. 구체적인 실시예
도 6a-6e는 구체적인 인쇄기 실시예, 즉, OLED 디스플레이나 태양 패널의 제조에 적용되는 실시예를 논의하는데 사용된다. 제품 설계에 의존하여, 이들 도면에 도시된 인쇄기는 기판 상에 동시에 제품의 어레이에 대한 층(가령, 많은 스마트폰이나 다른 휴대용 디바이스 디스플레이, 도 4a로부터의 기판(411) 상의 개개의 어레이된 제품에 의해 개념적으로 표현된 바와 같은 아마도 한 번에 수 백개), 도 4a로부터의 HDTV(415)나 태양 패널(417)의 디스플레이 스크린과 같은 기판당 하나의 제품을 증착하는데 사용될 수 있다. 많은 다른 예시적인 응용예가 기술 분야의 당업자에게 자명해질 것이다.
좀 더 구체적으로 도 6a는, 기판 상의 구체적인 위치 상으로 잉크 드롭의 신뢰성있는 위치배정을 허용하도록 작동하는, 복수의 구성요소를 가진 인쇄기(601)를 도시한다. 도시된 시스템 내의 인쇄는 각각의 인쇄헤드 어셈블리와 기판 사이의 상대 운동을 요한다. 이는 모션 시스템, 전형적으로 갠트리나 스플릿-축 시스템으로 달성될 수 있다. 인쇄헤드 어셈블리가 정적인 기판 위에서 이동할 수 있거나(갠트리 스타일), 또는 스플릿-축 구성의 경우, 인쇄헤드 어셈블리와 기판이 모두 이동할 수 있다. 또 다른 실시예에서, 인쇄헤드 어셈블리는 실질적으로 정적일 수 있지만, 기판은 인쇄헤드에 대해 x-축 및 y-축 모두에 따라 이동된다.
인쇄기는 인쇄기 지지 테이블(603) 및 브리지(605)를 포함하는데, 인쇄기 지지 테이블(603)은 프레임(604)에 의해 장착된 평면 플로테이션 지지 표면을 사용하여, 기판(기판(609)과 같은)을 이송하는데 사용되는 반면, 브리지(605)는 복수의 인쇄헤드 및 가령, 광학 검사 툴, 경화 디바이스 등과 같은 다양한 지지 툴의 이송에 사용된다. 이전에 주목한 바와 같이, 그리퍼(가령, 도면에 도시되지 않은 진공 그리퍼)는 기판을 운반하기 위한 "빠른 축"을 제공하는 반면(가령, 차원 범례(602)와 같은 다른 곳에서 "y"축으로 언급되는 것에서), 브리지는 하나 이상의 인쇄헤드 어셈블리(611A 및 611B)가 "느린 축"을 따라 브리지(605)를 앞뒤로 이동하도록 허용한다. 인쇄를 실시하기 위해, 인쇄헤드 어셈블리(가령, 주요 어셈브리(611A))는 브리지를 따라 적절한 위치에 위치될 것인 반면, 진공 그리퍼는 제1 스캔이나 래스터를 제공하기 위해, "y" 차원을 따라 일반적으로 선형 방식으로 기판을 이동시키고, 인쇄헤드 어셈블리(611A 또는 611B)는 그리고 나서, 전형적으로 브리지(605)를 따라 서로다른 위치로 이동되고 정지되며, 그리고 나서, 진공 그리퍼는 새로운 인쇄헤드 어셈블리 위치 아래에 반대 방향으로 다시 기판(609)을 이동시키고, 다음의 스캔이나 래스터를 제공한다.
인쇄기 지지 테이블(603)은 다공성 매체를 포함하여, 평면형 플로테이션 지지 표면을 제공할 수 있다. 평면형 플로테이션 지지 표면은 입력 존, 인쇄 존 및 출력 존을 포함하는데, 이들은 번호(606-608)로 각각 지정되고, 기판(609)은 입력 존(606)에 도시되어, 인쇄될 준비가 된다. 양의 가스 압력과 진공의 조합은 포트의 배열을 통해 또는 지지 테이블에 의해 제공된 분포된 다공성 매체를 사용하여, 가해질 수 있다. 압력 및 진공 제어 모두를 가진 존이 플로테이션 테이블 표면과 각각의 기판(609) 사이의 유체 스프링을 제공하는데 효과적으로 사용될 수 있다. 양의 압력과 진공 제어의 조합은 양방향 강성을 가진 유체 스프링을 제공할 수 있다. 기판(609)과 플로테이션 테이블의 표면 사이에 존재하는 갭은 "플라이 높이(fly height)"라고 할 수 있는데, 이러한 높이는 양의 압력과 진공 포트 상태를 제어함에 의해 조절된다. 이러한 방식으로, 기판의 z-축 높이는 인쇄기 지지 테이블의 다양한 부분, 제한 없이 인쇄 존(607)에서 조심스럽게 제어될 수 있다. 일부 실시예에서, 기판이 가스 쿠션에 의해 지지되는 동안, 핀이나 프레임과 같은 기계적 유지 테크닉은 기판의 측방 병진을 제한하는데 사용될 수 있다. 이러한 유지 테크닉은, 기판이 유지되는 동안, 기판의 측면에 입사하는 순간적인 힘을 감소시키기 위해 스프링 로딩된 구조물을 사용하는 것을 포함할 수 있고, 이는 측방향으로 병진하는 기판과 유지 수단 사이의 강압 영향이 잠재적으로 기판 칩핑이나 재앙적인 파괴를 야기할 수 있기 때문에, 바람직할 수 있다. 인쇄기 지지 테이블의 다른 영역에서, 플라이 높이는 가령, 입력 존 또는 출력 존(606 및 608)에서와 같이 정확하게 제어될 필요는 없다. 영역들 간의 "천이 존"이 진공 노즐에 대한 압력의 비율이 서서히 증가하거나 감소하는 곳에 제공될 수 있다. 설명적인 예시에서, 압력-진공 존, 천이 존 및 압력만의 존 사이에 본질적으로 균일한 높이로 있을 수 있어서, 공차를 가지고, 세 개의 존이 본질적으로 하나의 평면에 놓일 수 있다. 다른 곳의 압력만의 존 위에 기판의 플라이 높이는 압력-진공 존 위의 기판의 플라이 높이보다 더 클 수 있어서, 기판이 압력만의 존의 인쇄기 지지 테이블과 충돌하지 않을 정도로 충분한 높이가 허용된다. 설명적인 예시에서, OLED 패널 기판은 압력만의 존 위에 약 150 마이크론(μ) 내지 약 300 μ 사이의 플라이 높이를 가질 수 있고, 그리고 나서, 압력-진공 존 위에 약 30 μ 내지 약 50 μ 사이의 플라이 높이를 가질 수 있다. 설명적인 예시에서, 인쇄기 지지 테이블(603)이나 다른 제작 장치의 하나 이상의 부분은 NewWay Air Bearings (미국, 펜실베니아, 아스톤)에 의해 제공된 공기 베어링 어셈블리를 포함할 수 있다. 다공성 매체는, 기판(609)의 전체를 차지하기 위해 명시된 물리적 치수 또는 디스플레이 영역이나 디스플레이 외부의 영역과 같은 기판의 명시된 영역에 대한 물리적 치수를 갖는 것과 같이, Nano TEM Co., Ltd. (일본, 니가타)로부터 얻을 수 있다. 이러한 다공성 매체는 명시된 영역 위에 원하는 압축된 가스 흐름을 제공하기 위해 명시된 구멍 크기를 포함할 수 있는 반면, 뮤라 또는 다른 가시적 결함 형성을 감소시키거나 제거할 수 있다.
도 6a의 예시에서, 핸들러 또는 다른 운송 시스템(미도시)은 각각의 기판(609)을 인쇄기 지지 테이블(603)의 입력 영역(606)으로 전달한다. 진공 그리퍼는 기판(609)에 연결되어, 그것을 입력 존(606)으로부터 인쇄 존(607)으로 이송시키고, 그리고 나서, 인쇄를 위해 기판을 앞뒤로 이동시켜서, 특정한 방안에 따라 인쇄기의 빠른 축을 따라, 각각의 "거의 마찰없고", 낮은 입자 생성, 고속 스캔을 실시한다. 인쇄가 종료될 때, 그리고 나서, 진공 그리퍼는 기판을, 기계적 핸들러가 인수하고, 기판을 다음 프로세싱 장비로 운송하는 출력 존(608)으로 이송한느데, 이런 시간 동안에, 새로운 기판이 입력 존(606)으로 수신될 수 있고, 그리고 나서, 진공 그리퍼는 그 존으로 다시 이송되어서 새로운 기판에 연결한다. 일 실시예에서, 잉크의 증착된 액적은 출력 존에서 함께 용융되도록 허용되고, 가령, 기판이 출력 존 내에 남아 있도록 허용되는 잠깐은 휴식이나 정착 기간을 통해, 인쇄와 정착 및 다음의 경화는 제어된 환경 내에서 수행된다(가령, 일반적으로 질소나 비활성 가스 또는 다른 비반응성 환경내에서).
또한, 도시된 인쇄기(601)는 하나 이상의 유지 또는 관리 베이(612A 및 612B)를 포함할 수 있는데, 이들 각각은 하나 또는 모든 인쇄헤드 어셈블리, 가령, 인쇄헤드, 카메라, "잉크 스틱"에 의해 모듈식 연결을 위한 툴(615-620)을 저장할 수 있는데, 마찬가지로, 일 실시예에서, 이들 베이는, 선택적으로 동일한 감싸진 공간(인클로저 부피) 또는 제2 부피내에 있는, 액적 측정 모듈, 퍼지 베이슨 모듈, 블로터 모듈 등과 같은 다른 구성요소와 상호작용하도록 구성된다. 일 실시예에서, 인쇄헤드 어셈블리는 번호 622에 의해 표시된 바와 같이, 3개의 "잉크 스틱"을 동시에 장착할 수 있는데, 각각의 "잉크 스틱"은 3개의 인쇄헤드를 지지하고, 인쇄헤드 어셈블리와 모듈식 연결을 위해 적응된 방식으로 유체 및 회로 접촉부를 지지한다. 잉크 전달 시스템(도 6a에 별도로 도시되지 않음)은 하나 이상의 잉크 저장소, 저장소와 하나 이상의 인쇄헤드 어셈블리 사이에 잉크를 운송하기 위한 잉크 공급 튜빙 및 적절한 제어 회로를 포함하고, 모션 시스템(도 6a에 별도로 도시되지 않음)은 서브시스템 마스터 프로세서와 제어 시스템과 같은 전자 제어 요소 및 그리퍼와 인쇄헤드 어셈블리 및 적절한 제어 코드를 위한 작동 요소를 포함한다.
인쇄헤드 어셈블리(611A/611B)는 브리지(즉, 트랙이나 가이드 상의)를 따라 타는 트래블러(623A/623B) 및 원하는 대로, 각각의 지지 베이(612A/612B)를 가진 모듈러 방식으로 잉크 스틱이나 다른 툴의 각각에 로봇식으로 연결 또는 분리되는 브리지의 전면(625A/625B)에 인접하여 장착된 연결 수단(624A/624B)을 각각 포함한다. 각각의 인새헤드 어셈블리(611A/611B)는 선형 공기 베어링 모션 시스템(본질적으로 낮은-입자 생성하는) 또는 다른 선형 모션 시스템에 의해 지지되어서, 브리지(605)를 따라 이동하도록 한다. 각각의 인쇄헤드 어셈블리는 적어도 하나의 인쇄헤드에 유체 및 전자 연결부를 수반하고, 각각의 인쇄헤드는 제어된 레이트, 속도 및 크기로 잉크를 분사할 수 있는 수백개 내지 수천개의 노즐을 가진다. 하나의 설명적인 예시를 제공하기 위해, 인쇄헤드 어셈블리는 약 1개 내지 약 60개의 인쇄헤드 디바이스를 포함할 수 있는데, 각각의 인쇄헤드 디바이스는 약 1개 내지 90개의 인쇄헤드를 가질 수 있고, 각각의 인쇄헤드는 16개 내지 2048개의 노즐을 가지고, 각각은 설계에 따라 약 1 내지 20 피코리터(pL)의 부피를 가진 액적을 토출할 수 있다. 전면(625A/625B) 각각은 기판의 표면 위에 연결 수단(그래서, 인쇄헤드나 다른 툴)의 높이를 제어하는 각각의 z-축 이동 플레이트를 제공한다. 트래블러와 연결 수단은 인쇄헤드 어셈블리에 대해 이전에 언급된 "제1" 및 "제2" 구성요소의 역할을 할 수 있는데, 가령, 일 실시예에서 이들 구성요소들은, x, y 및 z 차원의 각각에서 이송된 툴의 로봇식 조절을 허용하는 전자기계적 인터페이스(도 6a에 미도시)에 의해 연결된다. 이에 관하여, 이전에 언급된 US 가특허 출원 번호 62/459402는 인쇄헤드의 z-축 캘리브레이션에 관한 세부사항 및 일반적으로 인쇄기의 좌표 기준계의 다양한 다른 요소를 제공한다. 전자기계적 인터페이스는, 스테퍼 모터, 미세 조정 스크류 및 (a) 관련 연결 수단에 관한 각각의 툴의 x, y 및/또는 z 장착 및 (b) 각각의 툴간의 피치(가령, 잉크 스틱간의 피치)를 조절하기 위한 다른 수단을 바람직하게 포함할 수 있다. 또한, 각각의 툴은, 가령, 각각의 잉크 스틱에 의해 운반된 복수의 인쇄헤드들 간의 피치 조정을 위해, 다양한 미세 조절 수단을 포함할 수 있다. 전자기계적 인터페이스는 각각의 차원에서 원하는 위치의 마이크론 이내로, 각각의 툴을 반복적이고 신뢰성있게 연결하기 위한 운동학적 또는 이와 유사한 장착부를 포함할 수 있는데, 로봇식 조절 수단은 연결 수단에 관한 각각의 툴의 정확한 위치 조절을 위해 피드백을 제공하도록 선택적으로 구성된다.
전자기계적 인터페이스는 이전에 언급된 바와 같이, 가령, 관련된 트래블러(623A/623B)에 대하여, "y" 차원으로 선형적으로 연결 수단(624A/624B)을 오프셋하기 위해, 한 세트의 트랜스듀서도 바람직하게 포함한다. 이제까지의 논의로부터 자명한 바와 같이, 인쇄헤드(들)에 대한 "가상 직선 에지"를 제공하기 위한 트랜스듀서 교정 수단의 제공 및 그리퍼(도 6a에 미도시)에 대한 또 다른 "가상 직선 에지"를 제공하기 위한 트랜지듀서 교정의 제공은, 좀 더 "규칙적인" 인쇄 격자를 가능하게 하고, 가령, 이는, 균일한 액적 위치선정을 정확하게 하고, 인쇄 격자와 관련된 규치적인 간격을 보장하는데 도움을 주어서, 향상된 층 균일성을 촉진한다.
명백할수 밖에 없듯이, 도시된 구조적 요소는, 각각의 보이스 코일 어셈블리에 의해 기판의 공통 모드 변위를 사용하여 기판 x-축 위치에 대해 제어함은 물론, θ 차원(즉, z-축에 대한 회전)에 대한 기판의 배향에 대해 제어하도록 허용한다. 도시된 그리퍼 시스템의 다양한 실시예는 실시예에 따라, +/- 4300 마이크로-라디안 또는 그 보다 적게, 트래블의 y-축에 평행하게 기판의 배향을 유지시킬 수 있다. 이전에 언급된 바와 같이, 인쇄헤드(인쇄헤드 어셈블리) 위치와 배향에서의 편차를 더욱 매칭시키기 위해, 기판 위치를 조절하는 것을 더욱 원할 때, 이는 공통 모드 x-축 변위와 함께 배향에 대해 제어하고, 기판에 대해 플로팅 피봇점의 효과적인 실시예는 기판 모션과 트래블러 모션(가령, 인쇄헤드, 카메라 등)의 각각에 대해, 완벽하고 가상의 에지(또는 가이드)를 시뮬레이트하기 위해, 기판의 정확한 재위치선정을 허용한다. 이전에 주목한 바와 같이, 진공 그리퍼와 인쇄헤드 어셈블리/트래블러의 각각은 정렬 마크를 검출하기 위해 광학 시스템(도면에 미도시)도 포함하는데, 즉, 관련된 이송 경로를 따라 그리퍼나 인쇄헤드 어셈블리의 정확한 위치로 표시하는 전자 위치 신호를 제공한다.
관측되어야하는 바와 같이, 기판의 공기(가스) 베어링 지지부는 물론 그리퍼와 기판 사이의 진공 기반의 연결부와 함께 보이스 코일의 사용은 마찰력 없고, 기판의 이송과 미세한 위치 조절 모두를 위한 효과적인 수단을 제공한다. 이러한 구조는 전자 구성요소 제작 동안에(가령, 층 증착 및/또는 경화 동안에) 기판과의 접촉-최소의 상호작용을 유지하는데 도움을 주고, 이는, 기판 변형, 접촉에 의해 유도된 국부화된 기판 온도 변동 또는 정전기 에너지 빌드업과 같은 다른 효과의 결과로 생성될 수 있는 왜곡과 결함을 회피하는데 도움을 준다. 동시에, 거의 마찰없는 지지부와 트랜스듀서 시스템은 함께 기판 위치의 미세 조정을 수행하는데 사용되는 마이크론-스케일이나 더 우수한 쓰로우를 제공하는데 도움을 준다. 이들 구조는, 이전에 언급된 기계적 결점에도 불구하고, 그리고 증착 타겟의 역할을 하는 기판이 미터 길이이거 미터 너비이더라도, 하나 이상의 "가상 이송 경로"를 획득하기 위해 필요한 정확한 기판 교정을 수행하는데 도움을 준다. 또한, 보이스 코일은 가령, 7 마이크론 이상과 같은 비교적 큰 최대 쓰로우를 제공하도록 구성될 수 있는데, 이는 실시예에 따라 중요할 수 있다(가령, 문제가 되고 있는 시스템일 때, 주어진 그것의 제조 허용오차, 이러한 크기의 지터를 경험함).
도 6b는 추가적으로 자세히 진공 그리퍼(631)를 도시한다. 진공 그리퍼(631)는 다시 한번 제1 구성요소(633)(도면에 도시되지 않는 y-축 캐리지 상부를 타는), 기판에 연결되는 제2 구성요소(635) 및 두 개의 선형 트랜스듀서(637 및 639)를 포함한다. 도시된 바와 같이, 제2 구성요소는 제1 구성요소 위에 수직으로 안착되는데, 둘다 이송의 그리퍼의 방향(가령, 범례(632)에 의해 도시된 "y-차원"을 따라)을 따라 전진되고, 제2 구성요소는 기판에 선택적으로 연결하는데 사용되는 진공 척(643)을 지지한다는 것을 주목한다. 가상 피봇점의 사용에 입각한 이전의 예시와 달리, 본 예시는 플로팅 기계적 피봇 어셈블리 또는 수단(641)을 더 포함하는데, 이는 제1 및 제2 구성요소(633/635) 사이의 기계적 링키지를 제공하고, 그리퍼는 y-차원을 따라 전진하여, 선형 트랜스듀서가 보이스 코일로 구현되는 실시예에 대해 구조적 지지부를 제공하는데 도움을 준다. 플로팅 피봇 수단은 피봇 샤프트(651), 어셈블리 어퍼 플레이트(653)(그리퍼의 제2 구성요소(635)에 장착됨) 및 그리퍼의 제1 구성요소(633)에 의해 제공되는 지지 프레임(644)에 대해 레일 상에서 이동하는 x-축 슬라이딩 로워 플레이트(655)를 포함한다. 어셈블리 어퍼 플레이트는 바람직하게, 비교적 얇은 물질로 제조되어서, 가령, 기판과 플로테이션 테이블에 대해 그리퍼의 제2 구성요소의 레벨링을 허용하기 위한 만곡부를 제공하고, 장착 브래킷(656)을 사용하여 제2 그리퍼의 제2 구성요소에 강하게 고정된다. 간단히 말하면, 구성요소(633)가 y-차원을 따라 전진하면서, 플로팅 수단 피봇 수단(641)은 구성요소(635)를 제한하여, y-차원을 따라 또한 전진하면서, 이들 구성요소(633/635) 간의 x-축 슬라이딩 상호작용 및 플로팅 피봇 축(649)에 대한 회전을 허용한다.
플로팅 피봇점은 이전에 논의된 바와 같이, 트랜스듀서(637 및 639)의 차동모드 또는 공통 모드를 허용하는데, 이들 다양한 모션은 모션 화살표(645/647)의 세트에 의해 더욱 표현된다. 일반적으로 말하면, 각각의 트랜스듀서는 장착 블록(657)(가령, 그리퍼의 제1 구성요소의 프레임(644)에 대해 장착됨) 및 장착 플레이트(661)(그리퍼의 제2 구성요소에 장착됨)에 연결되고, 선형 작동기(659)는 장착 블록과 장착 플레이트에 연결되어 x-축을 따라 정확한 변위를 제공한다. 번호 662는 선형 인코더를 나타내는데, 이는 관련된 트랜스듀서의 각각의 나노미터의 변위에 대한 신호를 생성하는데, 즉, 정확한 변위값으로 구동하기 위한 피드백을 제공한다. 파선 아웃라인(663 및 665)에 의해 표시된 바와 같이, 트랜스듀서(637/639)의 설계와 플로팅 수단 피봇 수단(641)은 도 6c 및 6d에 도시되고, 보다 상세하게 논의될 것이다.
특히, 도 6b는, 각각 소개된 기판의 대략적인 기계적 정렬을 위한 "정지"를 제공하는 기계적 뱅커(658) 및 인쇄기의 좌표 기준계를 정의하고, 다양한 인쇄헤드 어셈블리 구성요소의 상대적 거리와 위치를 식별하기 위해, 진공 그리퍼와 인쇄헤드 어셈블리(미도시)를 정렬하기 위한, 광학 경로(669)(도면에 중심 콘으로 표현됨)를 통해 기준을 이미징하는데 (다시) 사용되는 "상향" 카메라(667)를 도시한다(가령, 인쇄기의 좌표 기준계와 관련하여, 도면에 도시되지 않은 정확한 인쇄헤드 노즐 위치와 인쇄헤드 어셈블리 카메라).
도 6c는 도 6b로부터의 선형 트랜스듀서(637)의 확대도를 나타낸다. 다시 한번, 다른 트랜스듀서(도 6b에서 번호 639에 의해 표시된)는 설계상 트랜스듀서(637)에 대해 일반적으로 동일하거나 대칭적이다.
좀 더 구체적으로, 이러한 예시에서 선형 트랜스듀서는 에어 베어링 상에서 지지되는 그리퍼의 제1 및 제2 구성요소(633/635)로 설계된 보이스 코일에 입각된다. 보이스 코일은 원통형 하우징(659) 내에 포함되어서, 이중 화살표(645)의 일반적인 방향을 따라, 제2 구성요소에 대하여, 제2 구성요소(가령, 진공 척 바 및 기판)의 변위를 허용한다. 조절 플레이트(670)는, x-차원 축을 따라(도 6b에서 차원 범례 632 참조) 제2 구성요소를 선형으로 이동시키기 위해, 이들 두 구성요소들 간에 xyz 배향으로 트랜스듀서의 미세 조절을 허용하는 것이 바람직하고, 다시 한번, 여기에 드물게 조절 및/또는 캘리브레이트되는, 수동으로 조절가능한 스크류의 구성이 제공될 수 있다. 또한, 보이스 코일은 전자 제어 신호의 함수로서, 즉, 다시 말해, 이중 화상표(645)의 방향으로, 장착 블록(657)을 향하여, 및 장착 블록으로부터 멀리, 장착 플레이트(661)를 변위시키기 위해, 빠르고, 정확한 미세한 쓰로우를 제공하는 자석-기반 설계를 다시 한번 가진다.
도 6d는 도 6b로부터의 플로팅, 기계적 피봇 수단(641)을 도시한다. 이전에 주목한 바와 같이, 어셈블리 어퍼 플레이트(653)는, 피봇축(649)에 대해 어셈블리 어퍼 플레이트(및 그리퍼의 제2 구성요소와 진공 척)의 피봇을 허용하는 부싱(bushing)을 포함한다. 이러한 축은 z-차원에 평행하게 수직으로 아래방향으로 연장하는 피봇 샤프트(651)에 의해 정의되고, 이는 x-축 슬라이딩 로워 플레이트(655)에 연결된다. 도면에 도시되지 않더라도, x-축 슬라이딩 로워 플레이트(655)는, 레일에 의해 (지지 프레임(644)을 통해) 그리퍼의 제1 구성요소에 연결되어서, 동시에 이들 두 구성요소(633/635)가 y-차원으로 함께 이동하면서, 구성요소(633)(및 지지 프레임(644))에 대한 일반적인 근거로, 어셈블리 어퍼 플레이트(653), 피봇 샤프트(651), 진공 척(643) 및 그리퍼의 제2 구성요소(635)의 비교적 마찰없는 x-축 변위를 허용한다. 이들 구조는 플로팅 피봇점에 대한 기계적 지지부를 제공하고, 공통-모드 및 차동-모드 보이스 코일 변위는 화살표(673) 및 회전 화살표(675)를 따라, 제2 구성요소의 오차-완화 오프셋을 각각 제공하는데 사용된다. 플로팅 피봇점은 모든 실시예에 요구되는 것이 아니라는 점에 주목하는데, 가령, 트랜스듀서가 충분한 출력 임피던스를 제공하는 실시예에서, 기계적 피봇 수단은 잠재적으로 생략될 수 있다. 기계적 지지 구조가 사용되거나 사용되지 않는지에 따라, 플로팅 피봇점은 복수의 트랜스듀서를 통해 공통-모드 제어 및 차동-모드 제어를 바람직하게 허용하여서, x 차원 및 θ 차원으로 기판을 재위치선정하여서, "직선 에지" 이상적인 이송 경로를 근사화하고, 다양한 수정예와 대안예가 기술 분야의 당업자에게 의심없이 발생할 것이다.
도 6e는 도 6b-6d에 의해 표현된 피봇 수단의 요소를 나타내는, 개략도(681)를 제공한다. 좀 더 구체적으로, 이러한 도면은 선형 x-축 레일(683)을 이제 나타내는데, 이는, 그 구조물(및 그 위에 지지된 모든 것)이 도면 페이지의 속으로 및 밖으로 타도록(ride) 허용하는, x-축 슬라이딩 로워 플레이트(655)의 양 측상의 베어링(685)을 효과적으로 제공한다. 동시에, 어셈블리 어퍼 플레이트(653)는 부싱(686)을 장착하여서, 피봇축(649)에 대해 x-축 슬라이딩 로워 플레이트(655)에 대하여, 그 플레이트의 자유로운 회전을 허용한다. 좀 더 구체적으로, 부싱(686)은 이러한 회전을 허용하기 위해 베어링(689)을 지지한다. 또한, 도 6e는 그리퍼의 제2 구성요소(635)와 트랜스듀서(637/639)에 대하여, 어셈블리 어퍼 플레이트(653)에 의해 제공된 만곡부도 나타낸다.
도 6a-6d에 도시된 트랜스듀서 교정 수단이 그리퍼 어셈블리의 맥락에서 예시화되었지만, 동일한 기본 구조물은 인쇄헤드 어셈블리를 위해(또는 각각의 인쇄헤드 어셈블리나 다른 툴 캐리어를 위해) 사용될 수 있다. 구체적으로, 제1 구성요소는 가스 베어링 위의 트랙(또는 x-축 캐리지 어셈블리)을 타는 반면, 인쇄헤드(또는 다른 툴)를 운반하는 제2 구성요소는, x-축 위치(및/또는 다른 요소 가령 온도)의 함수로서 차원인 위치의 함수로서 "y" 및/또는 "z"로 변위된다. 주어진 차원에서의 교정을 위해, 두 개의 트랜스듀서는 가상 또는 플로팅 피봇점으로 다시 사용되어서, 기판에 대한 인쇄헤드의 상대 위치에서 y 및 θ 교정(또는 z 및 xz-평면 각 교정) 모두를 실시하고, 그렇게 하여, 인쇄헤드가 가상의 직선 에지 경로를 따르도록 한다. 선택적으로, 이러한 두 개의 교정 수단을 함께 사용하여, 그리퍼와 인쇄헤드 이송 시스템의 각각에 대해 직선 에지 경로를 제공하여, 액적 위치에 대해 더 우수한 정확성을 제공하는 매우 정확하고, 규칙적인 인쇄 격자를 효과적으로 제공할 수 있다. 인쇄헤드의 Z-축 조절은, 유사한 설계의 트랜스듀서-기반의 모션 교정 시스템을 사용하여 제어될 수 있어서, 기판 표면에 대한 인쇄헤드 오리피스 플레이트의 높이 내의 교정을 제공하여, 개선된 정확성을 가지기 위한 높이 차이를 관리한다. 다른 자유도는 또한, 이러한 방식으로 교정될 수 있다. 정확성 모션 시스템에서, 특히, 인쇄/제조를 위해 사용되는 좌표 기준계가 복수의 이송 경로에 효과적으로 고정되는 인쇄기 기반 제작 시스템에서, 이러한 타입의 복수의 교정 시스템의 사용은 액적 착징 위치에 대한 정확성을 개선시켜서, 제작된 층의 더 우수한 균일성을 촉진하고, 결국, 이는, 가령, 5 마이크론 이하의 두께를 가진 더 얇은 층을 더 용이하게 생성하도록 한다. 상기에서 논의된 설계가 인쇄 격자 규칙성의 향상시킬 목적으로 "가상 직선 에지"의 사용을 강조하더라도, 모든 실시예가 그렇게 제한되는 것이 아니고, 거의 임의의 원하는 "이상" 경로가 본원에서 제공된 테크닉을 사용하여 근사화될 수 있다는 것을 다시 한번 명심해야 한다.
IV. 오차 측정
반복가능한 모션 오차에 대해 교정하는 시스템에서, 일반적으로, 신뢰성있는 동작을 보장하기 위해 오차를 정확하게 측정하는 것이 바람직하다. 이는, 수동은 물론 자동화 오차 측정 프로세스를 사용하여, 적절히, 그리퍼 이송 시스템, 인쇄헤드 이송 시스템 및/또는 또 다른 이송 시스템에 대해 수행될 수 있다. 수동 프로세스는 우선 아래에 기술되고, 이후에 훨씬 덜 힘든 자동화 측정 프로세스가 기술된다.
제1 테크닉에서, 고화질 카메라는, 이송 경로를 따라 전진과 관련되어, 선택적으로 이송 경로를 따라 각각의 전진 점에서, 및 선택적으로 이들 전진 점의 서브세트와 이송 경로에 대한 오차 모델을 식별하기 위한 보간법을 사요하여, 이송되는 물건의 위치 및/또는 배향을 정확하게 식별하는데 사용될 수 있다.
예를 들어, 이전에 시사한 바와 같이, 일 실시예에서, 이러한 캘리브레이션/오차 측정은, 테스트 기판, 그 기판을 그리퍼에 정렬(가령, 이전에 언급된 고화질 이미징 프로세스와 기판 기준을 사용하여) 및 원하는 인쇄 방안에 따라 기판을 전진시키는 것을 도입함에 의해, 그리퍼 운송 시스템에 대해 수행될 수 있으나, 대응되는 인쇄 방안에 대한 인쇄 대신에, 고화질 카메라가 x 및 y 모두로 이송되고(이송 경로 전진들 간의 점차적으로) 인쇄기의 좌표 기준계에 관하여 하나 이상의 기판의 기준의 특정 위치를 찾는데 사용되며, 검색 알고리즘과 이미지 프로세싱은 정확한 위치를 찾는데 사용되고, 이는 프로세서가, 예상된 좌표로부터의 편차의 파생을 허용한다. 이러한 오차 계산(및 트랜스듀서 구동 신호를 완화시키는 계산)은 캘리브레이션 서브시스템(즉, 그리퍼 서보 제어 서브시스템으로부터 분리되고, 오차/트랜스듀서 완화가 그리퍼 서보 제어 서브시스템으로 이송됨)에 의해 수행될 수 있거나, 캘리브레이션 프로세스는 그리퍼 서보 제어 시스템 내에 직접 내장될 수 있다. 또 다른 가능한 실시예에서, 전체 기판에 인쇄할 수도 있고, 그리고 나서 포렌식(가령, 잠재적 이미지 프로세싱)을 사용하여, 인쇄기 액적 증팍 패턴을 분석하는 것에 의존하는 지터/교정을 식별하고, 이미지 프로세싱은 증착된 습식 필름이나 경화된 필름의 액적 착지 위치 및/또는 파라미터를 식별하는데 사용되고, 식별된 위치/파라미터로부터 지터와 교정 완화를 추론할 수 있다. 또 다른 가능한 프로세스에서, CCD 또는 라인 스캐너는 증착 동안에, 기판 상의 인식가능한 특징부를 연속적으로 분석하는데 사용될 수 있고, 기판이 동적으로 전진됨에 따라, x 및 θ의 병진 및 각 편차로부터의 지터를 추론할 수 있다. 대체로 동일한 방식으로, 이송된 인쇄헤드는, 가령, 인쇄헤드 어셈블리(가능하면, 개개의 노즐 위치를 포함함) 상의 기준을 주기적으로 식별하고, 인쇄헤드의 y 및/또는 z 위치 편차 및 각각의 인쇄헤드 오리피스 플레이트의 평평함의 변화를 식별하기 위해, 가령, "상향" 카메라를 사용하여 분석될 수 있다. 예를 들어, 작은 위치 및/또는 각 편차를 식별하기 위해, 인쇄헤드 이송의 차원을 따라 상이한 위치에서, 별도의 카메라 시스템이 인쇄헤드(들)를 이미지하도록 할 수 있다.
도 7a는 그리퍼 운송 시스템에 다시 한번 적용되는 자동화 오차 측정 프로세스를 나타낸다. 동일한 프로세스가 인쇄헤드 위치를 측정하는데 사용될 수 있다는 것을 다시 한 번 주목한다(가령, 인쇄헤드 어셈블리가 이송됨에 따라 간섭 광학계를 인쇄헤드 어셈블리에 장착함에 의해, 및 인쇄헤드 어셈블리의 전진 경로를 따라, 인쇄헤드 어셈블리의 미세한 위치 및 각 편차를 검출함에 의해).
도 7a는 기판(또는 그리퍼) 위치 오차가 어떻게 측정되는지를 도시하는데 사용되는 설명적인 뷰를 제공한다. 측정 시스템은 번호 701에 의해 일반적으로 표현되고, 각각의 x 및 y 차원(본 예시에서)의 위치 편차는 물론 기판 회전(변수 θ에 의해 본원 어딘가에 표시된 요(yaw))을 측정하기 위해 레이져 간섭계의 사용에 의존한다. 좀 더 구체적으로, 테스트 기판(703)은, 간섭계 광학요소(707)가 장착된 진공 척(705)(가령, 이전에 언급된 바와 같은 그리퍼의 "제2 구성요소"에 의해 운반되는)에 의해 고정된다. 기판은 상기에서 소개된 정렬 마크를 가지고, 그리퍼도 하나 이상의 정렬 마크를 가지는데, 이는 진공 척에 대해 기판을 정확하게 위치시키기 위해, 초기 기판 도입 동안에 카메라나 다른 이미징 시스템에 의해 확인되고 이미징되며, 일 실시예에서, 기계적 핸들러 또는 전력 인가된 뱅커는, 적절한 상대적 위치가 달성될 때까지, 기판을 재위치시키는데 사용되며, 제2 실시예에서, 상기에 도입된 오차 보상 시스템(가령, 둘 이상의 트랜스듀서 및 플로팅 피봇점)은, 적절한 배향을 갖기 위해 기판을 재위치시키는데 사용되며, 대응되는 트랜스듀서 위치는 "영(zeroed)" 또는 오차 교정 시스템의 초기화된 위치로 채택된다. 그리고 나서, 기판 및 진공 척은, 원하는 인쇄 방안의 일부로서 이상적으로 수행되는 바와 같이, 번호 727에 의해 표현된 바와 같이, 그리퍼 이송 경로를 따라 이동된다. 이러한 시간 동안에, 레이져(709)는 특정한 파장의 광을 발산하는데, 이러한 광은 그리퍼-장착된 광학계(707)를 통해 이동하고, 하나 이상의 경로(727)를 따라 거울/타겟(713)으로 지향되고, 그리고 나서, 경로(729)를 통해 다시 광학 어셈블리를 통해 검출기(711)로 되돌아온다. 타겟의 성질은, 기판이 측정되는 차원을 따라 지터나 편차를 결험한다면(가령, 병진 또는 배향 베리에이션), 이는 검출기(711)에 의해 센싱되고 값을 생성하는데 사용되는 회절 패턴을 생성하고, 이러한 값은 컴퓨터(719)로 다시 공급되고 그리퍼의 위치나 전진의 함수로서 정확한 오차/위치 값을 계산하는데 사용된다. 레이져 간섭계 시스템(레이져 소스(709), 검출기(711) 및 타겟(713))은 인쇄기 새시(717)에 고정되는 방식으로 장착되지만, 오차에 대해 측정되는 간섭 패턴을 생성하는 것은 레이져(709)와 타겟(713)에 대해 광학계(707)의 움직임이라는 것에 주목한다. 광학계의 적절한 구성을 통해, 임의의 x, y, θ 또는 다른 차원의 오차는, 기판이 전진되면서, 동적으로 측정될 수 있고, 다른 오차(가령, z 축이나 다른 각 편차)는, 광학계가 어떻게 구성되고, 얼마나 많은 검출기 및/또는 광 소스가 사용되는지에 의존하여, 측정될 수 있다. 레이져 간섭계 측정 시스템은 오늘날 특정한 기계 툴에서 사용되고, 각각의 관심 차원을 측정하는데 알려진 테크닉을 사용하여, 레이져 소스 및/또는 타겟을 구성하기 위한 기술 분야의 당업자의 수준 내에 있다는 것에 주목하는데, 가령, 적절한 간섭계 시스템은 Renishaw, PLC에서 시판되는 "XL-80" 레이져 시스템이고, 이는 또한 광학 위치 선정 및 미세 위치 측정에 대한 트레이닝 물질을 발행하고, 기판 및/또는 그리퍼 위치의 측정에 이들 물질을 채택하는 것은 기술 분야의 당업자 수준에 있다. 측정 이후에, 오차/보상의 계산은 컴퓨터에 의해(즉, 적절한 소프트웨어(721)의 제어하에서 작용하는 하나 이상의 프로세서에 의해) 수행되는데, 이전에 주목된 바와 같이, 오차 및/또는 교정(731)은 비-일시적 저장소(723)(가령, 룩업 테이블) 내에 저장될 수 있고, 이후에, 그리퍼 위치 및/또는 다른 요소(가령, 온도, 특정 방안, 특정 패널 등과 같은)에 의해 인덱스되는 방식으로 생산 실행 동안에 판독된다.
도 7b는 도 7a와 유사하지만, 인쇄헤드 위치의 오차 또는 인쇄 시스템의 카메라 위치의 오차를 생성하는 미세한 기계적 결점을 측정하기 위한 구성(741)을 나타낸다. 이전과 같이, 컴퓨터(719), 소프트웨어(721) 및 비-일시적 저장소(723)는 오차를 측정하는데 사용된다. 도 7b에서, 인쇄헤드 어셈블리(또는 다른 이송된 물건)는 번호 745에 의해 표현되고, 이 어셈블리에 장착된 간섭계 광학계는 번호 743으로 표시된다. 어셈블리는 번호 755로 표시된 바와 같이, 트래블러(747)를 따라 앞뒤로 이동하고, 레이져 소스(749), 타겟(751) 및 검출기(753)는 측정되는 차원을 따라 위치적 편차를 측정하는데 다시 한번 사용된다. 이전과 같이, 레이져 소스(749), 타겟(751) 및 검출기(753)는 새시(717)에 모두 정확하게 장착되고, 측정 동안에 움직이지 않는다. 도 7b가 나타내는 바와 같이, 임의의 기계적 이송 경로는 이러한 방식으로 측정될 수 있고, 이러한 경로는 기판이나 다른 이송 경로(교정 트랜스듀서가 장착되는)에 독립적일 수 있다. 다시 말해, 저장된 오차 및/또는 교정 값(757)은, 제작 실행 동안에 필요하다면 비-일시적 저장소(가령, 룩업 테이블)로부터 판독될 수 있고, 인쇄헤드/카메라 위치 및/또는 다른 요소(가령, 온도, 특정 방안, 특정 패널 등과 같은)에 의해 필요하다면 인덱스될 수 있다.
이전에 언급된 바와 같이, 카메라 및/또는 인쇄헤드가 그리퍼(도 7b에 미도시)에 대해 어디에 있는지 식별하는 것이 필요할 수 있다. 상기에서 주목된 바와 같이, 각각의 이송 시스템은 하나 이상의 정렬 마크를 가지고, 그래서, 어셈블리(745)는, 그리퍼의 "위치 제로"로의 전진 및 이전에 언급된 바와 같은 좌표계 "원" 점을 식별하는데 사용되는 검색 프로세스와 카메라 이미징과 함께, 특정 위치(가령, 트래블러(747)의 좌측에 "위치 제로")로 이동될 수 있다. 마찬가지로, 정렬 마크(및 알려진 기하형상)를 가진 테스트 기판은 그리고 나서, 그리퍼(및 플로테이션 테이블)와 관련된 좌표계를 측정하고 연관갖도록 도입되어서, 이들의 위치 관계는 정확하게 알려진다. 또한, 이러한 타입의 프로세싱은 적절한 소프트웨어(721)의 제어하에서 작용하는, 컴퓨터 및/또는 프로세서(719)에 의해 수행되는 것이 바람직하다.
자동화된 오차 측정 프로세스는, 각각의 이송 시스템의 연속적인 작업 동안에 동적으로 기록되는 오차 및/또는 교정으로, 캘리브레이션 프로세스 동안에, 테스트 실행이 수행될 수 있다는 것을 포함하여, 많은 이점을 제공한다. 기록된 오차 및/또는 교정은 기술된 바와 같이 재생될 수 있다. 필요한 바와 같이, 오차 측정 프로세스는 가령, 시스템 스타트업에서, 마일스톤 이벤트(가령, 미리결정된 오차 스레숄드가 충족될 때나 주기적 간격으로 인쇄헤드 변경) 또는 요구되면(또는 작업자 명령) 재수행도리 수 있어서, 이전에 식별된 오차 및/또는 교정 값을 업데이트하거나 대체할 수 있다.
V. 결론
상기에 도입된 다양한 테크닉과 고려사항을 반영하여, 제조 프로세스는 제품을 대량 생산하고 단위 비용당 저렴하게 생산하기 위해 수행될 수 있다. 디스플레이 디바이스나 태양 패널 제조, 가령 플랫 패널 디스플레이에 적용되면, 이들 테크닉은, 공통 패널로부터 선택적으로 생성된 복수의 패널로 빠른 패널 당 인쇄 프로세스를 가능하게 한다. 빠르고 반복가능한 인쇄 테크닉을 제공함에 의해(가령, 패널 간 공통 잉크 및 인쇄헤드를 사용하여), 인쇄는, 가령, 상기 테크닉을 요하지 않으면서 시간의 작은 부분으로 층 당 인쇄 시간을 줄이는 것과 같이 실질적으로 개선될 수 있다고 여겨지고, 각각의 기판의 원하는 타겟 면적 내에서 일관된 기반으로 잉크의 정확한 증착을 모두 보장한다. 다시 대량 HD 텔레비젼 디스플레이의 예시로 되돌아오면, 각각의 컬러 구성 층은 대량 기판(가령, 대략 220cm x 250cm인 8.5 세대 기판)을 180 초 이하 또는 심지어 90 초 이하로 정확하고 신뢰성있게 인쇄될 수 있어서, 실질적인 기판 프로세스 개선을 나타낸다. 인쇄의 효율성과 품질을 개선하는 것은 대량 HD 텔레비젼 디스플레이를 생성하는 비용의 현저한 감소를 위한 길을 포장하여서, 최종 소비자 비용을 낮춘다. 이전에 주목된 바와 같이, 디스플레이 제조(및 특히 OLED 제조)는 본원에서 소개된 테크닉의 하나의 응용예이고, 이들 테크닉은 디스플레이 패널에 제한되지 않고, 다양한 프로세스, 컴퓨터, 인쇄기, 소프트웨어, 제조 장비 및 최종 디바이스에 적용될 수 있다. 특히, 개시된 테크닉은, 공통 인쇄 동작의 일부로서, 제한 없이 많은 마이크로전자 응용예를 포함하여, 인쇄기가 복수의 제품의 층을 증착하는데 사용되는 임의의 프로세스에 적용될 수 있다는 것이 예상된다.
기술된 테크닉은 많은 수의 선택사항을 제공한다는 것에 주목한다. 일 실시예에서, 패널(또는 제품당) 정렬 불량 또는 왜곡은 단일 어레이 내의 제품 마다 기반으로 또는 단일 기판 기반으로 조절될 수 있다. 인쇄기 스캔 경로는 하나 이상의 정렬 오차에 기초하여 조절/적용에 대한 필요성이 없이 계획될 수 있어서, 기판(또는 인쇄헤드와 같은 다른 이송되는 아이템)의 배향 불량은 기판과 운송 시스템(가령, 그리퍼)를 연결하는 트랜스듀서를 통해 자동으로 보상된다. 일 실시예에서, 트랜스듀서 교정은 다양한 이송 경로(가령, 인쇄헤드 이송 경로)의 오차를 완화하는데 사용될 수 있다. 선택적으로, 이러한 교정은 기판에서 기판으로(또는 패널에서 패널로) 반복하는 것이 예상되는 사전-측정된 오차에 기초할 수 있다.
또한, 다양한 실시예가 그리퍼(또는 기판을 운송 수단에 연결하기 위한 수단)의 사용을 나타냈고, 두 개의 트랜스듀서의 사용이 미세 조절을 실시하지만, 다른 실시에가 상이한 수의 이들 요소를 사용할 수 있다. 예를 들어, 일 실시예에서, 둘 이상의 그리퍼가 사용될 수 있는데, 이들 각각은 자체적으로 전용 트랜스듀서를 가진다. 대안적으로, 두 개보다 많은 트랜스듀서 및/또는 교정의 두 개보다 많은 축에 대한 트랜스듀서를 사용할 수 있다. 또한, 상기 기술된 테크닉은 진공 그리퍼 시스템을 사용하는 인쇄기에 적용되도록 예시화되지만, 다른 많은 응용예가 상이한 타입의 운송 수단, 상이한 타입의 인쇄기, 상이한 타입의 증착 수단 또는 또 다른 타입의 이송 경로나 수단을 사용하는 응용예를 포함하여 기술된 테크닉으로부터 이익을 얻을 수 있다. 명백하게, 많은 베리에이션이 본원에 기술된 창의적인 원리에서 벗어남 없이 존재한다.
상기의 기재 및 첨부된 도면에서, 특정 용어 및 도면 부호가 개시된 실시예의 완전한 이해를 제공하기 위한 것이다. 일부 경우에서, 용어 및 부호가 이들 실시예를 실시하는 데 필요하지 않은 특정 상세사항을 의미할 수 있다. 용어 "예시적" 및 "실시예"는 선호 또는 요건이 아닌 예시를 표현하는 데 사용된다.
지시된 바와 같이, 본 발명의 넓은 사상 및 범위 내에서 본 명세서에 표시된 실시예에 다양한 수정 및 변형이 이뤄질 수 있다. 예를 들어, 실시예들 중 일부의 특징부 또는 양태가 적용될 수 있고, 적어도 실시될 때, 실시예들 중 그 밖의 다른 임의의 실시예와 조합하여, 이의 대척적 특징부 또는 양태를 대신하여 적용될 수 있다. 따라서 예를 들어, 모든 특징부가 각각의 모든 도면에서 나타나지 않으며, 예를 들어, 본 명세서에 특정하게 언급되어 있지 않아도, 하나의 도면의 실시예에 따라 나타나는 특징부 또는 테크닉 및 예를 들어 하나의 도면의 실시예에 따라 도시된 특징부 또는 테크닉이 임의의 그 밖의 다른 도면 또는 실시예의 특징부의 요소로서 선택적으로 사용 가능하다고 고려되어야 한다. 따라서 본 명세서 및 도면은 한정이 아닌 설명을 위한 것으로 여겨질 것이다.

Claims (28)

  1. 전자 제품의 층을 제작하기 위한 장치에 있어서, 상기 장치는,
    기판 상에 물질을 증착하기 위한 인쇄기,
    물질의 증착 동안에, 기판을 이송하기 위한 운송 시스템 - 상기 인쇄기 및 운송 시스템 중 적어도 하나는 이송 경로에 따라 전진되는 구성요소를 가지고, 기계적 결함이 기판 및 인쇄헤드 중 적어도 하나의 이송 경로를 따른 이송 및 기판 상의 물질의 증착 시 오차를 발생시키고, 상기 오차는 병진 오차 및 회전 오차 중 적어도 하나임 - , 및
    상기 구성요소에 작동적으로 연결되고, 기판에 작동적으로 연결되는 적어도 하나의 작동기 - 상기 적어도 하나의 작동기는 이송 경로에 직교 방향에서 기판을 상기 구성요소에 대해 오프셋시키도록, 상기 오차의 함수로서 위치설정되도록 구성됨 -
    를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  2. 제 1 항에 있어서, 상기 구성요소는 상기 기판을 위한 그리퍼를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  3. 제 1 항에 있어서, 상기 운송 시스템은, 가스 베어링 상의 기판을 지지하기 위한 플로테이션 테이블, 및 이송 경로를 따라 기판을 이송하기 위한 그리퍼를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  4. 제 3 항에 있어서, 작동기 각각은 보이스 코일, 선형 모터 및 압전식 트랜스듀서 중 하나를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  5. 제 1 항에 있어서,
    운송 시스템이 이송 경로를 따라 전진되는 구성요소를 가지며,
    상기 운송 시스템은 제1 운송 시스템이고, 상기 구성요소는 제1 구성요소이고, 상기 오차는 제1 오차이고, 상기 작동기는 제1 작동기이며,
    상기 인쇄기는, 인쇄헤드 경로를 따라 인쇄헤드를 이송하기 위한 제2 운송 시스템을 포함하고,
    인쇄헤드의 이송은 제2 오차를 생성하는 인쇄헤드 경로 내의 기계적 결함을 특징으로 하며, 상기 제2 오차는 인쇄헤드의 이송 및 기판 상의 물질의 증착에 영향을 주고, 상기 제2 오차는 병진 오차 및 회전 오차 중 적어도 하나이고,
    상기 장치는, 제2 운송 시스템에 작동적으로 연결되고 인쇄헤드에 작동적으로 연결되며, 제2 오차의 함수로서 위치설정되는 적어도 하나의 제2 작동기를 더 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  6. 제 5 항에 있어서, 상기 인쇄헤드 경로는 이송 경로에 직교이며, 인쇄헤드는 제1 운송 시스템의 연속적인 스캔 중간에 인쇄헤드 경로를 따라 재 위치설정되는, 전자 제품의 층을 제작하기 위한 장치.
  7. 제 6 항에 있어서, 제1 운송 시스템은 가스 베어링 및 상기 기판에 작동적으로 연결되는 진공 그리퍼를 포함하고, 제2 운송 시스템은 가스 베어링을 포함하되, 제1 작동기 및 제2 작동기 중 적어도 하나는 보이스 코일을 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  8. 제 1 항에 있어서,
    운송 시스템이 이송 경로를 따라 전진되는 구성요소를 가지며,
    상기 운송 시스템은 제1 운송 시스템이고, 상기 구성요소는 제1 구성요소이고, 상기 오차는 제1 오차이고,
    상기 인쇄기는, 카메라 경로를 따라 카메라를 이송하는 제2 운송 시스템을 포함하고,
    상기 제2 운송 시스템은 카메라 경로를 따라 전진되는 제2 구성요소를 포함하고, 카메라 경로는 제2 오차를 생성하는 기계적 결함을 특징으로 하며, 상기 제2 오차는 카메라의 이송에 영향을 주고, 상기 제2 오차는 병진 오차 및 회전 오차 중 적어도 하나이며,
    상기 장치는, 제2 운송 시스템 및 카메라에 작동적으로 연결되고, 상기 제2 오차의 함수로서 위치설정될 적어도 하나의 작동기를 더 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  9. 제 1 항에 있어서,
    상기 장치는 제어된 분위기를 포함하는 인클로저를 포함하고,
    상기 인쇄기는 인클로저 내의 잉크젯 인쇄기이고,
    상기 운송 시스템은 가스 베어링 상의 기판을 지지하기 위한 플로테이션 테이블, 및 기판에 작동적으로 연결되기 위한 그리퍼를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  10. 제 9 항에 있어서, 작동기 각각은 이송 경로에 직교 방향에서 기판을 선형으로 변위시키는, 전자 제품의 층을 제작하기 위한 장치.
  11. 제 1 항에 있어서, 상기 적어도 하나의 작동기는 적어도 두 개의 작동기를 포함하고, 상기 장치는, 적어도 두 개의 작동기가 이송 경로에 직교 방향에서 기판을 변위시키는 공통-모드 제어 및 적어도 두 개의 작동기가 이송 경로에 대해 기판을 회전시키는 차동-모드 제어에 따라 적어도 두 개의 작동기를 제어하고, 상기 장치는 운송 시스템과 기판을 연결하는 기계적 어셈블리를 더 포함하고, 상기 기계적 어셈블리는 구성요소가 이송 경로에 대해 피봇하기 위한 플로팅 피봇 포인트를 제공하는, 전자 제품의 층을 제작하기 위한 장치.
  12. 제 11 항에 있어서, 상기 오차 및 이송 경로를 따르는 기판 전진의 함수로서 인덱싱되는 작동기 정보 중 적어도 하나를 기록하기 위한 수단을 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  13. 전자 제품의 층을 제작하기 위한 장치에 있어서, 상기 장치는,
    제어된 분위기를 위한 인클로저,
    기판 상에 물질을 증착하기 위한, 인클로저 내의 잉크젯 인쇄기 - 상기 물질은 상기 층을 형성함 - ,
    물질의 증착 동안에 기판을 이송하기 위한 운송 시스템 - 상기 잉크젯 인쇄기 및 운송 시스템 중 적어도 하나는 인클로저 내의 이송 경로를 따라 전진되는 구성요소를 가지고, 기계적 결함이 기판 및 인쇄헤드 중 적어도 하나의 이송 및 기판 상의 물질의 증착에 영향을 미치는 오차를 생성하고, 상기 오차는 병진 오차 및 회전 오차 중 적어도 하나임 - ,
    기판을 이송 경로에 직교 방향에서 구성요소에 대해 오프셋시키기 위해, 운송 시스템 및 기판에 작동적으로 연결되고 상기 오차의 함수로서 위치설정될 두 개 이상의 작동기 - 각각의 작동기는 이송 경로에 직교 방향에서 기판을 변위시키는 각자의 움직임을 실시함 -
    를 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  14. 제 13 항에 있어서, 상기 운송 시스템은, 가스 베어링 상의 기판을 지지하기 위한 플로테이션 테이블, 및 기판에 작동적으로 체결되기 위한 그리퍼를 더 포함하며, 각각의 작동기는 보이스 코일을 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  15. 제 14 항에 있어서, 상기 오차 및 이송 경로를 따라 기판 전진의 함수로서 인덱싱되는 작동기 정보 중 적어도 하나를 기록하기 위한 수단을 더 포함하는, 전자 제품의 층을 제작하기 위한 장치.
  16. 제 13 항에 있어서,
    운송 시스템이 이송 경로를 따라 전진되는 구성요소를 가지며,
    상기 이송 경로는 제1 이송 경로이고, 상기 오차는 제1 오차이고, 상기 두 개 이상의 작동기는 제1 작동기이고,
    상기 인쇄헤드는 제2 이송 경로를 따라 트래블되고,
    상기 제2 이송 경로는 제2 오차를 생성하는 기계적 결함을 특징으로 하며, 제2 오차는 인쇄헤드의 이송에 영향을 미치며, 상기 제2 오차는 병진 오차 및 회전 오차 중 적어도 하나를 포함하고,
    상기 장치는 상기 제2 오차의 함수로서 위치설정될 두 개 이상의 제2 작동기를 더 포함하되, 상기 두 개 이상의 제2 작동기 각각은 제2 이송 경로에 직교 방향에서 인쇄헤드를 변위시키는 움직임을 실시하는, 전자 제품의 층을 제작하기 위한 장치.
  17. 제 13 항에 있어서, 상기 장치는, 두 개 이상의 작동기가 이송 경로에 직교 방향에서 기판을 변위시키는 공통-모드 제어 및 두 개 이상의 작동기가 기판을 회전시키는 차동-모드 제어에 따라 두 개 이상의 작동기를 제어하고, 상기 장치는 구성요소 및 기판에 연결된 기계적 어셈블리를 더 포함하여, 구성요소가 이송 경로에 대해 피봇하기 위한 플로팅 피봇 포인트를 제공하는, 전자 제품의 층을 제작하기 위한 장치.
  18. 전자 제품의 층을 제작하는 방법에 있어서, 상기 방법은,
    인쇄기로 기판 상에 물질을 증착하는 단계,
    운송 시스템을 이용해, 물질의 증착 동안에 기판을 이송하는 단계 - 상기 인쇄기 및 운송 시스템 중 적어도 하나는 이송 경로에 따라 전진되는 구성요소를 가지고, 기계적 결함이 기판 및 인쇄헤드 중 적어도 하나의 이송 및 기판 상으로의 물질의 증착에 영향을 미치는 오차를 생성하고, 상기 오차는 병진 오차 및 회전 오차 중 적어도 하나임 - , 및
    기판을 이송 경로에 직교 방향에서 오프셋시키기 위해, 상기 구성요소 및 기판에 작동적으로 연결된 적어도 하나의 작동기를 오차의 함수로서 위치설정하는 단계
    를 포함하는, 전자 제품의 층을 제작하는 방법.
  19. 제 18 항에 있어서, 상기 운송 시스템은 가스 베어링 상의 기판을 지지하기 위한 플로테이션 테이블, 및 기판을 작동적으로 체결하기 위한 그리퍼를 더 포함하는, 전자 제품의 층을 제작하는 방법.
  20. 제 18 항에 있어서, 적어도 하나의 작동기 각각은 보이스 코일, 선형 모터 및 압전식 작동기 중 하나를 포함하는, 전자 제품의 층을 제작하는 방법.
  21. 제 18 항에 있어서,
    운송 시스템이 이송 경로를 따라 전진되는 구성요소를 가지며,
    상기 운송 시스템은 제1 운송 시스템이고, 상기 구성요소는 제1 구성요소이고, 상기 오차는 제1 오차이며, 상기 작동기는 제1 작동기이고,
    상기 방법은, 제2 운송 시스템을 사용하여, 인쇄헤드 경로를 따라 인쇄헤드를 이송 단계를 더 포함하고,
    제2 운송 시스템은 인쇄헤드 경로를 따라 전진되는 제2 구성요소를 더 포함하고, 인쇄헤드 경로는 제2 오차를 생성하는 기계적 결함을 특징으로 하며, 상기 제2 오차는 인쇄헤드의 이송 및 기판 상의 물질의 증착에 영향을 미치며, 제2 오차는 병진 오차 및 회전 오차 중 적어도 하나이며,
    상기 방법은, 제2 구성요소 및 인쇄헤드에 작동적으로 연결된 적어도 하나의 제2 작동기를 제2 오차의 함수로서 위치설정하는 단계를 더 포함하는, 전자 제품의 층을 제작하는 방법.
  22. 제 21 항에 있어서, 상기 인쇄헤드 경로는 이송 경로에 직교이며, 인쇄헤드는 제1 운송 시스템의 연속적인 스캔 중간에 인쇄헤드 경로를 따라 재 위치설정되는, 전자 제품의 층을 제작하는 방법.
  23. 제 22 항에 있어서, 상기 제1 운송 시스템은 가스 베어링 및 상기 기판을 작동적으로 체결하기 위한 진공 그리퍼를 더 포함하고, 제2 운송 시스템은 가스 베어링을 포함하되, 제1 작동기 및 제2 작동기 중 적어도 하나는 보이스 코일을 포함하는, 전자 제품의 층을 제작하는 방법.
  24. 제 18 항에 있어서,
    운송 시스템이 이송 경로를 따라 전진되는 구성요소를 가지며,
    상기 운송 시스템은 제1 운송 시스템이고, 상기 구성요소는 제1 구성요소이고, 상기 오차는 제1 오차이며,
    상기 방법은, 제2 운송 시스템을 사용하여, 카메라 경로를 따라 카메라를 이송시키는 단계를 더 포함하고,
    상기 제2 운송 시스템은 카메라 경로를 따라 전진되는 제2 구성요소를 포함하고, 카메라 경로는 제2 오차를 생성하는 기계적 결함을 특징으로 하며, 상기 제2 오차는 카메라의 이송에 영향을 주고, 상기 제2 오차는 병진 오차 및 회전 오차 중 적어도 하나이며,
    상기 방법은, 제2 구성요소 및 카메라에 작동적으로 연결된 적어도 하나의 작동기를 상기 제2 오차의 함수로서 위치설정하는 단계를 더 포함하는, 전자 제품의 층을 제작하는 방법.
  25. 제 18 항에 있어서,
    상기 인쇄기는 잉크젯 인쇄기이고,
    물질을 증착하는 단계는 제어된 분위기 내의 잉크젯 인쇄기를 작동하는 단계를 포함하고,
    상기 운송 시스템은 가스 베어링 상의 기판을 지지하기 위한 플로테이션 테이블을 더 포함하고, 상기 방법은 그리퍼로 기판을 연결하고, 가스 베어링에 의해 지지되는 동안 이송 경로에 따라 기판을 이송하는 단계를 포함하는, 전자 제품의 층을 제작하는 방법.
  26. 제 25 항에 있어서, 작동기 각각은 이송 경로에 직교 방향에서 기판을 선형으로 변위시키는, 전자 제품의 층을 제작하는 방법.
  27. 제 18 항에 있어서, 상기 적어도 하나의 작동기는 적어도 두 개의 작동기를 포함하고, 상기 방법은, 적어도 두 개의 작동기가 이송 경로에 직교 방향에서 기판을 변위시키는 공통-모드 제어 및 적어도 두 개의 작동기가 기판을 회전시키는 차동-모드 제어에 따라, 적어도 두 개의 작동기를 제어하는 단계를 더 포함하고, 상기 방법은, 구성요소가 이송 경로에 대해 피봇하기 위한 플로팅 피봇 포인트를 제공하는 단계를 더 포함하는, 전자 제품의 층을 제작하는 방법.
  28. 제 27 항에 있어서, 상기 오차 및 이송 경로를 따르는 기판 전진의 함수로서 인덱싱되는 작동기 정보 중 적어도 하나를 기록하는 단계를 더 포함하는, 전자 제품의 층을 제작하는 방법.
KR1020197002757A 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스 KR102068945B1 (ko)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201662359969P 2016-07-08 2016-07-08
US62/359,969 2016-07-08
US201762459402P 2017-02-15 2017-02-15
US62/459,402 2017-02-15
US201762489768P 2017-04-25 2017-04-25
US62/489,768 2017-04-25
US15/642,037 2017-07-05
US15/642,037 US9961782B2 (en) 2016-07-08 2017-07-05 Transport path correction techniques and related systems, methods and devices
PCT/US2017/040968 WO2018009711A1 (en) 2016-07-08 2017-07-06 Transport path correction techniques and related systems, methods and devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207001104A Division KR102215964B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스

Publications (2)

Publication Number Publication Date
KR20190017054A KR20190017054A (ko) 2019-02-19
KR102068945B1 true KR102068945B1 (ko) 2020-01-22

Family

ID=60910672

Family Applications (13)

Application Number Title Priority Date Filing Date
KR1020237006606A KR102672592B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020197002757A KR102068945B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020217003877A KR102264502B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020197031848A KR102251491B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020227014815A KR102505014B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020207001104A KR102215964B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020237006603A KR102634913B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020197003596A KR102040449B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020247004034A KR20240023443A (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020247018241A KR20240094011A (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020217013744A KR102361877B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020217017512A KR102395496B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020227004034A KR102505000B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237006606A KR102672592B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스

Family Applications After (11)

Application Number Title Priority Date Filing Date
KR1020217003877A KR102264502B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020197031848A KR102251491B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020227014815A KR102505014B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020207001104A KR102215964B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020237006603A KR102634913B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020197003596A KR102040449B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020247004034A KR20240023443A (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020247018241A KR20240094011A (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020217013744A KR102361877B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정
KR1020217017512A KR102395496B1 (ko) 2016-07-08 2017-07-06 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스
KR1020227004034A KR102505000B1 (ko) 2016-07-08 2017-07-06 가이드된 이송 경로 교정

Country Status (7)

Country Link
US (8) US9961782B2 (ko)
EP (3) EP3482414A4 (ko)
JP (8) JP6677829B2 (ko)
KR (13) KR102672592B1 (ko)
CN (7) CN113658883B (ko)
TW (2) TW201811138A (ko)
WO (2) WO2018009711A1 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169406A (ko) 2012-12-27 2023-12-15 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
KR20160098376A (ko) 2013-12-12 2016-08-18 카티바, 인크. 두께를 제어하기 위해 하프토닝을 이용하는 잉크-기반 층 제조
US9505245B2 (en) 2014-06-17 2016-11-29 Kateeva, Inc. Printing system assemblies and methods
NL2016137B1 (en) * 2016-01-21 2017-07-25 Meyer Burger (Netherlands) B V Inkjet printing system and method for processing substrates.
US9961782B2 (en) 2016-07-08 2018-05-01 Kateeva, Inc. Transport path correction techniques and related systems, methods and devices
JP6925143B2 (ja) * 2017-03-07 2021-08-25 東京エレクトロン株式会社 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
KR102253018B1 (ko) * 2017-10-25 2021-05-17 어플라이드 머티어리얼스, 인코포레이티드 진공 챔버 내에서 사용하기 위한 캐리어, 진공 챔버 내의 이송 어레인지먼트를 테스트하기 위한 시스템, 진공 프로세싱 시스템, 및 진공 챔버 내의 이송 어레인지먼트를 테스트하기 위한 방법
GB201721309D0 (en) * 2017-12-19 2018-01-31 Renishaw Plc Production and measurement of workpieces
EP3542956A1 (en) * 2018-03-23 2019-09-25 Carl Zeiss Vision International GmbH Method for manufacturing spectacle lenses according to a prescription
JP7034817B2 (ja) * 2018-04-19 2022-03-14 株式会社日本製鋼所 レーザ処理装置及び半導体装置の製造方法
WO2020031451A1 (ja) * 2018-08-10 2020-02-13 株式会社日立産機システム 印字検査装置および印字検査機能付き印字機器
WO2020095300A1 (en) * 2018-11-08 2020-05-14 Kornit Digital Ltd. On line registration using compensation
TWI681699B (zh) * 2018-11-13 2020-01-01 和碩聯合科技股份有限公司 電路佈線設計方法以及電路佈線設計系統
TWI797364B (zh) * 2018-12-05 2023-04-01 美商凱特伊夫公司 基板固持器總成以及具有基板高度位置控制的噴墨印表機
WO2020117381A1 (en) * 2018-12-05 2020-06-11 Kateeva, Inc. Inkjet printer with table positioner
US11407914B2 (en) 2018-12-06 2022-08-09 Kateeva, Inc. Stabilized print materials
US11135854B2 (en) * 2018-12-06 2021-10-05 Kateeva, Inc. Ejection control using imager
US11123983B2 (en) 2018-12-20 2021-09-21 Kateeva, Inc. Inkjet printer with substrate flatness detection
US11260679B2 (en) 2018-12-21 2022-03-01 Kateeva, Inc. Gripping for print substrates
WO2020167298A1 (en) * 2019-02-12 2020-08-20 Hewlett-Packard Development Company, L.P. Surface marking robot
US20200316411A1 (en) * 2019-04-05 2020-10-08 Innotex Inc Process for manufacturing firefighter protective garments and firefighter protective garments produced therefrom
TW202110658A (zh) * 2019-05-12 2021-03-16 以色列商納米尺寸技術領域股份有限公司 噴嘴分析方法及系統
WO2020229054A1 (en) * 2019-05-13 2020-11-19 Esko-Graphics Imaging Gmbh Transport system and method for printing plates
EP4029234A1 (en) * 2019-09-09 2022-07-20 Eastman Kodak Company Correcting in-track errors in a linear printhead
CN110976205A (zh) * 2019-11-28 2020-04-10 深圳市世宗自动化设备有限公司 点胶路径控制方法、装置、计算机设备及其存储介质
KR102562457B1 (ko) * 2020-02-03 2023-08-01 카티바, 인크. 프린터, 프린터 작동 방법 및 기판 핸들링 메커니즘
CN113567459A (zh) * 2020-04-28 2021-10-29 宝山钢铁股份有限公司 一种连铸坯表面二维三维组合成像检测系统及其方法
CN111570201B (zh) * 2020-05-26 2021-10-19 惠州市长信装饰材料科技有限公司 一种建筑材料荧光涂料装置
KR20220001533A (ko) * 2020-06-29 2022-01-06 삼성디스플레이 주식회사 잉크젯 프린팅 장치
KR102696137B1 (ko) * 2020-08-14 2024-08-19 세메스 주식회사 약액 토출 장치 및 약액 토출 방법
CN111791589B (zh) * 2020-09-10 2020-12-04 季华实验室 基于喷墨打印机的定位检测方法、装置、电子设备及介质
CN111791607B (zh) * 2020-09-10 2020-12-29 季华实验室 一种基板及其吸附调节装置和喷墨打印设备
CN112319056B (zh) * 2020-09-18 2021-12-14 季华实验室 一种喷头调整装置及其调整方法和喷墨打印设备
CN112319069A (zh) * 2020-09-18 2021-02-05 季华实验室 激光位移传感器校正方法、装置和喷墨打印机
CN112339448A (zh) * 2020-10-14 2021-02-09 重庆品胜科技有限公司 一种热转印标签打印机结构自校准方法及系统
TWI744054B (zh) * 2020-10-26 2021-10-21 尚城科技股份有限公司 具有四個ccd鏡頭之定位板件調整系統與方法
US20230406004A1 (en) * 2020-10-27 2023-12-21 Hewlett-Packard Development Company, L.P. Orientation adjustments
US20220134776A1 (en) * 2020-11-02 2022-05-05 Kateeva, Inc. Printing system
CN113019816A (zh) * 2021-03-15 2021-06-25 深圳市凯达扬自动化有限公司 全自动ec五轴侧面封胶设备
JP2022185565A (ja) * 2021-06-02 2022-12-14 ザ・ボーイング・カンパニー デバイスヘッドを作動させるためのピッチヨー作動システム及び方法
CN113522662B (zh) * 2021-06-11 2023-12-05 张安娜 一种智慧社区相关led晶片贴片工件涂蜡处理装置
CN113695162B (zh) * 2021-07-29 2022-12-02 蚌埠高华电子股份有限公司 一种液晶玻璃基板自动点胶一体化设备及控制方法
CN113578675A (zh) * 2021-09-02 2021-11-02 深圳市若菲特科技有限公司 一种精准点胶方法及系统
CN113814118A (zh) * 2021-09-22 2021-12-21 湖南芷江正向科技有限公司 一种自动化电子元器件高效涂胶设备
CN115790455B (zh) * 2022-12-26 2023-12-01 武汉国创科光电装备有限公司 一种喷墨打印基板平整度检测系统
CN115666125B (zh) * 2022-12-27 2023-08-18 合肥安迅精密技术有限公司 基于机器视觉的贴片机xy平台定位误差检测与补偿方法
KR20240105571A (ko) * 2022-12-28 2024-07-08 주식회사 비아트론 갠트리 타입 스테이지
CN118268208A (zh) * 2024-05-30 2024-07-02 季华实验室 面板涂胶装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360462A1 (en) * 2014-06-17 2015-12-17 Kateeva, Inc. Printing System Assemblies and Methods
WO2016004125A2 (en) 2014-06-30 2016-01-07 Kateeva, Inc Techniques for arrayed printing of a permanent layer with improved speed and accuracy

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069697A (en) 1976-11-10 1978-01-24 Kasel Steel Corporation Automatic counterbalance control circuit
US4283929A (en) 1979-07-16 1981-08-18 Danly Machine Corporation Coded automatic counterbalance control
US4295741A (en) * 1979-08-30 1981-10-20 United Technologies Corporation Two-wavelength phase control system
US4303978A (en) * 1980-04-18 1981-12-01 The Boeing Company Integrated-strapdown-air-data sensor system
DE3136310A1 (de) * 1981-09-12 1983-03-24 Develop Dr. Eisbein Gmbh & Co, 7016 Gerlingen Vorrichtung zum zufuehren von blaettern zu einer fixiereinrichtung eines kopiergeraetes
US4470304A (en) 1982-06-01 1984-09-11 Bethlehem Steel Corp. Ultrasonic inspection system
US4833591A (en) * 1987-12-30 1989-05-23 Pitney Bowes Inc. Method for aligning a moving substrate and a read or write head
JP2727368B2 (ja) * 1990-01-04 1998-03-11 株式会社新川 Xyテーブル
NL9100410A (nl) * 1991-03-07 1992-10-01 Asm Lithography Bv Afbeeldingsapparaat voorzien van een focusfout- en/of scheefstandsdetectie-inrichting.
US5489925A (en) 1993-05-04 1996-02-06 Markem Corporation Ink jet printing system
JPH0725967U (ja) * 1993-10-26 1995-05-16 日立テクノエンジニアリング株式会社 ペースト塗布機
EP0739084B1 (de) 1995-04-22 2002-07-24 PAPST-MOTOREN GmbH & Co. KG Verfahren zum Steuern oder Regeln eines Elektromotors, und Anordnung zur Durchführung eines solchen Verfahrens
US5894342A (en) 1996-02-05 1999-04-13 Scitex Corporation Ltd. Imagesetter
US6357849B2 (en) * 1998-11-12 2002-03-19 Seiko Epson Corporation Inkjet recording apparatus
TW469483B (en) * 1999-04-19 2001-12-21 Applied Materials Inc Method and apparatus for aligning a cassette
JP2001107272A (ja) 1999-10-08 2001-04-17 Hitachi Ltd 試料の処理方法および処理装置並びに磁気ヘッドの製作方法
FR2801835B1 (fr) * 1999-12-03 2002-02-01 Imaje Sa Procede et imprimante avec controle d'avance substrat
US7066707B1 (en) 2001-08-31 2006-06-27 Asyst Technologies, Inc. Wafer engine
US6733734B2 (en) 2001-10-31 2004-05-11 Matheson Tri-Gas Materials and methods for the purification of hydride gases
JP4066661B2 (ja) * 2002-01-23 2008-03-26 セイコーエプソン株式会社 有機el装置の製造装置および液滴吐出装置
US6986654B2 (en) 2002-07-03 2006-01-17 Therics, Inc. Apparatus, systems and methods for use in three-dimensional printing
US6911671B2 (en) 2002-09-23 2005-06-28 Eastman Kodak Company Device for depositing patterned layers in OLED displays
TW555652B (en) 2002-10-25 2003-10-01 Ritdisplay Corp Ink jet printing device and method
JP4378950B2 (ja) * 2002-12-24 2009-12-09 セイコーエプソン株式会社 液滴吐出装置および電気光学装置の製造方法
US20040197179A1 (en) 2003-04-03 2004-10-07 Applied Materials, Inc. Method and apparatus for vertical transfer of semiconductor substrates between cleaning modules
EP1477851A1 (en) 2003-05-13 2004-11-17 ASML Netherlands B.V. Device manufacturing method and lithographic apparatus
US7057370B2 (en) 2003-06-21 2006-06-06 Igor Victorovich Touzov Ultra-fast precision motor with X, Y and Theta motion and ultra-fast optical decoding and absolute position detector
US7477940B2 (en) * 2003-06-30 2009-01-13 J&J Consumer Companies, Inc. Methods of administering an active agent to a human barrier membrane with galvanic generated electricity
US7077019B2 (en) 2003-08-08 2006-07-18 Photon Dynamics, Inc. High precision gas bearing split-axis stage for transport and constraint of large flat flexible media during processing
WO2005019360A1 (en) 2003-08-25 2005-03-03 Dip Tech. Ltd. Ink for ceramic surfaces
WO2005099350A2 (en) 2004-04-14 2005-10-27 Coreflow Scientific Solutions Ltd. Non-contact support platforms for distance adjustment
US20050257738A1 (en) * 2004-05-21 2005-11-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus of semiconductor device and pattern-forming method
WO2006052919A1 (en) 2004-11-08 2006-05-18 New Way Machine Components, Inc. Non-contact porous air bearing and glass flattening device
JP4517830B2 (ja) * 2004-11-26 2010-08-04 株式会社日立プラントテクノロジー 塗布装置
US8167393B2 (en) 2005-01-14 2012-05-01 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
JP4725114B2 (ja) * 2005-01-25 2011-07-13 大日本印刷株式会社 パターン形成装置及び方法
KR100724611B1 (ko) * 2005-12-29 2007-06-04 삼성전자주식회사 잉크젯 장치, 잉크젯 방법 및 가스공급유닛
JP4926530B2 (ja) 2006-04-27 2012-05-09 東京エレクトロン株式会社 シール部材、減圧容器、減圧処理装置、減圧容器のシール機構、および減圧容器の製造方法
US8556389B2 (en) 2011-02-04 2013-10-15 Kateeva, Inc. Low-profile MEMS thermal printhead die having backside electrical connections
EP2155494A4 (en) 2007-06-14 2010-08-11 Massachusetts Inst Technology METHOD AND DEVICE FOR CONTROLLING THE APPLICATION OF FILMS
WO2009010592A1 (de) * 2007-07-19 2009-01-22 Centrotherm Thermal Solutions Gmbh + Co. Kg Anordnung zum berührungslosen transport von flachen substraten
US8383202B2 (en) 2008-06-13 2013-02-26 Kateeva, Inc. Method and apparatus for load-locked printing
US8899171B2 (en) 2008-06-13 2014-12-02 Kateeva, Inc. Gas enclosure assembly and system
JP2010044037A (ja) 2008-08-08 2010-02-25 Top Engineering Co Ltd ペーストディスペンサーのノズルの吐出口とレーザー変位センサーの結像点の位置測定装置及びその方法{positiondetectionapparatusandmethodfordetectingpositionsofnozzleorrificeandopticalpointoflaserdisplacementsensorofpastedispenser}
IT1392991B1 (it) * 2009-02-23 2012-04-02 Applied Materials Inc Procedimento di stampa serigrafica autoregolantesi
US20110149000A1 (en) 2009-12-23 2011-06-23 Ulvac, Inc. Inkjet printhead module with adjustable alignment
DE102010007970A1 (de) * 2010-02-15 2011-08-18 Suss MicroTec Lithography GmbH, 85748 Verfahren und Vorrichtung zum aktiven Keilfehlerausgleich zwischen zwei im wesentlichen zueinander parallel positionierbaren Gegenständen
US20110318503A1 (en) 2010-06-29 2011-12-29 Christian Adams Plasma enhanced materials deposition system
US20120044292A1 (en) 2010-08-17 2012-02-23 Markem-Imaje Corporation Vacuum Control For Print Head of A Printing System
EP2635440B1 (en) 2010-11-02 2018-01-10 KBA-NotaSys SA Device for irradiating substrate material in the form of a sheet or web and uses thereof
US8863661B2 (en) * 2011-03-11 2014-10-21 Ohio Gravure Technologies, Inc. System and method for layer-to-layer compensation and error correction
KR101322435B1 (ko) * 2011-07-12 2013-10-28 단국대학교 산학협력단 박판 이송 장치
CN103828085B (zh) 2011-08-09 2016-08-17 科迪华公司 面向下的打印设备和方法
JP2013098367A (ja) * 2011-11-01 2013-05-20 Seiko Epson Corp 基板用搬送ステージ、描画装置、および描画方法
US9401296B2 (en) 2011-11-29 2016-07-26 Persimmon Technologies Corporation Vacuum robot adapted to grip and transport a substrate and method thereof with passive bias
US9363899B2 (en) 2012-01-02 2016-06-07 Mutracx International B.V. Inkjet system for printing a printed circuit board
US9429479B2 (en) * 2012-07-18 2016-08-30 Millar Instruments Methods, devices, and systems which determine a parameter value of an object or an environment from a voltage reading associated with a common mode signal of a balanced circuit
JP5902872B2 (ja) 2012-11-30 2016-04-13 カティーバ, インコーポレイテッド ガスエンクロージャアセンブリおよびシステム
US9700908B2 (en) 2012-12-27 2017-07-11 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
KR20230169406A (ko) * 2012-12-27 2023-12-15 카티바, 인크. 정밀 공차 내로 유체를 증착하기 위한 인쇄 잉크 부피 제어를 위한 기법
US9352561B2 (en) 2012-12-27 2016-05-31 Kateeva, Inc. Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances
JP2014148110A (ja) 2013-02-01 2014-08-21 Seiko Epson Corp 液体噴射装置、および、液体噴射装置の制御方法
US9443299B2 (en) 2013-02-18 2016-09-13 Kateeva, Inc. Systems, devices and methods for the quality assessment of OLED stack films
KR20190138705A (ko) * 2013-04-26 2019-12-13 카티바, 인크. 인쇄 잉크 액적 측정 및 정밀 공차 내로 유체를 증착하기 위한 제어 기법
KR102617723B1 (ko) 2013-04-26 2023-12-22 카티바, 인크. 인쇄 잉크 액적 측정 및 정밀 공차 내로 유체를 증착하기 위한 제어 기법
US9094593B2 (en) * 2013-07-30 2015-07-28 Heptagon Micro Optics Pte. Ltd. Optoelectronic modules that have shielding to reduce light leakage or stray light, and fabrication methods for such modules
KR20160098376A (ko) 2013-12-12 2016-08-18 카티바, 인크. 두께를 제어하기 위해 하프토닝을 이용하는 잉크-기반 층 제조
KR20150115136A (ko) * 2014-04-02 2015-10-14 현대중공업 주식회사 기판 이송로봇 구동장치 및 이를 이용한 기판 이송방법
EP3882961B1 (en) 2014-04-30 2023-07-26 Kateeva, Inc. Gas cushion apparatus and techniques for substrate coating
EP3188913B1 (en) 2014-09-02 2022-04-27 Kateeva, Inc. Fast measurement of droplet parameters in industrial printing system
US10755960B2 (en) * 2014-11-04 2020-08-25 Brooks Automation, Inc. Wafer aligner
TWI579538B (zh) 2016-01-27 2017-04-21 和碩聯合科技股份有限公司 發光強度檢測裝置及發光強度檢測方法
US9961782B2 (en) 2016-07-08 2018-05-01 Kateeva, Inc. Transport path correction techniques and related systems, methods and devices
US20180229497A1 (en) 2017-02-15 2018-08-16 Kateeva, Inc. Precision position alignment, calibration and measurement in printing and manufacturing systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150360462A1 (en) * 2014-06-17 2015-12-17 Kateeva, Inc. Printing System Assemblies and Methods
WO2016004125A2 (en) 2014-06-30 2016-01-07 Kateeva, Inc Techniques for arrayed printing of a permanent layer with improved speed and accuracy

Also Published As

Publication number Publication date
EP4378697A2 (en) 2024-06-05
JP7033336B2 (ja) 2022-03-10
CN113571446B (zh) 2023-08-08
CN109417043A (zh) 2019-03-01
JP2022079456A (ja) 2022-05-26
KR102361877B1 (ko) 2022-02-14
CN113571446A (zh) 2021-10-29
EP3482413A4 (en) 2020-03-04
EP3482414A1 (en) 2019-05-15
US20190246506A1 (en) 2019-08-08
KR20210056445A (ko) 2021-05-18
CN113658884B (zh) 2023-08-08
KR102251491B1 (ko) 2021-05-13
KR20200008034A (ko) 2020-01-22
KR102395496B1 (ko) 2022-05-06
KR20220062429A (ko) 2022-05-16
KR20230035683A (ko) 2023-03-14
EP3482413B1 (en) 2024-02-14
US20180228034A1 (en) 2018-08-09
KR102215964B1 (ko) 2021-02-18
JP2022058362A (ja) 2022-04-12
CN109417043B (zh) 2021-06-15
CN113658884A (zh) 2021-11-16
KR102264502B1 (ko) 2021-06-14
CN113571445A (zh) 2021-10-29
KR20190017054A (ko) 2019-02-19
JP2024045259A (ja) 2024-04-02
EP4378697A3 (en) 2024-08-07
JP6691243B2 (ja) 2020-04-28
JP2020127940A (ja) 2020-08-27
US9961782B2 (en) 2018-05-01
CN113571447A (zh) 2021-10-29
US20180014410A1 (en) 2018-01-11
KR102040449B1 (ko) 2019-11-05
KR20190020159A (ko) 2019-02-27
CN109451764B (zh) 2021-06-08
JP2019519082A (ja) 2019-07-04
CN113658883B (zh) 2023-08-08
EP3482413A1 (en) 2019-05-15
TW201808464A (zh) 2018-03-16
WO2018009711A1 (en) 2018-01-11
US11234334B2 (en) 2022-01-25
US20240314941A1 (en) 2024-09-19
KR102505000B1 (ko) 2023-03-02
US20220039265A1 (en) 2022-02-03
US20180014411A1 (en) 2018-01-11
KR20230035425A (ko) 2023-03-13
KR102634913B1 (ko) 2024-02-07
WO2018009713A1 (en) 2018-01-11
CN113658883A (zh) 2021-11-16
JP6999965B2 (ja) 2022-01-19
KR102672592B1 (ko) 2024-06-04
KR20210071104A (ko) 2021-06-15
US10420225B2 (en) 2019-09-17
KR20240094011A (ko) 2024-06-24
TW201811138A (zh) 2018-03-16
JP2020114586A (ja) 2020-07-30
KR20240023443A (ko) 2024-02-21
JP6677829B2 (ja) 2020-04-08
KR102505014B1 (ko) 2023-02-28
KR20210018969A (ko) 2021-02-18
US10433434B2 (en) 2019-10-01
US12028991B2 (en) 2024-07-02
JP2019521848A (ja) 2019-08-08
CN113571445B (zh) 2023-08-01
KR20190125521A (ko) 2019-11-06
US20180160550A1 (en) 2018-06-07
US9961783B2 (en) 2018-05-01
CN109451764A (zh) 2019-03-08
US20190297733A1 (en) 2019-09-26
EP3482414A4 (en) 2020-03-04
JP2023178284A (ja) 2023-12-14
KR20220021039A (ko) 2022-02-21
CN113571447B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
KR102068945B1 (ko) 이송 경로 교정 테크닉 및 관련 시스템, 방법과 디바이스

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant