KR102054541B1 - 툴 내의 esd 이벤트 모니터링 방법 및 장치 - Google Patents

툴 내의 esd 이벤트 모니터링 방법 및 장치 Download PDF

Info

Publication number
KR102054541B1
KR102054541B1 KR1020157019982A KR20157019982A KR102054541B1 KR 102054541 B1 KR102054541 B1 KR 102054541B1 KR 1020157019982 A KR1020157019982 A KR 1020157019982A KR 20157019982 A KR20157019982 A KR 20157019982A KR 102054541 B1 KR102054541 B1 KR 102054541B1
Authority
KR
South Korea
Prior art keywords
esd
event
antenna
detector
signal
Prior art date
Application number
KR1020157019982A
Other languages
English (en)
Other versions
KR20150103088A (ko
Inventor
라일 디. 넬슨
스티븐 비. 하이만
마크 이. 호그셋
Original Assignee
일리노이즈 툴 워크스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일리노이즈 툴 워크스 인코포레이티드 filed Critical 일리노이즈 툴 워크스 인코포레이티드
Publication of KR20150103088A publication Critical patent/KR20150103088A/ko
Application granted granted Critical
Publication of KR102054541B1 publication Critical patent/KR102054541B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Relating To Insulation (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

본 발명의 일 실시예에서, 하전 디바이스 모델 이벤트 시뮬레이터(charged device model event simulator; CDMES) 유닛을 통합한 정전기 방전(electrostatic discharge; ESD) 이벤트 모니터링용 장치는 프로세스 영역 내에 포지셔닝되는 적어도 하나의 안테나; 및 상기 적어도 하나의 안테나에 커플링되는 ESD 검출기를 포함하고, 상기 ESD 검출기는 상기 CDMES 유닛에 무선으로 커플링되고, 상기 ESD 검출기는 상기 CDMES 유닛에 의해 생성된 상이한 방전 에너지에 대해 교정된다.

Description

툴 내의 ESD 이벤트 모니터링 방법 및 장치{IN-TOOL ESD EVENTS MONITORING METHOD AND APPARATUS}
<관련 출원들에 대한 상호참조>
본 출원은 미국 가출원 번호 제61/747,199호를 우선권으로 주장한다.
<기술 분야>
본 발명의 실시예들은 일반적으로 정전기 방전(electrostatic discharge; ESD) 이벤트의 툴 내의(in-tool) 모니터링 및 특징화를 위한 방법 및 장치, 및/또는 하전 디바이스 모델 이벤트 시뮬레이터(charged device model event simulators; CDMES)/미니펄스(Mini 장치 및 방법, 및/또는 다른 타입들의 CDMES, 검출기들 및 방법들에 관한 것이다. 본 명세서에서 개시되는 적어도 하나의 방법 및 장치는 예를 들어, 집적 회로(IC) 생산 툴 및/또는 상이한 프로세스에서 실시간 ESD 이벤트 모니터링을 제공하고, 하전 디바이스 모델(charged device model; CDM)의 하나 이상의 방법(들)을 이용하여 ESD 관련 필터들을 억제하도록 보조한다. ESD 이벤트들을 모니터링하는 한가지 방법 및 모니터를 교정하기 위한 두가지 방법이 본 명세서에서 개시된다.
본 명세서에서 제시되는 배경 설명은 일반적으로 본 개시의 상황(context)을 나타내기 위한 것이다. 현재 거론된 발명자들의 성과(work)가 이 배경 섹션에서 설명되더라도, 이 성과 및, 그렇지 않았다면 출원 시에 종래 기술로서 자격이 없었을 수 있는 설명의 양상들이 본 개시에 대한 종래 기술로서 명시적으로도 또는 암시적으로도 인정되는 것은 아니다.
CDM 이벤트는 전자 IC들에 대한 수동 및 자동화된 생산 시스템들에서 발생하는 정전기 방전을 나타낸다. 생산 툴에서, IC는, 몇 개의 가능한 방식들만 언급하자면, 예를 들어, 접촉, 마찰 및/또는 근접 자기장으로부터의 유도(induction) 등의 다수의 방식으로 전하들을 획득할 수 있다. IC들의 전도성 부품들이 접지된 장비 부품들 또는 더 낮은 전위를 갖는 부품들과 접촉하게 될 때, 축적된 IC 전하들은 자발적으로 자유 방전하게 된다. 그 결과, 비교적 높은 방전 전류(ESD 이벤트)는 IC를 파괴하거나 손상시킬 수 있다(예를 들어, 도 1a 및 도 1b를 참조).
IC 컴포넌트들의 설계는 보통 ESD 영향을 막는 보호용 특수 수단(또는 특정한 컴포넌트들)을 포함한다. 반도체 산업은 IC 디바이스들을 테스트하기 위한 몇 개의 표준 방법들을 개발하였고, 예를 들어, 내전압(withstand voltage) 및 전류 진폭과 같은 CDM ESD 문턱값 파라미터들을 정의하였다. 적용 가능한 표준들은 또한 자동화된 IC CDM 테스트에 대한 테스트 장치 요건들을 열거한다. 이들 방법들 및 디바이스들은 IC 설계 스테이지, 제품 보증을 위한 최종 테스트 및 손상된 디바이스들에 대한 장애 분석 시에 유용하다.
그러나, 종래의 기술은 아래에서 논의될 바와 같이 다양한 제약 및/또는 결함에 처해진다. 본 발명의 다양한 실시예들에 따른 목적은 IC 생산 툴 및 제조 프로세스에서 실시간 ESD 이벤트 모니터링 및 교정 방법 및 장치를 제공하는 것이다.
도 1a는 툴 또는 프로세싱 챔버에서 하전 (IC) 디바이스 CDM 이벤트의 통상적인 방전 모델(100)을 예시한다. 도 1a에서, 미니펄스(MiniPulse) ESD 검출기(105)(또는 다른 타입의 ESD 검출기(105))는 전자기파(140)를 인터셉트하고 로봇 배치 이펙터(Robot Placement Effector)(115)(또는 다른 적합한 타입의 로봇 아암(115))는 하전 디바이스(125)를 테스트 소켓(130) 내에 배치한다. 테스트 소켓(130)은 통상, 적합한 시험대(test bed)(131), 베이스(131) 또는 다른 적합한 플랫폼(131) 상에 배치된다. 하전 디바이스(125)가 테스트 소켓(130)에 접근할 때, 방전(ESD)이 발생하고, (미니펄스 검출기(105)에 커플링되는) 안테나(135)가 방전 이벤트의 전자기파(140)를 인터셉트한다. 이 예에서, ESD 이벤트는 전위가 다른 2개의 전도성 부품들(125 및 130) 사이에 스파크(spark) 형태로 발생하는 방전(141)이다. 전도성 부품들(125 및 130) 및 다른 반도체 프로세싱 장비는 예를 들어, 대략적으로 2x2 피트, 4x4 피트 또는 다른 치수들과 같은 임의의 적합한 크기를 가질 수 있는 툴 또는 프로세싱 챔버(132) 내에 있을 수 있다.
종래 기술이 갖는 현재의 문제는 ESD 검출기를 교정하는데 있어서의 어려움이다. 이 어려움은 예를 들어, 방전 이벤트 그 자체의 반복성을 제공하는데 있어서의 과제 때문이다. 프로세스 지점 그 자체의 구성 및 물질들에 의해 방사된 전기장 파형에 부과되는 조건들로 인해 다른 어려움들도 존재한다. 그러므로, 현재 기술은 그 성능들 면에서 제한되고 적어도 위의 제약 및 결함에 처해진다. 본 발명의 실시예들은 ESD 검출기들을 교정하는데 있어서의 어려움들을 극복하기 위한 시스템들 및 방법들을 제공한다.
도 1b는 방전이 2개의 전도성 부품들 사이에 스파크 형태로 발생하는 CDM 정전기 이벤트의 통상의 예시적인 전압/전류 파형의 스크린샷을 도시한다. 상단 파형(180)은 본 발명의 실시예에 따라 아래에서 논의되는 바와 같은 CDMES(Charged Device Model Event Simulator)에 의해 생성되는 예시적인 출력 신호와 유사한 예시적인 출력 신호(전류 펄스)이다. 하단 파형(185)은 입사 전파 필드(incident propagating field)에 응답한 예시적인 마이크로ESD(MicroESD) 안테나(135)이다.
도 1b에서, 상단 파형(180)은 본 발명의 실시예에 따라 아래에서 논의되는 CDMES 디바이스로부터 또한 생성 및/또는 시뮬레이팅될 수 있는 펄스 신호와 유사한 펄스 신호를 도시한다. 하단 파형(185)은 미니펄스 검출기(105)에 커플링되는 안테나(135)에 의해 검출되는 방사 신호를 도시한다. 미니펄스 검출기(105)는 안테나(135)에 의해 인터셉트되는 신호를 수신할 수 있는 전자 회로를 포함한다. 아래에서 또한 논의되는 바와 같이 이 신호가 ESD 전압 및 펄스 지속기간 문턱값 레벨에 기초하여 관심의 ESD 이벤트라고 전자 회로가 결정하는 경우, 이 전자 회로는 이 신호를 ESD 이벤트(110)로서 분류할 것이다.
본 발명의 일 실시예에서, 하전 디바이스 모델 이벤트 시뮬레이터(charged device model event simulator; CDMES) 유닛을 통합한 정전기 방전들(electrostatic discharge; ESD) 이벤트 모니터링용 장치는, 제 1 프로세스 영역 내에 포지셔닝되는 적어도 하나의 안테나; 및 상기 적어도 하나의 안테나에 커플링되는 ESD 검출기를 포함하고, 상기 ESD 검출기는 상기 CDMES 유닛에 무선으로 커플링되고, 상기 ESD 검출기는 상기 CDMES 유닛에 의해 생성된 상이한 방전 에너지에 대해 교정된다.
본 발명의 또 다른 실시예에서, 하전 디바이스 모델 이벤트 시뮬레이터(CDMES) 유닛을 통합한 정전기 방전(ESD) 이벤트 모니터링 방법은, 방전 에너지를 검출하는 단계; 및 상이한 방전 에너지에 대해 정전기 검출기를 교정하는 단계를 포함한다.
이상의 일반적인 설명 및 하기의 상세한 설명은 다 예시적이고 설명적인 것일 뿐이며, 청구하는 바와 같은 본 발명을 제한하지 않는다고 이해하면 된다.
본 명세서에 포함되고 본 명세서의 부분을 구성하는 첨부 도면들은 본 발명의 하나(몇개)의 실시예(들)를 예시하며, 설명과 함께, 본 발명의 원리들을 설명하기 위한 것이다.
본 발명의 비제한적이고 포괄적이지 않은 실시예들은, 달리 특정되지 않는 한, 유사한 참조 번호들이 다양한 도면들에 걸쳐서 유사한 부분들을 참조하는 하기의 도면들을 참조하여 설명된다.
도 1a는 툴 또는 프로세싱 챔버에서 하전 (IC) 디바이스 CDM 이벤트의 통상적인 방전 모델의 도면이다.
도 1b는 방전이 2개의 전도성 부품들 사이에 스파크 형태로 발생하는 CDM 정전기 이벤트의 통상적인 예시적인 전압/전류 파형의 파형도의 스크린샷이다.
도 2는 본 발명의 실시예에 따른, 외부 HVPS(high voltage power supply) 및 스코프를 갖는 하전 디바이스 모델 이벤트 시뮬레이터의 일반적인 도면이다.
도 3a는 본 발명의 실시예에 따른, CDMES가 트리거될 때 생성되는 통상의 전류 펄스를 나타내는 CDMES 펄스 파형의 블록도이다.
도 3b는 본 발명의 실시예에 따른, 하전 디바이스 모델 이벤트 시뮬레이터를 포함하는 시스템(또는 장치)의 도면이며, 이 시스템은 ESD 이벤트 검출기에 대한 교정 방법을 또한 제공하도록 구성된다.
도 3c는 본 발명의 다른 실시예에 따른 시스템(또는 장치)의 도면이다.
도 4a는 본 발명의 다양한 실시예에 따른, 일반적인 다중 안테나 ESD 검출 어레이를 예시하는 도면이다.
도 4b는 본 발명의 다양한 실시예에 따른, 마이크로(Micro)ESD 안테나 어셈블리를 예시하는 도면이다.
도 5는 본 발명의 실시예에 따른 ESD 검출기(MiniPulse)의 블록도이다.
도 6은 본 발명의 실시예에 따른 도 7의 ESD 검출기의 ESD 모니터 회로의 개략도이다.
도 7은 본 발명의 일 실시예에서, 외부에서 보여지는 바와 같은 미니펄스 ESD 검출기의 일반적인 도면이다.
도 8은 본 발명의 실시예에 따라 미니펄스 ESD 교정 프로세스의 흐름도이다.
본 명세서에서의 설명에서, 본 발명의 실시예들의 완전한 이해를 제공하기 위해 컴포넌트들, 물질들, 부분들, 구조들 및/또는 방법들의 예들과 같은 다수의 특정한 세부사항들이 제공된다. 그러나 본 발명의 실시예는 특정한 세부사항들 중 하나 이상의 세부사항 없이, 또는 다른 장치, 시스템들, 방법들, 컴포넌트들, 물질들, 부분들, 구조들 등으로 실시될 수 있다는 것을 당업자는 인지할 것이다. 다른 경우에 있어서, 잘 알려진 컴포넌트들, 물질들, 부분들, 구조들, 방법들 또는 동작들은 본 발명의 실시예들의 양상들을 모호하게 하는 것을 방지하도록 상세히 도시되거나 설명되지 않는다. 부가적으로, 도면들은 사실상 대표적이며, 그 형상들은 임의의 엘리먼트의 정밀한 형상 또는 정밀한 크기를 예시하도록 의도되지 않고 본 발명의 범위를 제한하도록 의도되지 않는다.
당업자는 도면들에서 엘리먼트 또는 부분이 다른 엘리먼트 "상에 있는" (또는 그것에 "연결된", "커플링된", 또는 "부착된") 것으로서 지칭될 때, 그 엘리먼트 또는 부분이 직접 다른 엘리먼트 상에 있을 수 있거나(또는 그것에 직접 부착될 수 있음), 또는 개재 엘리먼트들이 또한 존재할 수 있다는 것을 이해할 것이다. 또한, "내부", "외부", "상위", "위에", "하위", "밑에", "아래", "아래쪽", "위쪽", "쪽으로", 및 "반대쪽으로" 및 유사한 용어들과 같은 상대적 용어들은 다른 엘리먼트에 대한 하나의 엘리먼트의 관계를 설명하도록 본 명세서에서 이용될 수 있다. 이들 용어들은 도면들에서 도시된 배향 외에도, 디바이스의 상이한 배향들을 포괄하도록 의도된다는 것을 이해하면 된다 .
제 1, 제 2 등의 용어들이 다양한 엘리먼트들, 컴포넌트들, 부분들, 영역들, 층들, 챔버들 및/또는 섹션들을 설명하기 위해 본 명세서에서 이용될지라도, 이들 엘리먼트들, 컴포넌트들, 부분들, 영역들, 층들, 챔버들 및/또는 섹션들은 이들 용어들에 의해 제한되어선 안 된다. 이들 용어들은 다른 엘리먼트, 컴포넌트, 부분, 영역, 층, 챔버 또는 섹션으로부터 하나의 엘리먼트, 컴포넌트, 부분, 영역, 층, 챔버 또는 섹션을 구분하기 위해서만 이용된다. 따라서, 아래에서 논의되는 제 1 엘리먼트, 컴포넌트, 부분, 영역, 층, 챔버 또는 섹션은 본 발명의 교시들로부터 벗어남 없이 제 2 엘리먼트, 컴포넌트, 부분, 영역, 층, 챔버 또는 섹션이라 불릴 수 있다.
부가적으로, 도면들에서 예시되는 엘리먼트들은 본질적으로 개략적이며, 그 형상들은 디바이스의 엘리먼트의 정밀한 형상을 예시하도록 의도되지 않고 본 발명의 범위를 제한하도록 의도되지 않는다. 또한, 본 명세서에서 제시되는 바와 같은 본 발명의 실시예들의 논의에 기초하여, 도면들에서 컴포넌트들의 포지션 및/또는 구성은 상이한 크기들, 상이한 형상들, 상이한 포지션들 및/또는 상이한 구성들로 달라질 수 있다는 것을 당업자는 인지할 것이다. 그러므로, 도면들에서 도시된 다양한 컴포넌트들은 도면들에서 도시된 바와 같은 구성과 상이한 다른 포지션들에 배치될 수 있다. 도면들에서의 컴포넌트들은 본 발명의 실시예들의 기능성을 설명할 목적으로 비제한적인 예시적인 포지션에서 예시되며, 도면들에서의 이들 컴포넌트들은 다른 예시적인 포지션에서 구성될 수 있다.
본 발명의 실시예에 따른, 하전 디바이스 모델 이벤트 모니터링 시스템(또는 장치)은, 일반적으로, 반도체 툴 프로세싱 챔버들이, 사실상 주변 금속 케이스 엘리먼트들로 인해 상대적으로 높은 전기 노이즈 레벨을 갖는 에코 챔버(echoic chamber)라는 것을 고려하여 개발되었다.
현실적인 측면들에서, 각각의 툴은 정전기 방전 이벤트에 의해 야기되는 내부 전자기장 방사의 반사 시에 고유의 특성(예를 들어, EMI 랜드스코프(landscape))을 갖는다. CDM 이벤트에 대한 통상적인 시나리오는, 하전 IC 디바이스가, 상이한 전위(electric potential)의 툴 또는 프로세스 엘리먼트에 접촉할 때 방전된다는 것이다. 유전체 갭(통상적으로 공기)을 통한 이러한 방전은 상이한 전위에 의해 형성되는 이중극(dipole)이 붕괴되게 하거나, 또는 하전 IC 및 툴 부품들 간에 형성된 커패시터가 붕괴되게 한다. 본 발명의 실시예는 또한 "미니펄스(MiniPulse)" 또는 미니펄스 검출기 또는 ESD 검출기로서 본 명세서에서 또한 지칭되는 ESD 이벤트 모니터를 제공한다. 모니터는 예를 들어, 워크스테이션, 전자기기 생산 툴, 프로세스 및 모바일 애플리케이션을 위한 저가의 이벤트 모니터이다. 결과적인 방사 펄스 전자기 파형(방사 신호)은 예를 들어, 미니펄스 검출기 및 미니펄스 검출기에 통신 가능하게 커플링되는 안테나에 의해 검출된다. 이 펄스 파형의 검출된 필드 전압 레벨이, 하전 디바이스 모델 이벤트 시뮬레이터(Charged Device Model Event Simulator; CDMES) 장비로 교정되는 문턱값을 초과하는 경우, 미니펄스 검출기는 유의한 CDM 이벤트를 등록한다.
CDM 이벤트들은 예를 들어, 전자기장에서의 짧은(통상적으로 대략 4 나노초 미만) 지속기간 변화를 특징으로 하고, 안테나에서, 슬루 레이트(slew rate)가 높은 유도 전압(전류) 상승 신호를 생성한다. 그러므로, 툴 ESD 모니터링에 관하여, 이용되는 검출 시스템은 에코 챔버 환경에서 일반적인 툴 노이즈로부터 관심의 CDM 신호를 구분해야 한다.
본 발명의 다양한 실시예에 따라, ESD 검출기들에 대한 교정 방법들이 제공된다. 예를 들어, 해당 분야에 알려진 CDMES 디바이스와 같은 적합한 장비가 CDM 이벤트를 시뮬레이팅하는데 이용될 수 있고, 교정 방법은 본 발명의 실시예에 따라 수행된다. 예를 들어, CDM 이벤트의 인 시추 모니터링(in situ monitoring)은 IC 디바이스들이 전도성 툴 엘리먼트들에 접촉하는 지점에서 실제 툴 내의 스파크 갭 방전의 그룹을 시뮬레이팅함으로써 용이하게 된다. 붕괴적인 하전 커패시터 방전은 주어진 IC 디바이스에 대한 미리 선택된 전압 문턱값에서 CDM 이벤트를 시뮬레이팅한다. 이 프로시저가 완료될 때, 툴은 지정된 레벨에서 IC CDM ESD 이벤트 검출에 대해 교정될 것으로 간주될 수 있다.
알려져 있거나 미래에 개발될 상이한 타입들의 CDMES 디바이스들은 CDM 이벤트를 시뮬레이팅하는데 이용될 수 있고, 본 발명의 실시예에 따른 교정 방법은 CDM 이벤트 또는 상이한 방전 에너지를 시뮬레이팅한 이후 수행된다.
CDMES는 방전 갭에서 개방된 이동 전극을 갖는 디바이스, 또는 수은 또는 RF 릴레이 또는 고 전압 RF 릴레이, 예를 들어, 리드(reed) 릴레이를 갖는 디바이스로서 몇 개의 실시예들에서 구성된다.
CDM 이벤트 시뮬레이팅된 방전은 모니터링 디바이스(미니펄스)의 수신측 안테나에서 인터셉트되고 검출되는 신호들을 생성한다. 미니펄스 안테나(마이크로ESD(MicroESD) 안테나)는 미니펄스에 커플링되고(도 3b 참조), ESD 이벤트로 인한 파형들을 미니펄스가 수신하도록 허용한다. 미니펄스는 예상된 CDM 이벤트 소스에 관하여 미니펄스 안테나의 포지션 및/또는 CDMES 방전 전압을 다르게 함으로써 인 시추로 교정될 수 있다.
그러므로, CDMES는 하전 디바이스가 소켓에 접근하거나 접촉할 때의 방전 발생과 유사한 알려진 방사된 스파크를 생성하는 하전 디바이스 시뮬레이터이다. 이 CDMES는 미니펄스를 교정하는데 이용된다. DC 전원은 CDMES에 커플링되고 임의의 적합한 전원 전압 값들(예를 들어, 100V, 200V, 500V, 또는 다른 값들)이 CDMES로 인입된다. ESD 이벤트가 시뮬레이팅될 때, 안테나는 CDMES-생성된 방전으로부터 파형을 검출하고, 미니펄스는 안테나에 의해 검출된 파형을 포착하고 프로세싱한다. CDMES-생성된 방전으로 인한 파형의 예는 아래에서 추가로 또한 논의되는 바와 같이, 예를 들어, 도 1b에서 도시된 바와 같이 오실로스코프(oscilloscope)에서 관찰된다.
교정 플롯 및 알려진 제품 CDM 장애 문턱값들에 기초하여, ESD 문턱값 전압 레벨이 미니펄스 검출기에 대해 설정(또는 그렇지 않으면, 구성)될 수 있다. 미니펄스로부터의 출력 알람 신호가 생성되어, CDM 이벤트가, 툴 내의 실제 IC 방전 이벤트에 대한 문턱값 레벨을 초과하는 경우 툴 제어 시스템에 송신될 수 있다.
CDM 이벤트 시뮬레이터는 CDM 이벤트가 발생하는 툴 및 프로세스 내부에서 ESD 모니터(검출기)가 교정될 수 있도록 설계되었다. 이 시뮬레이션 디바이스는, 상이한 전압 진폭들의 교정된 CDM 이벤트가, 생산 디바이스가 가장 취약하고 ESD 모니터링 센서들이 배치되는 지점에서 생성되게 한다. 이 접근법은 민감한 디바이스에 대해 최고 수준의 핸들링 안전성을 허용한다.
CDM 이벤트 시뮬레이터(CDM Event Simulator)(CDMES)
IC 디바이스들은 보통, 다양한 디바이스 입력 및 출력 접속부 상의 방전을 시뮬레이팅하도록 설계된 공식적 시험대 및 머신에서 장애 문턱값들에 대해 특징화된다. 이 정보는 디바이스 제조 및 시스템 통합의 모든 단계들에서 리스크(risk)를 평가하는데 이용된다. 본 발명의 실시예에서, CDM 이벤트 시뮬레이터(CDMES)와 함께 ESD 이벤트 모니터링 디바이스 및 장애 문턱 정보를 이용함으로써 방법이 제공된다.
예를 들어, 반도체, 디스크-드라이브, FPD, 자동화된 IC 핸들링, 및 다른 제조 프로세스의 호스트에 있어서의 다수의 응용에서는, 직접 방전(IC 핀들과 접지된 도체들 간의 정전기 방전)이 발생할 수 있는 위치(예로서 도 1a 및 도 1b 참조)에서 민감한 제품을 핸들링한다.
모니터링의 지점(또는 영역)에서 CDM 이벤트를 시뮬레이팅하는 것은 실제 하전 디바이스들을 이용하도록 시도할 때 과제들을 내포한다. 이 어려움 중 일부는 방전 이벤트 그 자체의 반복성과 관련된다. 프로세스 지점 그 자체의 구성 및 물질들에 의해 방사된 전기장 파형에 부과되는 조건들로 인해 다른 어려움들도 존재한다. CDM 이벤트 시뮬레이터의 2개의 버전들은 특징화되지 않은 위치 조건들을 고려하는 프로세스 지점에서 반복 가능한 CDM 교정 이벤트를 제공한다(CDM 이벤트 시뮬레이터 버전 1의 일반적인 도면은 도 2에서 도시됨).
(다양한 CDMES 및 미니펄스 검출기와 함께) 본 명세서에서 논의된 시스템들 및 방법들은 툴 또는 프로세싱 챔버에서 이용될 수 있고 개방된 작업대(open work bench), 임의의 테이블 상, 실제 환경, 또는 ESD 검출기를 교정할 목적으로 교정된 CDM이 방사되고(생성되고) 검출되는 임의의 다른 적합한 환경에서도 이용될 수 있다는 것에 또한 주목해야 한다.
CDMES 버전 1: CDM 이벤트를 생성하기 위한 기계적 갭:
CDM 이벤트 시뮬레이터(CDMES)의 제 1 버전은 상이한 전위 또는 접지 기준에서 객체(타겟)와 하전 IC 간에 발생하는 정전기 방전을 시뮬레이팅하기 위해 붕괴 커패시터 이벤트를 시뮬레이팅하도록 기계적 갭 제어를 이용한다. 특히, 본 실시예는 디바이스와 접지 간의 이동 전류의 고속 단일-피크 펄스 파형을 특징으로 하는 하전 디바이스 모델(Charged Device Model; CDM) 방전 타입을 모델링한다. CDMES 전력 회로는 높은 저항(예를 들어, 대략적으로 100 메가 옴 이상)을 포함하여서, 갭 양단의 전압은 높고(대략적으로 25V-3000V 범위), 인가된 전류는 이 범위에 걸쳐서 10 마이크로 암페어 미만이 된다.
정전기 방전은 임의의 하전 접촉 및 통상적인 접지 접촉 때문에 발생하게 된다(도 1a 및 도 1b 참조). 그러므로, CDMES가 전원 전압으로 하전될 때, CDMES는, 오실로스코프에 의해 검출 가능하고 오실로스코프에서 재생되는 펄스 파형을 생성하는 ESD 이벤트를 시뮬레이팅할 것이다
오실로스코프 상에서 재생되는 바와 같은 CDM 펄스는 전류 펄스 파형의 그래프이며, 모든 표준 문서들(IEC 61000-4-2, ISO10605, JESD22-C101E)에서 참조되는 통상적인 CDM 파형에 대응한다. 생성된 파형은 또한 공식적인 디바이스 테스트 머신들(예를 들어, 위의 표준 참조들을 참조)이 디바이스 ESD 감도를 평가하는데 이용하는 입력 CDM 펄스 파형에 대응한다.
도 2는 외부 HVPS(high voltage power supply)(205) 및 스코프(210)에 전기적으로 커플링되는 방전 헤드(202)를 갖는 하전 디바이스 모델 이벤트 시뮬레이터(200)의 일반적인 도면이다.
도 3a는 CDMES가 트리거될 때 생성되는 방전 전류 펄스를 나타내는 통상적인 CDMES 펄스 파형이다. 오실로스코프 스크린 샷(300)의 이 예에서, 예를 들어, HVPS(205)로부터 대략적으로 100V의 전압 방전은 파형(310)에서 통상적인 전류 펄스(305)를 생성하도록 CDMES를 트리거할 것이다. 이 통상적인 전류 펄스(305)는 2개의 전도성 부품들 사이에 스파크 형태로 방전이 발생하는 정전기 이벤트를 야기할 것이다.
도 3b는 본 발명의 실시예에 따른, 하전 디바이스 모델 이벤트 시뮬레이터(352)(또는 CDMES(352), 또는 CDMES 유닛(352))을 포함하는 시스템(350)(또는 장치(350))의 도면이며, 이 시스템(350)은 ESD 이벤트 검출기(355)에 대한 교정 방법을 또한 제공하도록 구성된다. 그러므로, 도 3b는 미니펄스 ESD 이벤트 검출기(355)에 대한 CDMES ESD 교정을 도시하고 있다. CDMES(352)에 의해 수행되는 ESD 시뮬레이션 및 ESD 이벤트 검출기(355)에 대한 교정 방법은 실제 툴 또는 프로세싱 챔버(362) 내에서 (인-시추로) 이루어질 수 있다. 그러나, 그 대신에, 위에서 언급된 바와 같이, CDMES의 실시예들은 개방 작업대, 임의의 테이블 상, 실제 환경, 또는 ESD 검출기를 교정할 목적으로 교정된 CD이 생성되고 검출되는 임의의 다른 적합한 환경에서 이용될 수도 있다.
도 2를 참조하여 마찬가지로 논의되는 바와 같이, CDMES(352)는 HVPS(205) 및 스코프(210)에 커플링된다(그리고 이와 함께 동작함). CDMES(352)는 CDMES(352)에 전압을 공급하는 전원(205)에 전기 링크(266)(예를 들어, 케이블)를 통해 전기적으로 커플링된다. CDMES(352)는 또한 전기 링크(267)(예를 들어, 케이블)를 통해, 아래에서 추가로 논의되는 바와 같이 CDMES 디바이스(352)에 의해 생성되는 출력 신호(전류 펄스)(도 3a의 출력 신호(310) 참조)를 검출 및 측정하는 오실로스코프(210)에 전기적으로 커플링된다. 트리거 버튼이 눌러질 때, CDMES(352)(CDMES 유닛(352))는 전류 펄스 이벤트를 생성하도록 내부 ESD 이벤트 생성 매커니즘 및 HVPS(205)로부터의 전압을 이용한다.
(CDMES(352)의) 방전 헤드는 HVPS(205)로부터의 전압에 의해 하전된다. (ESD 검출기(355)에 커플링되는) 안테나(382)는 CDMES(352) 내에서 생성된 방전 이벤트의 방사(380)(또는 전자기파(380))를 인터셉트한다. 안테나(382)는 방사(380) 내의 상이한 방전 에너지를 검출하도록 구성된다. 위에서 또한 언급된 바와 같이, CDMES(352) 및 대응하는 엘리먼트들(예를 들어, HVPS(205), 스코프(210) 및 ESD 검출기(355))을 이용한 ESD 이벤트의 시뮬레이션은 챔버(362)에서 수행될 수 있거나, 또는 챔버(362) 외부에서 수행될 수 있다(즉, 개방된 작업대, 임의의 테이블 상, 실제 환경, 또는 ESD 검출기(355)를 교정할 목적으로 교정된 CDM이 생성되어 검출되는 임의의 다른 적합한 환경에서 수행될 수 있다).
도 3b의 이 도면은, 안테나(382)가 CDMES(352)의 방사 엘리먼트(방전 헤드)의 축을 따르고 그 엘리먼트에 수직일 때, NULL 필드의 방향의 방사(380)를 도시한다. 임의의 신호는 주로 반사로 인한 것일 것이다. CDMES(352)가 CCW로 대략 90도 회전된 경우, 신호는 상당히 영향을 받을 것이다.
CDMES(352)는 보통의 디바이스 핸들링이 발생하는 지점에서 방전되어서, 디바이스 CDM 방전 이벤트를 시뮬레이팅한다. ESD 이벤트 검출기(355)(미니펄스(355))는 ESD 이벤트를 툴 제어 시스템에 통지하기 위한 릴레이 출력을 갖는다.
ESD 이벤트 검출기(355)의 게이트 검출 입력은 미니펄스(355)의 ESD 트리거 문턱값 레벨을 설정하도록 활용될 수 있는 테스트 지점이며, 여기서 ESD 트리거 문턱값 레벨은 관심의 ESD 이벤트를 구분할 것이다.
ESD 이벤트 검출기(355)의 릴레이 출력은 (미니펄스(355)의) 미니펄스 알람 상태를 모니터링하는데 이용될 수 있다. 릴레이 출력은 예를 들어, 미니펄스(355)로부터의 청취 가능한 알람 사운드와 동시에 접지로 풀(pull)링되는 개방된 컬렉터 드라이버이다.
미니펄스 검출기(355)(도 3b)를 교정하는 프로세스 동안, CDMES(352)의 붕괴 커패시터 및 다양한 공급 전압 값들(예를 들어, 대략적으로 20V, 100V, 500V 또는 다른 값들)은 사용자가 바람직한 ESD 이벤트 세기를 시뮬레이팅하게 한다.
본 발명의 실시예에 있어서, 본 명세서에서 개시된 CDM 교정의 이러한 방법은 다음 중 하나 이상일 수 있는 다수의 가능한 효과를 갖는다.
·툴 및 프로세스 내에서 ESD 센서들을 교정하는 능력(실험 교정 또는 대강의 근사화 루틴만을 이용하기 보다는 이들이 이용될 것임).
·센서 교정에 자동으로 영향을 주는 가변 조건들을 고려하는 인-시추 CDM 시뮬레이션.
·높은 반복 이벤트 시뮬레이션의 용이함을 통한 ESD 센서 유효성의 통계적 검증을 허용.
·디바이스 핸들링 툴이 툴 개발 프로세스 동안 CDM 방전 이벤트에 대해 교정되게 함.
·그 자리에서 ESD 검출기 주기적 교정을 허용하여, 실험 교정을 위해 툴 또는 프로세스로부터 검출기를 제거할 필요성을 없앰.
이 버전의 CDMES의 주요 이점들은 다음 중 하나 이상을 포함한다:
·보다 더 제약받는 툴 공간에서 더 작은 방사 안테나의 이용을 허용.
·CDM 시뮬레이팅된 이벤트는 제 1 버전의 CDMES의 수동 트리거 인터페이스의 제거로 인해 변동성이 적음(즉, 트리거링은 별개의 시한(timed) 스위치로 행해짐).
ESD 이벤트 검출기
반도체, 디스크 드라이브, FPD, 자동화된 IC 핸들링, 및 다른 제조 프로세스의 호스트에 있어서의 다수의 응용에서는, 직접 모니터/제어하기 어려운 위치에서 ESD 민감 제품과 함께 동작한다. 또한, 그 특성에 의해 이들 환경 중 대부분은 HVDC 공급기, 전기 모터 및 엑추에이터로부터 광대역 통신(RF) 유닛에 이르기까지 EMI 노이즈 소스들로 포화된다. 제품 핸들링에 관련되는 특정한 지점들에서의 ESD 이벤트 검출이 과제일 수 있다.
신규한 ESD 이벤트 검출기의 4개의 주요 특징들은 다음과 같다:
1. 펄스 슬루 레이트 나노초 범위의 지속기간에 의한 ESD 검출의 제어. "미니펄스" 검출기(355)(도 3b)는 상이한 펄스 이벤트 타입들 간을 구별할 수 있다. 이에, 미니펄스 검출기는 다른 EMI(전자기 간섭 또는 방출) 펄스 패킷 신호들(예를 들어, 모터, 스위칭 디바이스, 휴대 전화, 텔레비전, WiFi, 환경 노이즈 등으로부터의 신호 방출)로부터 유효 ESD-타입 이벤트를 결정하고 선택할 수 있다. 그러므로, 미니펄스 검출기(355)는, ESD 펄스 이벤트가 선택된 펄스 이벤트 문턱값에 딱 맞는지를 결정하여, 미니펄스 검출기(355)는 그 ESD 펄스 이벤트가 머신 모델 및 인간 모델 대신에, CDM 하전 디바이스 모델 내에 있는지를 결정할 수 있게 된다. 당업자들에 알려진 바와 같이, 하전 디바이스 모델, 머신 모델, 및 인간 모델에서의 ESD 이벤트는 저항 팩터, 커패시턴스 팩터 및 시그니처가 상이할 것이다. 미니펄스 검출기(355)의 실시예가 CDM, HBM 및 MM 타입 ESD 이벤트들 간의 차이를 실제로 표시하지 않더라도, 미니펄스 검출기(355)는 트리거 문턱값에 대한 신호 진폭에 기초하여 트리거 유효성과, 펄스 이벤트가 타임 버퍼 내에 딱 맞는지(즉, 펄스로서 적격인지)를 판단한다.
2. 조정 가능한 방전 에너지 문턱값 제어. 거리에 따른 전자기장 감쇠로 인해, 다수의 광대역 ESD 이벤트들은 로컬 이벤트 진폭에 매칭하도록 전압 감도 문턱값(예를 들어, 1 볼트, 100 볼트, 500 볼트, 또는 다른 값들의 문턱값들)을 조정함으로써 필터링될 수 있다.
3. ESD 검출 방법에 대해 이제 본 발명의 실시예에 따라 설명한다. ESD 이벤트는 전자기 펄스를 생성한다. 이 펄스는 공식적으로 소스로부터 구 형상으로 바깥쪽으로 방사하는 전자기 방사 플럭스 밀도(electromagnetic radiation flux density)로서 설명되며, 방사된 에너지는 전자기파가 소스로부터 멀어지게 진행함에 따라 감소한다. 미니펄스(355)는 유도성 필드 커플링(inductive field coupling)을 통한 이중극 안테나와의 상호작용에 의해 이 확장하는 전자기장을 샘플링한다. 확장하는 전기장의 에너지는 안테나 케이블 상에서 신호를 생성하는 안테나에 커플링된다. 미니펄스 검출기 유닛(355)은 케이블 상에서 인입 신호를 복조하여, 다양한 주파수들을 그 전력 성분들로 분해한다. 미니펄스(355)는, 방사된 펄스 과도현상(radiated pulse transient)의 결합된 전력(와트)이 검출 문턱 세트보다 더 큰지를 결정하기 위해 그 전력을 측정한다. 만약 크다면, 미니펄스(355)는 관심의 이벤트를 트리거한다. 전력 레벨이 검출을 위한 세트 문턱값 미만인 경우, 이벤트는 무시된다. 또한, 미니펄스 검출기(355)는 그 펄스가 유망한 ESD 이벤트로서 적격인지를 결정하기 위해 비교기 회로(도 5 및 도 6의 비교기(508) 참조)를 이용하여 펄스 지속기간 동안 인입 신호를 샘플링한다. 펄스 지속기간이 CDM 및 다른 ESD 이벤트(HBM 및 MM)에 대해 통상적인 시간 간격 경계들 내에 있는 경우, 펄스는 검출기를 트리거한다. 이 검출 방법은 표준 시간 도메인(대 주파수 도메인) 신호 분석과 상이하다. 고속의 광대역폭 오실로스코프에서 이루어진 것과 같은 시간 도메인 측정은 통상적으로 피크 전압 레벨을 추출한다. 미니펄스(355)는 ESD 이벤트 신호의 전력을 추출하는 스펙트럼 분석기에 더 유사하게 작동한다. 이 접근법의 주요 이점은 경제적인 검출 하드웨어이다. (시간 도메인 방법에서와 같은) 고속 샘플링에 대한 필요성이 결정적이지 않다. 신호 주파수에 걸친 방사 펄스 전력은 신호 전력의 매우 양호한 제 1 차 근사화를 제공하여서, 상이한 ESD 이벤트 진폭들 간에 비교가 이루어지는 것을 가능하게 한다.
4. "미니펄스" 에너지 문턱값 제어 감도는 매우 작은 취득 영역에 이르는 미세 튜닝을 허용한다. 이것은 검출된 ESD 이벤트를 결정적인 중요도의 이벤트 및/또는 사용자 관심의 이벤트들만으로 제한하는 중요한 양상이다.
5. 안테나 구성. 특정한 프로세스 지점에 대한 SD 이벤트 검출의 다른 핵심적인 팩터는 안테나(382)(도 3b)의 형태 및 배치이다. 안테나(382)의 물리적 이득 특성은 ESD 신호 취득을 제어하는데 있어 중요한 역할을 한다. (미니펄스 검출기(355)에 커플링된) 특수 설계된 안테나의 지향성 이득 특징은 사용자 관심의 주어진 ESD 이벤트들에 대해 미니펄스 검출기(355)를 교정하는데 이용될 수 있다.
6. 안테나 성능 및 노이즈 둔감성 . 마이크로ESD 안테나(382)(또는 마이크로 안테나(382))는 정전기 방전(ESD) 이벤트 검출을 위해 특수 설계되었다. 공학적 특성에 의해, 관심없는 다른 근접 이벤트를 무시하면서 ESD 방사 에너지가 소스 위치에 대해 지향성으로 검출될 수 있다.
종래 기술(미국 특허 제6,563,316호 및 특허 출원 제US2009 / 0167313호) 및 다른 이용 가능한 ESD 이벤트 모니터링 제품들에 대한 본 발명의 실시예들의 특정한 개선들은 다음과 같다:
1. 복조 로그 증폭기(505)(도 5)는 검출된 ESD 신호로부터 다중-주파수 증폭 레벨들을 추출한다. 이에 "미니펄스"(355)가 문턱값 제어에 대한 신호 레벨들을 더욱 정확하게 구별할 수 있다. 그러므로, 본 발명의 실시예들은 측정 모드에서 동작하고 신호 레벨들을 구별하기 위해 선택된 문턱값에 매칭되는 출력 신호를 생성하는 복조 로그 증폭기(505)를 제공한다. 이 기술은 출시된 다른 검출기 제품들에 의해 이용되지 않는다.
2. 이 제품과 함께 이용되도록 특수 설계된 안테나(382)("마이크로ESD(MicroESD)" 안테나(382))는 원치않은 신호 소스들을 배제하면서 지정된 범위에서의 최적 검출을 위해 공학적 이득 특성을 이용한다. 이 안테나의 물리적 치수 및 구조는 전자기 방전(ESD) 방사 펄스 과도현상 신호들에 대해 대역폭 최적화되었다. 출시된 다른 검출기들은 불필요한 광대역 특성을 갖는 표준 다용도 RF 안테나를 이용한다. 출시된 검출기들에 의한 이러한 접근법은 ESD 펄스 과도현상 이벤트와 다른 신호 소스들 간의 신호 분리가 큰 문제가 되게 한다.
3. 특정한 타입의 ESD 이벤트를 검출하기 위한 인-시추 ESD 모니터 교정 방법이 이제 가능하다. 그러므로, 본 발명의 실시예들은 특정한 펄스 이벤트를 검출하고 관심없는 다른 신호들을 배제하기 위해 툴들 및 애플리케이션(또는 다른 특정한 영역들)에 배치될 수 있다. 대조적으로, 현재 ESD 이벤트 검출기들은 본 발명의 실시예들의 위에서 언급된 이점들 없이 일반적으로 ESD 이벤트들을 검출하도록 설계된다.
도 3c는 본 발명의 다른 실시예에 따른 시스템(또는 장치)(388)의 도면이다. 시스템(388)은 논의의 명확성을 위해 상부 평면도로 도시된다. 도 3a의 시스템(350)에 관하여 마찬가지로 논의된 바와 같이, 시스템(388)은 정전기 방전(ESD) 이벤트 모니터링을 위해 구성되고 하전 디바이스 모델 이벤트 시뮬레이터(CDMES) 유닛을 포함한다.
본 발명의 실시예에서, 시스템(388)은 프로세스 영역(389a) 내에 포지셔닝되는 적어도 하나의 안테나(382a) 및 안테나(382a)에 커플링되는 ESD 검출기(355)를 포함한다. 안테나(382a)가 CDMES 유닛(352)으로부터의 방사(380)를 수신하도록 구성되기 때문에, 안테나(382a)는 CDMES 유닛(352)에 무선으로 커플링된다. ESD 검출기(355)는 CDMES 유닛(352)에 의해 생성된 상이한 방전 에너지에 대해 교정된다.
프로세스 영역(389a)은 예를 들어, 툴 프로세스 영역 또는 툴 프로세스 영역 외부의 영역일 수 있다.
본 발명의 다른 실시예에서, 프로세스 영역(일반적으로 영역(389)으로서 도시됨)은 제 1 프로세스 영역(389a) 및 제 2 프로세스 영역(389b)을 포함한다. 제 1 안테나(382a)는 제 1 프로세스 영역(382a) 내에 포지셔닝되고 제 2 안테나(382b)는 제 2 프로세스 영역(389b) 내에 포지셔닝된다.
본 발명의 실시예에서, 제 1 안테나(382a)는 ESD 검출기(355)에 커플링되고, 제 2 안테나(382b)는 ESD 검출기(355)에 또한 커플링된다. 본 발명의 다른 실시예에서, 제 2 안테나(382b)는 다른 ESD 검출기(356)에 커플링되고, ESD 검출기(355)에는 커플링되지 않는다.
통상적으로, 제 1 프로세스 영역(389a)은 거리(391) 만큼 제 2 프로세스 영역(389b)으로부터 분리되고, 제 1 안테나(382a) 및 제 2 안테나(382b)는 다중-채널들을 형성한다. 거리(391)는 조정 가능하다.
일 실시예에서, 제 1 안테나(382a) 및 제 2 안테나(382b)는 안테나 응답 감도가 유사할 수 있다. 다른 실시예에서, 제 1 안테나(382a) 및 제 2 안테나(382b)는 안테나 응답 감도가 상이하다.
프로세스 영역들(389)은 하나 이상의 프로세스 영역과는 수에 있어서 다를 수 있다. 그러므로 2개 초과의 프로세스 영역들이 시스템(388)에 포함될 수 있다.
프로세스 영역들(389) 중 적어도 하나는 반도체 칩(125)(도 1a)을 수용하도록 구성되는 소켓(373)(도 3b)을 포함할 수 있거나, 또는 복수의 반도체 칩들을 수용하도록 구성되는 복수의 소켓들(373)을 포함할 수 있다.
프로세스 영역들(389) 중 적어도 하나는 참조번호 396에 의해 가장 잘 식별되는 바와 같이, 다른 실시예에서 웨이퍼(393)를 수용하도록 구성되는 트위저(tweezer)(392)를 포함할 수 있다. 물론, 트위저(392)는 다른 타입의 웨이퍼 프로세싱 툴(392)일 수 있다.
프로세스 영역들(389) 중 적어도 하나(또는 웨이퍼(393))는 참조번호 397에 의해 가장 잘 식별되는 바와 같이, 일 실시예에서 테스트 프로브(395)에 의해 액세스 가능한 전도성 트레이스(394)를 포함할 수 있다. 프로세스 영역들(389) 중 임의의 것은 다른 적합한 타입의 영역일 수 있다.
마이크로ESD 안테나
ESD 방사된 펄스 과도현상을 검출하는데 이용되는 안테나들은 통상적으로 매우 높은 이득을 갖는 표준 안테나였다. 이것은 ESD 이벤트의 검출은 상당히 쉽게 하지만, 이벤트 오리진(origin)을 결정하는 것을 사실상 불가능하게 하였다. 이 약점 때문에 중요한 프로세스를 모니터링하는 데에는 종래의 안테나들이 거의 이용되지 않았다.
안테나-관련 거동들에 관련된 부가적인 배경 정보를 제공하기 위해 다음의 참조문헌들이 또한 인용된다:
1. T.J. Maloney, 표지 제목: "Easy Access to Pulsed Hertzian Dipole Fields Through Pole-Zero Treatment", IEEE EMC 사회 뉴스, 2011년 여름, pp.34-42.
2. T.J. Maloney, "Antenna Response to CDM E- fields", 2012 E0S/ESD 심포지움, 2012년 9월, pp.269-278.
3. T.J. Maloney, "Pulsed Hertzian Dipole Radiation and Electrostatic discharge Events in Manufacturing" 2013 IEEE 전자기 호환성 매거진, Vol.2, 쿼터 3, 페이지 49-57.
"마이크로ESD" 안테나(382)(예를 들어, 도 3b의 미니펄스 검출기(355)에 커플링되는 안테나(382))는 그것의 소스의 근접한 부근에서 ESD 이벤트를 검출할 목적으로만 개발되었다. 마이크로ESD 안테나(382)는, 우수한 ESD 근거리 필드 방사 펄스 수신을 가지면서, 공학적 지향성 이득 특성으로 인해 다른 근거리 및 원거리 필드 펄스 시그니처는 거절하는, 도 4a의 예시적인 안테나들(405, 410, 415, 420, 및/또는 425)로 도시된 바와 같은 다양한 버전들의 설계된 마이크로스트립 안테나들로 실현된다. 이는, 다른 안테나들이 관심의 로컬화된 ESD 이벤트를 식별하지 않는 경우에, 마이크로ESD 안테나는 잘 수행할 수 있다.
또한, 이러한 안테나의 설계된 특성은 포화 효과로 인해 ESD 검출에서 흔히 이용되는 일반적인 안테나에 해당되지 않는 매우 넓은 신호 구별 범위(10-3000V)를 허용한다. 감쇠기들과 함께 이용될 때, 매우 큰 ESD 이벤트들이 효과적으로 포착될 수 있다.
ESD 이벤트는 바람직하게는, 그것의 예상된 소스에 가능한 한 가깝게 모니터링되어야 한다. 안테나 설치에 대한 통상적인 모니터링 거리들은 예를 들어, 대략적으로 1" (2.54cm) 내지 대략적으로 6" (15cm) 범위에 이르지만, 다른 거리들이 수용될 수도 있다. 마이크로ESD 안테나(382)는 의도적으로, 신호 진폭 감소 및 검출 문턱값 설정들로 인해 소스로부터 거리가 멀수록 덜 효율적이 될 것이다.
도 4a에서, 본 발명의 다양한 실시예들에 따른 다중 안테나 구성들이 개시된다. 미니펄스(355)는 동시에 또는 별개로, 상이한 장소들에서 ESD 신호들을 검출하도록 다수의 공존 안테나들과 함께 이용될 수 있다. 동일한 ESD 신호 샘플링 방법이 이용되며, 유일한 차이는 다중 안테나 피드(feed) 지점들(430)이다. 피드 지점들(430)은 미니펄스 검출기(355)에 통신 가능하게 커플링된다. 안테나 케이블의 낮은 저항 손실 및 라인 전파 ESD 과도현상의 특성으로 인해, 신호 저하는 검출 및 진폭 구별의 목적에 대해 사소하다.
다중 안테나들은 거의 모든 구성에서 이중극 구조들의 어레이들로 전개될 수 있다. 도 4a에서, 5개의 안테나들(405-425)이 도시된다. 그러나, 도 4a에서 구성된 이중극의 어레이는 안테나 수가 5개를 초과하거나 5개 미만일 수도 있다.
도 4b는 본 발명의 실시예에 따른, 마이크로ESD 안테나 어셈블리(450)를 예시하는 도면이다. 어셈블리(450)는 ESD 검출기(355)(도 3b)에 착탈 가능하게 연결되는 전기 링크(460)(예를 들어, 케이블(460))에 커플링되는 마이크로ESD 안테나(455)를 포함한다.
미니펄스 회로 설명:
이제 도 5의 블록도 및 도 6의 회로도에 관한 참조가 이루어진다. 도 5는 본 발명의 실시예에 따른 ESD 검출기(500)(미니펄스(500))의 블록도이다. 도 6은 본 발명의 실시예에 따른, 도 5의 ESD 검출기(500) 내의 ESD 모니터 회로(600)의 개략도이다. 미니펄스(500)는 또한 도 3b에서 ESD 검출기(355)로서 도시된다(그리고 설명된다).
미니펄스(500)는 일정한 전자기 에너지의 펄스 정전기 방전을 검출하기 위해 시간 도메인에서의 EMI 이벤트 분석 및 문턱값 구별에 의한 2-차원 알고리즘을 이용한다. 모니터링되는 객체에 대해 특정한 안테나 구성 및 안테나 배치를 이용하여, 미니펄스(500)는 더 넓은 영역 커버리지를 대해 또는 관심의 특정한 작은 영역들에 대해 ESD 이벤트 검출을 제공할 수 있다.
ESD 이벤트 신호(501)는, 차폐된 케이블에 연결되고 입력 커넥터(예를 들어, 입력 SMA 커넥터, J1)에 부착되는 안테나(502)에 의해 검출된다. 신호(501)는, 진정한 ESD 이벤트 특유의 왜곡된 주파수들(>100MHz)은 통과시키고 그 범위 밖의 신호들을 거절하도록 튜닝되는 입력 필터/적분기(503))(예를 들어, 6 차 고역 통과 필터)에 의해 프로세싱된다. (필터/적분기(503)로부터의) 필터링된 신호(501)는 이어서 매우 빠른 6개의 스테이지 복조 로그-앰프(Analog Devices AD8310)인 로그-증폭기(505)(U2)에 전달된다. 로그-증폭기의 출력 신호(506)(U2의 출력 신호(506))는 정지 전압(quiescent voltage)(어떠한 입력 신호도 없음)이 대략 2.5V라는 점에서 인버팅된다. 회로 필터링된 인입 신호(506)는 전력, 지속기간 및 진폭에 의해 구별된다.
입력 ESD 이벤트 신호 세기가 강할수록, 로그-증폭기의 출력 전압(506)(U2의 출력 전압(506))은 더 낮다. 통상적으로, 이 신호(506)는 대략 2.5와 대략 1.0 볼트 사이의 범위일 것이다. 출력 전압(506)(U2의 출력 전압(506))은 이어서 초고속 비교기(508)(U3)(Analog Devices AD8561)을 이용하여, 미리 설정된 DC 전압(507)(TP_Comp(507))과 비교된다.
출력 전압(506)(U2의 출력 전압(506))이 약 1.5 볼트 스윙으로 압축되기 때문에, TP_Comp(507)는 쉽게 설정 가능한 알람 레벨을 제공하기 위해 별개의 회로(도 5의 레벨 설정 블록(510))에 의해 전개된다. ~2.0 볼트의 최대 TP_Comp 전압(507)은 TP2에서 검사될 수 있는 Q4 NPN 전압 소스 및 전위차계(potentiometer)(R12)에 의해 설정된다. ~1.0 볼트의 최소 TP_Comp 전압(507)은 전위차계(R10)에 의해 설정되고 TP1에서 검사될 수 있다. 전위차계(R13)는 이어서 로그-증폭기(505)의 출력 범위에 매칭하는, ~2.0 볼트와 ~1.0 볼트 간의 TP_Comp(507)를 생성하도록 그 기계적 범위 전체를 통해 조정될 수 있다.
U3, 즉 비교기(AD8561)(508)가 ("+" 또는 포지티브 입력 상에서) TP_Comp(507) 미만이 되는 신호를 ("-" 또는 네거티브 입력 상에서) 검출하는 경우, 네거티브 참 조건(negative true condition)은 비교기(508)의 출력 상에서 곧 발휘된다. 이 펄스는 이어서 1-샷 멀티-진동기들의 쌍인 U4a 및 U4b에 전달된다. U4a는 클록킹 온(clocked on)될 것이고 Q=참(true)이다(J 입력이 참이라고 가정함). U4a 1-샷이 리셋될 때(R11*C13 타임아웃으로 인해, 대략 250 nSec), 제 2의 1-샷 U4b는 U3의 출력이 하이(high)를 반환하는 경우에만 Q=참으로 설정될 것인데, 그 이유는 U3의 출력은 상당히 빠른 단일 펄스이기 때문이다. 펄스가 너무 긴 경우, 예를 들어, >500 nSec인 경우(이것은 관심의 ESD 이벤트가 아님을 나타냄), 그 펄스는 무시된다.
그러므로, U4b는 단지, 펄스가 관심의 ESD 이벤트인 것으로 결정되기 때문에 Q=참으로 설정된다. 알람 조건은 예를 들어, 청취 가능한 톤, 시각적 적색 LED 및 "온"으로 트리거되는 개방 컬렉터 출력에 의해 표시된다.
미니펄스(500)(도 5)의 이하의 블록도 및 개략도는 그 기본 동작 엘리먼트들을 도시한다. 동축 또는 삼축 케이블을 통해 원격으로 또는 직접 부착될 수 있는 안테나(502)는 EMI 신호들(예를 들어, 신호(501))을 검출한다. 안테나(502)는 예를 들어, 안테나(382)(도 3b)와 동일한 타입으로 이루어진다. EMI 신호들은 관심의 주파수 범위 내의 신호들만을 검출하도록 프로세싱된다. 바람직한 신호들은 매우 큰 동적 범위를 가지므로, 로그-앰프(505)는 유용한 신호(506)를 생성하도록 증폭한다. 신호(506)는 이어서 고속 비교기(508)에 전달되어, 미리 결정된 문턱값 전압 레벨(507)에 비교된다. 이 문턱값(507)을 초과하는 신호들은 이어서, 관심의 EMI 펄스의 시간 정의를 충족하는 신호들을 제외하고는 모두 무시하는 구별기(512)에 전달된다. 이 구별기/생성기(512)는 EMI 펄스가 EMI 펄스의 슬로프를 검사함으로써 유효한 이벤트인지 결정한다. 트리거될 때, 회로(512)는, 개방 컬렉터 출력 드라이버 트랜지스터(516)를 통해 청취 가능하게, 시각적으로(예를 들어, 오디오 및/또는 시각적 표시자들(515)을 통해) 그리고 원격으로 EMI 이벤트를 표시하는데 이용되는 펄스(514)를 생성한다. 알람 출력 드라이버(516)는, 미리 결정된 문턱값 전압 레벨을 초과하는 이벤트가 발생했다고 표시하기 위해 툴 또는 컴퓨터에 출력 이벤트 발생 신호를 송신한다.
도 7은 본 발명의 일 실시예에서 외부적으로 보여질 수 있는 미니펄스 ESD 검출기(355)의 일반적인 도면을 나타낸다. 그러나, ESD 검출기(355)는 도 7과 상이한 다른 타입의 구성을 가질 수도 있다.
도 8은 본 발명의 실시예에 따른, ESD 검출기에 대한 교정 방법(800) 및 구현의 흐름도이다. 방법(800)의 단계들의 순서는 변할 수도 있고 몇몇 특정 단계들은 또한 동시에 수행될 수 있다는 점을 알아야 된다. 교정 방법(800)의 801에서, 공식적 실험용 디바이스 CDM 테스트가, 랜덤으로 샘플링된 후보 디바이스들 상에서 수행된다. 802에서, ESD 이벤트의 존재를 모니터링하기 위한 중요 제조 프로세스 지점들에 관한 결정이 수행된다(예를 들어, 테스터, 핸들러). 803에서, 인-시추 ESD 이벤트에서, 교정 프로세스는 CDM 이벤트 시뮬레이터(CDMES)를 통해 수행된다. 인-시추 ESD 이벤트 교정 프로세스의 예들은 도 3b의 장치(350)를 참조하여 위에서 설명하였다. 804에서, 연속적인 ESD 모니터링 프로토콜은, 품질 준수(quality compliance)를 보장하기 위해 미니펄스 ESD 검출기와 관련하여 설정될 수 있다.
미니펄스 ESD 검출기(355)가 특정한 디바이스 내전압 문턱값에 대해 교정될 때, 이 전압 문턱값은 통상적으로, 디바이스의 실제 전압 장애 레벨 미만인 전압 레벨로 설정될 수 있다. 예를 들어, 디바이스가 대략 200 볼트의 실제 전압 장애 레벨을 갖는 경우, 전압 문턱값은 예를 들어, 전압 장애 레벨의 대략 50% 또는 대략 100 볼트와 같이 200 볼트 미만으로 설정될 것이다. 이러한 접근법은 실제 손상이 디바이스에서 발생하는 것을 방지한다. 그러므로, 805에서, 허용 가능한 인가된 전압 문턱값은 테스트되는 각각의 디바이스 타입에 대해 결정된다.
808에서, 최소 통계적 샘플이, 각각의 위치에 대한 통과/실패 ESD 이벤트 검출 검증을 위해 적용된다. 예를 들어, 약 20 또는 30개의 샷, 또는 다른 수의 샷이 정확한 교정을 획득하도록 적용된다.
806에서, ESD 검출기(355)(예를 들어, 미니펄스 검출기)는 특정한 디바이스 내전압 문턱값에 대해 교정된다. 블록들(803, 805, 및/또는 808)이 수행된 이후, 블록(806)의 프로시저가 이어서 수행될 수 있다는 것을 알아야 된다.
807에서, 교정 CDMES 전류 펄스 파형들은, 교정 샷의 정확도를 확인하기 위해 오실로스코프를 이용하여 확인된다. 그러나 오실로스코프의 이용은 또한 교정 프로세스에 있어서 이 단계 동안 생략될 수 있다.
다음의 논의는 본 발명의 일 실시예에서 교정 프로세스의 순서에 관한 부가적인 세부사항들을 제공한다:
1. 민감한 IC 디바이스가 배치될 툴 내의 프로세스 지점에 가장 가까운 실질적 근방에 미니펄스 모니터(ESD 검출기(355))의 마이크로ESD 안테나(382)를 배치함.
2. 마이크로ESD 안테나 케이블을 가동된(powered) 미니펄스 모니터(355)에 연결함.
3. CDMES에 대한 DC 전원 전압을 요구되는 문턱값 전압 레벨로 설정함(통상적으로 IC 디바이스 장애 문턱값의 대략 50%).
4. 민감한 IC 디바이스 모니터링 애플리케이션에 대해 선택된 지정된 프로세스 지점에 CDMES를 포지셔닝함.
5. 미니펄스(355)에 대한 요구된 ESD 이벤트 검출 문턱값이 도달될 때까지 미니펄스 검출 문턱값 제어를 조정하면서 CDMES를 트리거함.
6. 미니펄스 검출기 성능을 검증하기 위해 IC 디바이스 특정 문턱값 전압에서 CDMES 방전의 최소 통계적 그룹(예를 들어, 12-24)을 생성함.
7. CDMES DC 전압 레벨의 형태로 성공적인 교정 데이터, 통계적 샘플링 그룹 동안 성공적인 미니펄스 검출 수 및 디지털 멀티-미터(digital multi-meter)에 의한 전면 패널 테스트 지점을 통한 미니펄스 문턱 설정을 기록함.
본 발명의 실시예에 따른 다른 시스템들은 다른 형태들을 가질 수 있고 다른 방식으로 또는 다른 배향으로 배열되는 다른 상이한 컴포넌트들을 가질 수 있다는 것이 또한 이해된다.
위에서 설명된 실시예들 및 방법들의 다른 변동들 및 변형들은 본 명세서에서 논의된 교시들의 견지에서 가능하다.
요약서에서 설명된 것을 포함하여 본 발명의 예시적인 실시예들은 포괄적이거나, 또는 본 발명의 개시된 바로 그 형태들로 제한하도록 의도되지 않는다. 본 발명의 특정한 실시예들 및 예들이 예시적인 목적들을 위해 본 명세서에서 설명되지만, 당업자가 인지할 것처럼 다양한 등가의 변형들은 본 발명의 범위 내에서 가능하다.
이들 변형은 이상의 상세한 설명의 견지에서 본 발명에 대해 이루어질 수 있다. 하기의 청구항들에서 이용된 용어들은 본 발명을 명세서 및 청구항들에서 개시된 특정한 실시예들로 제한하도록 해석되어선 안 된다. 오히려, 본 발명의 범위는 청구항 해석의 설정된 원칙에 따라 해석되는 하기의 청구항에 의해 완전히 결정될 것이다.

Claims (20)

  1. 하전 디바이스 모델 이벤트 시뮬레이터(charged device model event simulator; CDMES) 유닛을 통합한 정전기 방전(electrostatic discharge; ESD) 이벤트 모니터링용 장치로서,
    적어도 하나의 안테나에 커플링된 ESD 검출기
    를 포함하고,
    상기 ESD 검출기는 상기 CDMES 유닛에 무선으로 커플링되며,
    상기 ESD 검출기는 상기 CDMES 유닛에 의해 생성된 상이한 방전 에너지에 대해 교정되고,
    상기 ESD 검출기는 조정가능한 문턱 전압 레벨을 상기 적어도 하나의 안테나에 의해 수신된 ESD 방사 펄스의 신호 진폭과 비교하도록 구성되며,
    상기 ESD 검출기는, 상기 ESD 방사 펄스의 상기 신호 진폭이 상기 조정가능한 문턱 전압 레벨을 초과할 때 상기 ESD 방사 펄스의 펄스 지속시간이 ESD 이벤트의 상단 및 하단 시간 간격 경계들 내에 있는지 여부를 결정하도록 구성되며,
    상기 ESD 검출기는, 상기 ESD 방사 펄스의 상기 펄스 지속시간이 상기 상단 및 하단 시간 간격 경계들 내에 있을 때 유효 ESD-타입 이벤트인 전자기 간섭 또는 방출(electro-magnetic interference or emission; EMI)을 나타내는 신호를 생성하도록 구성되고,
    상기 ESD 검출기는:
    상기 ESD 방사 펄스의 신호 진폭이 상기 조정가능한 문턱 전압 레벨을 초과하는 것에 응답하여, 상기 ESD 이벤트의 상기 상단 시간 간격 경계에 대응하는 지속시간 동안 제2 신호 - 상기 제2 신호는 상기 조정가능한 문턱 전압 레벨을 초과하는 상기 ESD 방사 펄스의 상기 신호 진폭을 표현함 - 를 출력하도록 구성되는 제1 회로; 및
    상기 제1 회로가 상기 지속시간 동안 상기 제2 신호를 출력하는 동안에 상기 ESD 방사 펄스의 신호 진폭이 상기 조정가능한 문턱 전압 레벨 미만으로 반환될 때에만 제3 신호 - 상기 제3 신호는 상기 조정가능한 문턱 전압 레벨을 초과하는 상기 ESD 방사 펄스를 표현하고, 상기 ESD 방사 펄스는 상기 시간 구간 경계들 내에 있음 - 를 출력하도록 구성되는 제2 회로
    를 포함하는 것인, ESD 이벤트 모니터링용 장치.
  2. 제1항에 있어서,
    상기 적어도 하나의 안테나는 상기 ESD 검출기에 커플링된 제1 안테나와, 상기 ESD 검출기에 커플링된 제2 안테나를 포함하고;
    상기 제1 안테나는 제1 프로세스 영역 내에 배치되고, 상기 제2 안테나는 제2 프로세스 영역 내에 배치되는 것인, ESD 이벤트 모니터링용 장치.
  3. 제2항에 있어서,
    상기 제1 프로세스 영역은 상기 제2 프로세스 영역으로부터 분리되고, 상기 제1 안테나 및 제2 안테나는 다중-채널(multi-channel)을 형성하는 것인, ESD 이벤트 모니터링용 장치.
  4. 제2항에 있어서,
    상기 제1 안테나 및 제2 안테나는 안테나 응답 감도가 유사한 것인, ESD 이벤트 모니터링용 장치.
  5. 제2항에 있어서,
    상기 제1 안테나 및 제2 안테나는 안테나 응답 감도가 상이한 것인, ESD 이벤트 모니터링용 장치.
  6. 제2항에 있어서,
    상기 제1 프로세스 영역은 반도체 칩과 외부 프로세싱 영역을 수용하도록 구성된 소켓을 갖는 툴 프로세스 영역을 포함하고, 상기 외부 프로세싱 영역은 상기 툴 프로세스 영역 외부에 있고, 거리만큼 상기 툴 프로세스 영역으로부터 분리되며, 다른 하나의 안테나가 상기 외부 프로세싱 영역 내에 배치되고 상기 ESD 검출기에 커플링되는 것인, ESD 이벤트 모니터링용 장치.
  7. 제2항에 있어서,
    상기 제1 프로세스 영역은 적어도 하나의 반도체 칩을 수용하도록 구성된 적어도 하나의 소켓을 포함하는 것인, ESD 이벤트 모니터링용 장치.
  8. 제1항에 있어서,
    상기 ESD 검출기는, 방사된 펄스 전자기파 신호를 검출하도록 구성되고, 상이한 펄스 이벤트 타입들 간을 구별하도록 구성되며, 하전 디바이스 모델(CDM) 이벤트가 교정된 문턱값을 초과할 때 CDM 이벤트를 등록하도록 구성되는 회로를 포함하는 것인, ESD 이벤트 모니터링용 장치.
  9. 제1항에 있어서,
    상기 ESD 검출기는 조정가능한 펄스 이벤트 문턱값에 기초하여 상이한 펄스 이벤트 타입들 간을 구별하도록 구성되는 것인, ESD 이벤트 모니터링용 장치.
  10. 제1항에 있어서,
    상기 ESD 검출기는 일정한(certain) 전자기 에너지의 펄스 정전기 방전을 검출하기 위해 시간 도메인에서 전자기 간섭(electromagnetic interference; EMI) 이벤트를 분석하고 문턱값 구별을 수행함으로써 2차원 알고리즘을 사용하도록 구성되는 회로를 포함하는 것인, ESD 이벤트 모니터링용 장치.
  11. 제8항에 있어서,
    상기 ESD 검출기는, 상기 CDM 이벤트의 하나 이상의 시뮬레이션에 기초하여 특정 디바이스 내전압(withstand voltage) 문턱값에 대해 교정되는 것인, ESD 이벤트 모니터링용 장치.
  12. 제1항에 있어서,
    상기 적어도 하나의 안테나는:
    상기 ESD 검출기에 커플링된 마이크로 안테나를 포함하고,
    상기 마이크로 안테나는 원치않는 신호 소스들을 배제하면서, 특정된 범위에서 최적의 검출을 위한 안테나 이득 특성을 포함하는 것인, ESD 이벤트 모니터링용 장치.
  13. 제 1 항에 있어서,
    상기 ESD 검출기는, 알람 출력 드라이버가 툴 또는 컴퓨터로 출력 이벤트 발생 신호를 전송하도록 허용하기 위해 상기 알람 출력 드라이버로 상기 ESD 방사 펄스를 전송하도록 구성되거나, 오디오 또는 시각적 표시자로 상기 ESD 방사 펄스를 전송하도록 구성되는 것인, ESD 이벤트 모니터링용 장치.
  14. 하전 디바이스 모델 이벤트 시뮬레이터(charged device model event simulator; CDMES) 유닛을 통합한 정전기 방전(electrostatic discharge; ESD) 이벤트 모니터링용 방법으로서,
    상이한 방전 에너지에 대해 ESD 검출기를 교정하는 단계;
    적어도 하나의 안테나와 상기 ESD 검출기를 통해 상기 방전 에너지 중 하나를 검출하는 단계;
    조정가능한 문턱 전압 레벨을 상기 적어도 하나의 안테나에 의해 수신된 ESD 방사 펄스의 신호 진폭과 비교하는 단계;
    상기 ESD 방사 펄스의 신호 진폭이 상기 조정가능한 문턱 전압 레벨을 초과하는 것에 응답하여, ESD 이벤트의 상단 시간 간격 경계에 대응하는 지속시간 동안 제2 신호 - 상기 제2 신호는 상기 조정가능한 문턱 전압 레벨을 초과하는 상기 ESD 방사 펄스의 상기 신호 진폭을 표현함 - 를 출력함으로써, 상기 ESD 방사 펄스의 펄스 지속시간이 상기 ESD 이벤트의 상단 및 하단 시간 간격 경계들 내에 있는지 여부를 결정하는 단계; 및
    상기 제2 신호가 상기 지속시간 동안 출력되는 동안에 상기 ESD 방사 펄스의 신호 진폭이 상기 조정가능한 문턱 전압 레벨 미만으로 반환될 때에만 유효 ESD-타입 이벤트인 전자기 간섭 또는 방출(electro-magnetic interference or emission; EMI)을 나타내는 제3 신호 - 상기 제3 신호는 상기 조정가능한 문턱 전압 레벨을 초과하는 상기 ESD 방사 펄스를 표현하고, 상기 ESD 방사 펄스는 상기 시간 구간 경계들 내에 있음 - 를 생성하는 단계
    를 포함하는 것인, ESD 이벤트 모니터링용 방법.
  15. 제14항에 있어서,
    상기 검출하는 단계는:
    조정가능한 펄스 이벤트 문턱값에 기초하여 상이한 펄스 이벤트 타입들 간을 구별하는 단계를 포함하는 것인, ESD 이벤트 모니터링용 방법.
  16. 제14항에 있어서,
    상기 검출하는 단계는:
    일정한(certain) 전자기 에너지의 펄스 정전기 방전을 검출하기 위해 시간 도메인에서 전자기 간섭(electromagnetic interference; EMI) 이벤트를 분석하고 문턱값 구별을 수행함으로써 2차원 알고리즘을 사용하는 단계를 포함하는 것인, ESD 이벤트 모니터링용 방법.
  17. 제14항에 있어서,
    상이한 방전 에너지에 대해 ESD 검출기를 교정하는 단계 이전에, 원치않는 신호 소스들을 배제하면서, 특정된 범위에서 최적의 검출을 위한 안테나 이득 특성을 설정하는 단계를 더 포함하는 것인, ESD 이벤트 모니터링용 방법.
  18. 제14항에 있어서,
    상기 CDMES 유닛은 인시츄(in situ) 교정을 위해 구성되고, 붕괴 커패시터를 포함하는 것인, ESD 이벤트 모니터링용 방법.
  19. 제14항에 있어서,
    상기 방전 에너지를 검출하는 단계는:
    방사된 펄스 전자기파 신호를 검출하는 단계를 포함하고,
    상기 교정하는 단계는: 상이한 펄스 이벤트 타입들 간을 구별하는 단계와, 하전 디바이스 모델(CDM) 이벤트가 교정된 문턱값을 초과할 때 CDM 이벤트를 등록하는 단계를 포함하는 것인, ESD 이벤트 모니터링용 방법.
  20. 삭제
KR1020157019982A 2012-12-28 2013-12-27 툴 내의 esd 이벤트 모니터링 방법 및 장치 KR102054541B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261747199P 2012-12-28 2012-12-28
US61/747,199 2012-12-28
US14/140,860 US9671448B2 (en) 2012-12-28 2013-12-26 In-tool ESD events monitoring method and apparatus
US14/140,860 2013-12-26
PCT/US2013/078038 WO2014106075A1 (en) 2012-12-28 2013-12-27 In-tool esd events monitoring method and apparatus

Publications (2)

Publication Number Publication Date
KR20150103088A KR20150103088A (ko) 2015-09-09
KR102054541B1 true KR102054541B1 (ko) 2019-12-10

Family

ID=51016477

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157019982A KR102054541B1 (ko) 2012-12-28 2013-12-27 툴 내의 esd 이벤트 모니터링 방법 및 장치

Country Status (8)

Country Link
US (1) US9671448B2 (ko)
EP (1) EP2939036B1 (ko)
JP (1) JP6538566B2 (ko)
KR (1) KR102054541B1 (ko)
CN (2) CN105074481A (ko)
SG (1) SG11201505153VA (ko)
TW (1) TWI615618B (ko)
WO (1) WO2014106075A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307235B2 (en) 2012-12-28 2022-04-19 Illinois Tool Works Inc. In-tool ESD events selective monitoring method and apparatus
WO2016204749A1 (en) * 2015-06-17 2016-12-22 Intel Corporation Directional pulse injection into a microelectronic system for electrostatic test
CN106911742A (zh) * 2015-12-23 2017-06-30 深圳长城开发科技股份有限公司 Esd工业物联网系统
US9804216B2 (en) 2016-03-16 2017-10-31 International Business Machines Corporation Detection of electromagnetic field with electroactive polymers
US10637234B2 (en) 2016-06-22 2020-04-28 International Business Machines Corporation ESD protection circuit
TWI752076B (zh) * 2016-09-16 2022-01-11 美商伊利諾工具工程公司 工具內esd事件的選擇性監控方法及裝置
US9933459B1 (en) * 2016-11-11 2018-04-03 Fluke Corporation Magnetically coupled ground reference probe
US10782665B2 (en) * 2017-06-30 2020-09-22 Cattron North America, Inc. Wireless emergency stop systems, and corresponding methods of operating a wireless emergency stop system for a machine safety interface
CN108020698A (zh) * 2017-12-29 2018-05-11 江苏林洋能源股份有限公司 一种用于电能表防窃电的esd高压检测电路和方法
CN113039443A (zh) * 2018-09-11 2021-06-25 迈吉克汽车运动公司 用于在电气和/或电子电路上进行测试的工具和组件
CN113167818A (zh) * 2018-09-11 2021-07-23 迈吉克汽车运动公司 用于在电气和/或电子电路上进行测试的工具的探针和包括探针的组件
CN109669084A (zh) * 2018-12-13 2019-04-23 歌尔科技有限公司 设备esd测试方法和系统
WO2020124979A1 (en) * 2018-12-21 2020-06-25 Huawei Technologies Co., Ltd. A portable, integrated antenna test bed with built-in turntable
CN109686203B (zh) * 2019-01-29 2023-11-21 中国人民解放军陆军工程大学 静电电磁脉冲诱发空气式静电放电实验系统
US10805936B1 (en) * 2019-07-24 2020-10-13 Cypress Semiconductor Corporation Device, system and methods for mitigating interference in a wireless network
CN110646695B (zh) * 2019-09-29 2021-07-23 潍坊歌尔微电子有限公司 一种静电测试工装
TWI772713B (zh) 2019-11-18 2022-08-01 和碩聯合科技股份有限公司 天線裝置及其靜電防護方法
KR20220039442A (ko) * 2020-09-22 2022-03-29 삼성전자주식회사 Esd 테스트 방법 및 이를 수행하는 esd 테스트 시스템
CN112698114B (zh) * 2020-12-10 2023-04-14 北京无线电测量研究所 一种天线近场数据采集方法和系统
CN113158441A (zh) * 2021-03-31 2021-07-23 胜达克半导体科技(上海)有限公司 一种芯片测试机内提高抓取信号精度的方法
CN113904736B (zh) * 2021-09-18 2023-05-23 中国电子科技集团公司第二十九研究所 一种多通道射频信号路由装置
KR20230064052A (ko) 2021-11-02 2023-05-10 삼성전자주식회사 반도체 장치
TWI792820B (zh) * 2021-12-30 2023-02-11 趙文煌 1kV以下的電源迴路絕緣劣化偵測預警裝置
TWI806647B (zh) * 2022-06-08 2023-06-21 英業達股份有限公司 射頻及電磁干擾的自動測試系統及其方法
CN116298648B (zh) * 2023-05-12 2023-09-19 合肥联宝信息技术有限公司 一种静电路径的检测方法、装置及电子设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164747A1 (en) * 2005-12-23 2007-07-19 Intel Corporation Method and apparatus for simulating electrostatic discharge events in manufacturing and calibrating monitoring equipment

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909190A (en) 1958-10-29 1959-10-20 Exxon Research Engineering Co Static electricity detection and control system
EP0425823A1 (en) 1989-09-29 1991-05-08 Antivision Systems Corp. Electrocstatic imaging apparatus
US5359319A (en) 1990-08-13 1994-10-25 Minnesota Mining And Manufacturing Company Electrostatic discharge detector and display
US5315255A (en) 1992-07-16 1994-05-24 Micron Technology, Inc. Non-contact, electrostatic, discharge detector
CN1162746A (zh) * 1996-04-15 1997-10-22 三菱电机株式会社 微波探测器
WO1998000676A1 (en) 1996-06-28 1998-01-08 Intelligent Enclosures Corporation Environmentally enhanced enclosure for managing cmp contamination
US5903220A (en) * 1997-04-17 1999-05-11 Lucent Technologies Inc. Electrostatic discharge event detector
US5923160A (en) * 1997-04-19 1999-07-13 Lucent Technologies, Inc. Electrostatic discharge event locators
WO2002001235A2 (en) 2000-06-26 2002-01-03 Integral Solutions, International Testing device with a cdm simulator for providing a rapid discharge
DE10060284C2 (de) 2000-12-05 2003-07-17 Bruker Biospin Ag Faellanden Magnetanordnung mit einem aktiv abgeschirmten supraleitenden Magnetspulensytem und einem zusätzlichen Strompfad zur Streufeldunterdrückung im Quenchfall
JP2003028921A (ja) * 2001-07-18 2003-01-29 Nec Corp 静電破壊試験方法及び試験装置
US7700379B2 (en) * 2001-08-13 2010-04-20 Finisar Corporation Methods of conducting wafer level burn-in of electronic devices
US7662650B2 (en) * 2001-08-13 2010-02-16 Finisar Corporation Providing photonic control over wafer borne semiconductor devices
US7126356B2 (en) * 2004-04-30 2006-10-24 Intel Corporation Radiation detector for electrostatic discharge
JP2006317432A (ja) * 2005-04-12 2006-11-24 Nec Electronics Corp 荷電板及びcdmシミュレータと試験方法
US7525316B2 (en) * 2005-09-06 2009-04-28 3M Innovative Properties Company Electrostatic discharge event and transient signal detection and measurement device and method
US7248055B2 (en) 2005-12-20 2007-07-24 Dell Products L.P. Electrostatic discharge transient and frequency spectrum measurement of gap discharge
US7433165B2 (en) * 2006-03-17 2008-10-07 Adc Dsl Systems, Inc. Auto-resetting span-power protection
CN101617238B (zh) * 2008-02-20 2012-09-05 爱德万测试(新加坡)私人有限公司 检测静电放电事件的系统、方法和计算机程序
JP4931252B2 (ja) * 2008-08-14 2012-05-16 鹿児島県 静電気放電発生箇所の検出方法及び検出装置
US20100117674A1 (en) * 2008-11-11 2010-05-13 Thermo Fisher Scientific Inc. Systems and methods for charged device model electrostatic discharge testing
US8026736B2 (en) 2008-12-30 2011-09-27 Intel Corporation Water-level charged device model for electrostatic discharge test methods, and apparatus using same
CN102262202B (zh) * 2010-05-25 2013-05-29 上海政申信息科技有限公司 静电放电信号处理方法及其处理装置与静电放电检测仪
AU2012382560B2 (en) * 2012-06-14 2017-04-13 Prysmian S.P.A. A partial discharge detection apparatus and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070164747A1 (en) * 2005-12-23 2007-07-19 Intel Corporation Method and apparatus for simulating electrostatic discharge events in manufacturing and calibrating monitoring equipment

Also Published As

Publication number Publication date
KR20150103088A (ko) 2015-09-09
WO2014106075A1 (en) 2014-07-03
TW201432271A (zh) 2014-08-16
US20140184253A1 (en) 2014-07-03
US9671448B2 (en) 2017-06-06
TWI615618B (zh) 2018-02-21
SG11201505153VA (en) 2015-08-28
EP2939036A1 (en) 2015-11-04
CN112327069A (zh) 2021-02-05
JP6538566B2 (ja) 2019-07-03
JP2016502117A (ja) 2016-01-21
CN105074481A (zh) 2015-11-18
EP2939036B1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
KR102054541B1 (ko) 툴 내의 esd 이벤트 모니터링 방법 및 장치
US10149169B1 (en) Non-contact electromagnetic illuminated detection of part anomalies for cyber physical security
JP2016502117A5 (ko)
WO2015027664A1 (zh) 基于模拟电压信号注入的不同类型局放检测仪主机性能测试方法
JP7106527B2 (ja) ツール内esd事象選択的監視方法及び装置
US11307235B2 (en) In-tool ESD events selective monitoring method and apparatus
Candela et al. A novel partial discharge detection system based on wireless technology
Zeitlhoefler et al. Analysis and Simulation of Antenna Response for Discharge Sensing in Production Environments
Ashari et al. Design and fabrication of vivaldi antenna as partial discharge sensor
Orr et al. A systematic method for determining soft-failure robustness of a subsystem
Zeitlhoefler et al. ESD risk assessment with Discharge Electrode and Antenna Measurement
Marathe et al. Detection methods for secondary ESD discharge during IEC 61000-4-2 testing
Tamminen et al. Charged device discharge measurement methods in electronics manufacturing
Tamminen System level ESD discharges with electrical products
Scholz et al. On-wafer Human Metal Model measurements for system-level ESD analysis
Antong et al. Prediction of Electrostatic Discharge (ESD) soft error on two-way radio using ESD simulation in CST and ESD immunity scanning technique
KR20130132845A (ko) 전자기기의 변동 전계 내성 검사 장치, 전자기기의 변동 전계 내성 검사 방법
Fellner et al. Quantification of ESD Pulses Caused by Collision of Objects
Fellner et al. Detection and Localization of CDM like ESD using a novel Sensor derived from Leaky-Coax
Oglesbee Spatial location of electrostatic discharge events within information technology equipment
Oana et al. 3D assessment of ESD field level for protection devices safety
Johnsson et al. Discharge Waveforms of Emulated Die-to-Die ESD Discharges
Zingarelli et al. 9 kHz–30 MHz E-field measurement by an innovative ROD antenna embedding a fully CISPR 16-1-1 receiver
Viheriäkoski et al. ESD event receiver for system level testing
Kraz EMI Measurements: Methodology and Techniques

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant