TWI752076B - 工具內esd事件的選擇性監控方法及裝置 - Google Patents

工具內esd事件的選擇性監控方法及裝置 Download PDF

Info

Publication number
TWI752076B
TWI752076B TW106129092A TW106129092A TWI752076B TW I752076 B TWI752076 B TW I752076B TW 106129092 A TW106129092 A TW 106129092A TW 106129092 A TW106129092 A TW 106129092A TW I752076 B TWI752076 B TW I752076B
Authority
TW
Taiwan
Prior art keywords
esd
detector
antenna
pulse
event
Prior art date
Application number
TW106129092A
Other languages
English (en)
Other versions
TW201823741A (zh
Inventor
史蒂芬B 海曼
馬克E 霍塞特
提姆菲J 馬隆尼
Original Assignee
美商伊利諾工具工程公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/267,640 external-priority patent/US11307235B2/en
Application filed by 美商伊利諾工具工程公司 filed Critical 美商伊利諾工具工程公司
Publication of TW201823741A publication Critical patent/TW201823741A/zh
Application granted granted Critical
Publication of TWI752076B publication Critical patent/TWI752076B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/001Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing
    • G01R31/002Measuring interference from external sources to, or emission from, the device under test, e.g. EMC, EMI, EMP or ESD testing where the device under test is an electronic circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本發明的一實施例提供了一種用於偵測靜電放電(ESD)事件的裝置,該裝置包括:ESD偵測器,被配置為判定至少一個製程窗,該至少一個製程窗將容許該ESD偵測器偵測ESD事件;至少一個天線,耦接到所述ESD偵測器;及所述ESD偵測器針對至少一個放電能量而被校準。本發明的另一實施例提供:一種用於偵測靜電放電(ESD)事件的方法,該方法包括以下步驟:判定將容許ESD偵測器偵測ESD事件的至少一個製程窗;及針對至少一個放電能量校準該ESD偵測器。

Description

工具內ESD事件的選擇性監控方法及裝置
本部分接續專利申請案將Lyle D. Nelsen、Steven B. Heymann及Mark E. Hogsett列為發明人及轉讓給伊利諾伊州格倫維尤村的伊利諾伊州工具廠股份有限公司的轉讓人。
本案是於2016年12月26日所提出且標題為「In-tool ESD Events Monitoring Method And Apparatus」的第14/140,860號的美國申請案的部分接續申請案的臺灣對應案,此案主張第61/747,199號的美國臨時申請案的優先權及權益。
本發明的實施例大致關於用於靜電放電(ESD)事件的工具內監控及特性分析的方法及裝置,及/或關於CDMES/迷你脈衝(MiniPulse)裝置及方法及/或其他類型的帶電設備模型事件模擬器(CDMES)、偵測器及方法。本文中所揭露的至少一個方法及裝置提供了例如積體電路(IC)生產工具中的實時的ESD事件監控,及/或提供了不同的製程及協助來使用帶電設備模型(CDM)的一或更多個方法防止ESD相關的故障。在本文中揭露了監控ESD事件的一個方法及用於校準監控器的兩個方法。
本文中所提供的背景說明是為了大致呈現本揭示案的背景。在此背景章節中描述目前所列舉的發明人的作品時,並不是明確地或暗示地將該作品以及可能在提出時原本不被視為先前技術的說明書態樣承認為是相對於本揭示案的先前技術。
CDM事件表示發生在電子IC(積體電路)的人工及自動化生產系統中的靜電放電。在生產工具中,IC(積體電路)可能藉由諸多方式獲取電荷,舉例而言,例如藉由接觸、摩擦及/或從附近的電場引入,僅是提及幾個可能的方式。在IC的導電部件與接地的設備部件或具有較低電勢的部件接觸時,累積的IC電荷能夠同時自由放電。其結果是,相對高的放電電流(ESD事件)可能破壞或損傷IC(例如參照圖1a及1b)。
IC元件的設計通常併入特殊的手段(或特定的元件)以供保護免於ESD效應。半導體工業已研發了用於測試IC設備的數個標準方法及定義了其CDM ESD臨界參數,舉例而言,例如耐受電壓及電流的幅度。可適用的標準亦詳述了自動化IC CDM測試的測試裝置需求。該等方法及設備在IC設計階段、產品認證的最終測試及損傷的設備的故障分析期間是有用的。
然而,習用技術遭受到將在下文中論述的各種限制及/或缺陷。依據本發明的各種實施例的目標是提供用於IC生產工具及製程中的實時ESD事件監控及校準的方法及裝置。
圖1a繪示了工具或處理腔室中的帶電(IC)設備CDM事件的一般放電模型100。在圖1a中,「迷你脈衝」(SIMCO-ION)ESD偵測器105(或另一類型的ESD偵測器105)截獲ESD訊號140,且自動機放置執行器115(或另一合適類型的自動臂115)將帶電設備125放進測試插槽130。測試插槽130一般放置在合適的測試床131、基座131或另一合適的平台131上。隨著帶電設備125接近測試插槽130,放電(ESD)141發生,且屬於「迷你脈衝」偵測器的一部分(耦接到迷你脈衝偵測器105)的天線135截獲放電事件的ESD訊號140。在此實例中,ESD事件是在兩個導電部件125及130之間以火花的形式發生的放電141,該等部件的特徵是不同的電勢。導電部件125及130及其他半導體處理裝備可能在工具或處理腔室132中,該工具或處理腔室可具有任何合適的尺寸,舉例而言,例如大約2x2呎、4x4呎或其他尺度。
習用的技術及儀器配置的目前的問題中的一者是難以校準ESD偵測器。此困難例如是肇因於提供靜電放電事件本身的重複性的挑戰。由於在藉由製程點本身的材料及配置偵測放射的電場波形的行為上所施加的條件而存在著其他困難。又一個大問題及/或限制是工具及IC生產樓層的相對高的電磁雜訊位準。因此,目前的技術及設備在它們用於ESD事件偵測的能力上是受限的且至少遭受到以上的限制及缺陷。本發明的實施例提供了用於克服校準ESD偵測器及在生產條件下可靠地偵測ESD事件的困難的系統及方法。
圖1b示出了CDM靜電事件的一般示例電壓/電流波形的螢幕快照,其中放電在移動接觸的兩個導電部件(之後稱為「崩潰電容器」)之間以火花的形式發生。頂部的波形180是示例輸出訊號(與由如將依據本發明的一實施例在下文論述的CDMES(帶電設備模型事件模擬器)所產生的示例輸出訊號類似的電流脈衝)。下方的波形185是由「微ESD」單極天線135所捕捉的造成的入射波形。
「迷你脈衝」偵測器105包括了能夠接收由天線135所截獲的訊號的電子電路。若電子電路基於包括如下文在本發明的各種實施例中詳細論述的放射ESD能譜、脈衝持續時間及臨界位準的偵測演算法及多級過濾而判定此訊號是受關注的真實ESD事件,則電子電路將把此訊號過濾/分類為ESD事件。
在本發明的一個實施例中,提供了一種用於靜電放電(ESD)事件監控的裝置,該裝置併入了ESD事件偵測器及帶電設備模型事件模擬器(CDMES)單元。該偵測器包括:至少一個天線,定位在一第一製程區域中;一ESD偵測器,耦接到至少一個天線;所述ESD偵測器在工具中/製程中校準期間無線耦接到所述CDMES單元;及所述ESD偵測器針對由所述CDMES單元所產生的不同放電能量而被校準。
在本發明的又一實施例中,一種用於靜電放電(ESD)事件監控的方法包括以下步驟:在實際的技術製程中及/或工具中條件下併入及校準用於不同放電能量的一靜電偵測器(CDMES);及基於放電能量的可變臨界值來執行ESD事件的選擇性偵測。
要瞭解的是,前述的一般描述及以下的詳細描述之兩者僅為示例性及解釋性的且不限制所申請之發明。
隨附的繪圖(其被併入此說明書中且構成此說明書的一部分)繪示本發明的一個(數個)實施例,且與說明書共同用於解釋本發明的原理。
在本文中的說明中,提供了諸多特定的細節,如元件、材料、部件、結構及/或方法的實例,以提供對本發明的實施例的徹底瞭解。然而,熟習相關技術者將認識到,可在沒有特定細節中的一或更多者的情況下或在使用其他裝置、系統、方法、元件、材料、部件、結構等等情況下實行本發明的實施例。在其他的實例中,未圖示或詳細描述已知的元件、材料、部件、結構、方法或操作,以避免模糊本發明的實施例的態樣。此外,圖式本質上是代表性的,且其形狀不意欲繪示任何構件的準確形狀或準確尺寸且不意欲限制本發明的範疇。
熟習該項技術者將瞭解到,在將繪圖中的構件或部件稱為是在另一構件「上」(或「連接」到或「耦接」到或「附接」到另一構件)時,該構件或部件是直接在另一構件上的(或直接附接到另一構件)或者亦可能存在中介構件。並且,例如為「內」、「外」、「上」、「上方」、「下」、「下方」、「以下」、「向下」、「向上」、「朝向」及「遠離」及類似用語的相對用語在本文中可用來描述一個構件相對於另一構件的關係。瞭解的是,該等用語除了圖式中所描繪的定向以外意欲包括不同的設備定向。
儘管在本文中可使用用語第一、第二等等來描述各種構件、元件、部分、區域、層、腔室及/或區段,該等構件、元件、部件、區域、層、腔室及/或區域不應受該等用語所限制。該等用語僅用來將一個構件、元件、部件、區域、層、腔室或區段與另一構件、元件、部件、區域、層、腔室或區段進行區隔。因此,下文所論述的第一構件、元件、部件、區域、層、腔室或區段在不脫離本發明的教示的情況下可被稱為第二構件、元件、部件、區域、層、腔室或區段。
此外,圖式中所繪示的構件本質上是示意性的,且其形狀不意欲繪示設備的構件的準確形狀且不意欲限制本發明的範疇。並且,基於如本文中所呈現的本發明的實施例的論述,熟習該項技術者將理解的是,繪圖中的元件的位置及/或配置可在不同的尺寸、不同的形狀、不同的位置及/或不同的配置上變化。因此,繪圖中所示的各種元件可被放置在與如繪圖中所示的配置不同的其他位置中。為了解釋本發明的實施例的機能的目的而以非限制的示例位置繪示繪圖中的元件,且繪圖中的該等元件可被配置在其他示例位置中。
依據本發明的一實施例之帶電設備模型(CDM)測試及ESD事件監控系統(或裝置)是在以下考量下研發的:一般而言,處理腔室(例如半導體工具)由於周圍的金屬外殼而實質上是具有相對高的電氣雜訊位準的迴聲腔室。雜訊源的示例構件可為電子設備、有刷DC(直流)馬達、自動機致動器、開關、電氣系統等等。
在實際的意義上,各個工具在反射由靜電放電事件所造成的內部電磁場放射上具有獨一的特性(例如EMI(電磁干擾)地形(landscape))。CDM事件的一般情境是帶電IC設備在其接觸不同電勢的工具或製程構件時放電。此跨介電間隙(一般是空氣)的放電使得由不同電勢所形成的雙極崩潰或使得形成於帶電IC及工具部件之間的電容器崩潰。本發明的一實施例亦提供了ESD事件監控器,該ESD事件監控器在本文中亦稱為「迷你脈衝」偵測器(包括迷你脈衝/微ESD天線及迷你脈衝偵測器單元)或ESD監控器。監控器例如是用於工作站、電子設備生產工具、製程及/或行動應用的低成本事件監控器。造成的放射電磁脈衝波形(放射訊號)例如被迷你脈衝偵測器及通訊耦接到迷你脈衝偵測器的天線所偵測。若此脈衝波形的偵測到的場電壓位準是在以帶電設備模型事件模擬器(CDMES)裝備校準的臨限值以上,則迷你脈衝偵測器暫存一個重大的CDM/ESD事件。
CDM/ESD事件的特徵例如是電磁場上的較短(一般小於大約4奈秒)持續時間的改變,且在天線中產生具有高跳越率(slew rate)的感應電壓(電流)升起訊號。因此,關於工具中的ESD監控,所使用的偵測系統應將關注的CDM訊號與迴聲腔室環境中的一般工具雜訊進行區隔。
依據本發明的各種實施例,提供了用於ESD偵測器的校準方法。舉例而言,例如為本領域中已知的CDMES設備的合適裝備可用來模擬CDM事件,且接著依據本發明的一實施例來執行校準方法。例如,藉由在IC設備接觸導電工具構件的點處模擬實際工具中的一組火花間隙放電來促進CDM事件的原位監測。崩潰的帶電電容器放電模擬了給定IC設備的預選電壓/能量臨界值下的CDM事件。在此程序完成時,工具可稱為已針對指定位準下的IC(積體電路)CDM ESD事件偵測而校準。
在一個實施例的實例中,CDMES被配置為在放電間隙中具有開放移動電極的設備(或設備可為汞或RF中繼器,或高電壓RF中繼器,舉例而言,例如為舌簧繼電器)。
CDM/ESD事件的模擬放電產生了在監控設備(迷你脈衝)的接收天線中被截獲及偵測到的訊號。迷你脈衝天線(微ESD天線)耦接到迷你脈衝(參照圖3a)且容許迷你脈衝接收肇因於ESD事件的波形。可藉由變化CDMES放電電壓/能量及/或迷你脈衝天線相對於預期的CDM事件源的位置來原位地校準迷你脈衝。
因此,CDMES是產生已知能量的放射火花的帶電設備模擬器,該放射火花與帶電設備(如IC)正在接近或接觸插槽時的放電事件類似。此CDMES用來校準迷你脈衝。DC電源耦接到CDMES,且將任何或各種的合適的電源電壓值(例如100V、200V、500V或其他值)驅動至CDMES。在模擬ESD事件時,天線偵測來自CDMES產生的放電的波形,且迷你脈衝捕捉及處理由天線所偵測到的波形。亦如下文進一步論述地例如如圖1b中所示地在示波器中觀察到了肇因於CDMES產生的放電的波形的實例。
基於校準圖及已知的產品CDM故障臨界值,可針對迷你脈衝偵測器設置(或以其他方式配置)ESD臨界電壓位準。若CDM事件超過工具中的實際IC放電事件的臨界位準,則來自迷你脈衝的輸出警示訊號將被產生且可被發送到工具控制系統。
CDM事件模擬器已被設計為允許在發生CDM事件的工具及製程中校準ESD監控器(偵測器)。此模擬設備允許產生要在生產設備最容易受到傷害的點處及ESD監控感測器所在的點處產生的不同電壓幅度的校準後的CDM事件。此方法針對敏感設備允許了最高的處置安全等級。
CDMES(區段):
CDMES版本/實例:具有機械間隙以產生CDM事件的「崩潰電容」(參照圖2a及2b)。
CDM事件模擬器(CDMES)的此版本或實施例使用了機械間隙來產生受控的放電事件及模擬在帶電IC及在不同電勢或接地參考值下的物體(目標)之間發生的靜電放電。此機械間隙是在形成崩潰電容的兩個小板之間,其中崩潰電容包括具有接點的一個帶電板及具有第二接點的一個接地板。
具體而言,此實施例建立帶電設備模型(CDM)放電類型,該類型的特徵為設備及接地之間的傳輸電流的快速單峰脈衝波形。CDMES電源電路併入了高電阻(例如高達大約100 MΩ或以上),使得跨機械間隙的電壓較高(大約25V-3000V的範圍),且施加的電流跨此範圍小於大約10微安培。
靜電放電會針對任意的帶電接點及一般的接地接點而發生(參照圖1a及1b)。因此,在CDMES 206(圖2a)以DC電源電壓205充電時,CDMES 206將模擬ESD事件。
如在示波器上所再生的進行的CDM脈衝是電流脈衝波形的圖表且相對應於在標準文件(IEC 61000-4-2、ISO10605、JESD22-C101E)中所參照的經典CDM波形。所產生的波形亦相對應於輸入CDM脈衝波形,正式的設備測試機器(參照上文所參照作為實例的標準)將該輸入CDM脈衝波形用來估算設備ESD敏感度。此即為何該類型的崩潰電容CDMES呈現用在工具及其他處理區域中的便利的校準儀器之原因。
依據本發明的一實施例,圖2a是系統200的大致視圖的圖解,該系統包括具有外部HVPS(高壓電源)205的帶電設備模型事件模擬器(CDMES)206。依據本發明的一實施例,CDMES 206具有放電頭201,且放電頭201被安裝到手柄及觸發機構202。EM(電磁)透通的放電頭外殼(例如以聚甲醛製作)接納崩潰電容。此崩潰電容被電耦接到外部DC HVPS(高壓電源)205。高壓電纜204將電力連接到放電頭201。纜線203將放電頭201與共接地207連接。
依據本發明的一實施例,圖2b是具有崩潰電容的CDMES 206的圖解。具有「崩潰」電容器的CDMES 206的機械結構包括以下特徵。
基本的CDMES 206使用一電容器,該電容器是藉由彼此緊鄰的兩個PCB(印刷電路板)兩者上的導電板來產生/佈置的。帶電PCB 220(CDMES 206中的)可藉由按壓手柄202末端上的測試鈕222來移動,同時另一PCB 224(CDMES 206中的)是固定的。
整個組件(CDMES 206內部的)例如被容納在聚甲醛外殼內,電力連接器225、接地連接器226及手柄202被安裝到該外殼。可移動的帶電PCB 220的電壓板228通過高位值電阻器215被充電到所需的測試電壓。
固定板230(固定的PCB 224的)包含圍繞隔離的「彈簧針(pogo pin)」接點232(或另一合適類型的接點232)的接地平面。此接點232通過纜線234連接(透過接地連接器226)到接地214。
在CDMES按鈕222被按壓時,帶電板220朝向固定板224實體移動。就在PCB接觸之前,ESD事件將發生在彈簧針接點232,藉此使由板228及230所形成的電容器235放電。謹慎的設計消除了接頭彈跳、振鈴效應等等,藉此留下可用來校準「迷你脈衝」或其他ESD監控器的乾淨的ESD事件。在CDMES按鈕22被釋放時,可移動的PCB 220返回到該PCB的放鬆位置且再次被充電及準備下次的ESD事件測試。
適當的電源205用來產生從大約25伏特到高達4,000伏特的所需的測試電壓。由例如大約100 MΩ的電阻215所限制的測試電壓、電流施加到輸入連接器225以向板220及電極236(板220上的)供電。電流更被內部的30MΩ電阻帶238所限制,該電阻帶238通過軟線240連接到可移動電荷板PCB 220平面228。可使用另一合適類型的電阻238來限制送到PCB板220的電流。
緊鄰(例如大約0.35吋)目標PCB 224的此板220產生電容器「C」235,該電容器被充電到所需的完全測試電壓。為了產生測試脈衝,彈簧242加載的測試鈕222被壓平,藉此使得電荷板PCB 220朝向接地平面目標PCB 224移動。隨著分離距離減少,板220上的源電荷電極236接近目標電極232,直到產生電弧/火花放電為止。此電弧/火花使得放射訊號被發射,且使用此放射訊號來校準迷你脈衝ESD監控器(例如圖3a中的偵測器355或ESD偵測器355)。
在校準迷你脈衝偵測器的製程期間,崩潰電容(C)235允許使用者模擬被放電進入PCB 224上的目標電極232的各種供應電壓值(例如大約20V、100V、500V或其他值)。使用者亦可藉由使用按鈕或致動器222來機械控制板220及224之間的間隙距離。電弧作用將取決於放電時施加到板220的電壓及間隙距離。
此外,可通過與屏蔽接地連接244進行的同軸線連接226取得脈衝。同軸線245將脈衝訊號承載到SMA輸出連接器226。在釋放測試鈕222時,彈簧負載242使得PCB 220返回到PCB 220的原始位置且電容器235重新充電,且電容器235將準備好執行下個測試。可使用任何合適的機構(例如彈簧或其他機構)以供在釋放按鈕222時將PCB 220自動返回到PCB 220遠離PCB 224的初始位置。
一般而言,圖2b中的外殼是介電壁,且此外殼將較佳地不向發生在該外殼中的電磁場(波形)提供實際的衰減。此外,電源205及CDMES放電頭(連接器226)必須被綁定到相同的接地。
取決於所需的放電能量範圍,崩潰電容235可具有大約0.5 pF – 2 pF或以上的有效電容。
若第二電極232被接地(如在圖2b中所示的情況下),放電能量W完全如下定義:
W = C (V1 )2 / 2
其中C是崩潰電容值,而V1 是施加到電容器(在放電之前)的電壓。例如,若C = 1 pF且所施加的電壓是100V,則放電能量將是5 x 10-9 J(焦耳)。
在CDMES 206啟動時,電容器C的兩個電極來到接地電勢(電容器C崩潰了),且產生了已知能量W的放電。
依據本發明的一實施例,圖3a是系統350(或裝置350)的圖解,該系統包括帶電設備模型事件模擬器352(或CDMES單元352),且其中系統350被配置為亦提供/繪示用於ESD事件偵測器355(偵測器355及天線382或ESD偵測器355)的校準方法。因此,圖3a繪示了在校準耦接到天線382的ESD事件偵測器355期間的CDMES及ESD偵測器的相互位置的描繪及實例。由CDMES 352所執行的ESD模擬及用於ESD事件偵測器355的校準方法可在實際的工具或處理腔室362中(原位地)完成。然而,如上所述,CDMES 352的實施例亦可用在開放工作台、任何桌面、實際環境或為了校準ESD偵測器的目的而產生及偵測校準後的CDM事件的任何其他合適環境中。亦參照圖3b來論述工具及處理中的ESD偵測器校準的進一步論述。此外,CDMES單元352可被實施為圖2a及/或2b中的CDMES 206。
如參照圖2a及2b類似地論述的,CDMES 352與HVPS 205(例如如圖2a及2b中所示的)耦接(且與該HVPS一起運作)。在手柄的觸發按鈕222(參照圖2b)被按壓時,CDMES單元352使用來自HVPS 205的電壓及ESD事件產生機構(例如如圖2b中所示的CDMES 206特徵)以產生ESD放電脈衝事件。
放電頭(CDMES 352的)被來自HVPS 205(圖2a或2b)的預設校準電壓充電。天線382(耦接到ESD偵測器355)截獲在CDMES 352內所產生的放電事件的放射線380(或電磁波380)。在本發明的一實施例中,天線382被具體設計為要與此產品(「微ESD」天線)一同使用的某些應用,且將在下文更加詳細地論述。天線382(或微ESD天線382)被配置為偵測放射線380中的不同的放電能量位準。亦如上所述,藉由使用CDMES 352及相對應的構件(例如HVPS 205及ESD偵測器355及天線382)來模擬ESD事件的行為可執行在腔室362中或可執行在腔室362外面(亦即可執行在開放工作台、任何桌面、實際環境或為了校準ESD偵測器355的目的而產生及偵測校準後的CDM的任何其他合適環境中)。
圖3a的繪圖示出了在天線382被定位為與CDMES 352的放射構件(放電頭)正交/垂直時傳播電場的方向上的放射波380。任何訊號將大部分是肇因於反射。若CDMES頭352旋轉大約90度CCW(逆時針),則由天線382所產生的訊號會顯著地受到影響。
CDMES 352在正常設備處置發生的點(儘可能靠近)處(例如在插槽或插槽373處)產生放電,藉此原位地模擬設備CDM放電事件。ESD偵測器355(迷你脈衝355)具有中繼輸出以向工具控制系統通知ESD事件。
天線382(其為ESD偵測器的一部分)附接到迷你脈衝355輸入。藉由一調整電勢計來校準「迷你脈衝」偵測器355的ESD觸發臨界能量位準以區別關注的ESD事件。
ESD偵測器355的中繼輸出可用來監控(迷你脈衝355的)迷你脈衝警示狀態。中繼輸出例如是開放集電驅動器,在迷你脈衝355響起音響警示的同時,將該驅動器拉到接地。
在校準迷你脈衝偵測器355(圖3a)的製程期間,各種極性及值的CDMES 352的供應電壓(例如大約20V、100V、500V或其他值)及崩潰電容允許使用者模擬所需的ESD事件能量/強度。
本文中在本發明的一實施例中所揭露的新穎ESD偵測器的CDMES校準的此裝置及方法具有諸多可能的益處,該等益處可能是以下項目中的一或更多者。
1.依據本發明的一實施例的裝置及方法提供了在將使用ESD偵測器/感測器的原位工具及製程模式下校準ESD偵測器/感測器(而不是單獨校準、在理想狀態下校準、抽象地校準及/或通過像由T.J. Maloney在第2007/0164747號的美國專利申請公開案中所揭露的系統的實驗室校準來校準或是通過粗略的近似常式來校準)的能力。
2.原位的CDM模擬考慮了自動影響ESD偵測器/監控校準的實際生產變數(例如EMI雜訊、天線訊號上的效應(像是EMI場的反射)、周圍的或附近的金屬部件、精細的物體移動等等)的條件。
3.依據本發明的一實施例的裝置及方法通過容易進行高重複率的放電事件模擬來允許ESD偵測器/感測器效果的統計驗證。
4.依據本發明的一實施例的裝置及方法允許在工具測試、比較及研發製程期間針對CDM放電事件校準設備處置工具。
5.依據本發明的一實施例的裝置及方法允許ESD偵測器的原地週期校準,藉此除去了從工具或製程移除偵測器以供進行實驗室校準的必要。
此版本的CDMES - ESD事件偵測器(「迷你脈衝」)的對偶/串列的額外可能優點在本發明的一或更多個實施例中包括了以下項目中的一或更多者:
1.較小的放電/火花產生頭允許在受限的工具空間中使用此儀器配置/實施。
2.由於消除了人工觸發介面(亦即,在本發明的一個實施例中是以離散定時的開關完成觸發),CDM模擬的事件在放電能量(及火花電流)上具有較少的變化。
ESD事件偵測器章節:
半導體、磁碟機、FPD(平板顯示器)、自動化IC處置及諸多其他製程中的諸多應用在難以直接監控/控制的位置中與ESD敏感的產品一同運作。此外,諸多該等環境本質上充滿著範圍從HVDC供應源、電動馬達及致動器到寬頻通訊(RF)單元的EMI雜訊源。在關於產品處置的特定點處偵測ESD事件可能是具有挑戰性的。
偵測器/監控器(亦即新穎的ESD事件偵測器355)的此實施例的主要特徵至少為以下項目:
藉由一定的脈衝跳越率及奈秒範圍中的持續時間來控制ESD偵測:「迷你脈衝」偵測器355(圖3a)能夠在不同的脈衝事件類型之間進行區別。此允許偵測器355相對於其他的EMI(電磁干擾或發射)脈衝封包訊號(例如從馬達、切換設備、手機、TV(電視)、WiFi、環境雜訊等等放出的訊號)判定及選出有效的ESD類型事件。
因此,「迷你脈衝」偵測器355(參照圖3a)判定ESD脈衝事件是否契合在選出的脈衝事件臨界值內,使得「迷你脈衝」偵測器355可判定ESD脈衝事件是否符合CDM帶電設備模型(而非機器模型及人體模型)。如熟習該項技術者所知道的,帶電設備模型(CDM)及人體模型(HBM)中的ESD事件將在電阻因數、電容因數及訊跡(signature)上是不同的。儘管迷你脈衝偵測器355的實施例實際上並不指示CDM及HBM類型的ESD事件之間的差異,迷你脈衝偵測器355基於觸發臨界值以上的訊號幅度(與放電能量相關)及脈衝事件是否契合在時間緩衝區內(亦即具有作為脈衝的資格)來決定觸發有效性。
可調的放電能量臨界值控制:由於電磁場隨著距離衰減,可藉由調整用以匹配局部事件幅度的敏感度臨界電壓(例如大約1伏特、100伏特、500伏特或其他值的臨界值)來過濾掉諸多較廣區域的ESD事件,使得偵測器355將局部事件幅度的電壓位準與敏感度臨界電壓進行比較,或可能以焦耳呈現具有大約0.002W/m2到663W/m2的範圍的臨界能量位準,使得偵測器355將局部事件幅度的能量位準與臨界能量位準進行比較。
在本發明的以下實施例中提供了選擇性的ESD偵測方法:ESD事件產生電磁脈衝。此脈衝在形式上被描述為電磁放射通量密度,該電磁放射通量密度從來源球狀地朝外放射,其中放射能量隨著波前進遠離來源而減少。迷你脈衝355(偵測器355)通過感應場耦合通過與天線382進行的交互作用取樣此擴展的場。擴展的電場的能量耦合到天線382,藉此在天線及纜線上產生了訊號。迷你脈衝偵測單元355解調變纜線上的輸入訊號,藉此將各種頻率分解成其功率分量。迷你脈衝355量測放射脈衝暫態的結合功率,以判定受測的結合功率(亦即放射脈衝暫態的能量位準)是否大於偵測臨界值設定(亦即用於偵測的設定臨界值)。若能量位準在用於偵測的設定臨界值以下,則忽略事件。此外,迷你脈衝偵測器355亦使用比較器電路(參照圖5中的比較器505及圖6中的比較器605)針對脈衝持續時間取樣輸入訊號,以判定脈衝是否有資格作為可能的ESD事件。若脈衝持續時間是在一般用於CDM及HBM ESD事件的時間間隔邊界內,則脈衝觸發偵測器355。選擇性偵測的此方法與標準時域(對比上頻域)的訊號分析不同。迷你脈衝355像是頻譜分析器通常工作,該頻譜分析器抽取ESD事件訊號的能量。此方法的主要優點是在於顯著地節約了偵測硬體。跨訊號頻率的放射的脈衝功率給予了非常好的訊號功率第一階近似值,藉此允許在不同的ESD事件能量位準之間作出比較。
「迷你脈衝」能量臨界值控制敏感度允許微調到最低到非常小的訊號獲取區域(天線位置的大約0.005m - 2m的範圍內的ESD來源/目標)。此是將偵測到的ESD事件限制到只有彼等至關重要的事件及/或彼等使用者關注的事件的重要方面。
本發明的一實施例中的天線配置被具體設計及工程設計為ESD天線382(參照圖3a及4a)。天線382可被實施為圖4a、4b及4c的天線組件400,且將在下文更加詳細地論述。
用於隨選/工具中的ESD訊號處理的方法(參照圖3c及3d):
依據本發明的另一實施例,圖3c是系統(或裝置)330的圖解。該圖解示出ESD偵測器355與工具中控制系統進行的交互作用的實例。
迷你脈衝偵測器355具有受控的工作週期特徵,此允許隨選的訊號處理協助/強化將ESD訊號從一般雜訊(例如呈現非ESD電磁(EM)脈衝的形式)分離。此訊號過濾方法可用於獨立式及Novx監控器版本(在ESD偵測器355與另一感測器結合時)兩者。此訊號過濾方法附加於如本文中所述的此偵測器355的天線及其他濾波器特徵。
示例實施例:
迷你脈衝ESD偵測器355實施了待用模式,此允許瞬間啟動及停用訊號獲取行為。此待用模式特徵允許處理工具控制ESD訊號捕捉行為到最高的ESD偵測重複性。
基於實際的測試,此方法的重複性估計值的範圍在大約90%-100%的機率之間。在受控的製造環境中,在脈衝雜訊擊發(shot)/火花大部分源自附近的工具及製程的情況下,環境脈衝雜訊事件一般被保持在最小值。
本發明的一實施例中的一種方法需要由主控的工具或製程使用送到「迷你脈衝」偵測器355(ESD偵測器)的控制原生輸入。現代的處理工具具有追蹤產品移動及製程功能的控制介面。「迷你脈衝」偵測器獲取行為控制方法允許工具用訊號通知需要進行ESD訊跡偵測的特定處理窗(例如圖3d中的製程窗1及2)。在使用製程窗化行為的情況下,隨機發生的背景脈衝EM訊號並不暫存到工具作為可能的ESD事件。
ESD偵測器設備(偵測器355)的電子部件被工具控制以僅在處置或測試實際的設備時在製程窗期間啟動。作為一實例,在工具處理個別的設備時,工具以訊號通知ESD偵測器355切換到有效模式。在處理窗關閉時(例如沒有設備正在被處置/測試),則工具以訊號通知偵測器355返回待用模式。在有效的處理窗期間,偵測器355將以訊號通知工具是否發生了任何關注的ESD事件。
在處理窗關閉且偵測器355返回到待用狀態時,將沒有ESD或其他的訊號被偵測器355回報到工具。
在圖3c中,系統330包括了正在在工具處理區域330中處理個別設備331的工具。迷你脈衝ESD偵測器355(偵測器355)截獲電磁波380,且自動機放置執行器381(或另一合適類型的自動臂381)將帶電設備331放進測試插槽333。測試插槽333一般放置在合適的測試床350、基座350或另一合適的平台350上。隨著帶電設備331接近測試插槽333,放電(ESD)發生,且天線382(耦接到迷你脈衝偵測器355)截獲放電事件的波380。在此實例中,ESD事件是在兩個部件(設備331及測試插槽333)之間以火花的形式發生的放電332,該等部件的特徵是不同的電勢。
(工具339的)工具控制器336將以訊號通知(透過控制訊號337)自動機控制器338處理設備331,藉此啟動工具製程窗1(390)(參照圖3d)。
設備331移動到工具測試插槽333以供進行試樣測試。工具控制器336亦啟動(透過控制訊號383)偵測器355以回報關於設備處理的關注的ESD事件。偵測器355回報在設備331接觸插槽332時發生的任何ESD事件。在此製程完成時,工具控制器336關閉製程窗1(390)且以訊號通知偵測器355返回待用模式。取決於工具製程的總處理量,工具339將在處置設備時持續處理窗。
作為一實例,在自動機控制器338已完成處理了設備331時,自動機控制器將向工具控制器336發送要關閉製程窗1的控制訊號384,且工具控制器336將接著關閉製程窗1。工具控制器336接著向偵測器355發送控制訊號386,使得偵測器355擁有製程窗1現在被關閉了的資訊。此控制訊號386將停用偵測器355,使得偵測器355返回待用模式,同時控制訊號383將啟動偵測器355,使得偵測器355可量測、比較及記錄可能是ESD事件的波380。
在本發明的一實施例中,控制訊號383可由工具設備處置窗394中的製程窗的升起的邊緣(舉例而言,例如分別為製程窗1(390)及製程窗2(391)的升起的邊緣392及393)來表示,如圖3d中所示,該圖繪示工具設備處置工作流程387的圖解。處置窗394可具有至少一個製程窗,且處置窗394中的製程窗的數量可變化。
或者,控制訊號383(圖3c)可為脈衝398,且控制訊號386可為處置窗394中的脈衝398之間的非脈衝間隔399。
依據本發明的另一實施例,圖3b是系統(或裝置)388的圖解。為了論述的明確性的目的,以頂部平面圖示出系統388。如先前針對圖3a中的系統350類似地論述的,系統388被配置為用於靜電放電(ESD)事件監控,且可併入帶電設備模型事件模擬器(CDMES單元)單元352。
在本發明的一實施例中,系統388包括定位於製程區域389a中的至少一個天線382a,且ESD偵測器355耦接到天線382a。因為天線382a被配置為接收從CDMES單元352放射的事件訊號380,天線382a感應地耦接到CDMES單元352。針對由CDMES單元352所產生的不同的放電能量校準ESD偵測器355。
ESD受監控的製程區域一般會包括由距天線位置的最高約2m的圓周的距離所界定的區域。
在本發明的另一實施例中,製程區域(一般示作區域389)包括第一製程區域389a及第二製程區域389b。第一天線382a定位於第一製程區域389a中,而第二天線382b定位於第二製程區域389b中。
在本發明的一實施例中,第一天線382a耦接到ESD偵測器355,而第二天線382b亦耦接到ESD偵測器355。在本發明的另一實施例中,第二天線382b耦接到另一ESD偵測器356且不耦接到ESD偵測器355。
一般而言,第一製程區域389a與第二製程區域389b分離一距離391,且第一天線382a及第二天線382b形成多頻道。距離391是可調整的。
在一個實施例中,第一天線382a及第二天線382b在天線回應敏感度上可為類似的。在另一實施例中,第一天線382a及第二天線382b在天線回應敏感度上是不同的。
製程區域389在數量上可與一或更多個製程區域有所不同。例如,製程區域389可被呈現為工具群集。因此,可在系統388中包括多於兩個的製程區域。
製程區域389中的至少一者可包括被配置為接收半導體晶片331或其他設備331(圖3a)的插槽373(圖3a),或可包括被配置為接收複數個半導體晶片或其他設備的複數個插槽373。
製程區域389中的至少一者可包括鑷子392,該鑷子被配置為將晶圓393接收在如由參考標號396最佳地識別的另一實施例中。當然,鑷子392可為另一類型的晶圓處理工具392。
製程區域389中的至少一者(或晶圓393)可包括導電軌跡394,測試探針395可在如由參考標號397最佳地識別的實施例中觸及該導電軌跡。任何的製程區域389可以是另一合適類型的區域。
微ESD孔天線:
現在參照圖4a、4b及4c以論述ESD天線382的各種實施例的額外細節。圖4a、4b及/或4c中所描述的特徵可併入天線382(圖3a)、天線382a(圖3b)及/或天線382b(圖3b)中。因此,圖4a、4b及4c中所論述的天線可被實施為天線382、天線382a及/或天線382b。
依據本發明的一實施例,圖4a是一圖解,繪示微帶ESD天線組件。依據本發明的一實施例,圖4b是一圖解,繪示具有孔的受屏蔽天線。依據本發明的一實施例,圖4c是一圖解,繪示微帶天線的空間增益特性。
首先參照圖4a,該圖繪示微帶天線組件400。微帶天線的構件為焦點構件401d、背板罩402d、額外的屏蔽外殼404c(示於圖4b中)、連接器(饋送點)403d及同軸纜線404d。天線設計的特性是:a) 大約3平方公厘到50平方公厘的焦點構件面積;b) 天線焦點構件形狀(例如:矩形或三角形);及c) 用以將訊號的獲取限制在前側(指向性的)天線焦點構件的天線衰減背板(阻隔罩)。該等特性元素界定了天線區域(實體增益,其為天線場能量對天線電壓輸出的比率)以達成任何特定應用所需的指向性偵測敏感度位準及實體覆蓋範圍。參照圖4c,與ESD事件目標401e(例如放置在插槽中以供測試的敏感設備)相關聯地示出示例天線增益圖案411。在圖4c中,天線焦點構件是(C)412,天線焦點構件的前面具有最高的指向性增益(線(A)或前增益414,例如大約6.0 dBi),且朝向ESD事件源401e而定向。天線的背板側具有較低的增益(線(B)或背增益416,例如相對於等向天線大約為2.5 dBi或分貝),該增益面向遠離ESD事件源401e的方向。天線焦點構件具有側增益,該側增益由以前增益414及背增益416所表示的線之間的線417及418所表示。特定製程點的ESD事件偵測中的另一關鍵因素是天線382(圖3a)的形式及位置。天線382的實體增益特性在控制ESD訊號獲取行為上扮演著重要的部分。具體設計的天線(連接到「迷你脈衝」偵測器355)的指向性增益(參照圖4c)特徵可用來針對使用者關注的給定的ESD事件校準偵測器355。
天線效能及雜訊不敏感度:天線382(「微ESD」天線382或微天線382或「迷你脈衝」天線382)被具體設計為用於進行靜電放電(ESD)事件偵測。天線382的設計特性允許針對放電(事件源)位置指向性地偵測ESD放射的能量,同時忽略/抑制不關注的其他附近的事件。
針對ESD事件偵測具體設計了此天線的變體。天線包括了專屬的微帶設計的天線,該天線被具有孔402c的金屬護套404c圍繞(參照圖4b)。天線被設計為從電磁上嘈雜的工具處理區域中的周圍區域去除不想要的訊號。孔允許內部的天線獲取訊號最高到大約90度角,該角度聚焦在特定位置或小區域上。來自發生在此焦點區域中的任何ESD事件的能量進入孔且耦合到微帶天線構件。
相對於習用技術及其他可用的ESD事件監控產品提供了本發明的實施例的特定改良。
另一類型的天線包括了定製設計的小印刷電路板(PCB)401c,該PCB被設計為強化指向性及要監控的距離。此天線組件(圖4b)(包括PCB 401C)在電路板401c的一側上使用接地平面且在電路板401c的另一側上使用有源構件,藉此提供了大約3 dB到6 dB的背及側瓣去除率。電連結419(例如纜線)耦接到電路板401c且可移除地耦接到ESD偵測器355(圖3a)。天線亦包括整體式的RF連接器403c(圖4b),該RF連接器可為任何類型的一般RF連接器。
用來偵測ESD放射的脈衝暫態的天線傳統上曾是具有非常高增益的標準天線。儘管此使得偵測ESD事件是相當簡單的,但此已使得實質上不可能判定事件的起源。此弱點已使得傳統天線在監控重要製程的方面具有很少的用處。
針對偵測緊鄰於ESD事件來源的ESD事件的唯一目的而研發了「微ESD」天線382(例如耦接到圖3a中的迷你脈衝偵測器355的天線382)。微ESD天線382被實施為具有各種版本的經設計的微帶天線,如圖4a中的示例天線組件400中所示,該天線具有極好的ESD近場放射脈衝接收,同時由於經設計的指向性增益特性而去除了其他近場及遠場的脈衝訊跡。此允許了微ESD天線在識別關注的局部ESD事件的方面執行良好,而其他的天線無法如此。
此外,此天線的經設計的特性允許非常廣的訊號區別範圍(大約10V - 3000V),但對於常用於ESD偵測的一般天線來說由於飽和效應並非如此。在與衰減器結合使用時,可有效捕捉非常大的ESD事件。
較佳地應實際上儘量靠近ESD事件的預期來源來監控ESD事件。用於天線安裝的一般監控距離的範圍例如從大約1吋(2.54cm)到大約6吋(15cm),然而可接納其他的距離。微ESD天線382由於訊號幅度減少及偵測臨界值設定將隨著距來源的距離越來越大而刻意變得較不高效。
可在幾乎任何配置中部署多個天線作為雙極結構陣列。例如,可部署五個天線來形成陣列。然而,雙極結構陣列可具有多於五個天線或少於五個天線。
迷你脈衝電路說明:
ESD事件偵測器(電子部件)
現在論述本發明的一實施例中的ESD事件偵測器的細節的方塊圖。例如,圖3a的ESD事件偵測器355包括圖5的系統500(或電路500)。
天線501產生透過附接的同軸纜線551供應的訊號(RF或射頻訊號)550。訊號550首先被數位衰減器502處理。此處理限制了ESD訊號及雜訊位準以保持後續的梯形網絡濾波器及解調變對數放大器免於飽和。可透過微處理器507編程衰減器502,因此允許偵測器355藉由衰減訊號及雜訊例如最高大約15.5 dB來接納各式各樣的雜訊環境。
6階高通梯形網絡濾波器502阻擋任何DC訊號且向對數放大器504傳遞ESD事件的一般的100 MHz(百萬赫)以上的ESD事件訊號。
非常快速的(以微秒計)六階解調變對數放大器504(例如類比設備AD8310)從偵測到的ESD訊號抽取多頻放大位準(dBm或分貝-毫瓦)。此允許迷你脈衝偵測器355針對臨界值控制更精確地區別訊號位準。
對數放大器504的輸出訊號552被反向,使得在輸入訊號時,對數放大器的輸出將是在大約+2.5V(無訊號)及大約+1.0V或以下(最大訊號)之間。因此,本發明的實施例提供了解調變對數放大器504,該解調變對數放大器在量測模式下運作且產生與用於區別訊號位準的選出的臨界值匹配的輸出訊號552。此技術及方法還未由其他的已知ESD偵測器所使用。
使用來自微處理器507的資料560來設定數位電勢計508的臨界電壓位準,其中臨界電壓位準是在大約+2.0V到+1V的範圍中。超高速比較器505(例如類比設備AD8561)將解調變對數放大器504輸出訊號與此臨界電壓進行比較。若比較器505「看到」真(true)條件,則將瞬時的脈衝傳遞到一對複振器單擊(multi-vibrator one-shot)506。單擊506被配置為去除太短(<~10奈秒)或太長(>~500奈秒)的任何脈衝,意味著該脈衝不是關注的ESD事件。如圖5中所示,對數放大器504在接收來自濾波器/積分器503的輸出訊號之後產生輸出訊號552,將在下文中參照圖6進一步論述該濾波器/積分器。
事件脈衝556接著被計數(例如由計數器509進行),且Novx微處理器(例如Atmel微控制器)507可取得該計數(來自計數器509)以供進行處理。每次計數被微處理器507讀取,則接著由微處理器隨後及自動地將該計數重設為零。
現在參照本發明的一實施例中的圖5的方塊圖500及圖6的電路圖600。如上所述,依據本發明的一實施例,圖5是ESD偵測器500(迷你脈衝500)的方塊圖。依據本發明的一實施例,圖6是ESD監控器電路600的示意圖,且此示意圖示出了圖5的ESD事件偵測器355的方塊圖500的額外細節。迷你脈衝500亦被示為(且描述為)圖3a中的ESD偵測器。
迷你脈衝500使用藉由在時域中分析EMI事件來進行的六維演算法及臨界值區別來偵測某個電磁能量的脈衝靜電放電。通過使用特定的天線配置及相對於受監控的物體的天線位置,迷你脈衝500可針對關注的特定小區域或針對較廣面積的覆蓋區域提供ESD事件偵測。
所呈現的ESD偵測器使用解調變對數放大器504來量測訊號功率。臨界偵測器的第一階將斜率判定演算法用作比較器,以基於大多數ESD訊號類型的350ns包絡特性來判定ESD脈衝資格。
偵測器的第二階將ESD訊號整流,藉此忽略了正或負的元素,因為為了區別的目的,ESD事件峰值幅度是唯一關心的量測。
偵測器的第三階接著壓縮ESD訊號。
偵測器的第四階跨450MHz的頻譜解調變訊號。
偵測器的第五階是給定為經整流的訊號包絡的對數的峰值幅度量測輸出。
第六及最終階是臨界值比較器505,該比較器相對於表示有效ESD事件訊號的分界的可變臨界值評估輸出訊號幅度。
藉由天線601(在圖5中示為天線501)來偵測ESD事件訊號650,該天線連接到受屏蔽纜線651且附接到輸入連接器(例如輸入SMA連接器)。訊號(訊號加雜訊)首先通過衰減器602。以0.5 dB的步階從零到15.5 dB編程使用來自微處理器控制器607的資料的衰減器602。此允許調整電路以減少訊號,使得雜訊落在偵測臨界值以下,同時使得關注的訊號是可偵測的(之後論述)。
來自衰減器602的訊號653接著被傳遞到濾波器/積分器603(例如6階RC(電阻器-電容器)高通濾波器),該濾波器/積分器被調諧成傳遞一般的真ESD事件的失真的頻率(>100MHz)且去除該頻率範圍以外的訊號。過濾後的訊號654(來自濾波器/積分器603)接著被傳遞到對數放大器604,該對數放大器是非常快速的六階解調變對數放大器(例如類比設備AD8310),且對數放大器604過濾輸入訊號且藉由功率、持續時間及幅度進行區別。對數放大器604反轉其輸出訊號,使得輸入的ESD事件訊號強度越強,對數放大器的輸出電壓652越低。一般而言,此訊號652的範圍將在大約2.5V及大約1.0V之間。
使用+3.3V的供應源及數位電勢計608分壓器來產生參考臨界電壓。數位電勢計608是由來自微處理器607的資料所控制的。
接著使用超快速比較器605(例如類比設備AD8561)將來自對數放大器604的輸出電壓652與來自數位電勢計608的預設DC電壓655進行比較。
若比較器(AD8561)605偵測到達到參考電壓655(在「+」或正輸入上)以下的訊號(在「-」或負輸入上),則在比較器605的輸出上瞬間顯現負的真條件656。此脈衝656接著被傳遞到定時區別器606,該定時區別器包括一對單擊複振器657a及657b。單擊振盪器657a將被時控,且Q = 真(若J輸入為真)。在單擊脈衝656重設(由於大約250ns(奈秒)的RC時限)時,第二單擊振盪器657b將僅在比較器605的輸出656已返回高值時把Q設定為真,因為比較器605的輸出656是單一的、足夠快速的脈衝。若脈衝(輸出656中的)在持續時間上太長(例如> ~500奈秒),因此指示脈衝(輸出656中的)不是關注的ESD事件,則該脈衝被忽略。
因此,單擊振盪器657b僅因為脈衝已被判定為關注的ESD事件才使得Q被設定為真。單擊振盪器657b的輸出接著使計數器609將已經存在於該計數器609中的任何現存的計數值「加1」。
圖7示出本發明的一個實施例中的如從外部所見的迷你脈衝ESD偵測器355的大致視圖。偵測器外殼710具有大約2.15吋 x 2.1吋 x 0.75吋的小尺度。如先前所論述,取決於原位ESD偵測的目標、工具或/及監控任務,偵測器355可包括一組不同的天線。然而,ESD偵測器355可具有與圖7不同的另一類型的配置。
在一個實施例中,偵測器355的迷你脈衝偵測器面板包括2針電力連接器701,其中一般提供大約7VDC-24VDC來向儀器(偵測器355)供電。外部天線的同軸纜線(例如圖4a中的纜404d)將附接到偵測器355的SMA(超小型版本A)連接器702。接地704的測試點由偵測器355提供。在偵測器355有個測試點705,電壓計探針可安插在該測試點處以在調整及/或檢查臨界位準電勢計706設定的同時使用。
ESD事件警示電路系統驅動偵測器355中的音響傳感器、一對LED指示器708及709以及外部可接取的輸出連接器703,該音響傳感器位在聲音端口707正下方。綠色LED 708指示電源是開啟的且沒有警示。作為一實例,在偵測到ESD事件時,音響警示707響起,綠色LED 708熄滅,紅色LED 709照亮,且開放集電器警示輸出703被拉到接地。
可選的自包含的外部LCD計數器可附接到開放集電器警示輸出703以暫存偵測到的總事件,直到人工清除計數值為止。或者,開放集電器警示輸出703可連接到可用於機器控制、通訊、回報等等的某些其他電路(例如電腦輸入)。
依據本發明的一實施例,圖8是校準方法800a的流程圖及ESD偵測器的實施方式。注意的是,方法800a中的步驟順序可變化,且亦可同時執行某些特定步驟。在校準方法800a中的801a及802a處,在隨機取樣的候選設備上執行正式的實驗室設備CDM測試。在803a處,在關注電壓/電流故障位準的設備上執行判定。在804a處,作出ESD電壓故障臨界值監控位準是否低於設備故障臨界值的判定。ESD電壓故障臨界值有多低(相較於設備故障臨界值)將取決於設備類型及用於針對ESD事件的存在進行監控的關鍵製程點(實例:例如測試器及/或處置器)。在805a處,方法800a包括以下步驟:使用CDMSES校準協定來建立迷你脈衝ESD偵測器臨界值。
依據本發明的一個實施例,圖8b亦繪示了迷你脈衝ESD校準製程800b的流程圖。
對於製程800b而言,是以CDM事件模擬器(CDMES)來進行原位ESD事件校準製程。已在上文中參照圖3a中的裝置350描述了原位ESD事件校準製程的實例。
在801b處,基本的迷你脈衝校準程序開始。
在802b處,具有適當天線的迷你脈衝ESD事件偵測器被安裝在工具或製程點中。
在803b處,使用CDMES工具來校準迷你脈衝天線的ESD訊號接收。
在804b處,針對ESD訊號電壓位準(一般而言,是在設備故障臨界值以下大約25%-50%)校準了迷你脈衝ESD偵測器。
在804b處,可使用迷你脈衝ESD偵測器實行連續的ESD監控協定以保證品質達標。
在針對特定設備耐受電壓臨界值校準迷你脈衝ESD偵測器355時,此電壓/能量臨界值一般將被設定在小於設備的實際電壓故障位準的電壓位準處(在804b處)。例如,若設備具有大約200伏特的實際電壓故障位準,則電壓臨界值將被設定在200伏特以下,例如電壓故障位準的大約50%或大約100伏特。此方法防止在設備中發生實際的損傷。因此,在805b處,針對要測試的各個設備類型判定可允許的施用的電壓臨界值。在805b處,偵測器355中的訊號對雜訊比(SNR)濾波器被調整為抑制工具及/或製程中的EMI。
在806b處,可使用示波器連接來確認CDMES校準輸出波形(806b處的此程序是可選的)。
在807b處,可使用最少的統計樣本來驗證迷你脈衝ESD偵測的可靠度。可在執行了806b中的確認步驟之後執行807b中的驗證步驟。
在808b處,依據一品質保證協定來實行連續的ESD事件監控。
在808b處,針對各個位置將最小量的統計樣本/擊發應用於通過/失敗ESD事件偵測驗證。例如,應用大約20或30個擊發來獲得精確的校準。
在806b處,針對特定的設備耐受電壓臨界值校準ESD偵測器355(例如迷你脈衝偵測器)。注意的是,在執行了方塊803b、805b及/或808b中的程序之後,可接著執行方塊806b中的程序。
以下論述提供了本發明的一個實施例中的原位校準製程的序列上的額外細節:
1.將迷你脈衝監控器(ESD偵測器355)的微ESD天線382放置在最靠近工具中將放置敏感IC設備的製程點的實際近區(例如1吋)。
2.將微ESD天線纜線(例如纜404d)連接到迷你脈衝監控器355。
3.將用於CDMES的DC電源電壓設定到所需的臨界電壓位準(一般為IC設備故障臨界值的大約50%)。
4.將CDMES定位在針對IC設備監控應用所選擇的指定製程點處。
5.連續觸發CDMES,同時調整迷你脈衝偵測臨界值控制,直到達到用於迷你脈衝355的所需的ESD事件偵測臨界值為止。
6. 在IC設備的指定的臨界電壓下產生CDMES放電的最小的統計群組(例如12-24個放電)以驗證迷你脈衝偵測器的效能。
7.使用以下形式記錄成功的校準資料:CDMES DC電壓位準;在統計取樣群組期間的成功的迷你脈衝偵測行為的數量;及以數位萬用儀表透過前面板測試點進行的迷你脈衝臨界值設定。
存在著環境工具/背景雜訊,且存在著應用焦點區域外面可能干擾關注的訊號的偵測的ESD事件。因此,存在著要考慮的多個雜訊源。
此使得訊號對雜訊比(SNR)對於某些應用來說是難以維持的。
在某些情況(SNR崩潰)下,偵測器將不能夠作用(亦即將目標ESD訊號與所有背景干擾源分離)。
圖9是一圖表900,示出ESD訊號幅度是如何隨著距偵測器天線382的距離而減少(隨距離的訊號對雜訊比),此使得訊號幅度靠近雜訊幅度。在SNR崩潰時,變得難以將ESD訊號與雜訊訊號分離。
在某些情況(SNR崩潰)下,偵測器將不能夠作用(亦即將目標ESD訊號與所有背景干擾源分離)。例如,示例函數905(SNR對上以公分計的距離)指示(在點910處)距ESD來源大約50公分距離下的大約2.9的SNR最低位準。
圖10a是一圖表1000,示出零衰減情況下大約1吋距離下的基本的50 V/m CDMES校準。圖表1000基於毫伏特(迷你脈衝天線382的)對上在校準程序期間發生的訊號量測而示出以下函數:目標ESD事件1005、背景雜訊位準1010、被去除的ESD事件1015及迷你脈衝臨界值設定1020。
此外,以下參數1025可適用於圖表1000中:
衰減因數 = 0.0 (0.0 dB)
去除ESD位準 = 8.0 (mV) = 50V/m @ 24”
背景脈衝雜訊位準 = 3.0 (mV)
建議的天線臨界值設定(mV):30.39
最大SNR(mV):23.01
註解:此是理想的情況。
圖10b是一圖表1050,示出具有大約10dB衰減的感應的訊號。圖表1050基於毫伏特(迷你脈衝天線382的)對上在校準程序期間發生的訊號量測而示出以下函數:目標ESD事件1055、背景雜訊位準1060、被去除的ESD事件1065及迷你脈衝臨界值設定1070。
此外,以下參數1075可適用於圖表1050中:
衰減因數 = 10.0 (10.0 dB)
去除ESD位準 = 0.9 (mV) = 50V/m @
24”/衰減因數
背景脈衝雜訊位準 = 0.6 (mV)
最大天線臨界值設定(mV):2.94。
此實例(圖10b中的)示出SNR比越來越小。但背景雜訊及假ESD事件兩者現在被去除了。並且,重要的訊號空間留下了且最大SNR(mV)是2.91。
如上所述,訊號對雜訊比(SNR)在訊號源及截獲點(來自訊號源的訊號的截獲點)之間的距離增長時可能非常不利於區別關注的訊號(在此情況下是由帶電產品所造成的ESD事件)。一般而言,由電氣元件所產生的電磁工具雜訊低於關注的ESD訊號的放射幅度。
然而,在不過濾的情況下,諸多ESD訊號幅度隨著來源的距離增加太靠近尖峰雜訊位準而不能允許進行有效的區別。迷你脈衝ESD偵測器355自從其起始在其各種形式下已具有訊號時域(持續時間)過濾及ESD訊號臨界值過濾。而此相較於其他的偵測器已允許了較佳的解析度,仍然亦存在著雜訊位準已使得此過濾方法是有問題的某些應用。在添加上述的雜訊過濾方法的情況下,此已使得SNR區別更加有效。
迷你脈衝ESD偵測器355具有專屬的電磁雜訊濾波器來調節高雜訊環境中的輸入訊號。此可變阻抗濾波器是用於來自所有來源的背景寬頻雜訊的幅度衰減函數,但最常見於自動化工具中。自動化工具通常具有可變的來自工具電氣元件的雜訊位準,此可能造成ESD訊號截獲行為的問題。用於過濾電磁訊號的通常方法涉及帶通濾波器,該帶通濾波器依頻率衰減訊號。
本文中所援引的專屬方法使用數位控制的可變阻抗來衰減一般的訊號幅度作為第一臨界值以去除給定位準以下的放射電路雜訊。迷你脈衝ESD偵測器355亦包括第二可設定臨界值(先前所指的)以充當用於關注的ESD訊號的幅度濾波器。
圖11a為一圖表1100,示出表示ESD脈衝訊號干擾的未過濾的環境脈衝雜訊的實例。此類型的干擾(常見於其他ESD偵測系統)已使得工具的調適是非常困難且通常是不可能的。實際嵌入的關注的ESD事件由訊號1105、1110、1115及1120所示。圖表1100示出Y軸上的假ESD事件計數(背景雜訊)的數量對上X軸上的靜電放電事件的計數(ESD計數)。
圖11b是一圖表1150,示出允許偵測器有效忽略環境/工具雜訊的可變訊號衰減/阻抗的使用。具體而言,圖表1150示出基於分貝量測值的ESD計數1155對上靜電放電事件的計數。
圖11c是一圖表1180,示出在已應用可變阻抗過濾之後,可輕易將關注的真ESD訊號與背景雜訊位準分離。圖表1180中所示的是一系列的四(4)個實際ESD事件1182、1184、1186及1188,該等實際ESD事件會已遺失在輸入到ESD偵測器的未過濾的輸入的一般雜訊中。圖表1180的Y軸指示ESD事件計數,而圖表1180的X軸指示靜電放電事件的計數。
在選擇性地向上或向下移動衰減因數(實際上是監控能量位準的臨界值)的情況下進行的原位校準的樣本使得可能分析實際的工具中位準訊號及針對各個應用最佳化訊號雜訊比(SNR)。
概括而言,本文中所述的產品、裝置實施例及方法提供了工具及製程中的ESD事件上的實際資訊。此允許客戶判定關於產品電荷相關的易損性的ESD事件風險。並且,本文中所述的產品、裝置實施例及方法允許客戶評估用以消除包括可能的工具離子化的風險的補救措施及其他的抵消或保護方法的需要。
亦瞭解的是,依據本發明的一實施例的其他系統可具有各種的形式且可具有以其他方式或定向佈置的不同元件。
上述實施例及方法的其他變化及更改鍳於本文中所論述的教示是可能的。
所說明的發明實施例的以上說明(包括摘要中所述者)不意欲是窮舉的或將本發明限於所揭露的準確形式。如熟習相關技術者將認識到的,儘管為了說明的目的在本文中描述了本發明的特定實施例及實例,各種等效的更改在本發明的範疇內是可能的。
可鍳於以上的詳細說明對本發明作出該等更改。以下請求項中所使用的用語不應被解釋為將本發明限於說明書及請求項中所揭露的特定實施例。反而,要完全藉由以下請求項來判定本發明的範疇,要依據建立的請求項解譯原則來解釋該等請求項。
100‧‧‧放電模型105‧‧‧迷你脈衝ESD偵測器115‧‧‧自動機放置執行器/自動臂125‧‧‧帶電設備130‧‧‧測試插槽131‧‧‧測試床/基座/平台132‧‧‧工具或處理腔室135‧‧‧「微ESD」單極天線140‧‧‧ESD訊號141‧‧‧放電180‧‧‧波形185‧‧‧波形201‧‧‧放電頭202‧‧‧手柄及觸發機構203‧‧‧纜線204‧‧‧高壓電纜205‧‧‧外部DC HVPS(高壓電源)206‧‧‧帶電設備模型事件模擬器(CDMES)207‧‧‧共接地14‧‧‧接地215‧‧‧電阻220‧‧‧PCB222‧‧‧測試鈕224‧‧‧PCB225‧‧‧電力連接器226‧‧‧接地連接器228‧‧‧電壓板230‧‧‧固定板232‧‧‧目標電極234‧‧‧纜線235‧‧‧電容236‧‧‧電極238‧‧‧電阻帶240‧‧‧軟線242‧‧‧彈簧244‧‧‧屏蔽接地連接245‧‧‧同軸線330‧‧‧系統(或裝置)331‧‧‧設備332‧‧‧放電333‧‧‧測試插槽336‧‧‧工具控制器337‧‧‧控制訊號338‧‧‧自動機控制器339‧‧‧工具350‧‧‧系統/裝置352‧‧‧帶電設備模型事件模擬器/CDMES單元355‧‧‧ESD事件偵測器356‧‧‧ESD偵測器362‧‧‧處理腔室373‧‧‧插槽380‧‧‧電磁波381‧‧‧自動機放置執行器/自動臂382‧‧‧天線382a‧‧‧天線382b‧‧‧天線383‧‧‧控制訊號384‧‧‧控制訊號386‧‧‧控制訊號387‧‧‧工具設備處置工作流程388‧‧‧系統(或裝置)389‧‧‧區域389a‧‧‧製程區域389b‧‧‧製程區域390‧‧‧製程窗1391‧‧‧製程窗2392‧‧‧邊緣393‧‧‧邊緣394‧‧‧處置窗395‧‧‧測試探針396‧‧‧實施例397‧‧‧實施例398‧‧‧脈衝399‧‧‧非脈衝間隔400‧‧‧微帶天線組件401c‧‧‧PCB401d‧‧‧焦點構件402c‧‧‧孔402d‧‧‧背板罩403c‧‧‧RF連接器403d‧‧‧連接器(饋送點)404c‧‧‧屏蔽外殼404d‧‧‧同軸纜線411‧‧‧示例天線增益圖案412‧‧‧天線焦點構件414‧‧‧前增益416‧‧‧背增益417‧‧‧側增益418‧‧‧側增益419‧‧‧電連結500‧‧‧系統/電路501‧‧‧天線502‧‧‧衰減器503‧‧‧濾波器/積分器504‧‧‧解調變對數放大器505‧‧‧臨界值比較器506‧‧‧複振器單擊507‧‧‧微處理器508‧‧‧數位電勢計509‧‧‧計數器550‧‧‧訊號551‧‧‧同軸纜線552‧‧‧輸出訊號556‧‧‧事件脈衝560‧‧‧資料600‧‧‧ESD監控器電路601‧‧‧天線602‧‧‧衰減器603‧‧‧濾波器/積分器604‧‧‧對數放大器605‧‧‧比較器606‧‧‧定時區別器607‧‧‧微處理器控制器608‧‧‧數位電勢計609‧‧‧計數器650‧‧‧ESD事件訊號651‧‧‧受屏蔽纜線652‧‧‧輸出電壓653‧‧‧訊號654‧‧‧過濾後的訊號655‧‧‧參考電壓656‧‧‧脈衝657a‧‧‧單擊複振器657b‧‧‧單擊複振器701‧‧‧2針電力連接器702‧‧‧SMA(超小型版本A)連接器703‧‧‧開放集電器警示輸出704‧‧‧接地705‧‧‧測試點706‧‧‧臨界位準電勢計707‧‧‧聲音端口708‧‧‧綠色LED709‧‧‧紅色LED710‧‧‧偵測器外殼800a‧‧‧校準方法800b‧‧‧迷你脈衝ESD校準製程801a‧‧‧步驟801b‧‧‧步驟802a‧‧‧步驟802b‧‧‧步驟803a‧‧‧步驟803b‧‧‧步驟804a‧‧‧步驟804b‧‧‧步驟805a‧‧‧步驟805b‧‧‧步驟806b‧‧‧步驟807b‧‧‧步驟808b‧‧‧步驟900‧‧‧圖表905‧‧‧示例函數910‧‧‧點1000‧‧‧圖表1005‧‧‧目標ESD事件1010‧‧‧背景雜訊位準1015‧‧‧被去除的ESD事件1020‧‧‧迷你脈衝臨界值設定1025‧‧‧參數1050‧‧‧圖表1055‧‧‧目標ESD事件1060‧‧‧背景雜訊位準1065‧‧‧被去除的ESD事件1070‧‧‧迷你脈衝臨界值設定1075‧‧‧參數1100‧‧‧圖表1105‧‧‧關注的ESD事件1110‧‧‧關注的ESD事件1115‧‧‧關注的ESD事件1120‧‧‧關注的ESD事件1150‧‧‧圖表1155‧‧‧ESD計數1180‧‧‧圖表1182‧‧‧實際ESD事件1184‧‧‧實際ESD事件1186‧‧‧實際ESD事件1188‧‧‧實際ESD事件
參照以下圖式來描述本發明的非限制性及非窮舉的實施例,其中類似的參考標號可在各種視圖各處指稱類似的部件,除非另有指定。
圖1a是工具或技術處理腔室中的帶電(例如IC)設備CDM事件的一般放電模型的圖解。
圖1b是CDM靜電事件的一般示例電壓/電流波形的螢幕快照,其中放電在移動接觸的兩個導電部件之間以火花的形式發生。
依據本發明的一實施例,圖2a是具有外部HVPS(高壓電源)的帶電設備模型事件模擬器(CDMES)的大致視圖的圖解。
依據本發明的一實施例,圖2b是具有崩潰電容的CDMES的圖解。
依據本發明的一實施例,圖3a是包括帶電設備模型事件模擬器的系統(或裝置)的圖解,且其中該系統被配置為亦提供用於實際環境(處理區域)中的ESD事件偵測器的校準方法。
依據本發明的另一實施例,圖3b是系統(或裝置)的圖解。該圖解示出處理區域(工具中及工具外的處理區域)的變體,其中ESD偵測器在不同的處理區域中具有兩個天線。
依據本發明的另一實施例,圖3c是系統(或裝置)的圖解。該圖解示出ESD偵測器與工具中控制系統進行的交互作用的實例。
依據本發明的一實施例,圖3d是工具設備處理工作流程的圖解。
依據本發明的一實施例,圖4a是一圖解,繪示微帶ESD天線組件。
依據本發明的一實施例,圖4b是一圖解,繪示具有孔的受屏蔽天線。
依據本發明的一實施例,圖4c是一圖解,繪示微帶天線的空間增益特性。
依據本發明的一實施例,圖5是ESD偵測器(迷你脈衝)的方塊圖。
圖6是依據包括SNR(訊號對雜訊比)濾波器的一本發明實施例之ESD偵測器(例如圖7中所示)的ESD監控器電路的簡化示意圖。
圖7是本發明的一實施例中的如從外部所見的迷你脈衝ESD偵測器的大致視圖的方塊圖。
依據本發明的一實施例,圖8a及8b為迷你脈衝ESD校準製程的流程圖。
圖9為一圖表,示出相對於ESD事件監控的物體與天線之間的距離的訊號對雜訊比相依性。
依據本發明的一個實施例,圖10a及10b為不同的訊號阻抗/衰減下的天線輸出的圖表。
依據本發明的一實施例,圖11a、11b及11c為不同的訊號過濾模式下的ESD事件計數的圖表。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
350‧‧‧系統/裝置
352‧‧‧帶電設備模型事件模擬器/CDMES單元
355‧‧‧ESD事件偵測器
362‧‧‧處理腔室
373‧‧‧插槽
380‧‧‧電磁波
382‧‧‧天線

Claims (18)

  1. 一種用於偵測靜電放電(ESD)事件的裝置,該裝置包括:一ESD偵測器,包括一衰減器,該ESD偵測器被配置為偵測一ESD事件;一控制器,被配置為:響應於與用來處理被一工具處置或測試的一設備的一命令對應的一訊號,啟動一製程窗;啟動該ESD偵測器以偵測及回報在該製程窗期間發生的ESD事件;及響應於與用來結束該製程的一命令對應的一訊號,停用該製程窗並控制該ESD偵測器進入一待用模式以忽略電磁訊號;及至少一個天線,耦接到所述ESD偵測器;其中藉由調整該衰減器以抑制在該製程窗期間偵測到的在至少一個放電能量臨界值或放電能量範圍以外的電磁干擾(EMI),來針對該至少一個放電能量臨界值或該放電能量範圍校準所述ESD偵測器。
  2. 如請求項1所述的裝置,其中該ESD偵測器被配置為量測一接收到的脈衝的一脈衝持續時間以判定該接收到的脈衝是否是一ESD事件。
  3. 如請求項1所述的裝置,其中該ESD偵測器被配置為去除小於一第一脈衝持續時間或大於一第二脈衝持續時間的一接收到的脈衝。
  4. 如請求項1所述的裝置,其中該ESD偵測器被配置為去除在一頻率範圍以外的一接收到的脈衝。
  5. 如請求項1所述的裝置,其中該ESD偵測器被配置為基於一接收到的脈衝的一功率、持續時間及幅度來過濾一接收到的脈衝。
  6. 如請求項1所述之裝置,更包括:一帶電設備模型事件模擬器(CDMES)單元,包括一第一導電部件及一第二導電部件;其中該第一導電部件及該第二導電部件在電勢上是不同的;及其中一輸入高電壓向該第一導電部件提供一電荷;其中該第一導電部件可朝向該第二導電部件移動;及其中在該第一導電部件朝向該第二導電部件移動時觸發了一CDM事件。
  7. 如請求項1所述的裝置,其中該至少一個天線包括允許指向性地偵測一ESD放射的能量且抑制其他不關注的事件的特性。
  8. 如請求項1所述的裝置,其中該ESD事件發生在一工具製程區域中。
  9. 如請求項8所述之裝置,其中:所述工具製程區域包括一第一製程區域及一第二製程區域;所述至少一個天線包括耦接到所述ESD偵測器的一第一天線及耦接到所述ESD偵測器的一第二天線;及所述第一天線定位在所述第一製程區域中,而所述第二天線定位在所述第二製程區域中。
  10. 一種用於偵測靜電放電(ESD)事件的方法,該方法包括以下步驟:針對至少一個放電能量臨界值校準一ESD偵測器;透過一控制器,響應於與用來處理被一工具處置或測試的一設備的一命令對應的一訊號,啟動一製程窗;啟動該ESD偵測器以偵測及回報在該製程窗期間發生的ESD事件;在該製程窗期間,透過該ESD偵測器偵測一ESD事件;透過該ESD偵測器的一訊號對雜訊濾波器來調整一訊號對雜訊比,以抑制在該製程窗期間偵測到的在該至少一個放電能量臨界值以外的電磁干擾(EMI);及 透過該控制器停用該製程窗,並控制該ESD偵測器至少部分地基於調整後的該訊號對雜訊比來忽略電磁訊號。
  11. 如請求項10所述的方法,其中該ESD偵測器被配置為量測一接收到的脈衝的一脈衝持續時間以判定該接收到的脈衝是否是一ESD事件。
  12. 如請求項10所述的方法,其中該ESD偵測器被配置為去除小於一第一脈衝持續時間或大於一第二脈衝持續時間的一接收到的脈衝。
  13. 如請求項10所述的方法,其中該ESD偵測器被配置為去除在一頻率範圍以外的一接收到的脈衝。
  14. 如請求項10所述的方法,其中該ESD偵測器被配置為基於一接收到的脈衝的一功率、持續時間及幅度來過濾該接收到的脈衝。
  15. 如請求項10所述之方法,更包括以下步驟:在一第一導電部件朝向一第二導電部件移動時觸發一ESD事件;其中該第一導電部件及該第二導電部件在電勢上是不同的;及其中一輸入高電壓向該第一導電部件提供一電荷;及 其中該第一導電部件可朝向該第二導電部件移動。
  16. 如請求項10所述之方法,更包括以下步驟:藉由該至少一個天線允許指向性地偵測一ESD放射的能量,且藉由該至少一個天線抑制在該至少一個放電能量臨界值以外的其他不關注的事件。
  17. 如請求項10所述的方法,其中該等ESD事件發生在一工具製程區域中。
  18. 如請求項17所述之方法,其中:所述工具製程區域包括一第一製程區域及一第二製程區域;所述至少一個天線包括耦接到所述ESD偵測器的一第一天線及耦接到所述ESD偵測器的一第二天線;及所述第一天線定位在所述第一製程區域中,而所述第二天線定位在所述第二製程區域中。
TW106129092A 2016-09-16 2017-08-28 工具內esd事件的選擇性監控方法及裝置 TWI752076B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/267,640 US11307235B2 (en) 2012-12-28 2016-09-16 In-tool ESD events selective monitoring method and apparatus
US15/267,640 2016-09-16

Publications (2)

Publication Number Publication Date
TW201823741A TW201823741A (zh) 2018-07-01
TWI752076B true TWI752076B (zh) 2022-01-11

Family

ID=59966850

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129092A TWI752076B (zh) 2016-09-16 2017-08-28 工具內esd事件的選擇性監控方法及裝置

Country Status (6)

Country Link
EP (1) EP3513204A1 (zh)
JP (1) JP7106527B2 (zh)
KR (1) KR102428644B1 (zh)
CN (1) CN110088638B (zh)
TW (1) TWI752076B (zh)
WO (1) WO2018052879A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11307235B2 (en) 2012-12-28 2022-04-19 Illinois Tool Works Inc. In-tool ESD events selective monitoring method and apparatus
CN111044805B (zh) * 2019-12-27 2021-12-24 中国航空工业集团公司西安飞机设计研究所 一种静电放电射频噪声测试方法
CN113391253B (zh) * 2021-05-14 2023-07-07 浙江信测通信股份有限公司 一种电磁辐射分析仪计量评测的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315255A (en) * 1992-07-16 1994-05-24 Micron Technology, Inc. Non-contact, electrostatic, discharge detector
US5903220A (en) * 1997-04-17 1999-05-11 Lucent Technologies Inc. Electrostatic discharge event detector
US5923160A (en) * 1997-04-19 1999-07-13 Lucent Technologies, Inc. Electrostatic discharge event locators
US20050218921A1 (en) * 2004-03-31 2005-10-06 International Business Machines Corporation Method and application of pica (picosecond imaging circuit analysis) for high current pulsed phenomena
US20070164747A1 (en) * 2005-12-23 2007-07-19 Intel Corporation Method and apparatus for simulating electrostatic discharge events in manufacturing and calibrating monitoring equipment
TW201432271A (zh) * 2012-12-28 2014-08-16 Illinois Tool Works 工具中靜電放電事件的監控方法及裝置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077032B2 (ja) * 1991-01-25 1995-01-30 日立電子サービス株式会社 静電気放電検知装置
JP2953945B2 (ja) * 1994-03-08 1999-09-27 日立電子サービス株式会社 静電気放電検知装置
JP3726744B2 (ja) 2001-12-04 2005-12-14 セイコーエプソン株式会社 Icテストハンドラおよびその制御方法並びに吸着ハンドの制御方法
US7525316B2 (en) * 2005-09-06 2009-04-28 3M Innovative Properties Company Electrostatic discharge event and transient signal detection and measurement device and method
US7248055B2 (en) 2005-12-20 2007-07-24 Dell Products L.P. Electrostatic discharge transient and frequency spectrum measurement of gap discharge
US20100051692A1 (en) * 2008-09-04 2010-03-04 3M Innovative Properties Company Detection and tracking of environmental parameters
JP5975333B2 (ja) * 2012-09-05 2016-08-23 国立大学法人九州工業大学 電磁波識別方法及び識別装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315255A (en) * 1992-07-16 1994-05-24 Micron Technology, Inc. Non-contact, electrostatic, discharge detector
US5903220A (en) * 1997-04-17 1999-05-11 Lucent Technologies Inc. Electrostatic discharge event detector
US5923160A (en) * 1997-04-19 1999-07-13 Lucent Technologies, Inc. Electrostatic discharge event locators
US20050218921A1 (en) * 2004-03-31 2005-10-06 International Business Machines Corporation Method and application of pica (picosecond imaging circuit analysis) for high current pulsed phenomena
US20070164747A1 (en) * 2005-12-23 2007-07-19 Intel Corporation Method and apparatus for simulating electrostatic discharge events in manufacturing and calibrating monitoring equipment
TW201432271A (zh) * 2012-12-28 2014-08-16 Illinois Tool Works 工具中靜電放電事件的監控方法及裝置

Also Published As

Publication number Publication date
KR20190087409A (ko) 2019-07-24
WO2018052879A1 (en) 2018-03-22
JP2019529911A (ja) 2019-10-17
JP7106527B2 (ja) 2022-07-26
EP3513204A1 (en) 2019-07-24
CN110088638A (zh) 2019-08-02
TW201823741A (zh) 2018-07-01
KR102428644B1 (ko) 2022-08-02
CN110088638B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
KR102054541B1 (ko) 툴 내의 esd 이벤트 모니터링 방법 및 장치
TWI752076B (zh) 工具內esd事件的選擇性監控方法及裝置
US8401488B2 (en) Transient RF detector and recorder
Wilson et al. Fields radiated by electrostatic discharges
US11307235B2 (en) In-tool ESD events selective monitoring method and apparatus
Marathe et al. Detection methods for secondary ESD discharge during IEC 61000-4-2 testing
JP2013137222A (ja) 静電気放電検出装置、静電気放電検出方法、変動電界耐性検査装置
AU2011202973B2 (en) Transient RF detector and recorder
Antong et al. Prediction of Electrostatic Discharge (ESD) soft error on two-way radio using ESD simulation in CST and ESD immunity scanning technique
TW201239369A (en) Device for inspecting electric field variation resistance of electronic devices and method for detecting electric field variation resistance of electronic devices
Tamminen et al. Charged device discharge measurement methods in electronics manufacturing
Fellner et al. Quantification of ESD Pulses Caused by Collision of Objects
JP2018040590A (ja) 静電気放電評価装置及び評価方法
Marathe Characterization and modeling of ESD events and near-field scanning calibration structures
Oglesbee Spatial location of electrostatic discharge events within information technology equipment