KR102036232B1 - 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치 - Google Patents

편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치 Download PDF

Info

Publication number
KR102036232B1
KR102036232B1 KR1020130084021A KR20130084021A KR102036232B1 KR 102036232 B1 KR102036232 B1 KR 102036232B1 KR 1020130084021 A KR1020130084021 A KR 1020130084021A KR 20130084021 A KR20130084021 A KR 20130084021A KR 102036232 B1 KR102036232 B1 KR 102036232B1
Authority
KR
South Korea
Prior art keywords
light
polarizer
change curve
polarization
detection
Prior art date
Application number
KR1020130084021A
Other languages
English (en)
Other versions
KR20140011278A (ko
Inventor
히로카즈 이시토비
야스후미 가와나베
유키마사 사이토
에이이치 아자미
Original Assignee
우시오덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012159211A external-priority patent/JP5605399B2/ja
Priority claimed from JP2013137899A external-priority patent/JP5516802B1/ja
Application filed by 우시오덴키 가부시키가이샤 filed Critical 우시오덴키 가부시키가이샤
Publication of KR20140011278A publication Critical patent/KR20140011278A/ko
Application granted granted Critical
Publication of KR102036232B1 publication Critical patent/KR102036232B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/16Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using electric radiation detectors
    • G01J2001/161Ratio method, i.e. Im/Ir
    • G01J2001/1615Computing a difference/sum ratio, i.e. (Im - Ir) / (Im + Ir)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

본 발명의 과제는 편광광의 편광 특성을 고정밀도로 측정하는 것이다.
와이어 그리드 편광자(16) 및 검출측 편광자(33)를 순서대로 투과한 광을 검출측 편광자(33)를 회전시키면서 검출하여 얻어지는 각 회전 각도(θ)에서의 광의 광량 I에 기초하여, 상기 검출측 편광자(33)가 회전했을 때의 상기 광량 I의 주기적인 변화를 나타내는 변화 곡선(Q)을 구하고, 이 변화 곡선(Q)에 기초하여 상기 와이어 그리드 편광자(16)를 투과한 편광광(F)의 편광 특성을 특정할 때에, 상기 변화 곡선(Q)의 1개의 극소점이 되는 회전 각도 θ=θa를 포함하고, 또한 상기 광량 I가 소정값 이하가 되는 상기 회전 각도(θ)의 범위(W)에 포함되는 상기 회전 각도(θ)에서의 상기 광량 I에 기초하여 상기 변화 곡선(Q)을 구한다.

Description

편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치{POLARIZATION MEASURING PROCESS, POLARIZATION MEASURING APPARATUS, POLARIZATION MEASURING SYSTEM AND PHOTO-ALIGNMENT IRRADIATION APPARATUS}
본 발명은 편광광의 측정 기술에 관한 것이다.
종래, 배향막, 혹은 배향층(이하, 이들을 「광 배향막」이라고 칭함)에 편광광을 조사함으로써 배향하는 광 배향이라고 불리는 기술이 알려져 있고, 이 광 배향은 액정 표시 패널의 액정 표시 소자가 구비하는 액정 배향막의 배향 등에 널리 응용되고 있다.
광 배향에 사용하는 조사 장치는, 일반적으로, 광원과, 편광자를 구비하고, 광원의 광을 편광자에 통과시켜 편광광을 얻는다. 최근에는, 긴 띠 형상의 광 배향막을 광 배향하기 위해, 광 배향막의 폭 상당의 길이의 막대 형상 램프를 광원으로 하여, 복수의 편광자를 막대 형상 램프의 장축 방향으로 배열함으로써 라인 형상의 편광광을 조사하는 조사 장치가 알려져 있고, 이 조사 장치의 편광광의 조사 에어리어가 연장되는 방향으로 띠 형상의 광 배향막의 폭 방향을 맞추어, 당해 광 배향막을 길이 방향으로 반송함으로써 띠 형상의 광 배향막을 균일하게 광 배향하는 기술도 제안되어 있다(예를 들어, 특허문헌 1 참조).
광 배향의 품위에 영향을 미치는 편광광의 팩터로서는, 소광비와, 편광축 분포의 편차의 2개가 알려져 있고, 광 배향에 사용되는 조사 장치로서는, 이들이 높은 정밀도로 조정되어 있는 것이 중요하다. 이들 소광비나 편광축 등의 편광 특성을 측정하는 기술로서는, 종래부터 각종 기술이 제안되어 있다(예를 들어, 특허문헌 2 내지 특허문헌 4 참조).
일본 특허 출원 공개 제2004-163881호 공보 일본 특허 출원 공개 제2004-226209호 공보 일본 특허 출원 공개 제2005-227019호 공보 일본 특허 출원 공개 제2007-127567호 공보
광 배향을 사용하여 고품위의 액정 배향막을 얻기 위해, 소광비가 높고, 편광축이 오차 0.1° 이내인 정밀도로 조정되어 있는 편광광을 조사할 필요가 있다. 편광축이 오차 0.1° 이내인 정밀도로 조정하기 위해서는 측정 정밀도로서 오차 0.01° 이내가 요구되지만, 방전등을 광원으로 하는 조사 장치에서는, 이 방전등의 점등 전력의 변동 등에 기인하여 광량에 변동(불안정함)이 발생하므로 이와 같은 요구를 만족시키는 정밀도로 편광광의 편광 특성을 측정할 수 있는 기술이 없었다.
종래의 방법에서는, 광량에 변동이 발생하기 때문에, 동일한 측정을 몇 번이나 반복해서 행하여 평균을 취함으로써, 반복 정밀도를 높일 필요가 있고, 측정에 시간을 필요로 한다고 하는 문제가 있었다.
편광축을 측정하는 기술로서는, 편광자마다 편광축을 측정하는 기술이 제안되어 있다. 이는 종래부터 있는 편광 측정 기술을 사용할 수 있다. 그러나, 상술한 방법에서는 편광 측정기로의 광선 도입의 각도가 얕기 때문에, 복수의 편광자를 통과한 편광광이 겹쳐서 조사되는 위치에 있는 스테이지 상의 광 배향막에, 실제로 조사되는 광의 편광 특성을 측정하고 있는 것으로는 되지 않는다.
본 발명은 상술한 사정을 감안하여 이루어진 것으로, 편광광의 편광 특성을 고정밀도로 측정할 수 있는 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 제1 편광자 및 제2 편광자를 순서대로 투과한 광을 상기 제2 편광자를 회전시키면서 검출하여 얻어지는 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 제1 스텝과, 상기 제1 스텝에서 구한 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제2 스텝을 구비하고, 상기 제1 스텝에서는, 상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 것을 특징으로 하는 편광 측정 방법을 제공한다.
또한 본 발명은, 상기 편광 측정 방법에 있어서, 상기 제1 스텝과 다른 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 제3 스텝과, 상기 제3 스텝에서 구한 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제4 스텝과, 상기 제2 스텝 및 제4 스텝의 각각에서 특정된 상기 편광 특성의 평균에 기초하여, 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제5 스텝을 구비한 것을 특징으로 한다.
또한 본 발명은, 상기 편광 측정 방법에 있어서, 상기 소정값은 상기 광량의 최대값의 약 20%의 광량인 것을 특징으로 한다.
또한 본 발명은, 상기 편광 측정 방법에 있어서, 상기 변화 곡선이 나타내는 광량의 최대값에 대응하는 회전 각도에 기초하여 상기 제1 편광자를 투과한 편광광의 편광축을 특정하는 것 및/또는 상기 변화 곡선이 나타내는 최대값과 최소값, 혹은 상기 변화 곡선에 기초하여 특정되는 편광광의 편광축의 회전 각도 및 당해 편광축에 직교하는 회전 각도의 각각에 상기 제2 편광자가 회전했을 때에 측정된 광량에 기초하여 상기 제1 편광자를 투과한 편광광의 소광비를 특정하는 것을 특징으로 한다.
또한 상기 목적을 달성하기 위해, 본 발명은 제1 편광자 및 제2 편광자를 순서대로 투과한 광을 상기 제2 편광자를 회전시키면서 검출하여 얻어지는 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 변화 곡선 산출 수단과, 상기 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 특성 특정 수단을 구비하고, 상기 변화 곡선 산출 수단은 상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 것을 특징으로 하는 편광 측정 장치를 제공한다.
또한 상기 목적을 달성하기 위해, 본 발명은 제1 편광자에 의해 편광화된 편광광을 입사하는 제2 편광자를 갖고, 상기 제2 편광자를 투과하는 광의 광량을 상기 제2 편광자를 회전시키면서 검출하는 검출부와, 상기 검출부의 검출 결과에 기초하여, 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 측정 장치를 구비하고, 상기 검출부는 사입사 성분을 포함하는 상기 광을 도입하여 상기 제2 편광자에 입사하는 제1 애퍼쳐와, 상기 제2 편광자를 투과한 광을 확산하는 확산 수단과, 상기 확산 수단으로 확산된 광의 일부를 통과시키는 제2 애퍼쳐와, 상기 제2 애퍼쳐를 통과한 광을 수광하여 상기 광량을 검출하는 수광 센서를 갖고, 상기 편광 측정 장치는 상기 제2 편광자의 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 변화 곡선 산출 수단과, 상기 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 특성 특정 수단을 구비하고, 상기 변화 곡선 산출 수단은 상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 것을 특징으로 하는 편광 측정 시스템을 제공한다.
또한 상기 목적을 달성하기 위해, 본 발명은 스테이지에 적재한 워크 표면의 배향막에 편광광을 조사하는 편광자 유닛을 구비한 광 배향 조사 장치에 있어서, 상기 편광자 유닛은 횡배열로 정렬한 복수의 단위 편광자 유닛을 구비하고, 상기 단위 편광자 유닛은 각각 편광자를 구비하고, 상기 복수의 편광자를 통과한 편광광이 겹쳐서 조사되는 상기 스테이지 상당 위치에서의 광의 편광 특성을 검출하는 검출 수단을 구비한 것을 특징으로 한다.
또한 본 발명은, 상기 광 배향 조사 장치에 있어서, 상기 검지 수단은 상기 단위 편광자 유닛의 배열 방향으로 이동할 수 있도록 설치된 검출부를 구비한 것을 특징으로 한다. 또한, 그 검출부는 스테이지 이동 방향으로도 이동할 수 있어도 된다.
또한 본 발명은, 상기 광 배향 조사 장치에 있어서, 상기 검출 수단은 측정용 편광자를 갖고, 상기 측정용 편광자를 투과하는 광의 광량을, 상기 측정용 편광자를 회전시키면서 검출하는 검출부와, 상기 검출부의 검출 결과에 기초하여, 상기 스테이지 상당 위치에서의 광의 편광 특성을 특정하는 편광 측정 장치를 구비하고, 상기 검출부는 상기 스테이지 상당 위치에 배치되어, 상기 복수의 편광자를 통과한 편광광이 겹친 광을 도입하여 상기 측정용 편광자에 입사하는 애퍼쳐와, 상기 측정용 편광자를 투과한 광을 확산하는 확산 수단과, 상기 확산 수단으로 확산된 광을 수광하여 상기 광량을 검출하는 수광 센서를 갖고, 상기 편광 측정 장치는 상기 측정용 편광자의 각 회전 각도에서의 광의 광량에 기초하여, 상기 측정용 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 변화 곡선 산출 수단과, 상기 변화 곡선에 기초하여 상기 스테이지 상당 위치에서의 조사광의 편광 특성을 특정하는 편광 특성 특정 수단을 구비한 것을 특징으로 한다.
본 발명에 따르면, 제1 편광자 및 제2 편광자를 순서대로 투과한 광을 제2 편광자를 회전시키면서 검출하여 얻어지는 각 회전 각도에서의 광의 광량에 기초하여, 제2 편광자가 회전했을 때의 광량의 주기적인 변화를 나타내는 변화 곡선을 구할 때에, 변화 곡선의 1개의 극소점을 포함하고, 또한 광량이 소정값 이하가 되는 회전 각도의 범위에 포함되는 회전 각도에서의 광량에 기초하여 변화 곡선을 구하는 구성으로 하였다.
이에 의해, 극대점 근방의 광량의 검출값에 비해, 검출값에 포함되는 노이즈 성분이 작은 검출값에 기초하여 변화 곡선이 구해지므로, 변화 곡선의 정밀도가 높아진다. 그리고, 이 변화 곡선으로부터 편광 특성을 구함으로써, 고정밀도로 편광 특성이 구해진다.
또한 극소점 근방에서의 광량만이 측정되어 있으면 되므로, 적은 측정 횟수로 고정밀도의 측정이 가능해진다.
또한, 본 발명에 따르면, 복수의 편광자를 통과한 편광광이 겹쳐서 조사되는 상기 스테이지 상당 위치에서의 광의 편광 특성을 검출하는 구성으로 하였다.
이에 의해, 스테이지에 배치한 워크 표면의 배향막에 실제로 조사되는 편광광의 편광 특성을 검출할 수 있으므로, 실제의 조사광에 있어서의 편광 특성을 과부족 없이, 또한 고정밀도로 측정할 수 있다.
도 1은 본 발명의 제1 실시 형태에 관한 편광 측정 시스템의 구성을 광 배향 장치와 함께 도시하는 도면.
도 2는 편광 측정 시스템의 구성을 광 배향 장치의 평면에서 본 도면과 함께 도시하는 도면.
도 3은 검출부의 구성을 도시하는 모식도.
도 4는 검출광의 변화 곡선의 모식도.
도 5는 검출광의 광량을 검출하는 회전 각도의 범위의 설명도.
도 6은 검출광의 광량의 검출의 구체예의 설명도.
도 7은 편광 측정 시스템의 측정 동작을 도시하는 흐름도.
도 8은 검출부의 구성을 도시한 외관 사시도.
도 9는 검출부의 단면도.
도 10은 본 발명의 제2 실시 형태에 관한 광 배향 장치의 구성을 도시하는 도면.
도 11은 조사 위치와 상대 조사광량의 관계를 나타내는 그래프.
도 12는 편광자 유닛과 검출부의 관계를 단축측으로부터 도시하는 설명도.
도 13은 편광자 유닛의 구성을 도시하는 도면으로, (A)는 평면도, (B)는 측 단면에서 본 도면.
도 14는 편광축 조정 장치를 도시하는 모식도.
이하, 도면을 참조하여 본 발명의 실시 형태에 대해 설명한다.
<제1 실시 형태>
도 1은 본 실시 형태에 관한 편광 측정 시스템(1)의 구성을 광 배향 장치(2)와 함께 도시하는 모식도이다.
도 1에 있어서, 광 배향 장치(광 배향 조사 장치)(2)는 판 형상, 혹은 띠 형상의 광 배향 대상물(워크)의 광 배향막에 편광광을 조사하여 광 배향하는 조사 장치이고, 편광 측정 시스템(검출 수단)(1)은 광 배향 장치(2)의 조사광의 편광 특성을 측정하는 것이다. 편광 특성으로서는, 편광광의 편광축 및 소광비가 측정된다.
광 배향 장치(2)는 스테이지 반송 가대(3)와, 조사기 설치 가대(4)와, 광 배향 대상물이 적재되는 워크 스테이지(스테이지)(5)를 구비하고 있다.
조사기 설치 가대(4)는 스테이지 반송 가대(3)로부터 소정 거리 이격된 상방 위치에서 스테이지 반송 가대(3)의 폭 방향(후술하는 직동 기구의 직동 방향 X에 수직인 방향)으로 가로로 걸쳐지는 문체이고, 그 양 기둥이 스테이지 반송 가대(3)에 고정된다. 조사기 설치 가대(4)는 조사기(6)를 내장하고, 조사기(6)가 바로 아래에 편광광을 조사한다. 또한, 워크 스테이지(5)의 이동에 수반하는 진동과 조사기(6)의 냉각에 기인하는 진동을 분리하기 위해, 조사기 설치 가대(4)를 스테이지 반송 가대(3)에 고정하는 것이 아니라 당해 스테이지 반송 가대(3)와 별도 설치하는 구성이어도 된다. 스테이지 반송 가대(3)와, 조사기 설치 가대(4)는 방진 구조를 가져도 된다.
스테이지 반송 가대(3)에는 직동 방향 X를 따라서 스테이지 반송 가대(3)의 면 위를 조사기(6)의 바로 아래를 통과하도록 워크 스테이지(5)를 이송하는 직동 기구(도시하지 않음)가 내설되어 있다. 광 배향 대상물의 광 배향에 있어서는, 워크 스테이지(5)에 적재된 광 배향 대상물이, 직동 기구에 의해 워크 스테이지(5)와 함께 이송되어 조사기(6)의 바로 아래를 통과하고, 이 통과 시에 편광광에 폭로되어 광 배향막이 배향된다.
조사기(6)는 광원인 램프(7)와, 반사경(8)과, 편광자 유닛(10)을 구비하여, 집광하는 편광광을 바로 아래에 조사한다.
램프(7)는 방전등이고, 적어도 광 배향 대상물의 폭과 동등 이상으로 연장되는 직관형(막대 형상)의 자외선 램프가 사용되어 있다. 반사경(8)은 단면 타원형, 또한 램프(7)의 길이 방향을 따라서 연장되는 실린드리컬 오목면 반사경이고, 램프(7)의 광을 집광하여 편광자 유닛(10)을 향해 조사한다.
편광자 유닛(10)은 반사경(8)과 광 배향 대상물 사이에 배치되어, 광 배향 대상물에 조사되는 광을 편광한다. 이 편광광이 광 배향 대상물의 광 배향막에 조사됨으로써, 당해 광 배향막이 배향된다.
도 2는 편광 측정 시스템(1)을 광 배향 장치(2)의 평면에서 본 도면과 함께 도시하는 도면이다. 또한, 도 2에서는 편광자 유닛(10)의 구성의 이해를 쉽게 하기 위해, 조사기 설치 가대(4) 중에 편광자 유닛(10)만을 도시하고 있다.
도 2에 도시한 바와 같이, 편광자 유닛(10)은 복수의 단위 편광자 유닛(제1 편광자)(12)과, 이들 단위 편광자 유닛(12)을 횡배열로 일렬로 정렬하는 프레임(14)을 구비하고 있다. 프레임(14)은 각 단위 편광자 유닛(12)을 연접 배치하는 판 형상의 프레임이다. 단위 편광자 유닛(12)은 대략 직사각형판 형상으로 형성된 와이어 그리드 편광자(편광자)(16)를 구비하고 있다.
본 실시 형태에서는, 각 단위 편광자 유닛(12)은 와이어 그리드 편광자(16)를 와이어 방향 가 상기 워크 스테이지(5)의 직동 방향 X와 평행이 되도록 지지하고, 이 와이어 방향 A와 직교하는 방향과, 와이어 그리드 편광자(16)의 배열 방향 B가 일치하도록 되어 있다.
와이어 그리드 편광자(16)는 직선 편광자의 일종이다. 상술한 바와 같이, 램프(7)가 막대 형상이므로, 와이어 그리드 편광자(16)에는 다양한 각도의 광이 입사하지만, 와이어 그리드 편광자(16)는 비스듬히 입사하는 광이어도 직선 편광화되어 투과한다.
와이어 그리드 편광자(16)는 그 법선 방향을 회전축으로 하여 면 내에서 회전시켜 편광축 C1의 방향을 미조정할 수 있도록 단위 편광자 유닛(12)에 지지되어 있다. 모든 단위 편광자 유닛(12)에 대해, 와이어 그리드 편광자(16)의 편광축 C1이 소정의 조사 기준 방향으로 정렬되도록 미세 조정됨으로써, 편광자 유닛(10)의 장축 방향의 전체 길이에 걸쳐서 편광축 C1이 고정밀도로 정렬된 편광광이 얻어져, 고품위의 광 배향이 가능해진다.
편광 측정 시스템(1)은, 도 1에 도시한 바와 같이 편광 측정 장치(20)와, 측정 유닛(30)을 구비하고 있다. 측정 유닛(30)은 편광광을 검출하는 검출부(31)를 구비하고, 편광 측정 장치(20)는 검출부(31)에 의한 편광광의 검출 결과에 기초하여, 당해 편광광의 편광축 및 소광비를 측정한다.
측정 유닛(30)은, 도 2에 도시한 바와 같이 검출부(31)를 직선을 따라서 안내하는 리니어 가이드(32)를 구비하고 있다. 편광광 측정 시에는 리니어 가이드(32)가 상기 워크 스테이지(5)의 진행 방향측의 측면(5A)에 연결되어 편광자 유닛(10)의 바로 아래로 이송되거나, 혹은 리니어 가이드(32)가 편광자 유닛(10)의 바로 아래에 위치하도록 스테이지 반송 가대(3) 상에 설치된다. 그리고, 미세 조정 대상의 와이어 그리드 편광자(16)의 바로 아래에 위치하도록 검출부(31)를 리니어 가이드(32)를 따라서 이동하거나, 혹은 자주시켜, 그 위치에서 당해 와이어 그리드 편광자(16)를 투과한 편광광을 검출부(31)에서 검출하여, 조사광의 편광 특성을 측정한다.
도 3은 검출부(31)의 구성을 도시하는 모식도이다.
검출부(31)는 검출측 편광자(제2 편광자, 측정용 편광자)(33)와, 수광 센서(34)를 구비하고 있다.
검출측 편광자(33)는 편광축 C2를 갖는 판 형상(도시예에서는 원반 형상)의 광검출용 직선 편광자이고 검광자라고도 칭해진다. 이 검출측 편광자(33)에는 와이어 그리드 편광자(16)를 투과하여 직선 편광화된 편광광(F)이 입사되어, 이 편광광(F)을 직선 편광화한다. 검출측 편광자(33)에는 직선 편광자이면 임의의 편광자를 사용할 수 있고, 예를 들어 와이어 그리드 편광자를 사용해도 된다.
수광 센서(34)는 검출측 편광자(33)의 편광축 C2에서 직선 편광화된 검출광(G)을 수광하여 광량 I를 나타내는 검출 신호(35)를 편광 측정 장치(20)에 출력한다.
검출부(31)에서는 검출측 편광자(33)가 그 법선 방향 S를 회전축으로 하여, 적어도 1회전에 걸쳐서 회전 가능하게 설치되어 있다. 검출측 편광자(33)의 회전은 기준 위치(P0)로부터의 회전 각도(θ)에 의해 규정된다. 본 실시 형태에서는, 기준 위치(P0)는 편광축 C2의 방향이 상기 와이어 그리드 편광자(16)의 조사 기준 방향과 일치하는 위치로 설정되어 있다. 즉, 검출부(31)를 리니어 가이드(32)에 세트하고, 기준 위치(P0)에 검출측 편광자(33)를 맞추었을 때에는, 검출측 편광자(33)의 편광축 C2가 조사 기준 방향을 향한 상태로 된다.
편광 측정 장치(20)는 검출측 편광자(33)가 1회전할 때의 검출광(G)의 광량의 주기적인 변화에 기초하여, 편광광(F)의 편광축과 소광비를 측정하는 것이다. 구체적으로는, 편광 측정 장치(20)는, 도 2에 도시한 바와 같이 회전 구동 제어부(21)와, 입력부(22)와, 변화 곡선 산출부(23)와, 편광 특성 특정부(24)와, 편광 특성 출력부(25)를 구비하고 있다. 또한, 편광 측정 장치(20)는, 도 2에 도시하는 각 부를 실현하는 컴퓨터 판독 가능한 프로그램을, 예를 들어 퍼스널 컴퓨터에 실행시킴으로써 실시할 수도 있다.
회전 구동 제어부(21)는 검출부(31)의 검출측 편광자(33)의 회전을 제어한다. 구체적으로는, 검출부(31)는 검출측 편광자(33)를 회전하는 로터리 액추에이터를 구비하고, 회전 구동 제어부(21)가 로터리 액추에이터를 제어하여 검출측 편광자(33)를 회전시킴으로써, 그 편광축 C2를 소정의 회전 각도(θ)의 방향에 맞춘다. 이때의 회전 각도(θ)는 변화 곡선 산출부(23)에 출력된다.
입력부(22)는 검출광(G)의 광량 I의 검출값의 입력을 접수하는 수단이고, 이 입력부(22)에는 검출부(31)의 검출 신호(35)가 입력된다. 입력부(22)는 당해 검출 신호(35)로부터 검출광(G)의 광량 I의 검출값을 취득하여 변화 곡선 산출부(23)에 출력한다.
변화 곡선 산출부(23)는 검출광(G)의 광량 I의 검출값에 기초하여, 검출측 편광자(33)를 1회전시켰을 때의 검출광(G)의 광량 I의 주기적인 변화를 나타내는 변화 곡선(Q)을 산출한다. 상세하게 서술하면, 검출광(G)은, 전술한 도 3에 도시한 바와 같이 램프(7)의 방사광(E)이, 직선 편광자인 와이어 그리드 편광자(16) 및 검출측 편광자(33)를 순서대로 통과하여 얻어지는 광이다.
따라서, 검출측 편광자(33)의 회전에 수반하는 검출광(G)의 광량 I의 변화 곡선(Q)은, 이상적으로는, 도 4에 도시한 바와 같이 검출측 편광자(33)의 편광축 C2가 와이어 그리드 편광자(16)의 편광축 C1에 평행인 경우[본 실시 형태에서는 회전 각도 θ=0°, 180°(극대점)]에 최대 광량 Imax(극대값)가 되고, 편광축 C2가 편광축 C1에 직교하는 경우[본 실시 형태에서는 회전 각도 θ=90°, 270°(극소점)]에 최소 광량 Imin(극소값)이 되는 1주기가 π[rad](=180°)인 다음 수학식 1에 나타내는 여현 파형이 된다[소위, 말류스의 법칙(Low of Malus)].
Figure 112013064332523-pat00001
단, α는 진폭, β는 주기, γ는 위상 어긋남[기준 위치(P0)에 대한 와이어 그리드 편광자(16)의 편광축 C1의 위상차], ε은 바이어스 성분이다.
그러나, 발명자들은 예의 실험을 통해, 변화 곡선(Q)에 대해 다음과 같은 지식을 얻었다.
즉, 광 배향 장치(2)는 방전등인 램프(7)를 광원으로 하고 있으므로, 램프(7)를 점등하는 전원 장치의 점등 전력의 변동이나 램프(7)의 냉각 상태 등의 다양한 요인에 의해, 광원 휘도가 매우 짧은 시간 주기로 변동되어 변동이나 불안정함이 발생하고, 이것이 광원 휘도의 노이즈 성분이 된다.
또한, 광 배향 장치(2)는 램프(7)로부터 편광자 유닛(10)을 통해 넓은 범위로 편광광(F)을 조사하므로, 검출부(31)의 수광 센서(34)에는 다양한 입사 각도의 편광광(F)이 입사하고, 또한 조정 대상의 와이어 그리드 편광자(16)에 인접하는 다른 와이어 그리드 편광자(16)를 통과한 편광광(F)도 입사하여 검출된다.
이들 광원 휘도의 노이즈 성분이나 편광광(F)의 사입사 등에 기인하여, 검출부(31)의 검출 결과로부터 구해진 변화 곡선(Q)은 이상적인 여현 함수(상기 수학식 1)로부터 변형되고, 이 변형은 다음 수학식 2에 나타내는 n승 여현 파형(n≥2)으로 충분히 근사된다.
Figure 112013064332523-pat00002
이상의 지식에 따르면, 변화 곡선(Q)으로서는, 검출광(G)의 광량의 검출값에 기초하여, n승 여현 파형을 구하는 것이 최선이지만, 그렇게 하면, 많은 검출광(G)의 측정과 계산을 필요로 한다고 하는 문제가 있다.
또한, 소광비는 최소 광량 Imin으로 최대 광량 Imax를 제산하므로, 최소 광량 Imin이 작아질수록, 이 최소 광량 Imin에 차지하는 노이즈 성분이 소광비의 값에 크게 영향을 미치지만, 상기 수학식 2에서 변화 곡선(Q)을 구한 경우, 최소 광량 Imin의 반복 정밀도가 나쁘기 때문에, 소광비가 정확하게 구해지지 않게 된다.
따라서, 원하는 정밀도가 얻어지도록, 1개의 변화 곡선(Q)을 구하기 위한 측정점의 수나, 복수회의 측정을 반복하여 변화 곡선(Q)을 복수회 구하여 평균화하는 것 등을 하면 되지만, 그렇게 하면 측정 횟수가 매우 많아지므로 측정에 시간이 걸린다고 하는 문제가 생긴다.
이 문제를 해결하는 방법으로서는, 광원 휘도의 노이즈 성분을 검출부(31)의 검출 신호(35)로부터 제거할 수 있도록, 검출부(31)와는 별도 설치의 수광 센서를 준비하여, 별도 설치의 수광 센서로 검출광(G)의 광량 I를 참조용으로서 검출하고, 이 참조용 검출 결과에 기초하여 검출부(31)의 검출 신호(35)로부터 노이즈 성분을 제거하는 처리를 행하는 것이 생각된다.
그러나, 편광 측정에 있어서는, 일반적으로, 미러나 프리즘 등의 광학 소자를 광이 경유함으로써도 편광 상태가 변화되므로, 별도 설치의 수광 센서에 검출부(31)에 입사하는 검출광(G)을 분기시킬 수 없다. 이로 인해, 검출부(31)와 별도 설치의 수광 센서가 수광하는 검출광(G)이 달라져 버려, 노이즈 성분이 정확하게 제거되지 않는다.
또한 검출부(31)의 수광 센서(34)가 검출하는 검출광(G)의 광량 I는 상기 검출측 편광자(33)의 회전에 수반하여 변화되고, 또한 광원 휘도의 노이즈 성분의 양도 그것에 수반하여 바뀌므로, 별도 설치의 수광 센서의 검출값에 대해 검출측 편광자(33)의 회전 각도(θ)를 반영하는 처리가 필요해진다. 또한 검출부(31)가 구비하는 수광 센서(34)와 별도 설치의 수광 센서를 비교할 때에는, 센서 감도의 경년 변화나 온도 특성에 기인하는 노이즈 등에 기인한 양자의 수광 특성의 차이를 보정할 필요도 있다.
이와 같이, 별도 설치의 수광 센서를 사용하는 측정 방법은 고정밀도의 측정을 실현하기 위해, 해결해야만 하는 많은 문제를 포함한다.
따라서 본 실시 형태에서는, 변화 곡선(Q)의 커브 피팅에 사용하는 광량 I의 검출값을, 도 5에 도시한 바와 같이 검출광(G)의 광량 I가 최소가 되는 극소점의 근방의 범위(W)에서 검출된 것으로 제한함으로써, 1개의 수광 센서(34)에 의한 측정이면서도, 적은 측정점에서 반복 정밀도가 높은 변화 곡선(Q)을 산출 가능하게 하고 있다.
상세하게 서술하면, 검출광(G)의 광량 I에 차지하는 광원 휘도의 노이즈 성분의 비율이 거의 일정하다고 하면, 노이즈 성분의 크기는 검출광(G)의 광량 I에 비례하여 커지므로, 전술한 도 4에 도시한 바와 같이, 노이즈 성분의 크기는 최대 광량 Imax(극대점)의 근방에 비해, 최소 광량 Imin(극소점)의 근방에서 작아진다. 바꾸어 말하면, 최소 광량 Imin의 근방에서는 최대 광량 Imax 근방에 비해, 광원 휘도의 노이즈 성분의 영향에 의한 광량 I의 변동 폭이 작다.
따라서, 노이즈 성분의 영향이 적은 최소 광량 Imin 근방의 광량 I의 검출값을 사용하여 커브 피팅에 의해 상기 변화 곡선(Q)을 구함으로써, 광원 휘도의 변동 등의 영향에 의한 노이즈 성분을 억제한 변화 곡선(Q)이 얻어지는 것이다. 그리고, 광원 휘도의 노이즈 성분의 영향이 억제되므로, 반복 정밀도가 높아져, 1회의 측정에서도 신뢰성이 높은 변화 곡선(Q)이 얻어지게 된다.
발명자들은 예의 실험에 의해, 최소 광량 Imin 근방의 범위로서, 검출광(G)의 광량 I가 최대 광량 Imax의 20% 이하가 되는 회전 각도(θ)의 범위(W)이면, 그 범위(W) 내에서의 회전 각도(θ)에서 측정된 검출광(G)의 광량 I에 기초하여, 광원 휘도의 노이즈 성분의 영향을 억제하여, 반복 정밀도가 높은 변화 곡선(Q)이 얻어진다고 하는 지식을 얻었다. 또한, 발명자들은 최소 광량 Imin이 얻어지는 회전 각도 θa를 중심으로 ±20°의 범위이면 상기의 범위(W)에 포함된다는 지식을 얻었다.
이들의 지식에 기초하여, 본 실시 형태에서는, 도 5에 도시한 바와 같이 이 범위(W)에 포함되는 4점의 회전 각도(θ)(θ=θa±10°, θa±20°)에서 검출광(G)의 광량 I를 검출하고, 각 회전 각도(θ)에서의 광량 I에 기초하여, 커브 피팅에 의해 상기 변화 곡선(Q)을 구하는 것으로 하고 있다.
검출광(G)의 광량 I를 검출하는 회전 각도(θ)를 10° 정도 이격함으로써, 검출광(G)의 광량 I의 검출값 사이에 유의한 차를 발생시킬 수 있으므로, 이 검출값의 차가 광원 휘도의 노이즈 성분에 묻히는 일 없이 변화 곡선(Q)을 확실하게 구할 수 있다.
또한, 검출광(G)의 광량 I를 측정하는 회전 각도(θ)는 4점으로 한정되지 않고, 상기 범위(W)의 범위 내이면, 적어도 3점 이상이면 된다.
변화 곡선 산출부(23)는 상기 범위(W)에 포함되는 회전 각도(θ)에서의 검출광(G)의 광량 I의 검출값에 기초하여, 수학식 1에 나타낸 여현 파형을 커브 피팅(곡선 회귀라고도 칭함)의 방법에 의해 구하고, 이를 편광 특성 특정부(24)에 출력한다.
편광광(F)의 편광 방향이 기준 위치(P0)의 방향으로부터 어긋나 있는 경우, 즉 와이어 그리드 편광자(16)의 편광축 C1의 방향이 기준 위치(P0)의 방향인 배열 방향 B로부터 어긋나 있는 경우에는, 도 4에 가상선으로 나타낸 바와 같이, 그 어긋남이 변화 곡선(Q)에 위상 어긋남 γ(>0)로서 나타나게 된다.
편광 특성 특정부(24)는 변화 곡선 산출부(23)에 의해 구해진 변화 곡선(Q)에 기초하여, 편광광(F)의 편광 방향[즉, 와이어 그리드 편광자(16)의 편광축 C1의 방향] 및 소광비를 특정하여, 편광 특성 출력부(25)에 출력한다.
구체적으로는, 편광 특성 특정부(24)는, 도 4에 도시한 바와 같이 변화 곡선(Q)에 있어서, 검출광(G)의 최대 광량 Imax가 얻어지는 회전 각도(θ)(극대점)인 상기 γ를 특정함으로써 편광축 C1의 방향을 특정하고, 또한 변화 곡선(Q)의 최대 광량 Imax와 최소 광량 Imin의 비(=최대 광량 Imax/최소 광량 Imin)에 기초하여 소광비를 특정한다. 변화 곡선(Q)에 있어서의 최대 광량 Imax는 당해 변화 곡선(Q)에 회전 각도 θ=γ(극대점)를 대입하여 구해지고, 또한 최소 광량 Imin은 회전 각도 θ=90°+γ(극소점)를 대입하여 구해진다.
편광 특성 출력부(25)는 편광 특성 특정부(24)에 의해 특정된 편광 특성(편광축 및 소광비)을 출력하는 것이다. 이 출력의 형태는 사용자가 편광 특성을 이용 가능하면 임의이고, 예를 들어 표시, 다른 전자 기기로의 출력, 기록 매체로의 기록 등을 들 수 있다.
여기서, 최소 광량 Imin이 얻어지는 회전 각도 θa(극소점)는, 전술한 도 4에 도시한 바와 같이, 검출측 편광자(33)가 1회전하는 동안(θ=0 내지 360°)에, 위상이 180°(π) 이격된 2개소에 존재하므로, 본 실시 형태에서는, 변화 곡선 산출부(23)가 2개소의 회전 각도 θ=θa, θa+180°의 각각에 대해, 범위(W) 내의 4점의 회전 각도(θ)에서 검출광(G)의 광량 I를 측정하여 2개의 변화 곡선(Q)을 구하고, 편광 특성 특정부(24)가 2개의 변화 곡선(Q)의 각각에 대해 편광축 및 소광비를 구하여, 그들의 평균값을 구함으로써, 편광축 및 소광비의 측정 정밀도를 높이는 것으로 하고 있다.
이것에 추가하여, 본 실시 형태에서는 2개소의 회전 각도 θ=θa, θa+180°마다의 상기 범위(W)의 각각에 있어서, 4점의 회전 각도(θ)에서의 검출광(G)의 광량 I의 검출 정밀도를 높이기 위해, 동일한 회전 각도(θ)에서 광량 I의 측정을 복수회(예를 들어, 10회) 반복해서 행하는 것으로 하고 있다.
이 결과, 도 6에 도시한 바와 같이, 동일한 회전 각도(θ)마다 M개(M≥2)의 광량 I의 검출값이 얻어진다. 변화 곡선 산출부(23)가, 이들 검출값으로부터 변화 곡선(Q)을 구할 때에는, 각 회전 각도(θ)에 있어서, N개(M≥N≥1)의 검출값을 선택하여, 이들 N개의 검출값의 평균값을 구하고, 이들의 평균값에 기초하여 변화 곡선(Q)을 구한다. M개의 검출값 중에서 N개를 선택할 때의 조합의 수는 MCn개이므로, 변화 곡선 산출부(23)는 이 MCn개의 조합마다 변화 곡선(Q)을 구한다. 그리고, 편광 특성 특정부(24)가, MCn개의 변화 곡선(Q)의 각각에 대해 편광축 및 소광비를 구하고, 각 편광축 및 각 소광비의 평균값을 구하는 것으로 하고 있다. 이에 의해, 편광축 및 소광비가 더욱 고정밀도로 구해진다.
도 7은 편광 측정 시스템(1)의 측정 동작을 도시하는 흐름도이다.
도 7에 도시한 바와 같이, 편광 측정 장치(20)는 검출부(31)의 검출측 편광자(33)의 회전을 제어하여, 회전 각도(θ)를 측정점에 맞춘다(스텝 S1). 본 실시 형태에서는, 회전 각도(θ)의 측정점은, 도 6에 도시한 바와 같이 θ=θa±20°, θa±10°, θa+180°±20°, θa+180°±10°의 합계 8점이다. 회전 각도 θa는 최소 광량 Imin이 얻어지는 각도(극소점)이고, 전술한 도 4에 도시한 바와 같이 θa=90°+γ에 의해 규정된다. 본 실시 형태에서는, 편광축 C1에 어긋남이 없는 이상적인 상태에서는 γ=0이 된다. 따라서, 상기 스텝 S1에 있어서는, 편광 측정 장치(20)는 θa=90°로 하여 회전 각도(θ)의 측정점을 결정한다.
계속해서, 편광 측정 장치(20)는 검출광(G)의 광량 I의 검출 신호(35)를 M회에 걸쳐서 간헐적으로 도입하여, M개의 광량 I의 검출값을 취득한다(스텝 S2).
편광 측정 장치(20)는 회전 각도(θ)의 모든 측정점에 있어서, M개의 광량 I의 검출값을 취득할 때까지(스텝 S3:예), 상기 스텝 S1 및 스텝 S2를 반복해서 실행한다.
편광 측정 장치(20)는 최소 광량 Imin 근방(극소점 근방)의 광량 I의 검출값을 사용하여 변화 곡선(Q)을 구하므로, 회전 각도 θ=θa±20°, θa±10°의 4점에서의 광량 I의 검출값에 기초하여 커브 피팅에 의해 상기 수학식 1을 따르는 변화 곡선(Q)을 구한다(스텝 S4). 상세하게 서술하면, 편광 측정 장치(20)는 이들 회전 각도(θ)마다, N개(M≥N≥1)의 검출값을 선택하여, 이들 N개의 검출값의 평균값을 구하고, 그것을 회전 각도(θ)의 검출값으로 하여 커브 피팅에 의해 변화 곡선(Q)을 구한다. 상술한 바와 같이, MCn개의 변화 곡선(Q)이 구해진다. 계속해서 편광 측정 장치(20)는 MCn개의 변화 곡선(Q)의 각각에 대해 편광축 및 소광비를 구하고, 각 편광축 및 각 소광비의 평균값을 구한다(스텝 S5).
편광 측정 장치(20)는, 스텝 S4 및 S5와 마찬가지로 하여, 회전 각도 θ=θa+180°±20°, θa +180°±10°의 4점에서의 광량 I의 검출값에 기초하여 커브 피팅에 의해 변화 곡선(Q)을 구하고(스텝 S6), 이 변화 곡선(Q)에 기초하여, 편광축 및 소광비를 특정한다(스텝 S7).
그리고, 편광 측정 장치(20)는 스텝 S5 및 스텝 S7에서 구한 편광축 및 소광비의 평균값을 구함으로써, 편광광의 편광축 및 소광비를 특정한다(스텝 S8).
이에 의해, 편광광의 편광축 및 소광비가 고정밀도로 구해진다.
또한, 이 측정에 있어서, 편광 측정 장치(20)는 변화 곡선(Q)에 기초하여, 최소 광량 Imin이 얻어지는 회전 각도 θ=θa, 최대 광량 Imax가 얻어지는 회전 각도 θ=γ를 특정하여, 검출부(31)의 검출측 편광자(33)를 회전하고, 각각의 회전 각도(θ)에서 검출광(G)의 광량 I를 실제로 검출하고, 이 검출값에 기초하여 소광비를 구해도 된다.
또한, 상기 편광 측정에 있어서, 스텝 S6 내지 스텝 S8의 처리를 하지 않아도, 원하는 정밀도가 얻어지고 있는 경우에는, 이들 스텝 S6 내지 스텝 S8의 처리를 행하지 않고, 스텝 S5에서 특정된 편광축 및 소광비를 측정 결과로 해도 된다. 또한, 이들 스텝 S6 내지 스텝 S8의 처리를 행할지 여부를 작업자 등의 사용자가 선택 가능하게 해도 된다.
계속해서, 편광 측정 시스템(1)을 사용한 광 배향 장치(2)의 편광광의 측정에 대해 설명한다.
작업자는, 우선, 측정 유닛(30)을 광 배향 장치(2)에 설치한다. 이 설치 시에, 작업자는 리니어 가이드(32)의 안내 방향이 상기 와이어 그리드 편광자(16)의 배열 방향 B와 평행이 되고, 또한 편광자 유닛(10)의 바로 아래에 위치하도록 리니어 가이드(32)를 설치한다. 계속해서, 작업자는 검출부(31)를 리니어 가이드(32)에 의해 안내하여 측정 대상의 와이어 그리드 편광자(16)의 바로 아래에 배치하고, 편광 측정 시스템(1)을 사용하여, 이 와이어 그리드 편광자(16)로부터 출사되는 편광광(F)을 검출하여, 그 와이어 그리드 편광자(16)의 편광축 C1 및 소광비를 측정한다. 작업자는 편광축 C1의 측정 결과에 기초하여, 필요에 따라서 와이어 그리드 편광자(16)의 회전을 미세 조정함으로써, 편광축 C1의 방향을 소정 방향(본 실시 형태에서는 배열 방향 B)에 맞춘다.
작업자는 편광자 유닛(10)이 구비하는 모든 와이어 그리드 편광자(16)에 대해 마찬가지로 편광광(F)의 측정, 이 측정 결과에 기초하여, 편광축 C1의 방향을 배열 방향 B에 맞추는 작업을 행함으로써, 모든 와이어 그리드 편광자(16)의 편광축 C1의 방향이 배열 방향 B로 정렬된다.
상술한 바와 같이, 이 편광 측정 시스템(1)에 따르면, 동일한 측정을 복수회 행하지 않아도, 반복 정밀도가 높고 신뢰성이 높은 변화 곡선(Q)이 얻어지고, 이 변화 곡선(Q)으로부터 편광축 C1의 방향이 고정밀도로 특정된다. 따라서, 개개의 와이어 그리드 편광자(16)를 미세 조정할 때에, 편광광(F)의 측정 횟수를 줄일 수 있고, 또한 미세 조정 작업을 단시간에 종료하면서, 높은 정밀도로 편광축 C1의 방향을 조정할 수 있다.
그런데, 광 배향 장치(2)에 있어서는, 막대 형상의 램프(7)로부터 방사되는 다양한 각도의 방사광(E)이 와이어 그리드 편광자(16)에 입사하고, 와이어 그리드 편광자(16)에서 직선 편광화되어 출사된다.
한편, 종래, 글랜 톰슨 편광 프리즘을 검출측 편광자(33)에 사용한 검출부가 알려져 있다. 그러나, 글랜 톰슨 편광 프리즘을 사용한 검출부에서는, 글랜 톰슨 편광 프리즘의 소광비가 입사각에 따라서 크게 바뀌므로, 이 검출부에 입사하는 입사각을 최대한 작게 할 필요가 있다.
따라서, 종래의 검출부에서는 와이어 그리드 편광자(16)로부터 출력되는 다양한 각도 성분을 포함한 편광광(F) 중, 매우 제한된 범위의 각도 성분밖에 검출할 수 없어, 이 편광광(F)을 정확하게 측정할 수 없다.
따라서, 본 실시 형태에서는 이하에 설명하는 구성의 검출부(31)를 사용함으로써, 다양한 각도 성분을 포함한 편광광(F)이라도, 넓은 각도 성분의 범위를 검출하여 편광 특성을 측정 가능하게 하고 있다.
도 8은 검출부(31)의 구성을 도시한 외관 사시도이고, 도 9는 검출부(31)의 단면도이다.
검출부(31)는 이들 도면에 도시한 바와 같이, 직사각형 판 형상의 베이스 마운트(70)를 구비하고, 그 위에 수광 센서 유닛(71)과, 검출측 편광자(33)와, 회전 스테이지(72)와, 검출광 조정 유닛(73)(도 9)을 구비하고 있다.
수광 센서 유닛(71)은 수광 센서(34)의 일례인 광전자 증배관(74)과, 이 광전자 증배관(74)을 냉각하여 온도를 일정하게 유지하여 광전자 증배관(74)의 온도 특성에 의한 노이즈를 저감시키는 수냉 베이스(75)를 구비하고, 광전자 증배관(74)의 검출 신호(35)(도 3)가 편광 측정 장치(20)에 도입된다.
베이스 마운트(70)는 리니어 가이드(32)에 결합하여 당해 리니어 가이드(32)에 의해 직선적으로 안내된다. 베이스 마운트(70)의 소정의 1변을 리니어 가이드(32)의 장축 방향에 맞추어 세트함으로써, 기준 위치(P0) 및 검출측 편광자(33)의 편광축 C2가 조사 기준 방향을 향하도록 구성되어 있다. 또한, 베이스 마운트(70)의 소정의 1변을 조사 기준 방향에 맞추어 설치 가능하면, 반드시 리니어 가이드(32)를 사용할 필요는 없다.
검출측 편광자(33)는 광전자 증배관(74)의 검출면(74A)의 바로 위에 배치되고, 소정 직경의 개구(76A)가 형성된 애퍼쳐(76)로 검출광(G)의 입사측이 덮여 있다. 이 애퍼쳐(76)는 검출측 편광자(33)로의 입사광을 제한하는 것이지만, 이 검출부(31)에서는, 와이어 그리드 편광자(16)가 사입사의 광도 투과하여 편광광(F)을 생성하는 것에 맞추어, 이들 사입사의 성분에 의한 편광광(F)도 도입하기 위해, 개구(76A)는 입사각(Y)이 0°∼70°까지의 범위의 편광광(F)을 통과하도록 형성되어 있다.
또한, 입사각(Y)의 범위는 검출부(31)와, 와이어 그리드 편광자(16)와, 램프(7)의 각각의 형상이나 배치 관계에 기초하여, 와이어 그리드 편광자(16)로부터 비스듬히 방사되는 편광광(F)의 성분이 도입되는 각도로 결정된다.
검출광 조정 유닛(73)은 검출측 편광자(33)와 광전자 증배관(74)의 검출면(74A) 사이에 배치된 통 형상의 부재로, 통체(77)를 구비하고, 애퍼쳐(76)를 통해 도입되어 검출측 편광자(33)를 통과한 검출광(G)을 통체(77)의 상면으로부터 도입하고, 내부에서 혼합하여 하면으로부터 광전자 증배관(74)으로 유도하는 것이다.
구체적으로는, 검출광 조정 유닛(73)의 통체(77)의 상면에는 애퍼쳐(76)가 도입되는 입사각(Y)까지의 범위의 검출광(G)을 내부에 통과시키는 개구(78A)가 형성된 애퍼쳐(78)가 설치되어 있다.
통체(77)에는 넓은 광선 입사각의 확보를 위해서, 또한 도입하는 광선의 편광 상태를 해소하여 무편광화하기 위해, 투과하는 광을 확산하는 확산 유닛(79)이 애퍼쳐(78)의 바로 아래에 간극을 두지 않고 설치되어 있다. 확산 유닛(79)은 소정 간격으로 대면 배치된 2매의 확산판(79A, 79B)을 구비하고, 각종 입사각(Y)의 검출광(G)을 혼합하여 출력한다. 확산판(79A, 79B)에는, 예를 들어 프로스트형 합성 석영판이 사용되어 있다.
통체(77)의 하면에는 광전자 증배관(74)으로의 입사광량을 제한하는 핀 홀(80A)이 형성된 판재(80)가 설치되어, 이 핀 홀(80A)을 통과한 광이 광전자 증배관(74)의 검출면(74A)에 입사된다.
또한, 핀 홀(80A)과 광전자 증배관(74)의 검출면(74A) 사이에는 광 배향 작용 파장 이외의 파장의 광을 컷트하는 파장 제한 필터(81)가 설치되어 있고, 파장 제한 필터(81)에 의해 외란광이 컷트된 광이 광전자 증배관(74)에 유도된다.
이와 같이, 검출부(31)는 비교적 큰 입사각(Y)의 범위까지 편광광(F)을 도입하고, 내부에서 확산시켜 광전자 증배관(74)에 의해 광량을 검출하는 구성으로 하였으므로, 막대 형상의 램프(7)의 방사광(E)을 와이어 그리드 편광자(16)에 통과시켜 얻어진 편광광(F)과 같이, 다양한 각도 성분을 포함한 편광광(F)이라도, 넓은 각도 성분의 범위를 검출하여 편광 특성을 측정할 수 있다.
이상 설명한 바와 같이, 본 실시 형태에 따르면, 와이어 그리드 편광자(16) 및 검출측 편광자(33)를 순서대로 투과한 검출광(G)을 검출측 편광자(33)를 회전시키면서 검출하여 얻어지는 각 회전 각도(θ)에서의 광량 I에 기초하여, 검출측 편광자(33)를 1회전시켰을 때의 광량 I의 주기적인 변화를 나타내는 변화 곡선(Q)을 구할 때에, 변화 곡선(Q)의 1개의 극소점인 회전 각도 θ=θa를 포함하고, 또한 광량 I가 소정값 이하(본 실시 형태에서는, 최대 광량 Imax의 약 20% 이하)가 되는 회전 각도(θ)의 범위(W)에 포함되는 각 회전 각도 θ=θa±20°, θa±10°에서의 광량 I에 기초하여 변화 곡선(Q)을 구하는 구성으로 하였다.
이에 의해, 극대점인 최대 광량 Imax 근방의 광량 I의 검출값에 비해, 검출값에 포함되는 노이즈 성분이 적은 검출값에 기초하여 변화 곡선이 구해지므로, 변화 곡선의 정밀도가 높아진다. 이 변화 곡선으로부터 편광 특성을 구함으로써, 고정밀도로 편광 특성이 구해진다.
또한 극소점인 최소 광량 Imin 근방에서의 광량 I만이 측정되어 있으면 되므로, 적은 측정 횟수로 고정밀도의 측정이 가능해진다.
또한 본 실시 형태에 따르면, 상기한 회전 각도 θ=θa와 다른 1개의 극소점인 회전 각도 θ=θa+180°를 포함하고, 또한 광량 I가 소정값 이하가 되는 회전 각도(θ)의 범위(W)에 포함되는 회전 각도 θ=θa+180°±20°, θa +180°±10°에서의 광량 I에 기초하여 변화 곡선(Q)을 구하고, 이 변화 곡선(Q)에 기초하여 편광광(F)의 편광 특성을 특정하고, 그리고, 상기의 회전 각도 θ=θa를 포함하는 범위(W)에 대응하는 변화 곡선(Q)으로부터 특정한 편광 특성과의 평균에 기초하여, 편광광(F)의 편광 특성을 특정하는 구성으로 하였다.
이에 의해, 고정밀도의 측정이 필요한 경우에, 보다 고정밀도로 편광광(F)의 편광 특성이 구해진다.
또한 본 실시 형태에서는, 상기 범위(W)를, 검출광(G)의 광량 I가 최대 광량 Imax에 대해 약 20%의 광량이 되는 범위로 함으로써, 노이즈 성분의 영향을 억제한 고정밀도의 변화 곡선(Q)이 얻어진다.
또한 본 실시 형태에 따르면, 검출부(31)는 사입사 성분을 포함하는 편광광(F)을 도입하여 검출측 편광자(33)에 입사하는 애퍼쳐(76)와, 검출측 편광자(33)를 투과한 광을 확산하는 확산 유닛(79)과, 이 확산 유닛(79)에 의해 확산된 광을 수광하여 광량 I를 검출하는 수광 센서로서의 광전자 증배관(74)을 갖는 구성으로 하였다.
이에 의해, 막대 형상의 램프(7)의 방사광(E)을 와이어 그리드 편광자(16)에 통과시켜 얻어진 편광광(F)과 같이, 다양한 각도 성분을 포함한 편광광(F)이라도, 넓은 각도 성분의 범위를 검출하여 편광 특성을 측정할 수 있다.
<제2 실시 형태>
다음에, 도 10 내지 도 14를 참조하여, 본 발명의 제2 실시 형태에 대해 설명한다.
상술한 제1 실시 형태에서는, 와이어 그리드 편광자(16)마다 편광축 C1을 측정하고 있었지만, 제2 실시 형태에서는, 광 배향 대상물의 장소(측정점)마다 편광광의 편광 방향을 측정하고 있다. 또한, 제2 실시 형태에서는, 제1 실시 형태와 동일 부분에는 동일한 번호를 부여하여 설명을 생략한다.
도 10은 제2 실시 형태에 관한 광 배향 장치(100)의 구성을 도시하는 도면이다.
광 배향 장치(100)는 편광 측정 시스템(1)을 구비하고, 이 광 배향 장치(100)에서는 조사광의 균일성을 높이는 목적을 위해, 또한 광 배향 대상물의 처리 중(조사 중)에 배향막으로부터 발생하는 아웃 가스가 부착되는 것을 방지하는 목적을 위해, 와이어 그리드 편광자(16)는, 도 10에 도시한 바와 같이 광 배향 대상물의 표면의 배향막으로부터 소정의 거리를 이격하여 배치되어 있다. 광 배향 장치(100)는 편광 측정 시스템(1)을 구비하는 구성 및 와이어 그리드 편광자(16)와 배향막 거리 이외는, 제1 실시 형태의 광 배향 장치(1)와 동일하게 형성되어 있다.
또한, 상술한 바와 같이, 막대 형상의 램프(7)로부터 방사되는 다양한 각도의 방사광(E)이 와이어 그리드 편광자(16)에 입사하고, 와이어 그리드 편광자(16)에 의해 직선 편광화되어 편광광(F)으로서 출사된다. 이와 같은 편광광(F)은 다양한 각도 성분을 포함하고 있다.
이와 같이, 와이어 그리드 편광자(16)는 광 배향 대상물의 표면의 배향막으로부터 소정의 거리를 이격하여 배치되는 동시에, 편광광(F)이 다양한 각도 성분을 포함하므로, 광 배향 대상물에는 복수의 와이어 그리드 편광자(16)를 통과한 편광광(F)이 겹쳐서 조사된다. 편광광(F)의 편광 특성은 통과하는 편광자의 장소에 의한 특성 편차의 영향이나, 입사각의 영향에 의해 획일된 것이 아니라, 광 배향 대상물에 다양한 편광 특성을 갖는 편광광(F)이 조사되는 것이 된다.
예를 들어, 본 실시 형태에서는, 조사기(6) 바로 아래에 있어서의 램프(7) 길이 방향의 조사 분포를 와이어 그리드 편광자(16)(n-3 내지 n+1)마다 분리하면, 도 11에 나타내는 그래프와 같이 되어, 어떤 조사 위치(0㎜)에 있어서의 조사광량은 양측 3개분의 영향을 받고 있다. 도 11에 도시한 바와 같이, 가령 와이어 그리드 편광자(16)의 중심 바로 아래에 있어서도, 조사광으로서는, 바로 위의 와이어 그리드 편광자(16)를 통과한 광량은 주위의 와이어 그리드 편광자(16)를 통과한 광량의 합계가 되는 조사광량의 절반 정도이다.
또한, 프레임(14) 및 프레임(14)을 고정하는 편광자 유닛 고정대(9) 등의 구조 부재는 차광 부재에 의해 형성되거나, 혹은 차광 부재에 의해 덮이는 것 등을 하여 차광 부재로서 구성되어 있다. 그러나, 프레임(14)이나 편광자 유닛 고정대(9) 등의 구조 부재에서의 반사는 완전히 방지할 수는 없고, 도 12에 도시한 바와 같이, 구조 부재에서 반사된 반사광 H도 산란광이 되어 워크 스테이지(5) 상의 광 배향 대상물 T에 조사된다. 편광광(F)의 편광 특성은 반사에 의해서도 바뀐다. 또한, 반사광 H에는 광 배향 대상물 T의 표면의 배향막에서 반사된 후, 와이어 그리드 편광자(16)에 의해 반사된 광 등도 포함된다.
이로 인해, 예를 들어 검출부(31)의 검출광의 도입 각도 범위를 좁게 하여 와이어 그리드 편광자(16)마다 편광축 C1을 측정하는 경우에는, 측정 대상 이외의 와이어 그리드 편광자(16)의 편광광(F)이나 반사광 H를 측정할 수 없다. 그 결과, 광 배향 대상물에 실제로 조사되는 조사광의 편광 특성을 정확하게 측정했다고는 할 수 없다.
따라서, 본 실시 형태에서는 비교적 큰 입사각(Y)의 범위까지 편광광(F)을 도입하고, 내부에서 확산시켜 광전자 증배관(74)에서 광량을 검출하는 검출부(31)를 사용함으로써, 넓은 각도 성분의 범위를 검출하여 광 배향 대상물에 실제로 조사되는 편광광(F)(조사광)의 편광 특성(편광 방향, 소광비)을 측정 가능하게 하고 있다.
또한, 검출부(31)가 수광하는 검출광(G)은 램프(7)의 방사광(E)이 직선 편광자인 와이어 그리드 편광자(16) 및 검출측 편광자(33)를 순서대로 통과하여 얻어지는 광이며, 복수의 와이어 그리드 편광자(16)의 편광광이 겹쳐진 광이다. 즉, 위상 어긋남 γ는 기준 위치(P0)에 대한 편광광(F)의 편광 방향의 위상차로서 구해진다. 또한, 검출광(G)에는 복수의 와이어 그리드 편광자(16)의 편광광이나 반사광이 포함되므로, 편광광의 편광 방향 및 소광비는 분포하지만, 편광광의 편광 방향 및 소광비는 분포의 피크값에 기초하여 구해지게 된다.
그런데, 와이어 그리드 편광자(16)는 글래스 등의 재료를 사용하여 형성되어, 비교적 깨지기 쉬운 광학 소자이므로, 완충재(도시하지 않음)를 통해 프레임(14)에 보유 지지되어 있다. 보다 상세하게는, 편광축 C1이 조정된 와이어 그리드 편광자(16)는, 도 13에 도시한 바와 같이 단위 편광자 유닛(12)의 상단부 및 하단부가 나사(고정 수단)(19)에 의해 프레임(14)에 고정됨으로써, 프레임(14)에 고정 배치된다. 와이어 그리드 편광자(16)를 보유 지지하는 완충재의 경년 열화나 광 배향 장치(100)의 진동에 의해, 와이어 그리드 편광자(16)의 위치 어긋남이 생길 우려가 있고, 그 결과, 편광광의 편광 방향이 어긋나 버린다.
또한, 광 배향 대상물의 처리 중(조사 중)에는 배향막으로부터 아웃 가스가 발생하는 경우가 있지만, 이 아웃 가스 등의 이물질이 와이어 그리드 편광자(16)에 혼입, 또는 부착되면, 와이어 그리드 편광자(16)의 편광 특성이 바뀌어 버린다.
본 실시 형태의 광 배향 장치(100)에서는 편광 측정 시스템(1)에 의해, 편광 특성을 상시 측정하는 것이 아니라, 경년 열화나 아웃 가스 등에 의해 편광 특성이 바뀌는 소정 기간 후, 예를 들어, 1개월 후에 편광 특성을 측정하도록 하고 있다.
계속해서, 도 14를 참조하여, 광 배향 장치(100)의 편광광의 측정에 대해 설명한다.
도 14는 편광축 조정 장치 D를 도시하는 모식도이다.
편광축 조정 장치 D는 편광 측정 시스템(1A)과, 스폿 광원(7A)을 구비하고, 와이어 그리드 편광자(16)의 편광축 C1의 방향을 조정하는 장치이다. 편광 측정 시스템(1A)은 검출부(31A)의 개구(도시하지 않음)가, 편광 측정 시스템(1)의 검출부(31)의 개구(76A)보다 좁게 형성되는 것 이외는, 편광 측정 시스템(1)과 구성을 동일하게 한다. 또한, 도 14에서는 광 배향 장치(100)와 동일한 부분에 동일한 번호를 부여하여 나타내고, 설명은 생략한다.
작업자는, 우선, 별도 설치의 편광축 조정 장치 D에 편광자 유닛(10)을 배치한다. 계속해서, 작업자는 편광축 조정 장치 D의 검출부(31A)를 측정 대상의 와이어 그리드 편광자(16)의 바로 아래에 배치하는 동시에, 스폿 광원(7A)을 측정 대상의 와이어 그리드 편광자(16)의 바로 위에 배치한다. 그리고, 작업자는 편광 측정 시스템(1A)을 사용하여, 이 와이어 그리드 편광자(16)로부터 출사되는 편광광(F)을 검출하고, 그 와이어 그리드 편광자(16)의 편광축 C1 및 소광비를 측정한다. 작업자는 편광축 C1의 측정 결과에 기초하여, 필요에 따라서 와이어 그리드 편광자(16)의 회전을 미세 조정함으로써, 편광축 C1의 방향을 소정 방향(본 실시 형태에서는 조사 기준 방향)에 맞춘다.
작업자는 편광자 유닛(10)이 구비하는 모든 와이어 그리드 편광자(16)에 대해 마찬가지로 편광광(F)의 측정, 이 측정 결과에 기초하여, 편광축 C1의 방향을 조사 기준 방향에 맞추는 작업을 행함으로써, 모든 와이어 그리드 편광자(16)의 편광축 C1의 방향이 조사 기준 방향으로 정렬된다.
다음에, 작업자는 조정된 편광자 유닛(10)을 광 배향 장치(100)에 설치하여, 편광 특성(편광 방향, 소광비)의 측정의 개시를, 편광 측정 시스템(1)에 지시한다. 편광 특성은 와이어 그리드 편광자(16)의 배열 방향 B에 있어서 복수의 측정점에서 측정되지만, 측정점은 작업자에 의해 설정되고, 편광 측정 시스템(1)에 기억되어 있다.
편광 측정 시스템(1)은 설정된 소정의 측정점에 검출부(31)를 리니어 가이드(32)에 의해 안내하여 배치하고, 이 와이어 그리드 편광자(16)로부터 출사되는 편광광(F)을 검출하여, 편광 방향 및 소광비를 측정한다. 편광 측정 시스템(1)은 모든 측정점에 대해 편광광(F)을 측정하면, 그 결과 및 그 합격 여부 판정을 편광 특성 출력부(25)에 출력한다. 합격 여부 판정값도, 작업자에 의해 설정되고, 편광 측정 시스템(1)에 기억되어 있다.
상술한 바와 같이, 이 광 배향 장치(100)에 따르면, 광 배향 대상물에 실제로 조사되는 편광광을 측정하므로, 편광광의 편광 방향이 고정밀도로 특정된다. 광 배향 장치(100)에 있어서, 광 배향 대상물에 조사되는 편광 특성은 광 배향 장치(100)의 성능을 나타내는 것이고, 또한 편광광에 의해 배향되는 배향막의 좋고 나쁨을 결정하는 요인이 되므로, 그 특성을 파악하는 것은 매우 중요하다.
작업자는 모든 측정점에 있어서 편광 특성이 기준을 만족시키는 경우에는 측정을 종료하고, 하나라도 편광 특성이 기준에 만족되지 않는 경우에는 편광축 조정 장치 D에 있어서 와이어 그리드 편광자(16)의 편광축 C1의 방향을 조정하거나, 혹은 편광자 유닛(10)을 메인터넌스한다. 또한, 와이어 그리드 편광자(16)는 조정 후에 나사(19)에 의해 프레임(14)에 고정되므로, 편광축 조정 장치 D로부터 광 배향 장치(100)로의 설치 등에서는, 와이어 그리드 편광자(16)의 편광축 C1의 방향이 바뀌는 일은 없다.
이상 설명한 바와 같이, 본 실시 형태에 따르면, 횡배열로 정렬한 복수의 와이어 그리드 편광자(16)를 통과한 편광광이 겹쳐서 조사되는 워크 스테이지(5) 상당 위치에서의 광의 편광 방향을 검출하는 편광 측정 시스템(1)을 구비하는 구성으로 하였다. 이 구성에 의해, 워크 스테이지(5)에 배치한 광 배향 대상물의 표면의 배향막에 실제로 조사되는 편광광의 편광 특성을 검출할 수 있으므로, 편광 방향을 고정밀도로 측정할 수 있다.
또한, 본 실시 형태에 따르면, 편광 측정 시스템(1)은 단위 편광자 유닛(12)의 배열 방향으로 이동할 수 있도록 설치된 검출부(31)를 구비하는 구성으로 하였다. 이 구성에 의해, 단위 편광자 유닛(12)의 배열 방향에 있어서 각 측정점의 편광 특성을 측정할 수 있으므로, 측정점의 간격을 작게 함으로써, 광 배향 대상물에 조사되는 장소마다의 편광 특성을 상세하게 취득할 수 있다.
또한 본 실시 형태에 따르면, 검출부(31)는 사입사 성분을 포함하는 편광광(F)을 도입하여 검출측 편광자(33)에 입사하는 애퍼쳐(76)와, 검출측 편광자(33)를 투과한 광을 확산하는 확산 유닛(79)과, 이 확산 유닛(79)에 의해 확산된 광을 수광하여 광량 I를 검출하는 수광 센서로서의 광전자 증배관(74)을 갖는 구성으로 하였다.
이에 의해, 막대 형상의 램프(7)의 방사광(E)을 와이어 그리드 편광자(16)에 통과시켜 얻어진 편광광(F)과 같이, 다양한 각도 성분을 포함한 편광광(F)이라도, 넓은 각도 성분의 범위를 검출하여 편광 특성을 측정할 수 있다.
또한, 상술한 실시 형태는 어디까지나 본 발명의 일 형태를 예시하는 것이며, 본 발명의 취지를 일탈하지 않는 범위에서 임의로 변형 및 응용이 가능하다.
예를 들어 상술한 실시 형태에서는, 편광 측정 시스템(1)이 측정하는 편광광의 광원으로서, 방전등인 램프(7)를 예시하였지만, 광원은 이에 한정되는 것은 아니고 임의이다. 즉, 본 발명은 임의의 광원의 광이 편광자를 투과하여 얻어지는 직선 편광된 편광광의 측정에 사용할 수 있다. 또한 광원은 반드시 선 형상 광원일 필요는 없다.
또한 예를 들어, 상술한 실시 형태에서는 측정 대상의 편광광을 얻는 편광자의 일례로서, 와이어 그리드 편광자(16)를 예시하였지만, 편광자는 이에 한정되는 것은 아니다. 즉, 편광자는 직선 편광된 편광광이 얻어지는 편광자이면 임의이다.
또한 예를 들어, 상술한 실시 형태에서는, 편광 측정 장치(20)가 편광광의 편광축(혹은 편광 방향)과 소광비의 양쪽을 측정하는 구성을 예시하였지만, 한쪽만을 측정해도 된다. 또한, 편광 측정 장치(20)가 편광광의 편광축(혹은 편광 방향) 및/또는 소광비에 추가하여, 광강도 등의 다른 특성도 측정해도 된다.
또한 예를 들어, 상술한 실시 형태에서는, 검출부(31)의 검출 신호(35)를 편광 측정 장치(20)에 입력함으로써, 편광 측정 장치(20)가 검출광(G)의 광량을 취득하는 구성으로 하였지만, 이에 한정되지 않는다. 즉, 회전 각도(θ)와 검출광(G)의 광량과의 대응이 기록된 기록 데이터를, 예를 들어 다른 전자 기기나 기록 매체(예를 들어, 반도체 메모리 등)로부터 취득해도 된다.
또한, 상술한 실시 형태에서는, 검출부(31)는 단위 편광자 유닛(12)의 배열 방향 B로 이동할 수 있도록 설치되어 있었지만, 이에 한정되는 것은 아니고, 예를 들어 그 검출부(31)는 스테이지 이동 방향으로도 이동할 수 있어도 된다.
1, 100, 200 : 편광 측정 시스템(검출 수단)
2 : 광 배향 장치(광 배향 조사 장치)
5 : 워크 스테이지(스테이지)
6 : 조사기
7 : 램프
8 : 반사경
10 : 편광자 유닛
12 : 단위 편광자 유닛
16 : 와이어 그리드 편광자(제1 편광자, 편광자)
20 : 편광 측정 장치
23 : 변화 곡선 산출부
24 : 편광 특성 특정부
30 : 측정 유닛
31 : 검출부
32 : 리니어 가이드
33 : 검출측 편광자(제2 편광자, 측정용 편광자)
34 : 수광 센서
73 : 검출광 조정 유닛
76 : 애퍼쳐
79 : 확산 유닛(확산 수단)
A : 와이어 방향
B : 배열 방향
E : 방사광
F : 편광광
G : 검출광
Q : 변화 곡선
T : 광 배향 대상물(워크)
W : 범위
Y : 입사각
θ : 회전 각도
θa, θa+180° : 극소점의 회전 각도
θa+90°, θa+270° : 극대점의 회전 각도
C1 : 편광축
P0 : 기준 위치

Claims (10)

  1. 제1 편광자 및 제2 편광자 및 확산 수단을 순서대로 투과한 봉형 램프로부터의 경사 입사 성분을 포함한 광을 상기 제2 편광자를 회전시키면서 검출하여 얻어지는 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 제1 스텝과,
    상기 제1 스텝에서 구한 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제2 스텝을 구비하고,
    상기 제1 스텝에서는,
    상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 다음 식으로 표시되는 상기 변화 곡선을 구하는 것을 특징으로 하는, 편광 측정 방법.
    변화 곡선 = α×cos(β×(θ-γ))+ε
    단, α는 진폭, β는 주기, γ는 위상 어긋남, ε은 바이어스 성분
  2. 제1항에 있어서, 상기 제1 스텝과 다른 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 제3 스텝과,
    상기 제3 스텝에서 구한 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제4 스텝과,
    상기 제2 스텝 및 제4 스텝의 각각에서 특정된 상기 편광 특성의 평균에 기초하여, 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 제5 스텝을 구비한 것을 특징으로 하는, 편광 측정 방법.
  3. 제1항 또는 제2항에 있어서, 상기 소정값은 상기 광량의 최대값의 약 20%의 광량인 것을 특징으로 하는, 편광 측정 방법.
  4. 제3항에 있어서, 상기 변화 곡선이 나타내는 광량의 최대값에 대응하는 회전 각도에 기초하여 상기 제1 편광자를 투과한 편광광의 편광축을 특정하는 것 및/또는 상기 변화 곡선이 나타내는 최대값과 최소값에 기초하여 상기 제1 편광자를 투과한 편광광의 소광비를 특정하는 것을 특징으로 하는, 편광 측정 방법.
  5. 제1항 또는 제2항에 있어서, 상기 변화 곡선이 나타내는 광량의 최대값에 대응하는 회전 각도에 기초하여 상기 제1 편광자를 투과한 편광광의 편광축을 특정하는 것 및/또는 상기 변화 곡선이 나타내는 최대값과 최소값에 기초하여 상기 제1 편광자를 투과한 편광광의 소광비를 특정하는 것을 특징으로 하는, 편광 측정 방법.
  6. 제1 편광자 및 제2 편광자 및 확산 수단을 순서대로 투과한 봉형 램프로부터의 경사 입사 성분을 포함한 광을 상기 제2 편광자를 회전시키면서 검출하여 얻어지는 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 변화 곡선 산출 수단과,
    상기 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 특성 특정 수단을 구비하고,
    상기 변화 곡선 산출 수단은,
    상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 다음 식으로 표시되는 상기 변화 곡선을 구하는 것을 특징으로 하는, 편광 측정 장치.
    변화 곡선 = α×cos(β×(θ-γ))+ε
    단, α는 진폭, β는 주기, γ는 위상 어긋남, ε은 바이어스 성분
  7. 제1 편광자에 의해 편광화된 편광광을 입사하는 제2 편광자를 갖고, 상기 제2 편광자를 투과하는 광의 광량을 상기 제2 편광자를 회전시키면서 검출하는 검출부와,
    상기 검출부의 검출 결과에 기초하여, 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 측정 장치를 구비하고,
    상기 검출부는,
    사입사 성분을 포함하는 상기 광을 도입하여 상기 제2 편광자에 입사하는 애퍼쳐와,
    상기 제2 편광자를 투과한 광을 확산하는 확산 수단과,
    상기 확산 수단으로 확산된 광을 수광하여 상기 광량을 검출하는 수광 센서를 갖고,
    상기 편광 측정 장치는,
    상기 제2 편광자의 각 회전 각도에서의 광의 광량에 기초하여, 상기 제2 편광자가 회전했을 때의 상기 광량의 주기적인 변화를 나타내는 변화 곡선을 구하는 변화 곡선 산출 수단과,
    상기 변화 곡선에 기초하여 상기 제1 편광자를 투과한 편광광의 편광 특성을 특정하는 편광 특성 특정 수단을 구비하고,
    상기 변화 곡선 산출 수단은,
    상기 변화 곡선의 1개의 극소점을 포함하고, 또한 상기 광량이 소정값 이하가 되는 상기 회전 각도의 범위에 포함되는 상기 회전 각도에서의 상기 광량에 기초하여 상기 변화 곡선을 구하는 것을 특징으로 하며,
    상기 변화 곡선은, 변화 곡선 = α×cos(β×(θ-γ))+ε, 단, α는 진폭, β는 주기, γ는 위상 어긋남, ε은 바이어스 성분으로 표시되는, 편광 측정 시스템.
  8. 삭제
  9. 삭제
  10. 삭제
KR1020130084021A 2012-07-18 2013-07-17 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치 KR102036232B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012159211A JP5605399B2 (ja) 2012-07-18 2012-07-18 偏光測定方法、及び偏光測定システム
JPJP-P-2012-159211 2012-07-18
JP2013137899A JP5516802B1 (ja) 2013-07-01 2013-07-01 光配向照射装置
JPJP-P-2013-137899 2013-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190058847A Division KR102036235B1 (ko) 2012-07-18 2019-05-20 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치

Publications (2)

Publication Number Publication Date
KR20140011278A KR20140011278A (ko) 2014-01-28
KR102036232B1 true KR102036232B1 (ko) 2019-10-24

Family

ID=50047673

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130084021A KR102036232B1 (ko) 2012-07-18 2013-07-17 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치
KR1020190058847A KR102036235B1 (ko) 2012-07-18 2019-05-20 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020190058847A KR102036235B1 (ko) 2012-07-18 2019-05-20 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치

Country Status (3)

Country Link
KR (2) KR102036232B1 (ko)
CN (1) CN103575400B (ko)
TW (1) TWI585387B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920402B2 (ja) * 2014-05-27 2016-05-18 ウシオ電機株式会社 偏光測定装置、偏光測定方法及び偏光光照射装置
US20160231176A1 (en) * 2015-02-05 2016-08-11 Polarization Solutions, Llc Light irradiation device having polarization measuring mechanism
CN108106817B (zh) * 2017-12-11 2019-12-24 哈尔滨工程大学 一种提高y波导器件偏振性能测量准确性的方法
CN110132420B (zh) * 2018-02-09 2020-11-27 上海微电子装备(集团)股份有限公司 偏振测量装置、偏振测量方法及光配向方法
CN109238466B (zh) * 2018-08-13 2020-09-29 首都师范大学 太赫兹波偏振态的表征方法及时间分辨焦平面成像系统
TWI730540B (zh) * 2019-12-11 2021-06-11 精準基因生物科技股份有限公司 一種飛時偏光感測系統及其光發射器
CN117518621A (zh) * 2023-11-07 2024-02-06 成都瑞波科材料科技有限公司 光配向装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230863A (ja) * 1999-02-09 2000-08-22 Hamamatsu Photonics Kk 偏光測定方法及び装置
JP2009210457A (ja) * 2008-03-05 2009-09-17 Omron Corp 分光偏光計測装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250272B2 (ja) * 1992-09-30 2002-01-28 ホーヤ株式会社 複屈折量測定方法及び装置
JP3998485B2 (ja) * 2002-02-08 2007-10-24 本田技研工業株式会社 バンパーとトーイングフックカバーの塗装組み付け方法
US6874899B2 (en) * 2002-07-12 2005-04-05 Eastman Kodak Company Apparatus and method for irradiating a substrate
JP4637454B2 (ja) 2003-01-22 2011-02-23 株式会社 オプトクエスト 偏光消光比等測定装置ならびにその測定装置に用い得る偏光消光比等の測定方法
EP1610114A4 (en) * 2003-03-28 2007-04-18 Citizen Watch Co Ltd OPTICAL ROTARY POWER MEASURING INSTRUMENT
JP2005227019A (ja) 2004-02-10 2005-08-25 Yamatake Corp 偏光軸の測定方法および測定装置
JP4740604B2 (ja) * 2005-01-21 2011-08-03 富士フイルム株式会社 光学補償フィルム、その製造方法、偏光板および液晶表示装置
JP2006323060A (ja) * 2005-05-18 2006-11-30 Ushio Inc 偏光光照射装置
JP2007127567A (ja) 2005-11-07 2007-05-24 Ushio Inc 偏光方向測定装置
US7298480B2 (en) * 2005-12-23 2007-11-20 Ecole Polytechnique Broadband ellipsometer / polarimeter system
JP4744496B2 (ja) * 2007-04-16 2011-08-10 日東電工株式会社 偏光板、光学フィルムおよび画像表示装置
CN101949734B (zh) * 2010-08-20 2011-11-09 中国科学院上海光学精密机械研究所 提高光束偏振度测量精度的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230863A (ja) * 1999-02-09 2000-08-22 Hamamatsu Photonics Kk 偏光測定方法及び装置
JP2009210457A (ja) * 2008-03-05 2009-09-17 Omron Corp 分光偏光計測装置

Also Published As

Publication number Publication date
TW201411114A (zh) 2014-03-16
KR20140011278A (ko) 2014-01-28
TWI585387B (zh) 2017-06-01
CN103575400A (zh) 2014-02-12
KR20190058410A (ko) 2019-05-29
CN103575400B (zh) 2018-04-13
KR102036235B1 (ko) 2019-10-24

Similar Documents

Publication Publication Date Title
KR102036235B1 (ko) 편광 측정 방법, 편광 측정 장치, 편광 측정 시스템 및 광 배향 조사 장치
JP5605399B2 (ja) 偏光測定方法、及び偏光測定システム
JP6825241B2 (ja) 磁場計測装置、磁場計測装置の製造方法
US7257192B2 (en) Method and apparatus for X-ray reflectance measurement
JP4921090B2 (ja) 光学異方性パラメータ測定方法及び測定装置
KR102192203B1 (ko) 광 정렬 제어 방법 및 광 정렬 장치
US20170276597A1 (en) Birefringence Measurement Device and Birefringence Measurement Method
US9080944B2 (en) Method and apparatus for surface mapping using in-plane grazing incidence diffraction
JP5516802B1 (ja) 光配向照射装置
JP5978528B2 (ja) 光照射装置
KR20030033836A (ko) 액정공정불량 검사장치 및 검사방법
KR100612173B1 (ko) 수직 배향 액정 패널의 셀 갭 측정 방법 및 장치
KR101928610B1 (ko) 편광 측정 장치, 편광 측정 방법 및 편광광 조사 장치
US20100001199A1 (en) Method of measuring phase of phase shift mask
US6992758B2 (en) Birefringence measurement of large-format samples
KR102257311B1 (ko) 분광 측정 장치의 측정 헤드 정렬 장치
JP2008076283A (ja) 基板検査装置の光軸調整方法および光軸調整用サンプル
TWI666428B (zh) 偏光光測定裝置、及偏光光照射裝置
JP6197896B2 (ja) 偏光光照射装置
JP7193196B2 (ja) 配向膜露光装置用の測定機構、および配向膜露光装置の調整方法
JP2006105748A (ja) ビーム入射を伴う分析方法
TW202342949A (zh) 光學測定機構
Verman et al. Johansson crystals for x-ray diffractometry and demanding spectroscopy applications
JP2009025593A (ja) 光学補償板の検査方法
JP2000035499A (ja) モノクロメータ装置、x線装置及びモノクロメータの位置調整方法

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right