KR102007865B1 - 봉지막 증착방법 및 봉지막 증착장치 - Google Patents

봉지막 증착방법 및 봉지막 증착장치 Download PDF

Info

Publication number
KR102007865B1
KR102007865B1 KR1020170159783A KR20170159783A KR102007865B1 KR 102007865 B1 KR102007865 B1 KR 102007865B1 KR 1020170159783 A KR1020170159783 A KR 1020170159783A KR 20170159783 A KR20170159783 A KR 20170159783A KR 102007865 B1 KR102007865 B1 KR 102007865B1
Authority
KR
South Korea
Prior art keywords
linear
substrate
source
deposition
gas nozzle
Prior art date
Application number
KR1020170159783A
Other languages
English (en)
Other versions
KR20190061413A (ko
Inventor
이재승
정태훈
황동의
Original Assignee
에이피시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이피시스템 주식회사 filed Critical 에이피시스템 주식회사
Priority to KR1020170159783A priority Critical patent/KR102007865B1/ko
Priority to CN201811424354.3A priority patent/CN109841760A/zh
Publication of KR20190061413A publication Critical patent/KR20190061413A/ko
Application granted granted Critical
Publication of KR102007865B1 publication Critical patent/KR102007865B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H01L51/0008
    • H01L51/107
    • H01L51/448
    • H01L51/5237
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 봉지막 증착방법 및 봉지막 증착장치에 관한 것으로서, 보다 상세하게는 증착 챔버의 길이를 줄일 수 있는 봉지막 증착방법 및 봉지막 증착장치에 관한 것이다.
본 발명의 일실시예에 따른 봉지막 증착방법은 기판을 기판 지지대에 지지하는 과정; 및 상기 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원을 이용하여 상기 기판 상에 소스가스와 반응가스를 각각 분사하면서 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정;을 포함하고, 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정에서는 상기 제2 축 방향 중 일측 방향으로의 이동과 타측 방향으로의 이동을 교번하여 수행하며, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이할 수 있다.

Description

봉지막 증착방법 및 봉지막 증착장치{Method for depositing passivation film and apparatus for depositing passivation film}
본 발명은 봉지막 증착방법 및 봉지막 증착장치에 관한 것으로서, 보다 상세하게는 증착 챔버의 길이를 줄일 수 있는 봉지막 증착방법 및 봉지막 증착장치에 관한 것이다.
유기발광다이오드(OLED), 유기태양전지 및 유기박막트랜지스터(Organic TFT) 등의 유기전자소자는 수분 및 산소에 취약하여 소자 보호를 위한 봉지막 형성 공정이 필요하며, 생산성 향상을 위하여 디스플레이 소자 생산을 위한 유리 기판이 점차 커지고 있으므로, 봉지막을 증착하는 봉지막 증착장치 역시 대형화되고 있는 추세이다.
원자층 증착(ALD)법을 이용한 봉지막은 SiOx, AlOx 등의 박막을 증착하여 형성하는데, 종래에는 복수의 선형 노즐을 포함하는 선형 증착원을 통해 2가지 성분의 물질을 공간적으로 분리하여 기판 상에 제공함으로써, 봉지막을 형성하였다.
원자층 증착(ALD)법은 증착 속도가 느리기 때문에 높은 증착 속도의 구현을 위해 선형 증착원에 다수의 선형 노즐이 필요하고, 다수의 선형 노즐을 사용하게 되는 경우에는 선형 증착원을 통해 기판의 증착면을 스캔하면서 기판 상에 균일한 막이 증착될 수 있도록 기판이 선형 증착원 전체를 통과하여 완전히 빠져나가게(full scan) 해야하므로, 증착 챔버의 길이가 길어지게 되며, 장비의 점유 면적(foot-print)이 커지게 되는 문제점이 있다.
또한, 봉지막 증착장치의 대형화에 따라 다양한 문제들이 발생하고 있는데, 봉지막 증착장치를 설치할 공간이 증가할 뿐만 아니라 설치 공간의 청정도 등을 유지하기 어려워지고, 봉지막 증착장치의 설치나 유지보수 등이 어려워지는 문제점이 발생한다.
한국등록특허공보 제10-0467535호
본 발명은 선형 증착원에 대한 기판의 스캔 경로를 조절하여 기판의 일정 위치에 비정질 개재물층이 반복적으로 적층되는 것을 방지하면서 증착 챔버의 길이와 장비의 점유 면적(foot-print)을 줄일 수 있는 봉지막 증착방법 및 봉지막 증착장치를 제공한다.
본 발명의 일실시예에 따른 봉지막 증착방법은 기판을 기판 지지대에 지지하는 과정; 및 상기 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원을 이용하여 상기 기판 상에 소스가스와 반응가스를 각각 분사하면서 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정;을 포함하고, 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정에서는 상기 제2 축 방향 중 일측 방향으로의 이동과 타측 방향으로의 이동을 교번하여 수행하며, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이할 수 있다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정은, 상기 선형 증착원에 대한 상기 기판의 상기 일측 방향으로의 상대적인 이동이 상기 선형 증착원에 대한 상기 기판의 상기 타측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제1 스캔하는 과정을 포함할 수 있다.
상기 제1 스캔하는 과정은 상기 기판의 일단이 상기 선형 증착원의 일단과 정렬될 때까지 수행할 수 있다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정은, 상기 기판의 상기 타측 방향으로의 상대적인 이동이 상기 기판의 상기 일측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제2 스캔하는 과정을 더 포함할 수 있다.
상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이는 상기 선형 소스가스 노즐 또는 상기 선형 반응가스 노즐의 상기 제2 축 방향 폭의 10 내지 100 %일 수 있다.
상기 소스가스는 실리콘 원자(Si)를 포함하며, 상기 반응가스는 질소 원자(N)와 산소 원자(O) 중 적어도 어느 하나를 포함하고, 상기 봉지막은 SiNx, SiOx, SiNxO1-x 중 어느 하나의 조성을 갖는 박막을 포함할 수 있다.
상기 선형 소스가스 노즐의 전방에 플라즈마를 형성하는 과정;을 더 포함하고, 상기 소스가스는 기체 상태의 가스일 수 있다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정에서는 상기 기판의 증착면 전체가 상기 선형 증착원과 마주보도록 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다.
본 발명의 다른 실시예에 따른 봉지막 증착장치는 기판이 지지되는 기판 지지대; 상기 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하며, 상기 기판 상에 소스가스와 반응가스를 각각 분사하는 선형 증착원; 및 상기 기판 지지대 또는 상기 선형 증착원에 연결되어 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 구동부;를 포함하고, 상기 구동부는 상기 제2 축 방향 중 일측 방향으로의 이동과 타측 방향으로의 이동을 교번하며, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이하게 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다.
상기 선형 증착원은 상기 선형 소스가스 노즐과 상기 선형 반응가스 노즐이 상기 제2 축 방향으로 교번되어 배치되며, 상기 선형 증착원의 양단에는 상기 선형 반응가스 노즐이 배치될 수 있다.
상기 구동부는 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이가 상기 선형 소스가스 노즐 또는 상기 선형 반응가스 노즐의 상기 제2 축 방향 폭의 10 내지 100 %가 되도록 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다.
상기 선형 증착원의 상기 제2 축 방향 길이는 상기 기판의 상기 제2 축 방향 길이보다 길 수 있다.
상기 소스가스는 실리콘 원자(Si)를 포함하며, 상기 반응가스는 질소 원자(N)와 산소 원자(O) 중 적어도 어느 하나를 포함하고, 상기 봉지막은 SiNx, SiOx, SiNxO1-x 중 어느 하나의 조성을 갖는 박막을 포함할 수 있다.
상기 선형 소스가스 노즐의 전방에 플라즈마를 형성하는 플라즈마 형성부;를 더 포함하고, 상기 소스가스는 기체 상태의 가스일 수 있다.
본 발명의 또 다른 실시예에 따른 봉지막은 기판 상에 적층되어 연속되는 무기 화합물층; 및 적층된 상기 무기 화합물층 사이에 개재되며, 서로 이격되는 복수의 비정질 개재물;을 포함하고, 상기 비정질 개재물은 상기 무기 화합물층 상에 부분적으로 제공될 수 있다.
상기 복수의 비정질 개재물은 상기 무기 화합물층을 구성하는 원소 중 적어도 어느 하나로 이루어질 수 있다.
상기 복수의 비정질 개재물 중 서로 인접한 상기 무기 화합물층 상의 상기 비정질 개재물은 80 % 이하의 면적이 중첩되거나, 상기 비정질 개재물의 수평방향 폭의 20 % 이하만큼 수평방향으로 이격될 수 있다.
본 발명의 실시 형태에 따른 봉지막 증착방법은 기판 지지대 또는 선형 증착원의 일측 방향으로의 이동 거리와 타측 방향으로의 이동 거리가 상이하게 하여 기판 지지대 또는 선형 증착원의 일측 방향으로의 이동 및 타측 방향으로의 이동 완료시에 기판의 증착면 중 선형 소스가스 노즐과 대향하는 위치를 변화시킴으로써, 일측 방향으로의 이동 완료시 또는 타측 방향으로의 이동 완료시 기판 지지대 또는 선형 증착원의 순간적인 정지 상태에서 선형 소스가스 노즐과 대향하는 위치에 추가적으로 증착되는 비정질 개재물층(예를 들어, 비정질실리콘막)이 동일한 위치에 반복적으로 적층(또는 중첩)되는 것을 방지할 수 있고, 이에 따라 두껍게 적층된 비정질 개재물층으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차의 발생을 방지할 수 있다. 또한, 봉지막에서 단차를 줄일 수 있어 얼룩을 감소시킬 수 있다.
그리고 비정질 개재물층을 기판의 증착면 전체에 고르게 하여 비정질 개재물층이 단일층과 유사하게 형성될 수 있으며, 무기 박막(예를 들어, SiNx막 혹은 SiOx막)과 비정질 개재물층의 유사 다층구조를 통해 봉지막의 투습방지 특성을 무기 박막의 단일층보다 향상시킬 수 있다.
또한, 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원을 이용하여 기판의 소정 영역이 적어도 하나의 선형 소스가스 노즐과 선형 반응가스 노즐을 통과하도록 기판을 스캔함으로써, 기판이 선형 증착원 전체를 통과하여 완전히 벗어나지 않아도 기판 상에 봉지막을 균일하게 증착할 수 있다. 이에 따라 선형 증착원에 대한 기판의 스캔 경로를 조절하여 증착 챔버의 길이와 장비의 점유 면적(foot-print)을 줄일 수 있다.
도 1은 본 발명의 일실시예에 따른 봉지막 증착방법을 나타낸 순서도.
도 2는 본 발명의 일실시예에 따른 선형 증착원에 대한 기판의 스캔 경로와 봉지막 구조를 설명하기 위한 개념도.
도 3은 본 발명의 다른 실시예에 따른 봉지막 증착장치를 나타낸 사시도.
도 4는 본 발명의 또 다른 실시예에 따른 봉지막을 나타낸 개략 단면도.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 일실시예에 따른 봉지막 증착방법을 나타낸 순서도이다.
도 1을 참조하면, 본 발명의 일실시예에 따른 봉지막 증착방법은 기판(10)을 기판 지지대에 지지하는 과정(S100); 및 상기 기판(10)을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함하는 선형 증착원을 이용하여 상기 기판(10) 상에 소스가스와 반응가스를 각각 분사하면서 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200);을 포함할 수 있다.
먼저, 기판(10)을 기판 지지대에 지지한다(S100). 봉지막을 증착할 기판(10)을 기판 지지대에 지지할 수 있으며, 상기 기판 지지대를 움직여 기판(10)이 이동하게 함으로써, 기판(10)의 전체 영역에 봉지막이 증착되도록 할 수 있다.
다음으로, 기판(10)을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함하는 선형 증착원을 이용하여 기판(10) 상에 소스가스와 반응가스를 각각 분사하면서 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시킨다(S200). 기판(10)을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함하는 선형 증착원을 이용하여 기판(10) 상에 소스가스와 반응가스를 각각 분사할 수 있다. 상기 선형 증착원은 기판(10)을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함할 수 있으며, 선형 소스가스 노즐(121)은 상기 소스가스를 분사하여 원자층 단위로 소스물질(층)을 기판(10) 상에 증착할 수 있고, 선형 반응가스 노즐(122)은 상기 반응가스를 분사하여 원자층 단위로 반응물질(층)을 기판(10) 상에 증착할 수 있다. 이때, 상기 소스물질(층)과 상기 반응물질(층)이 반응하여 무기 화합물층 또는 무기 박막(21)을 형성할 수 있고, 무기 박막(21)은 SiNx 또는 SiOx의 조성을 갖는 박막일 수 있다.
그리고 상기 소스가스와 상기 반응가스의 분사와 동시에 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다. 이때, 기판(10) 상에 상기 소스가스와 상기 반응가스를 각각 분사하면서 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다. 상기 기판 지지대 또는 상기 선형 증착원을 이동시켜 상기 선형 증착원의 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)에 대해 기판(10)의 증착면을 스캔(scan)함으로써, 기판(10)의 증착면 전체에 봉지막(또는 무기 박막)을 증착할 수 있다.
상기 소스가스는 실리콘 원자(Si)를 포함할 수 있고, 상기 반응가스는 질소 원자(N)와 산소 원자(O) 중 적어도 어느 하나를 포함할 수 있으며, 상기 봉지막은 SiNx, SiOx, SiNxO1-x 중 어느 하나의 조성을 갖는 박막을 포함할 수 있다. 여기서, 상기 반응가스로써, 질소 원자(N)를 포함한 가스와 산소 원자(O)를 포함한 가스를 혼합하여 사용할 경우, 상기 봉지막은 SiNxO1-x의 조성일 수 있다.
종래에는 상기 봉지막으로 AlOx, SiOx 등의 무기 박막을 증착하였는데, AlOx막은 증착 공정 중에 파티클(particle)이 많이 발생하게 되며, 인시튜(in-situ) 세정(cleaning)이 불가하여 양산 적용에 어려움이 있고, SiOx막은 친수성 특성으로 인하여 투습방지 특성이 떨어지는 단점이 있다. 이에 본 발명에서는 실리콘 원자(Si)와 질소 원자(N)를 반응시켜 소수성으로 투습방지 특성이 뛰어난 SiNx의 조성을 갖는 박막(이하 SiNx막)을 증착할 수 있고, SiNx막을 포함하는 봉지막을 형성할 수 있다. 또한, 실리콘 원자(Si)와 산소 원자(O)를 반응시켜 SiOx의 조성을 갖는 박막(이하 SiOx막)을 증착할 수 있고, SiNx막과 SiOx막을 다층구조로 형성함으로써 투습방지 특성을 더욱 향상시킴과 동시에 박막 내의 스트레스를 완화할 수 있다. 그뿐만 아니라, 실리콘 원자(Si)를 질소 원자(N) 및 산소 원자(O)와 동시에 반응시켜 SiNxO1-x의 조성을 갖는 박막을 증착할 수 있다.
본 발명에 따른 봉지막 증착방법은 선형 소스가스 노즐(121)의 전방에 플라즈마(30)를 형성하는 과정(S150);을 더 포함할 수 있다.
선형 소스가스 노즐(121)의 전방에 플라즈마(30)를 형성할 수 있다(S150). 그리고 선형 소스가스 노즐(121)의 전방에 플라즈마(30)가 형성된 상태로 기판(10) 상에 소스가스와 반응가스를 각각 분사할 수 있다. 안정화된 가스 상태의 소스가스를 사용하는 경우에는 원자층 단위로 증착할 소스물질이 각각 상기 소스가스의 다른 물질(들)과 강한 결합력으로 결합되어 있기 때문에 상기 소스물질을 기판(10) 상에 증착하기 위해서는 상기 소스물질을 다른 물질(들)과의 결합에서 분리시켜야 한다. 이에 플라즈마(30)를 이용하여 상기 소스물질을 다른 물질(들)과의 결합에서 분리시킬 수 있다.
이때, 상기 반응가스도 안정화된 가스 상태로 사용하는 경우에는 선형 반응가스 노즐(122)의 전방에도 플라즈마(30)를 형성할 수 있으며, 원격(remote) 플라즈마 등에 의해 활성화된 가스를 상기 반응가스로 사용할 수도 있다.
상기 소스가스는 기체 상태의 가스일 수 있으며, 예를 들어 실란(SiH4) 가스일 수 있다. 일반적으로 SiOx막 등을 원자층 증착(Atomic Layer Deposition; ALD)법으로 증착할 때에 원자층 단위의 실리콘(Si)층을 증착하기 위해 액체 상태의 유기 소스(예를 들어, BDEAS, DEPAS 등)를 사용하는데, SiNx의 경우에 상기 액체 상태의 유기 소스를 사용하게 되면, 플라즈마(30)에 의하여 분해된 질소 래디칼(N)이 실리콘 원자(Si)와 본딩되어 있는 다른 원자들을 떼어내는데 충분한 에너지를 갖지 못하므로, SiNx 형태의 박막으로 증착이 되지 않는다. SiNx 전용의 원자층 증착 소스가 최근 상용화되었으나, 이 또한 충분한 증착 속도를 얻기에 부족하여 실제로 산업 현장에서 사용되지는 않는다. 또한, 액체 상태의 유기 소스의 경우에는 기화 및 액체 이송에 많은 문제가 발생되고, 이에 따라 안정적인 공정이 어려운 문제도 있다.
하지만, 본 발명에서는 실란(SiH4) 가스 등의 기체 상태의 가스를 상기 소스가스로 사용하여 SiNx막의 증착 속도를 향상시킬 수 있고, 증착률이 높아질 수 있다. 이때, 실란(SiH4) 가스에서 실리콘 원자(Si)를 수소 원자(H)와 분리시키기 위해 선형 소스가스 노즐(121)의 전방에 플라즈마(30)를 형성할 수 있다. 선형 소스가스 노즐(121)에 사용하는 실리콘 원자(Si)를 포함하는 가스로는 실란(SiH4)에 한정되지 않고, 실란(SiH4) 이외에 다른 분자 구조의 어떠한 가스도 사용 가능하다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)에서는 상기 제2 축 방향 중 일측 방향으로의 이동과 타측 방향으로의 이동을 교번하여 수행할 수 있고, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이할 수 있다.
상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 수행함으로써, 원하는 두께의 봉지막(예를 들어, 무기 박막)을 증착할 수 있다. 여기서, 상기 선형 증착원의 타단에서 일단을 향하는 방향이 상기 일측 방향일 수 있고, 상기 선형 증착원의 일단에서 타단을 향하는 상기 타측 방향일 수 있다.
이때, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이할 수 있다. 상기 일측 방향으로의 이동 완료시 또는 상기 타측 방향으로의 이동 완료시에 상기 기판 지지대 또는 상기 선형 증착원의 순간적인 정지 상태에서 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는(또는 마주보는) 위치에 다른 위치보다 더 많은 소스물질(예를 들어, 실리콘)이 제공되어 추가적인 비정질 개재물층(예를 들어, 비정질실리콘막)이 형성된다. 예를 들어, 상기 소스가스로 실란(SiH4) 가스 등의 기체 상태의 실리콘 가스(또는 실리콘 함유 가스)를 사용하는 경우에는 상기 선형 소스가스 노즐(121)과 대향하는 위치에 비정질실리콘(amorphous Silicon; α-Si)막이 형성된다. 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 동일하게 상기 기판 지지대 또는 상기 선형 증착원을 왕복시키게 되면, 동일한 위치(또는 일정 위치)에 반복적으로(또는 연속적으로) 비정질 개재물층(22)이 적층(또는 중첩)되어 일정 위치에 띠 형태로 두껍게 적층된 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)으로 인해 봉지막의 투습방지 특성의 불량과 광투과도 편차가 발생하게 된다.
하지만, 본 발명에서는 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리를 상이하게 하여 상기 기판 지지대 또는 상기 선형 증착원의 상기 일측 방향으로의 이동 및 상기 타측 방향으로의 이동 완료시에 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치를 변화시킬 수 있다. 이에 따라 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)이 동일한 위치에 반복적으로 적층되는 것을 방지할 수 있고, 두껍게 적층된 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차의 발생을 방지할 수 있다.
한편, 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)에서는 상기 기판 지지대 또는 상기 선형 증착원의 최초 이동시에 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)의 상기 제2 축 방향 폭을 합친 길이 이상의 이동거리를 이동시킬 수 있다. 이러한 경우, 기판(10)의 소정 영역(예를 들어, 상기 선형 소스가스 노즐 또는 상기 선형 반응가스 노즐의 상기 제2 축 방향 폭 만큼의 영역)이 모두 적어도 하나의 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 지나게 되어 기판(10)이 상기 선형 증착원 내(또는 상기 선형 증착원의 상기 제2 축 방향 길이 내)에서 벗어나지 않아도 기판(10)의 증착면 전체에 SiNx막 등의 무기 박막(21) 또는 봉지막이 증착될 수 있다.
도 2는 본 발명의 일실시예에 따른 선형 증착원에 대한 기판의 스캔 경로와 봉지막 구조를 설명하기 위한 개념도로, 도 2(a)는 선형 증착원에 대한 기판의 스캔 경로를 나타내고, 도 2(b)는 봉지막의 유사 다층구조를 나타낸다.
도 2를 참조하면, 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)은, 상기 선형 증착원에 대한 기판(10)의 상기 일측 방향으로의 상대적인 이동이 상기 선형 증착원에 대한 기판(10)의 상기 타측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제1 스캔하는 과정(S210)을 포함할 수 있다.
상기 선형 증착원에 대한 기판(10)의 상기 일측 방향으로의 상대적인 이동이 상기 선형 증착원에 대한 기판(10)의 상기 타측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제1 스캔할 수 있다(S210). 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 원하는 두께의 봉지막을 증착할 수 있으며, 상기 일측 방향으로의 이동 및 상기 타측 방향으로의 이동 완료시에 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치를 변화시키기 위해 상기 선형 증착원에 대한 기판(10)의 상기 일측 방향으로의 상대적인 이동이 상기 선형 증착원에 대한 기판(10)의 상기 타측 방향으로의 상대적인 이동보다 길게 할 수 있다. 이러한 경우, 전체적인 기판(10)의 움직임이 상기 선형 증착원에 대해 상기 일측 방향으로 이동되어 기판(10)의 일단이 상기 선형 증착원의 일단에 가까워질 수 있다.
이를 통해 일방향으로 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 기판(10)의 증착면 전체에 고르게 할 수 있고, 이를 통해 SiNx막 등의 무기 화합물층(21a) 상에 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 단일층과 유사하게 형성할 수 있다. 이에 SiNx막 등의 무기 박막(21)과 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)의 유사 다층구조를 형성할 수 있고, 봉지막의 투습방지 특성을 무기 박막의 단일층보다 향상시킬 수 있다.
즉, 봉지막이 무기 박막의 단일층으로 형성되는 경우에는 무기 박막이 결정립 성장(또는 핀홀 성장)되어 봉지막에 결정립 사이의 입계(또는 핀홀)이 생기게 되고, 결정립 사이의 입계로 수분이 유입되어 봉지막의 투습방지 특성이 저하될 수 있지만, 본 발명에서와 같이, 무기 박막(21)과 비정질 개재물층(22)의 유사 다층구조에서는 비정질 개재물층(22)이 무기 박막(21)의 결정립 사이의 입계를 차단하여 결정립 사이의 입계를 통해 수분이 유입되는 것을 방지할 수 있으므로, 봉지막의 투습방지 특성이 무기 박막의 단일층보다 향상될 수 있다.
상기 제1 스캔하는 과정(S210)은 기판(10)의 일단이 상기 선형 증착원의 일단과 정렬될 때까지 수행할 수 있으며, 기판(10)의 타단이 상기 선형 증착원의 타단과 정렬되어 있을 때에 수행하는 것이 바람직할 수 있다. 이러한 경우, 기판(10)의 증착면 전체에 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 최대한 고르게 분산시킬 수 있다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)은, 상기 기판(10)의 상기 타측 방향으로의 상대적인 이동이 상기 기판(10)의 상기 일측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제2 스캔하는 과정(S220)을 더 포함할 수 있다.
상기 기판(10)의 상기 타측 방향으로의 상대적인 이동이 상기 기판(10)의 상기 일측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제2 스캔할 수 있다(S220). 보다 두꺼운 두께의 봉지막을 증착하기 위해 상기 제1 스캔 이후에 상기 제2 스캔을 수행할 수 있으며, 상기 일측 방향으로의 이동 및 상기 타측 방향으로의 이동 완료시에 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치를 변화시키기 위해 상기 기판(10)의 상기 타측 방향으로의 상대적인 이동이 상기 기판(10)의 상기 일측 방향으로의 상대적인 이동보다 길게 할 수 있다. 이러한 경우, 전체적인 기판(10)의 움직임이 상기 선형 증착원에 대해 상기 타측 방향으로 이동되어 기판(10)의 일단이 상기 선형 증착원의 일단으로부터 멀어지고, 기판(10)의 타단이 상기 선형 증착원의 타단에 가까워질 수 있다.
여기서, 기판(10)의 타단이 상기 선형 증착원의 타단과 정렬될 때까지 상기 제2 스캔을 수행할 수 있으며, 기판(10)의 일단이 상기 선형 증착원의 일단과 정렬되어 있을 때에 상기 제2 스캔을 수행하는 것이 바람직할 수 있다.
상기 제2 스캔하는 과정(S220)도 상기 제1 스캔하는 과정(S210)과 같이, 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 기판(10)의 증착면 전체에 고르게 할 수 있고, 이를 통해 SiNx막 등의 무기 화합물층(21a) 상에 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 단일층과 유사하게 형성할 수 있다. 이에 무기 박막(21)과 비정질 개재물층(22)의 유사 다층구조를 형성할 수 있고, 봉지막의 투습방지 특성을 무기 박막의 단일층보다 향상시킬 수 있다.
상기 제1 스캔과 상기 제2 스캔을 반복하여 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 기판(10)의 증착면 전체에 전반적으로 고르게 함으로써, 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)이 동일한 위치에 반복적으로 적층되지 않으면서도 원하는(또는 두꺼운) 두께의 봉지막을 증착할 수 있다. 또한, 봉지막에서 표면 단차를 감소시킬 수 있고, 이에 따라 봉지막의 얼룩을 최소화시킬 수 있다.
상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이는 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭의 10 내지 100 %일 수 있다. 바람직하게는, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이가 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭의 10 %보다 크고, 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭보다 작을 수 있다.
상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이가 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭의 10 % 이하(또는 미만)가 되면, 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)이 중첩되는 면적이 넓어지게 되어 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차가 발생할 수 있다.
반면에, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이가 선형 소스가스 노즐(121) 또는 선형 반응가스 노즐(122)의 상기 제2 축 방향 폭보다 크게(또는 이상) 되면, 인접한 비정질 개재물층(22) 간에 수평방향으로 이격되어 중첩 영역이 없어지고, 비정질실리콘(α-Si)막(22) 등의 비정질 개재물층(22)을 단일층과 유사하게 형성할 수 없으며, 무기 박막(21)과 비정질 개재물층(22)의 유사 다층구조를 형성할 수 없게 된다.
이에 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이를 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭의 10 내지 100 %로 할 수 있으며, SiNx막 등의 무기 화합물층(21a) 상에 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)을 단일층과 유사하게 형성할 수 있고, 이에 따라 무기 박막(21)과 비정질 개재물층(22)의 유사 다층구조를 형성하여 봉지막의 투습방지 특성을 무기 박막의 단일층보다 향상시킬 수 있다.
한편, 비정질실리콘(α-Si)막 등의 비정질 개재물층(22)의 상기 제2 축 방향 폭은 선형 소스가스 노즐(121)의 상기 제2 축 방향 폭보다 작을 수 있다. 비정질 개재물층(22)은 상기 기판 지지대 또는 상기 선형 증착원의 순간적인 정지 상태에서 순간적으로 증착된다. 이에 따라 상기 소스가스가 분사되는 분사홀과 대향하는 중앙부가 가장 두껍고 가장자리로 갈수록 얇아지는 고르지 않은 두께로 형성될 수 있으며, 비정질 개재물층(22)의 상기 제2 축 방향 폭은 상기 중앙부의 최고 두께의 10 % 미만의 두께를 갖는 가장자리부를 제외한 상기 중앙부의 최고 두께의 10 % 이상의 두께를 갖는 영역의 폭일 수 있다.
여기서, 인접한 비정질 개재물층(22) 간에는 비정질 개재물층(22)의 상기 제2 축 방향 폭의 0 내지 70 %의 폭(또는 길이)이 중첩될 수 있으며, 바람직하게는 비정질 개재물층(22)의 상기 제2 축 방향 폭의 10 내지 50 %의 폭이 중첩될 수 있고, 비정질 개재물층(22)의 상기 제2 축 방향 폭의 20 내지 40 %의 폭이 중첩되는 것이 보다 바람직할 수 있다. 즉, 바람직하게는 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이를 비정질 개재물층(22)의 상기 제2 축 방향 폭의 0 내지 70 %로 할 수 있으며, 보다 바람직하게는 비정질 개재물층(22)의 상기 제2 축 방향 폭의 10 내지 50 %로 할 수 있고, 보다 더 바람직하게는 비정질 개재물층(22)의 상기 제2 축 방향 폭의 20 내지 40 %로 할 수 있다.
상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)에서는 기판(10)의 증착면 전체가 상기 선형 증착원과 마주보도록 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있으며, 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정(S200)에서 기판(10)의 증착면 전체가 항상 상기 선형 증착원과 마주 볼 수 있다. 이때, 상기 선형 증착원의 상기 제2 축 방향 길이는 기판(10)의 상기 제2 축 방향 길이보다 길 수 있으며, 3개의 선형 노즐(예를 들어, 상기 선형 반응가스 노즐, 상기 선형 소스가스 노즐 및 상기 선형 반응가스 노즐)의 상기 제2 축 방향 길이 이상 길 수 있다. 즉, 기판(10)은 상기 선형 증착원의 상기 제2 축 방향 길이 내에서 상대적으로 이동할 수 있으며, 상기 선형 증착원은 기판(10)의 상기 제2 축 방향 길이를 초과하여 3개 이상의 선형 노즐(121 or 122)이 필요할 수 있고, 4개의 선형 노즐(121 or 122)이 더 있는 것이 바람직할 수 있다.
이러한 경우, 기판(10)이 상기 선형 증착원의 상기 제2 축 방향 길이 내에서 이동하므로, 종래에 봉지막의 균일한 증착을 위해 기판(10)이 상기 선형 증착원을 완전히 빠져나갈 수 있도록 제공되었던 비효율적인 공간을 없앨 수 있고, 증착 챔버의 길이를 줄일 수 있다. 또한, 증착 챔버의 길이가 줄어듦에 따라 증착 장비의 점유 면적(foot-print)을 줄일 수 있으며, 이에 장비 제작 비용을 절감할 수 있고, 크린룸(clean room)의 공간 확보도 용이해질 수 있다.
그리고 상기 선형 증착원은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)이 상기 제2 축 방향으로 교번되어 배치될 수 있으며, 일정 비율을 갖도록 규칙적으로 교번되어 배치될 수도 있다. 이때, 선형 소스가스 노즐(121)은 적어도 하나 이상일 수 있고, 선형 반응가스 노즐(122)은 복수일 수 있다. 이러한 경우, 기판(10)의 소정 영역이 적어도 하나의 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 지나게 하여 기판(10)의 증착면 전체에 SiNx막 등의 무기 박막(21) 또는 봉지막을 증착할 수 있으며, 이에 따라 기판(10)의 이동 거리를 줄일 수 있고, 증착 챔버의 길이를 줄일 수 있다. 또한, 증착 챔버의 길이가 줄어듦에 따라 증착 장비의 점유 면적을 줄일 수 있고, 이에 장비 제작 비용을 절감할 수 있으며, 크린룸의 공간 확보도 용이해질 수 있다.
또한, 상기 선형 증착원은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)의 사이에 배치되는 펌핑 노즐을 더 포함할 수 있다. 펌핑 노즐은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)의 사이에 배치될 수 있고, 원자층 단위의 소스물질(층)과 반응물질(층)의 증착(즉, 박막 증착)에 기여되지 않은 잉여 가스물질들 및 증착부산물을 배기시킬 수 있다. 예를 들어, 상기 펌핑 노즐은 펌핑 라인과 연결될 수 있고, 상기 펌핑 라인에 제공되는 펌프에 의해 펌핑(pumping)되어 증착 챔버 내의 미반응된 잔류 가스가 상기 펌핑 라인을 통해 배기될 수 있다.
그리고 상기 선형 증착원의 양단에는 선형 반응가스 노즐(122)이 배치될 수 있다. 선형 소스가스 노즐(121)이 상기 선형 증착원의 양단(즉, 최외곽)에 위치하게 되면, 기판(10) 또는 상기 선형 증착원의 외곽 부분에서 분사되는 상기 소스가스에서 상기 소스물질(예를 들어, 실리콘) 중 일부가 박막의 증착 반응에 참여하지 못하고 비산되어 증착 챔버를 오염시키는 문제가 발생한다. 하지만, 본 발명에서는 상기 선형 증착원의 양단에 선형 반응가스 노즐(122)이 위치하여 상기 반응가스(즉, 반응물질)가 상기 소스가스(즉, 소스물질)의 양측에서 공급되어 소스물질과 반응물질이 잘 반응할 수 있고, 안정적으로 박막을 증착할 수 있다.
또한, 선형 소스가스 노즐(121)이 상기 선형 증착원의 최외곽에 위치하지 않아 상기 소스물질 중 일부가 박막 증착에 참여하지 못하고 비산되는 것을 방지할 수도 있으며, 이에 따라 박막 증착에 참여하지 못하고 비산되는 상기 소스물질 중 일부가 증착 챔버를 오염시키던 문제를 해결할 수 있다. 이때, 상기 반응가스는 기체 상태의 물질들(예를 들어, 질소, 산소, 수소 등)만 포함하고 있어서, 상기 선형 반응가스 노즐이 최외곽에 위치하여도 파티클 등이 증착 챔버의 내벽에 부착되지 않고, 상기 펌핑 노즐을 통한 펌핑에 의해 쉽게 배기될 수 있다.
한편, 봉지막이 증착될 영역에 개구부가 셰도우 마스크(shadow mask)를 이용하여 전체 기판(10)에서 봉지막이 형성될 부분에만 봉지막을 증착할 수도 있다. 여기서, 셰도우 마스크(미도시)는 기판(10)과 선형 증착원(120)의 사이에 제공(또는 배치)될 수 있으며, 기판(10)에 인접하여 접촉되어 있을 수 있다.
도 3은 본 발명의 다른 실시예에 따른 봉지막 증착장치를 나타낸 사시도이다.
도 3을 참조하여 본 발명의 다른 실시예에 따른 봉지막 증착장치를 보다 상세히 살펴보는데, 본 발명의 일실시예에 따른 봉지막 증착방법과 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.
본 발명의 다른 실시예에 따른 봉지막 증착장치(100)는 기판(10)이 지지되는 기판 지지대(110); 상기 기판(10)을 가로지르는 제1 축 방향(11)으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함하며, 상기 기판(10) 상에 소스가스와 반응가스를 각각 분사하는 선형 증착원(120); 및 상기 기판 지지대(110) 또는 상기 선형 증착원(120)에 연결되어 상기 제1 축 방향(11)과 교차하는 제2 축 방향(12)으로 상기 기판 지지대(110) 또는 상기 선형 증착원(120)을 이동시키는 구동부(130);를 포함할 수 있다.
기판 지지대(110)는 기판(10)이 지지될 수 있고, 구동부(130)의 구동에 의해 이동하여 기판(10)의 전체 영역에 상기 소스가스와 상기 반응가스가 분사되게 할 수 있다.
선형 증착원(120)은 기판(10)을 가로지르는 제1 축 방향(11)으로 나란히 배치되는 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 포함할 수 있고, 기판(10) 상에 상기 소스가스와 상기 반응가스를 각각 분사할 수 있으며, 기판(10)의 증착면에 대응되어 위치할 수 있다. 이때, 기판(10)의 상부에 위치하여 하측으로 상기 소스가스와 상기 반응가스를 분사할 수도 있고, 기판(10)의 하부에서 선형 증착원(120)을 뒤집어 상측으로 상기 소스가스와 상기 반응가스를 분사할 수도 있다.
선형 소스가스 노즐(121)은 선형 반응가스 노즐(122)과 제1 축 방향(11)으로 나란히 배치될 수 있고, 상기 소스가스를 분사하여 원자층 단위로 소스물질(층)을 기판(10) 상에 증착할 수 있다. 그리고 선형 반응가스 노즐(122)은 선형 소스가스 노즐(121)과 제1 축 방향(11)으로 나란히 배치될 수 있고, 상기 반응가스를 분사하여 원자층 단위로 반응물질(층)을 기판(10) 상에 증착할 수 있다.
상기 소스가스는 실리콘 원자(Si)를 포함할 수 있고, 상기 반응가스는 질소 원자(N)와 산소 원자(O) 중 적어도 어느 하나를 포함할 수 있으며, 상기 봉지막은 SiNx, SiOx, SiNxO1-x 중 어느 하나의 조성을 갖는 박막을 포함할 수 있다. 여기서, 상기 반응가스로써, 질소 원자(N)를 포함한 가스와 산소 원자(O)를 포함한 가스를 혼합하여 사용할 경우, 상기 봉지막은 SiNxO1-x의 조성일 수 있다.
종래에는 상기 봉지막으로 AlOx, SiOx 등의 무기 박막을 증착하였는데, AlOx막은 증착 공정 중에 파티클(particle)이 많이 발생하게 되며, 인시튜(in-situ) 세정(cleaning)이 불가하여 양산 적용에 어려움이 있고, SiOx막은 친수성 특성으로 인하여 투습방지 특성이 떨어지는 단점이 있다. 이에 본 발명에서는 실리콘 원자(Si)와 질소 원자(N)를 반응시켜 소수성으로 투습방지 특성이 뛰어난 SiNx의 조성을 갖는 박막(이하 SiNx막)을 증착할 수 있고, SiNx막을 포함하는 봉지막을 형성할 수 있다. 또한, 실리콘 원자(Si)와 산소 원자(O)를 반응시켜 SiOx의 조성을 갖는 박막(이하 SiOx막)을 증착할 수 있고, SiNx막과 SiOx막을 다층구조로 형성함으로써 투습방지 특성을 더욱 향상시킴과 동시에 박막 내의 스트레스를 완화할 수 있다. 그뿐만 아니라, 실리콘 원자(Si)를 질소 원자(N) 및 산소 원자(O)와 동시에 반응시켜 SiNxO1-x의 조성을 갖는 박막을 증착할 수 있다.
본 발명에 따른 봉지막 증착장치(100)는 선형 소스가스 노즐(121)의 전방에 플라즈마를 형성하는 플라즈마 형성부(미도시);를 더 포함할 수 있다.
플라즈마 형성부(미도시)는 선형 소스가스 노즐(121)의 전방에 플라즈마를 형성할 수 있다. 안정화된 가스 상태의 소스가스를 사용하는 경우에는 원자층 단위로 증착할 소스물질이 각각 상기 소스가스의 다른 물질(들)과 강한 결합력으로 결합되어 있기 때문에 상기 소스물질을 기판(10) 상에 증착하기 위해서는 상기 소스물질을 다른 물질(들)과의 결합에서 분리시켜야 한다. 이에 플라즈마를 이용하여 상기 소스물질을 다른 물질(들)과의 결합에서 분리시킬 수 있다.
이때, 상기 반응가스도 안정화된 가스 상태로 사용하는 경우에는 플라즈마 형성부(미도시)가 선형 소스가스 노즐(121)의 전방과 선형 반응가스 노즐(122)의 전방에 동시에 플라즈마를 형성할 수 있다.
상기 소스가스는 기체 상태의 가스일 수 있으며, 예를 들어 실란(SiH4) 가스일 수 있다. 일반적으로 SiOx막 등을 원자층 증착(Atomic Layer Deposition; ALD)법으로 증착할 때에 원자층 단위의 실리콘(Si)층을 증착하기 위해 액체 상태의 유기 소스(예를 들어, BDEAS, DEPAS 등)를 사용하는데, SiNx의 경우에 상기 액체 상태의 유기 소스를 사용하게 되면, 플라즈마에 의하여 분해된 질소 래디칼(N)이 실리콘 원자(Si)와 본딩되어 있는 다른 원자들을 떼어내는데 충분한 에너지를 갖지 못하므로, SiNx 형태의 박막으로 증착이 되지 않는다. SiNx 전용의 원자층 증착 소스가 최근 상용화되었으나, 이 또한 충분한 증착 속도를 얻기에 부족하여 실제로 산업 현장에서 사용되지는 않는다. 또한, 액체 상태의 유기 소스의 경우에는 기화 및 액체 이송에 많은 문제가 발생되고, 이에 따라 안정적인 공정이 어려운 문제도 있다.
하지만, 본 발명에서는 실란(SiH4) 가스 등의 기체 상태의 가스를 상기 소스가스로 사용하여 SiNx막의 증착 속도를 향상시킬 수 있고, 증착률이 높아질 수 있다. 이때, 실란(SiH4) 가스에서 실리콘 원자(Si)를 수소 원자(H)와 분리시키기 위해 플라즈마 형성부(미도시)를 통해 선형 소스가스 노즐(121)의 전방에 플라즈마를 형성할 수 있다. 선형 소스가스 노즐(121)에 사용하는 실리콘 원자(Si)를 포함하는 가스로는 실란(SiH4)에 한정되지 않고, 실란(SiH4) 이외에 다른 분자 구조의 어떠한 가스도 사용 가능하다.
구동부(130)는 기판 지지대(110) 또는 선형 증착원(120)에 연결되어 제1 축 방향(11)과 교차하는 제2 축 방향(12)으로 기판 지지대(110) 또는 선형 증착원(120)을 이동시킬 수 있다. 구동부(130)는 기판 지지대(110) 또는 선형 증착원(120)을 제2 축 방향(12)으로 이동시켜 기판(10)의 전체 영역에 원자층 단위의 소스물질(층)과 반응물질(층)을 교번 적층하여 봉지막을 형성할 수 있다. 구동부(130)는 동력을 제공하는 동력원(131), 동력원(131)에서 제공되는 동력을 전달하는 동력전달부(132) 및 기판 지지대(110) 또는 선형 증착원(120)에 고정되어 동력전달부(132)와 연결해주는 연결부(133)를 포함할 수 있으며, 그 구성은 이에 한정되지 않고, 제2 축 방향(12)의 양방향으로 기판 지지대(110) 또는 선형 증착원(120)을 이동시킬 수 있으면 족하다.
그리고 구동부(130)는 제2 축 방향(12) 중 일측 방향(12a)으로의 이동과 타측 방향(12b)으로의 이동을 교번할 수 있고, 상기 일측 방향(12a)으로의 이동 거리와 상기 타측 방향(12b)으로의 이동 거리가 상이하게 기판 지지대(110) 또는 선형 증착원(120)을 이동시킬 수 있다. 즉, 구동부(130)는 제2 축 방향(12) 중 일측 방향(12a)으로의 이동 완료시와 타측 방향(12b)으로의 이동 완료시에 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치를 직전 이동의 완료시 위치에서 변화시킬 수 있다. 이때, 상기 일측 방향(12a)으로의 이동 거리와 상기 타측 방향(12b)으로의 이동 거리를 상기 직전 이동과 상이하게 할 수 있다.
상기 일측 방향(12a)으로의 이동 완료시 또는 상기 타측 방향(12b)으로의 이동 완료시에 기판 지지대(110) 또는 선형 증착원(120)의 순간적인 정지 상태에서 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치에 다른 위치보다 더 많은 소스물질(예를 들어, 실리콘)이 제공되어 추가적인 비정질 개재물층(예를 들어, 비정질실리콘막)이 형성된다. 상기 일측 방향(12a)으로의 이동 거리와 상기 타측 방향(12b)으로의 이동 거리가 동일하게 기판 지지대(110) 또는 선형 증착원(120)을 왕복시키게 되면, 동일한 위치에 반복적으로(또는 연속적으로) 상기 비정질 개재물층이 적층(또는 중첩)되어 두껍게 적층된 비정질실리콘(amorphous Silicon; α-Si)막 등의 상기 비정질 개재물층으로 인해 봉지막의 투습방지 특성의 불량과 광투과도 편차가 발생하게 된다.
하지만, 본 발명에서는 상기 일측 방향(12a)으로의 이동 거리와 상기 타측 방향(12b)으로의 이동 거리를 상이하게 하여 기판 지지대(110) 또는 선형 증착원(120)의 상기 일측 방향(12a)으로의 이동 및 상기 타측 방향(12b)으로의 이동 완료시에 기판(10)의 증착면 중 선형 소스가스 노즐(121)과 대향하는 위치를 변화시킬 수 있다. 이에 따라 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층이 동일한 위치에 반복적으로 적층되는 것을 방지할 수 있고, 두껍게 적층된 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차의 발생을 방지할 수 있다.
그리고 선형 증착원(120)은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)이 제2 축 방향(12)으로 교번되어 배치될 수 있으며, 일정 비율을 갖도록 규칙적으로 교번되어 배치될 수도 있다. 이때, 선형 소스가스 노즐(121)은 적어도 하나 이상일 수 있고, 선형 반응가스 노즐(122)은 복수일 수 있다. 이러한 경우, 기판(10)의 소정 영역(예를 들어, 상기 선형 소스가스 노즐 또는 상기 선형 반응가스 노즐의 상기 제2 축 방향 폭 만큼의 영역)이 적어도 하나의 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)을 지나게 하여 기판(10)의 증착면 전체에 SiNx막 등의 무기 박막(또는 봉지막)을 증착할 수 있으며, 이에 따라 기판(10)의 이동 거리를 줄일 수 있고, 증착 챔버의 길이를 줄일 수 있다. 또한, 증착 챔버의 길이가 줄어듦에 따라 증착 장비의 점유 면적(foot-print)을 줄일 수 있고, 이에 장비 제작 비용을 절감할 수 있으며, 크린룸(clean room)의 공간 확보도 용이해질 수 있다.
또한, 선형 증착원(120)은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)의 사이에 배치되는 펌핑 노즐(미도시)을 더 포함할 수 있다. 펌핑 노즐(미도시)은 선형 소스가스 노즐(121)과 선형 반응가스 노즐(122)의 사이에 배치될 수 있고, 원자층 단위의 소스물질(층)과 반응물질(층)의 증착(즉, 박막 증착)에 기여되지 않은 잉여 가스물질들 및 증착부산물을 배기시킬 수 있다. 예를 들어, 펌핑 노즐(미도시)은 펌핑 라인(미도시)과 연결될 수 있고, 펌핑 라인(미도시)에 제공되는 펌프(미도시)에 의해 펌핑(pumping)되어 증착 챔버(미도시) 내의 미반응된 잔류 가스가 펌핑 라인(미도시)을 통해 배기될 수 있다.
그리고 선형 증착원(120)의 양단에는 선형 반응가스 노즐(122)이 배치될 수 있다. 선형 소스가스 노즐(121)이 선형 증착원(120)의 양단(즉, 최외곽)에 위치하게 되면, 기판(10) 또는 선형 증착원(120)의 외곽 부분에서 분사되는 상기 소스가스에서 상기 소스물질(예를 들어, 실리콘) 중 일부가 박막의 증착 반응에 참여하지 못하고 비산되어 증착 챔버(미도시)를 오염시키는 문제가 발생한다. 하지만, 본 발명에서는 선형 증착원(120)의 양단에 선형 반응가스 노즐(122)이 위치하여 상기 반응가스(즉, 반응물질)가 상기 소스가스(즉, 소스물질)의 양측에서 공급되어 소스물질과 반응물질이 잘 반응할 수 있고, 안정적으로 박막을 증착할 수 있다.
더욱이, 선형 소스가스 노즐(121)이 선형 증착원(120)의 최외곽에 위치하지 않아 상기 소스물질 중 일부가 박막 증착에 참여하지 못하고 비산되는 것을 방지할 수도 있으며, 이에 따라 박막 증착에 참여하지 못하고 비산되는 상기 소스물질 중 일부가 증착 챔버(미도시)를 오염시키던 문제를 해결할 수 있다. 이때, 상기 반응가스는 기체 상태의 물질들(예를 들어, 질소, 산소, 수소 등)만 포함하고 있어서, 선형 반응가스 노즐(122)이 최외곽에 위치하여도 파티클(particle) 등이 증착 챔버(미도시)의 내벽에 부착되지 않고, 펌핑 노즐(미도시)을 통한 펌핑에 의해 쉽게 배기될 수 있다.
또한, 구동부(130)는 상기 일측 방향(12a)으로의 이동 거리와 상기 타측 방향(12b)으로의 이동 거리의 차이가 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭의 10 내지 100 %가 되도록 기판 지지대(110) 또는 선형 증착원(120)을 이동시킬 수 있다. 즉, 상기 직전 이동과의 이동 거리 차이가 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭의 10 내지 100 %가 되도록 상기 일측 방향(12a) 또는 상기 타측 방향(12b)으로 기판 지지대(110) 또는 선형 증착원(120)을 이동시킬 수 있다. 바람직하게는, 상기 이동 거리 차이가 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭의 10 %보다 크고, 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭보다 작을 수 있다.
즉, 상기 이동 거리 차이가 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭의 10 % 이하(또는 미만)가 되면, 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층이 중첩되는 면적이 넓어지게 되어 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차가 발생할 수 있다.
반면에, 상기 이동 거리 차이가 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭보다 크게(또는 이상) 되면, 인접한 상기 비정질 개재물층 간에 수평방향으로 이격되어 중첩 영역이 없어지고, 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층을 단일층과 유사하게 형성할 수 없으며, 상기 무기 박막과 상기 비정질 개재물층의 유사 다층구조를 형성할 수 없게 된다.
이에 상기 이동 거리 차이를 선형 소스가스 노즐(121)의 제2 축 방향(12) 폭의 10 내지 100 %로 할 수 있으며, SiNx막 등의 상기 무기 화합물층 상에 비정질실리콘(α-Si)막 등의 상기 비정질 개재물층을 단일층과 유사하게 형성할 수 있고, 이에 따라 상기 무기 박막과 상기 비정질 개재물층의 유사 다층구조를 형성하여 봉지막의 투습방지 특성을 무기 박막의 단일층보다 향상시킬 수 있다.
선형 증착원(120)의 제2 축 방향(12) 길이는 기판(10)의 제2 축 방향(12) 길이보다 길 수 있다. 예를 들어, 3개의 선형 노즐(예를 들어, 상기 선형 반응가스 노즐, 상기 선형 소스가스 노즐 및 상기 선형 반응가스 노즐)의 제2 축 방향(12) 길이 이상 길 수 있으며, 선형 증착원(120)은 기판(10)의 제2 축 방향(12) 길이를 초과하여 3개 이상의 선형 노즐(121 or 122)이 필요할 수 있고, 4개의 선형 노즐(121 or 122)이 더 있는 것이 바람직할 수 있다. 이러한 경우, 기판(10)을 선형 증착원(120)의 제2 축 방향(12) 길이 내에서 상대적으로 이동시킬 수 있다. 여기서, 구동부(130)는 기판(10)의 증착면 전체가 선형 증착원(120)과 항상 마주보도록 상기 기판 지지대 또는 상기 선형 증착원을 이동시킬 수 있다.
선형 증착원(120)의 제2 축 방향(12) 길이가 기판(10)의 제2 축 방향(12) 길이보다 길게 되면, 기판(10)이 선형 증착원(120)의 제2 축 방향(12) 길이 내에서 이동할 수 있으므로, 종래에 봉지막의 균일한 증착을 위해 상기 기판이 상기 선형 증착원을 완전히 빠져나갈 수 있도록 제공되었던 비효율적인 공간을 없앨 수 있고, 증착 챔버의 길이를 줄일 수 있다. 또한, 증착 챔버의 길이가 줄어듦에 따라 증착 장비의 점유 면적을 줄일 수 있으며, 이에 장비 제작 비용을 절감할 수 있고, 크린룸의 공간 확보도 용이해질 수 있다.
한편, 본 발명의 봉지막 증착장치(100)는 기판(10)과 선형 증착원(120)의 사이에 제공되는 셰도우 마스크(shadow mask, 미도시)를 더 포함할 수 있다. 셰도우 마스크(미도시)는 기판(10)과 선형 증착원(120)의 사이에 제공(또는 배치)될 수 있으며, 기판(10)에 인접하여 접촉되어 있을 수 있다. 그리고 셰도우 마스크(미도시)는 봉지막이 증착될 영역에 개구부가 형성될 수 있고, 셰도우 마스크(미도시)의 개구부를 통해 전체 기판(10)에서 봉지막이 형성될 부분에만 봉지막을 증착할 수 있다. 예를 들어, 전체 기판(10)에서 유기전자소자 등이 형성된 영역에만 봉지막을 증착할 수 있다.
도 4는 본 발명의 또 다른 실시예에 따른 봉지막을 나타낸 개략 단면도이다.
도 4를 참조하여 본 발명의 또 다른 실시예에 따른 봉지막을 보다 상세히 살펴보는데, 본 발명의 일실시예에 따른 봉지막 증착방법 및 본 발명의 다른 실시예에 따른 봉지막 증착장치와 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.
본 발명의 또 다른 실시예에 따른 봉지막(20)은 기판(10) 상에 적층되어 연속되는 무기 화합물층(21); 및 적층된 상기 무기 화합물층(21) 사이에 개재되며, 서로 이격되는 복수의 비정질 개재물(22);을 포함하고, 상기 비정질 개재물(22)은 상기 무기 화합물층(21) 상에 부분적으로 제공될 수 있다.
무기 화합물층(21)은 기판(10) 상에 적층될 수 있고, 복수의 층이 연속될 수 있다. 여기서, 무기 화합물층(21)은 기판(10)을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원이 소스가스와 반응가스를 분사하면서 상기 제1 축 방향과 교차하는 제2 축 방향으로 기판 지지대 또는 상기 선형 증착원이 이동되어 증착될 수 있고, SiNx의 조성을 가질 수 있다.
복수의 비정질 개재물(22)은 적층된 무기 화합물층(21) 사이에 개재될 수 있고, 서로 이격될 수 있다. 여기서, 상기 기판 지지대 또는 상기 선형 증착원의 순간적인 정지 상태에서 기판(10)의 증착면 중 상기 선형 소스가스 노즐과 대향하는 위치에 다른 위치보다 더 많은 소스물질(예를 들어, 실리콘)이 제공되어 형성될 수 있다.
또한, 비정질 개재물(22)은 무기 화합물층(21)을 구성하는 원소 중 적어도 어느 하나로 이루어질 수 있다. 이때, 비정질 개재물(22)은 무기 화합물층(21)을 구성하는 원소 중 일부(또는 어느 하나)로만 이루어질 수 있으며, 단일원소로 이루어진 물질(층)일 수 있다. 예를 들어, 무기 화합물층(21)이 SiNx의 조성을 가질 경우에는 비정질 개재물(22)이 실리콘(Si)으로 이루어질 수 있고, 비정질 개재물(22)은 비정질실리콘(amorphous Silicon; α-Si)막일 수 있다.
그리고 비정질 개재물(22)은 무기 화합물층(21) 상에 부분적으로 제공될 수 있으며, 상기 기판 지지대 또는 상기 선형 증착원의 순간적인 정지 상태에서 기판(10)의 증착면 중 상기 선형 소스가스 노즐과 대향하는 위치에만 상기 제1 축 방향으로 연장되는 띠 형태로 제공(또는 형성)될 수 있다.
복수의 증착 개재물(22) 중 서로 인접한 무기 화합물층(21) 상의 비정질 개재물(22)은 80 % 이하의 면적이 중첩되거나, 비정질 개재물(22)의 수평방향 폭의 20 % 이하만큼 수평방향으로 이격될 수 있다.
서로 인접한 무기 화합물층(21) 상(또는 서로 인접한 높이)의 비정질 개재물(22)이 중첩되는 면적이 80 %를 넘게 되면, 비정질 개재물(22)이 중첩되는 면적이 너무 넓어지게 되고, 무기 화합물층(21)이 모두 적층된 봉지막(20)에서 영역별 비정질 개재물(22)의 총 두께가 가장 두꺼운 영역과 비정질 개재물(22)의 총 두께가 가장 얇은 영역의 두께 편차가 너무 커지게 되어 비정질 개재물(22)로 인한 봉지막(20)의 투습방지 특성의 불량과 광투과도 편차가 발생할 수 있다.
반면에, 서로 인접한 무기 화합물층(21) 상의 비정질 개재물(22) 간에 비정질 개재물(22)의 수평방향 폭의 20 %를 넘게 이격되면, 비정질 개재물(22)을 단일층과 유사하게 형성할 수 없으며, 무기 화합물층(21)과 비정질 개재물(22)의 유사 다층구조를 형성할 수 없게 된다. 또한, 서로 인접한 무기 화합물층(21) 상의 비정질 개재물(22)이 수평방향으로 이격된 사이 영역에 무기 화합물층(21)만 적층된 영역이 생기게 되어 봉지막(20)의 광투과도 편차가 발생할 수 있다.
따라서, 본 발명에 따른 봉지막(20)은 복수의 비정질 개재물(22) 중 서로 인접한 무기 화합물층(21) 상의 비정질 개재물(22)을 80 % 이하(즉, 0 ~ 80 %)의 면적이 중첩되거나 비정질 개재물(22)의 수평방향 폭의 20 % 이하(즉, 0 ~ 20 %)만큼 수평방향으로 이격되도록 함으로써, 무기 화합물층(21)과 비정질 개재물(22)의 유사 다층구조를 형성할 수 있으며, 이에 따라 복수의 물질층의 다층구조와 유사하게 투습방지 특성이 향상될 수 있고, 봉지막(20)의 투습방지 특성을 무기 화합물층(21)의 단일층보다 향상시킬 수 있다.
즉, 봉지막이 무기 화합물층(22)의 단일층으로 형성되는 경우에는 무기 화합물층(22)이 결정립 성장되어 봉지막에 결정립 사이의 입계(또는 핀홀)가 생기게 되고, 결정립 사이의 입계로 수분이 유입되어 봉지막의 투습방지 특성이 저하될 수 있지만, 본 발명에서와 같이, 무기 화합물층(21)과 비정질 개재물(22)의 유사 다층구조에서는 비정질 개재물(22)이 무기 화합물층(21)의 결정립 사이의 입계를 차단하여 결정립 사이의 입계를 통해 수분이 유입되는 것을 방지할 수 있으므로, 봉지막(20)의 투습방지 특성이 무기 화합물층(22)의 단일층보다 향상될 수 있다.
이처럼, 본 발명에서는 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원을 이용하여 기판의 소정 영역이 적어도 하나의 선형 소스가스 노즐과 선형 반응가스 노즐을 통과하도록 기판을 스캔함으로써, 기판이 선형 증착원 전체를 통과하여 완전히 벗어나지 않아도 기판 상에 봉지막을 균일하게 증착할 수 있다. 이에 따라 선형 증착원에 대한 기판의 스캔 경로를 조절하여 증착 챔버의 길이와 장비의 점유 면적을 줄일 수 있다. 또한, 기판 지지대 또는 선형 증착원의 일측 방향으로의 이동 거리와 타측 방향으로의 이동 거리가 상이하게 하여 기판 지지대 또는 선형 증착원의 일측 방향으로의 이동 및 타측 방향으로의 이동 완료시에 기판의 증착면 중 선형 소스가스 노즐과 대향하는 위치가 직전 이동의 완료시 위치와 상이하게 변화시킴으로써, 일측 방향으로의 이동 완료시 또는 타측 방향으로의 이동 완료시 기판 지지대 또는 선형 증착원의 순간적인 정지 상태에서 선형 소스가스 노즐과 대향하는 위치에 증착되는 비정질실리콘막이 동일한 위치에 반복적으로 적층(또는 중첩)되는 것을 방지할 수 있고, 이에 따라 두껍게 적층된 비정질실리콘막으로 인한 봉지막의 투습방지 특성의 불량과 광투과도 편차의 발생을 방지할 수 있다. 또한, 봉지막에서 표면 단차를 감소시킬 수 있어 얼룩을 최소화시킬 수 있다. 그리고 비정질실리콘막을 기판의 증착면 전체에 고르게 하여 비정질실리콘막이 단일층과 유사하게 형성될 수 있으며, SiNx막과 비정질실리콘막의 유사 다층구조를 통해 봉지막의 투습방지 특성을 SiNx막의 단일층보다 향상시킬 수 있다.
상기 설명에서 사용한 “~ 상에”라는 의미는 직접 접촉하는 경우와 직접 접촉하지는 않지만 상부 또는 하부에 대향하여 위치하는 경우를 포함하고, 상부면 또는 하부면 전체에 대향하여 위치하는 것뿐만 아니라 부분적으로 대향하여 위치하는 것도 가능하며, 위치상 떨어져 대향하거나 상부면 또는 하부면에 직접 접촉한다는 의미로 사용하였다. 또한, 상기 설명에서 사용한 “적층”의 의미는 직접 접촉하여 쌓아 올려지는 경우와 직접 접촉하지는 않지만 상부에 중첩되어 쌓아 올려지는 경우를 포함하여 사용하였다.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.
10 : 기판 11 : 제1 축 방향
12 : 제2 축 방향 12a: 일측 방향
12b: 타측 방향 20 : 봉지막
21 : 무기 화합물층(또는 무기 박막) 21a: 최초 무기 화합물층
22 : 비정질 개재물(층) 30 : 플라즈마
100 : 봉지막 증착장치 110 : 기판 지지대
120 : 선형 증착원 121 : 선형 소스가스 노즐
122 : 선형 반응가스 노즐 130 : 구동부
131 : 동력원 132 : 동력전달부
133 : 연결부

Claims (17)

  1. 기판을 기판 지지대에 지지하는 과정; 및
    상기 기판을 가로지르는 제1 축 방향으로 나란히 배치되는 선형 소스가스 노즐과 선형 반응가스 노즐을 포함하는 선형 증착원을 이용하여 상기 기판 상에 소스가스와 반응가스를 각각 분사하면서 동시에 상기 제1 축 방향과 교차하는 제2 축 방향으로 상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정;을 포함하고,
    상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정에서는 상기 제2 축 방향 중 일측 방향으로의 이동과 타측 방향으로의 이동을 교번하여 상기 기판 상에 복수의 무기 화합물층을 증착하며, 상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리가 상이하고,
    상기 선형 증착원의 상기 제2 축 방향 길이는 상기 기판의 상기 제2 축 방향 길이보다 길며,
    상기 기판은 상기 선형 증착원의 상기 제2 축 방향 길이 내에서 상대적으로 이동하고,
    상기 소스가스는 실리콘 원자(Si)를 포함하며,
    상기 일측 방향으로 또는 상기 타측 방향으로 이동이 완료된 상기 기판 지지대 또는 상기 선형 증착원의 정지 상태에서 상기 기판의 증착면 중 상기 선형 소스가스 노즐과 대향하는 위치에 계속적으로 제공되는 상기 소스가스에 의해 비정질실리콘층이 형성되고,
    상기 기판 지지대 또는 상기 선형 증착원의 최초 이동거리는 상기 선형 소스가스 노즐의 상기 제2 축 방향 폭과 상기 선형 반응가스 노즐의 상기 제2 축 방향 폭을 합친 길이 이상이며,
    상기 일측 방향으로의 이동 거리와 상기 타측 방향으로의 이동 거리의 차이는 상기 선형 소스가스 노즐의 상기 제2 축 방향 폭의 10 내지 100 %이고,
    상기 비정질실리콘층은 적층된 상기 복수의 무기 화합물층 중 서로 인접한 무기 화합물층들 사이에 각각 이격되어 개재되며,
    서로 인접한 높이의 비정질실리콘층은 0 내지 70 %의 상기 제2 축 방향 폭이 서로 중첩되는 봉지막 증착방법.
  2. 청구항 1에 있어서,
    상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정은,
    상기 선형 증착원에 대한 상기 기판의 상기 일측 방향으로의 상대적인 이동이 상기 선형 증착원에 대한 상기 기판의 상기 타측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제1 스캔하는 과정을 포함하는 봉지막 증착방법.
  3. 청구항 2에 있어서,
    상기 제1 스캔하는 과정은 상기 기판의 일단이 상기 선형 증착원의 일단과 정렬될 때까지 수행하는 봉지막 증착방법.
  4. 청구항 2에 있어서,
    상기 기판 지지대 또는 상기 선형 증착원을 이동시키는 과정은,
    상기 기판의 상기 타측 방향으로의 상대적인 이동이 상기 기판의 상기 일측 방향으로의 상대적인 이동보다 길게 상기 일측 방향으로의 이동과 상기 타측 방향으로의 이동을 교번하여 제2 스캔하는 과정을 더 포함하는 봉지막 증착방법.
  5. 삭제
  6. 삭제
  7. 청구항 1에 있어서,
    상기 선형 소스가스 노즐의 전방에 플라즈마를 형성하는 과정;을 더 포함하고,
    상기 소스가스는 기체 상태의 가스인 봉지막 증착방법.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 실리콘 질화물 또는 실리콘 산화물로 이루어지며, 기판 상에 적층되는 복수의 무기 화합물층; 및
    적층된 상기 복수의 무기 화합물층 중 서로 인접한 무기 화합물층들 사이에 각각 이격되어 개재되는 복수의 비정질실리콘층;을 포함하고,
    상기 복수의 비정질실리콘층 각각은 제1 축 방향으로 연장되는 띠 형태로 상기 무기 화합물층 상에 부분적으로 제공되며,
    상기 복수의 비정질실리콘층 중 서로 인접한 높이의 비정질실리콘층은 0 내지 70 %의 면적이 서로 중첩되고,
    상기 복수의 무기 화합물층은 선형 증착원에 대한 상기 기판의 상대적인 이동 거리가 상이한 상기 기판의 일측 방향으로의 상대적인 이동과 상기 기판의 타측 방향으로의 상대적인 이동을 교번하여 상기 기판 상에 증착되며,
    상기 복수의 비정질실리콘층은 상기 기판의 일측 방향으로 또는 타측 방향으로의 상대적인 이동이 완료된 상기 선형 증착원에 대한 상기 기판의 상대적인 정지 상태에서 상기 무기 화합물층 상에 증착되는 봉지막.
  16. 삭제
  17. 삭제
KR1020170159783A 2017-11-28 2017-11-28 봉지막 증착방법 및 봉지막 증착장치 KR102007865B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170159783A KR102007865B1 (ko) 2017-11-28 2017-11-28 봉지막 증착방법 및 봉지막 증착장치
CN201811424354.3A CN109841760A (zh) 2017-11-28 2018-11-27 用于沉积钝化膜的方法及设备以及从而沉积的钝化膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170159783A KR102007865B1 (ko) 2017-11-28 2017-11-28 봉지막 증착방법 및 봉지막 증착장치

Publications (2)

Publication Number Publication Date
KR20190061413A KR20190061413A (ko) 2019-06-05
KR102007865B1 true KR102007865B1 (ko) 2019-08-06

Family

ID=66845015

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170159783A KR102007865B1 (ko) 2017-11-28 2017-11-28 봉지막 증착방법 및 봉지막 증착장치

Country Status (2)

Country Link
KR (1) KR102007865B1 (ko)
CN (1) CN109841760A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931601A (zh) * 2019-11-27 2020-03-27 通威太阳能(安徽)有限公司 一种改善晶体硅太阳能电池抗pid性能的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165459A (ja) * 2010-02-09 2011-08-25 Sumitomo Chemical Co Ltd 発光装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467535B1 (ko) 2004-03-11 2005-01-24 주식회사 야스 선형 증발원과 이를 이용한 증착장치
KR101332269B1 (ko) * 2012-03-09 2013-11-25 순천향대학교 산학협력단 가요성 기판 및 이를 이용하는 전기 광학 표시 장치
KR102336686B1 (ko) * 2014-12-11 2021-12-08 삼성디스플레이 주식회사 기상 증착 장치 및 이를 이용한 기상 증착 방법
KR101994894B1 (ko) * 2015-04-08 2019-07-01 에이피시스템 주식회사 증착장치, 증착방법 및 보호막 증착장치
KR101994896B1 (ko) * 2015-04-13 2019-07-01 에이피시스템 주식회사 복합막 증착장치, 복합막 증착방법 및 하이브리드 봉지막 증착장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165459A (ja) * 2010-02-09 2011-08-25 Sumitomo Chemical Co Ltd 発光装置の製造方法

Also Published As

Publication number Publication date
CN109841760A (zh) 2019-06-04
KR20190061413A (ko) 2019-06-05

Similar Documents

Publication Publication Date Title
US9431631B2 (en) Plasma curing of PECVD HMDSO film for OLED applications
TW201709335A (zh) 薄膜中殘留應力之調變方法
CN105009319A (zh) 用于oled薄膜封装的含氟等离子体聚合的hmdso
KR102514466B1 (ko) 진보된 배선 애플리케이션들을 위한 초박 유전체 확산 배리어 및 에칭 정지 층
US11499232B2 (en) Deposition apparatus and deposition method using the same
US8883267B2 (en) Vapor deposition apparatus, vapor deposition method, and method of manufacturing organic light-emitting display apparatus
KR102007865B1 (ko) 봉지막 증착방법 및 봉지막 증착장치
US11158838B2 (en) Flexible organic-inorganic passivation layer and method of fabricating the same
KR102405123B1 (ko) 표시 장치의 제조 장치 및 표시 장치의 제조 방법
KR101994896B1 (ko) 복합막 증착장치, 복합막 증착방법 및 하이브리드 봉지막 증착장치
KR102504137B1 (ko) 기상 증착 장치
KR101928463B1 (ko) 보호막 증착장치 및 보호막 증착방법
US10446753B2 (en) Vapor deposition apparatus including a blocking gas flow generation unit
KR101777689B1 (ko) 복합막 증착장치 및 증착방법
US20160138157A1 (en) Thin film deposition apparatus
KR101994894B1 (ko) 증착장치, 증착방법 및 보호막 증착장치
US20160348241A1 (en) Vapor deposition apparatus and method of manufacturing organic light-emitting display apparatus
KR101877402B1 (ko) 유기전자소자용 보호막 및 그 증착 방법
KR101802384B1 (ko) 증착 장치 및 방법
WO2021173309A1 (en) Processes for improving thin-film encapsulation
KR102203098B1 (ko) 기상 증착 장치
KR102334075B1 (ko) 이중 대기압 저온 플라즈마 장치 및 이를 이용한 oled 소자 개질 봉지막 제조방법
KR102264652B1 (ko) 기상 증착 장치
KR102111019B1 (ko) 기상 증착 장치, 이를 이용한 증착 방법 및 유기 발광 표시 장치 제조 방법
KR101550775B1 (ko) 다층복합막 형성장치 및 이를 이용한 다층복합막 형성방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant