KR102003966B1 - 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 - Google Patents
자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 Download PDFInfo
- Publication number
- KR102003966B1 KR102003966B1 KR1020170152571A KR20170152571A KR102003966B1 KR 102003966 B1 KR102003966 B1 KR 102003966B1 KR 1020170152571 A KR1020170152571 A KR 1020170152571A KR 20170152571 A KR20170152571 A KR 20170152571A KR 102003966 B1 KR102003966 B1 KR 102003966B1
- Authority
- KR
- South Korea
- Prior art keywords
- cable
- voltage transmission
- sensor
- information
- partial discharge
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 102
- 238000012544 monitoring process Methods 0.000 title claims abstract description 35
- 238000003745 diagnosis Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims description 24
- 238000004891 communication Methods 0.000 claims abstract description 38
- 230000005856 abnormality Effects 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 16
- 238000012806 monitoring device Methods 0.000 claims description 15
- 239000002918 waste heat Substances 0.000 claims description 10
- 241001124569 Lycaenidae Species 0.000 claims description 5
- 238000013024 troubleshooting Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/12—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
- G01R31/1227—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
- G01R31/1263—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
- G01R31/1272—Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/08—Locating faults in cables, transmission lines, or networks
- G01R31/081—Locating faults in cables, transmission lines, or networks according to type of conductors
- G01R31/083—Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
-
- H01L35/32—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N11/00—Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
- H02N11/002—Generators
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/10—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
- H10N10/17—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
- Y04S10/52—Outage or fault management, e.g. fault detection or location
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
본 발명의 실시예에 따른 자가발전형 송전 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치는 고압 송전 직류 케이블의 외주연에 설치되어 심해저와의 온도차이로 구동되는 열전 에너지 하베스터로부터 수득한 전압으로 구동되는 적어도 하나의 센서, 상기 적어도 하나의 센서로부터 수신한 센싱값을 이용하여 상기 고압 송전 직류 케이블의 부분 방전 위치를 포함하는 상기 고압 송전 직류 케이블 관련 정보를 생성하는 프로세서 및 상기 고압 송전 직류 케이블의 고장을 실시간 모니터링하기 위해 상기 고압 송전 직류 케이블의 상기 부분 방전 위치 정보를 전송하는 통신 인터페이스부를 포함할 수 있다.
Description
본 발명은 자가발전형 송전 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법에 관한 것으로, 송전 케이블에서 발생한 열에너지를 이용하여 센서를 구동하고, 생성된 센싱 정보를 기초로 송전 케이블의 상태를 모니터링하기 위한 자가발전형 송전 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법에 관한 것이다.
고압 송전 직류 케이블(HVDC)의 주된 고장 원인은 부분방전(Partial discharge: PD)이며 이는 케이블의 절연시스템에서 발생되는 국부적인 전기 방전 현상으로 부분방전의 발생 횟수가 많아지면 케이블 열화진전의 원인이 되어 결국에는 절연파괴를 초래하게 된다. 따라서 부분방전은 절연열화에 대한 정보를 가장 잘 나타낼 뿐만 아니라 부분방전 열화는 일반적으로 절연열화의 거의 최종단계에서 발생되기 때문에, 부분방전 측정을 통한 케이블의 열화진단은 진단의 정확성과 아울러 기기 케이블 운영의 신뢰성 측면 및 보수나 교체시기 판정에 적합할 수 있다.
종래의 대부분의 부분방전 검출 센싱 기술은 케이블 종단 또는 접속부에서 일정거리 이내에서 발생하는 부분방전만 검출 가능하다. 수 km~ 수십 km에 달하는 지중 또는 해저 포설 케이블 전반에 걸친 부분방전 모니터링 통한 보수 교체 시기 판정을 위해서는 부분방전 센서를 케이블에 일정 간격으로 설치할 필요가 있다.
따라서, 본 발명을 통해 HVDC 케이블에서 발생하는 부분방전을 멀티센서 시스템 개발을 통해 민감도 향상 및 부분 방전 위치 파악의 정확성을 높이는 필요성이 대두되고 있다.
본 발명은 전술한 문제점을 해결하기 위해 도출된 것으로, 송전 케이블의 부분 방전 등의 오류 등을 실시간 및 온라인으로 검출할 수 있도록 함으로서 오류 검출에 대한 신뢰성 확보를 목적으로 한다.
또한, 복수의 열전 에너지 하베스터를 집적화하여 생성된 전력을 이용하여 송전 케이블의 모니터링에 필요한 센싱 장치를 충분히 구동할 수 있도록 함으로서 안정적 전력 제공을 목적으로 한다.
또한, 열전 에너지 하베스터에 의해 발전된 전력은 센서들에 의해 수집된 데이터를 송수신할 수 있는 통신 장치를 구동하는데 필요한 전력원으로 사용될 수 있도록 함을 목적으로 한다.
본 발명의 실시예에 따른 자가발전형 송전 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치는 송전 케이블의 외주연에 설치된 열전 에너지 하베스터로부터 수득한 전압으로 구동되는 적어도 하나의 센서, 상기 적어도 하나의 센서로부터 수신한 센싱값을 이용하여 상기 송전 케이블 관련 정보를 생성하는 프로세서 및 상기 송전 케이블 관련 정보를 전송하기 위한 통신 인터페이스부를 포함할 수 있다.
본 발명의 다른 실시예에 따른 송전 케이블 모니터링을 위한 모니터링 시스템은 송전 케이블의 외주연에 설치된 열전 에너지 하베스터로부터 수득한 전압으로 구동되는 적어도 하나의 센서, 상기 적어도 하나의 센서로부터 수신한 센싱값을 이용하여 상기 송전 케이블 관련 정보를 생성하는 프로세서, 및 상기 송전 케이블 관련 정보를 전송하기 위한 통신 인터페이스부를 포함하는 센싱 장치, 상기 통신 인터페이스부를 통해 상기 센싱 장치로부터 수신한 상기 송전 케이블 관련 정보를 상기 모니터링 장치로 전송하는 통신 장치 및 상기 통신 장치로부터 수신한 상기 송전 케이블 관련 정보를 출력하는 모니터링 장치를 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법은 열전 에너지 하베스터가 고압 송전 직류 케이블(HVDC)에서 방출되는 폐열을 전기에너지로 변환하는 단계, 상기 고압 송전 직류 케이블에 설치된 센서가 상기 열전 에너지 하베스터에서 변환된 전기 에너지를 이용하여 구동되어 상기 고압 송전 직류 케이블의 고장을 진단하고 해당 고장점을 탐지하는 단계, 프로세서가 상기 센서에 의해 진단된 고장 및 탐지된 고장점에 대한 정보를 생성하는 단계 및 통신 인터페이스부가 상기 프로세서에 의해 생성된 고장 및 고장점에 대한 정보를 모니터링 장치로 송신하는 단계를 포함할 수 있다.
본 발명의 실시예에 따르면, 송전 케이블의 부분 방전 등의 오류 등을 실시간 및 온라인으로 검출할 수 있도록 함으로서 오류 검출에 대한 신뢰성을 확보할 수 있게 된다.
또한, 복수의 열전 에너지 하베스터를 집적화하여 생성된 전력을 이용하여 송전 케이블의 모니터링에 필요한 센싱 장치를 충분히 구동할 수 있도록 함으로서 안정적으로 전력을 제공할 수 있게 된다.
또한, 열전 에너지 하베스터에 의해 발전된 전력은 센서들에 의해 수집된 데이터를 송수신할 수 있는 통신 장치를 구동하는데 필요한 전력원으로 사용될 수도 있게 된다.
도 1은 본 발명의 실시예에 따른 자가발전형 송전 케이블의 실시간 고장진단 모니터링 시스템의 블록도
도 2는 본 발명의 실시예에 따른 열전 에너지 하베스터 및 센싱 장치를 설명하기 위해 참고되는 도면
도 3은 본 발명의 실시예에 따른 열전 에너지 하베스터의 상세 블록도
도 4는 본 발명의 실시예에 따른 센싱 장치(100)의 블록도
도 5는 본 발명의 실시예에 따른 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법에 대한 순서도
도 2는 본 발명의 실시예에 따른 열전 에너지 하베스터 및 센싱 장치를 설명하기 위해 참고되는 도면
도 3은 본 발명의 실시예에 따른 열전 에너지 하베스터의 상세 블록도
도 4는 본 발명의 실시예에 따른 센싱 장치(100)의 블록도
도 5는 본 발명의 실시예에 따른 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법에 대한 순서도
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하, 첨부되는 도면을 참조하여 본 발명의 실시예에 따른 자가발전형 송전 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치 및 모니터링 시스템에 대해 기술하고자 한다.
도 1은 본 발명의 실시예에 따른 송전 케이블 모니터링을 위한 모니터링 시스템의 블록도이다.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 자가발전형 송전 케이블의 실시간 고장진단 모니터링 시스템(1)은 센싱 장치(100), 열전 에너지 하베스터(200), 통신 장치(300), 및 모니터링 장치(400)를 포함한다.
열전 에너지 하베스터(200)는 도 1 및 도 2에 도시한 바와 같이 송전 케이블의 외주연에 설치되어 송전 케이블을 감싸는 형태로 구현되고, 송전 케이블에서 하베스팅한 열에너지를 전기에너지로 변환하여 충전 및 저장할 수 있다. 예를 들어, 열전 에너지 하베스터(200)가 고압 송전 직류 케이블(HVDC)에서 방출되는 폐열을 전기에너지로 변환할 수 있다. 보다 구체적으로, 열전 에너지 하베스터(200)가 상기 고압 송전 직류 케이블의 외주연에 밀착한 중공형으로 설치되어, 상기 고압 송전 직류 케이블에서 방출되는 폐열과 외부 심해저 온도 간의 온도차를 이용하여 전기에너지로 변환할 수 있다. 열전 에너지 하베스터(200)의 상세한 구성은 하기 도 3에서 기술하고자 한다.
센싱 장치(100)는 열전 에너지 하베스터(200)로부터 수득한 전압으로 구동된다. 본 발명의 실시예에 따른 센싱 장치(100)는 도 2에 도시한 바와 같이 하나 또는 복수의 센서(110)를 포함할 수 있고, 고압 송전 직류 케이블에 설치된 센서(110)가 열전 에너지 하베스터(200)로부터 수득한 전압으로 센싱값을 생성하면, 센싱 장치(100)는 센싱값을 이용하여 고압 송전 직류 케이블 관련 정보를 생성할 수 있다.
센서(110)는 열전 에너지 하베스터(200)에서 변환된 전기에너지를 이용하여 구동될 수 있으며, 고압 송전 직류 케이블(HVDC)의 고장이 진단되고 해당 고장점이 탐지될 수 있다. 보다 구체적으로, 고압 송전 직류 케이블 상에서 센서(110)가 설치된 지점의 전압, 전류, 부분 방전, 주변 온도, 진동 중 적어도 하나 이상이 감지되도록 구현될 수 있다. 실시예에 따른 고압 송전 직류 케이블 관련 정보는 프로세서(130)에 의해 생성된 고압 송전 직류 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보, 진동 이상 감지 정보 등을 포함할 수 있다. 또한, 센싱 장치(100)는 센싱값을 이용하여 센서(110) 자체의 오류 정보, 즉 센서 자체의 고장점이나 이상 유무에 대한 정보를 생성할 수 있다. 그리고, 생성된 송전 케이블 관련 정보 및 센서 자체의 오류 정보는 통신 장치(300)를 통해 모니터링 장치(400)로 전송될 수 있다. 센싱 장치(100)의 자세한 구성은 하기 도 4에서 상세히 기술하고자 한다.
이러한 센싱 장치(100) 및 열전 에너지 하베스터(200) 중 적어도 어느 하나는 도 2에 도시한 바와 같이 송전 케이블의 외주연에 밀착한 중공형으로 구현될 수 있다. 도 2에는 센싱 장치(100) 및 열전 에너지 하베스터(200) 가 모두 중공형으로 구현된 것으로 기술하였으나, 본 발명의 권리범위는 이에 제한되지 않고, 센싱 장치(100) 및 열전 에너지 하베스터(200) 중 어느 하나가 중공형으로 구현된 것도 포함할 수 있다.
통신 장치(300)는 센싱 장치(100)와 모니터링 장치(400)간의 통신을 중개하는 것으로, 센싱 장치(100)로부터 수신한 송전 케이블 관련 정보 및 센서 자체의 오류 정보 중 적어도 하나를 모니터링 장치(400)로 전송한다. 센싱 장치(100)와 모니터링 장치(400)간 수행하는 통신 방식은 다양한 형태의 유무선 통신 방식을 포함할 수 있다. 구체적으로, 통신 장치(300)가 센싱 장치(100) 및 모니터링 장치(400)가 케이블이나 선로 또는 전력선 등으로 연결되어 유선통신을 수행하거나, 근거리 통신, 무선 랜 통신, 이동 통신 등을 포함하는 무선 통신을 수행할 수 있다. 특히, 본 발명의 실시예에 따라 센싱 장치(100)는 통신 장치(300)와 멀티 채널에 의한 이중화 통신을 수행할 수 있다. 그리고, 모드 버스 프로토콜(Modbus Protocol)에 의한 방식으로 통신을 수행할 수 있다.
모니터링 장치(400)는 일례로 자료 취득 및 분석 컴퓨터일 수 있으며, 수신부, 제어부, 출력부(미도시) 를 포함할 수 있다. 통신 장치(300)로부터 수신한 송전 케이블 관련 정보 및 센서 자체의 오류 정보 중 적어도 하나를 출력할 수 있다. 또한, 센싱값 자체도 모니터링 장치(400)를 통해 출력될 수 있다.
도 1에 도시한 바와 같이 센싱 장치(100)는 열전 에너지 하베스터(200)에 부착되어 열전 에너지 하베스터(200)와 하나의 쌍으로 연결될 수 있으며, 본 발명의 송전 케이블 모니터링을 위한 모니터링 시스템은 복수의 센싱 장치 및 복수의 열전 에너지 하베스터를 포함하고, 상기 하나의 쌍으로 연결된 각각의 센싱 장치(100(1), 100(2)... 100(n)) 및 각각의 열전 에너지 하베스터(200(1), 200(2) ... 200(n))는 동일 간격으로 이격되어 배치되어 있을 수 있다.
도 2는 송전 케이블의 외주연을 감싸고 있는 열전 에너지 하베스터(200) 및 센싱 장치(100)에 대한 사시도이다.
도 2에 도시한 바와 같이, 열전 에너지 하베스터(200)는 도 3과 같은 복수의 회로를 집적한 형태로 구현될 수 있고, 센싱 장치(100)는 복수의 센서(100) 및 프로세서(130)를 포함할 수 있다.
도 3은 본 발명의 실시예에 따른 열전 에너지 하베스터(200)의 구성도이다.
도 3에 도시한 바와 같이, 열전 에너지 하베스터(200)는 정류부(210), 스위치(220), 충전부(230), 최대 전력점 추적부(240), 충전 제어부(250), 및 전압 인터페이스부(260)를 포함할 수 있다.
정류부(210)는 에너지원으로부터 공급되는 교류전압을 직류전압으로 정류한다. 이를 위해, 정류부(210)는 에너지원(예컨대, 압전 변환기, 진동 소자, 열전 변환 소자)으로부터 에너지를 공급받는다.
스위치(220)는 최대 전력점 추적부(240)에서 출력되는 제어신호(SW1)에 의해 온/오프되어 정류부(210)와 충전부(230)의 연결을 제어한다.
충전부(230)는 스위치(220)를 통해 정류부(210)와 연결되며, 정류부(210)의 출력 전압을 충전한다.
최대 전력점 추적부(240)는 정류부(210) 출력전압의 최대 전력점을 추적한다. 즉, 정류부(210)의 출력 전압이 최대일 때의 전압을 찾아낸다. 이를 위해, 최대 전력점 추적부(240)는 정류부(210)와 충전부(230) 사이에 선택적으로 접속되며, 제1 접속상태에서 상기 정류부의 출력전압(VRECT)을 미분하고 미분결과에 기초하여 상기 정류부의 출력전압을 제어한다. 이 때, 제1 접속상태는 스위치(220)가 오픈되어, 정류부(210)와 충전부(230)가 단절되고, 최대 전력점 추적부(240) 내부의 스위치에 의해 최대 전력점 추적부(240)가 정류부(210)에 연결된 상태를 말한다.
충전 제어부(250)는 정류부(210)의 출력 전압과 최대 전력점 추적부(240)에서 추적된 최대 전력점 전압을 비교하고 그 결과에 기초하여 충전부(230)의 동작을 제어한다. 예를 들어, 상기 비교 결과 정류된 전압이 최대 전력점 전압 보다 낮을 경우 충전을 일시 중단하여 정류된 전압을 상승시키고, 반대의 경우 충전을 연속적으로 동작시켜 상기 정류된 전압을 하강시킨다. 이를 위해, 충전 제어부(250)는 충전부(230) 내에서 스위치 역할을 하는 트랜지스터들의 온/오프를 제어하기 위한 제어신호들(PH1, PH2 PH3, PH4)을 출력한다. 또한, 충전 제어부(250)는 충전부(230)내에 충전된 전압이 전압 인터페이스부(260)를 통해 센싱 장치(100)로 전송되도록 제어할 수 있다.
본 발명의 실시예에 따른 열전 에너지 하베스터(200)는 승압 회로부(미도시)를 포함하여, 배터리가 완전히 방전된 상태에서도 상기 열전 에너지 하베스터(200)에 의해 변환된 전기에너지에 의해 센서(110)가 즉시 구동될 수 있도록 하기 위한 냉시동(cold start) 방식에 따라 전기에너지를 승압하여 센서(110)로 제공할 수 있다.
도 4는 본 발명의 실시예에 따른 센싱 장치(100)의 블록도이다.
본 발명의 실시예에 따른 센싱 장치(100)는 하나 또는 복수의 센서(100), 센서 인터페이스부(120), 프로세서(130), 통신 인터페이스부(140), 메모리(150), 상태 표시부(160), 전원부(170) 등을 포함할 수 있다.
센서(100)는 RFCT(Radio Frequency Current Transducer)센서, 전류 센서, 전압측정센서, 초음파 센서, 자이로 센서, 온도 센서등을 포함할 수 있으며, 센서(100)에서 생성된 센싱값이 센서 인터페이스부(120)를 통해 프로세서(130)로 전송된다. 특히, 본 발명의 실시예에 의할 경우, RFCT 센서를 통해 부분 방전을 감지하여 해당 정보가 프로세서(130)로 전송될 수도 있다. 일례로 전류 센서와 자이로 센서는 10ms마다 측정될 수 있으며, 전압은 50ms 마다 측정될 수 있고, 온도 센서는 1s 마다 측정될 수 있다. 자이로 센서는 FFT(Fast Fourier Transform)으로 처리될 수 있고, 온도 센서에는 low lass filter가 설계될 수 있다.
프로세서(130)는 센서(100)로부터 수신한 센싱값을 이용하여 송전 케이블 관련 정보를 생성한다. 예를 들어 송전 케이블 관련 정보는 송전 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보, 진동 이상 감지 정보 등을 포함할 수 있다. 또한, 프로세서(130)는 센서(100)로부터 수신한 센싱값을 이용하여 센서 자체의 이상 유무에 대한 정보를 생성할 수도 있다. 송전 케이블의 부분 방전 여부는 열(HEAT)을 이용하거나, 전자기 방사선(Electromagnetic Radiation)을 이용하거나, 유전체적 손실 여부를 이용하거나, 화학적 반응 여부, 전류 펄스, 음향(acoustic)을 측정하는 등의 방식으로 측정될 수 있다. 프로세서(130)에서 생성된 송전 케이블 관련 정보 또는 센서의 이상 유무에 대한 정보는 통신 인터페이스부(140)를 통해 통신 장치(300)로 전송될 수 있다. 보다 구체적으로, 프로세서(130)에 의해 생성된 고장 및 고장점에 대한 정보가 통신 인터페이스부(140) 및 통신 장치(300)를 통해 모니터링 장치(400)로 전송될 수 있다.
메모리(150)는 센싱 장치(100) 구동에 필요한 모든 정보를 저장한다. 구체적으로, 센싱 값, 송전 케이블 관련 정보, 및 센서의 이상 유무에 대한 정보를 저장할 수도 있다. 송전 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보, 진동 이상 감지 정보, 센서 자체의 이상 유무 등을 판단하기 위한 기준이 되는 임계치 정보도 메모리(150)에 저장될 수 있다. 따라서, 메모리(150)에 저장된 임계치 정보를 기준으로, 임계치 정보를 벗어날 경우, 송전 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보, 진동 이상 감지 정보, 센서 자체의 이상 유무 판단 정보 등을 생성할 수 있다.
상태 표시부(160)는 센싱 장치(100)에 이상이 생길 경우, 이상 상태에 대한 점검을 위한 상태 점검용 LCD 또는 상태 표시용 LED 등을 포함할 수 있다. 예를 들어, 송전 케이블이 부분 방전된 경우, LCD에 해당 상태가 표시될 수 있다.
전원부(170)는 센싱 장치(100)의 전력을 관리하며, 열전 에너지 하베스터(200)로부터 충전된 전력에 대한 정보를 별도로 저장 및 관리할 수 있다.
도 5는 본 발명의 실시예에 따른 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법에 대한 순서도이다.
도 5에 도시한 바와 같이, 본 발명의 실시예에 따른 열전 에너지 하베스터(200)는 고압 송전 직류 케이블(HVDC)에서 방출되는 폐열을 전기에너지로 변환할 수 있다(S510). 보다 구체적으로, 열전 에너지 하베스터(200)는 고압 송전 직류 케이블의 외주연에 밀착한 중공형으로 설치되어 있으며, 고압 송전 직류 케이블에서 방출되는 폐열과 외부 심해저 온도 간의 온도차를 이용하여 폐열을 전기에너지로 변환하도록 구성될 수 있다. 또한, 배터리의 완전 방전 상태에서도 열전 에너지 하베스터(200)에 의해 변환된 전기에너지에 의해 센서(110)가 즉시 구동될 수 있도록 하기 위해, 승압 회로부가 냉시동(cold start) 방식에 따라 전기에너지를 승압하여 센서(110)로 제공하도록 구성될 수 있다.
그리고, 고압 송전 직류 케이블에 설치된 센서(110)가 열전 에너지 하베스터(200)에서 변환된 전기 에너지를 이용하여 구동되어 고압 송전 직류 케이블의 고장을 진단하고 해당 고장점을 탐지할 수 있다(S520). 보다 구체적으로, 고압 송전 직류 케이블에서 센서(110)가 설치된 지점의 전압, 전류, 부분 방전, 주변 온도, 진동 중 적어도 하나 이상이 감지될 수 있다.
프로세서(130)는 센서(110)에 의해 진단된 고장 및 탐지된 고장점에 대한 정보를 생성할 수 있다. 보다 구체적으로, 프로세서(130)는 고압 송전 직류 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보 및 진동 이상 감지 정보 중 적어도 하나 이상을 생성할 수 있다(S530).
이어서, 통신 인터페이스부(140)는 프로세서(130)에 의해 생성된 고장 및 고장점에 대한 정보를 모니터링 장치(400)로 송신할 수 있다(S540).
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (16)
- 고압 송전 직류 케이블의 외주연에 밀착한 중공형으로 설치되어 상기 고압 송전 직류 케이블에서 방출되는 폐열과 심해저와의 온도차이로 하베스팅된 열에너지를 전기에너지로 변환하는 열전 에너지 하베스터로부터 수득한 전압으로 구동되는 적어도 하나의 센서;
상기 적어도 하나의 센서로부터 수신한 센싱값을 이용하여 상기 고압 송전 직류 케이블의 부분 방전 위치를 포함하는 고압 송전 직류 케이블 관련 정보를 생성하는 프로세서; 및
상기 고압 송전 직류 케이블의 고장을 실시간 모니터링하기 위해 상기 고압 송전 직류 케이블의 상기 부분 방전 위치 정보를 전송하는 통신 인터페이스부;를 포함하고,
상기 열전 에너지 하베스터는 완전 방전 상태에서 하베스팅한 상기 열에너지가 변환된 상기 전기에너지로 즉시 구동되는 냉시동(cold start) 방식을 이용하여 승압되는,
자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치.
- 제 1항에 있어서,
상기 고압 송전 직류 케이블 관련 정보는, 상기 고압 송전 직류 케이블의 부분 방전 여부, 온도 센서에 의한 주변 온도 이상 감지 정보, 자이로 센서에 의한 기울기 이상 정보, 전압 측정 센서에 의한 전압 또는 전류 센서에 의한 전류 이상 정보, 또는 진동 이상 감지 정보를 더 포함하는 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치.
- 제 1항에 있어서,
상기 프로세서는 상기 적어도 하나의 센서로부터 수신한 상기 센싱값을 이용하여 상기 적어도 하나의 센서의 이상 유무에 관련된 정보를 더 생성하는, 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치.
- 삭제
- 제 1항에 있어서,
상기 센싱 장치는, 상기 통신 인터페이스부를 통해 통신 장치와 멀티 채널 이중화 통신을 수행하는, 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치.
- 제 1항에 있어서,
상기 센싱 장치는 상기 열전 에너지 하베스터에 부착되어 상기 열전 에너지 하베스터와 하나의 쌍으로 연결되는, 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치.
- 삭제
- 고압 송전 직류 케이블의 외주연에 밀착한 중공형으로 설치되어 상기 고압 송전 직류 케이블에서 방출되는 폐열과 심해저와의 온도차이로 하베스팅된 열에너지를 전기에너지로 변환하는 열전 에너지 하베스터로부터 수득한 전압으로 구동되는 적어도 하나의 센서, 상기 적어도 하나의 센서로부터 수신한 센싱값을 이용하여 상기 고압 송전 직류 케이블의 부분 방전 위치를 포함하는 고압 송전 직류 케이블 관련 정보를 생성하는 프로세서, 및 상기 고압 송전 직류 케이블의 고장을 실시간 모니터링하기 위해 상기 고압 송전 직류 케이블의 상기 부분 방전 위치 정보를 전송하는 통신 인터페이스부를 포함하는 센싱 장치;
상기 통신 인터페이스부를 통해 상기 센싱 장치로부터 수신한 상기 고압 송전 직류 케이블의 상기 부분 방전 위치 정보를 전송하는 통신 장치; 및
상기 통신 장치로부터 수신한 상기 고압 송전 직류 케이블의 상기 부분 방전 위치 정보를 출력하는 모니터링 장치;를 포함하고,
상기 열전 에너지 하베스터는 완전 방전 상태에서 하베스팅한 상기 열에너지가 변환된 상기 전기에너지로 즉시 구동되는 냉시동(cold start) 방식을 이용하여 승압되는,
자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 시스템.
- 제 8항에 있어서,
상기 센싱 장치는 상기 열전 에너지 하베스터에 부착되어 상기 열전 에너지 하베스터와 하나의 쌍으로 연결되는, 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 시스템.
- 삭제
- 제 9항에 있어서,
복수의 센싱 장치 및 복수의 열전 에너지 하베스터를 포함하고,
상기 하나의 쌍으로 연결된 각각의 센싱 장치 및 각각의 열전 에너지 하베스터는 동일 간격으로 이격되어 배치되어 있는, 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 시스템.
- 고압 송전 직류 케이블(HVDC)의 외주연에 밀착한 중공형으로 설치되어 상기 고압 송전 직류 케이블에서 방출되는 폐열과 심해저와의 온도차이로 하베스팅된 열에너지를 전기에너지로 변환하는 열전 에너지 하베스터가 상기 고압 송전 직류 케이블에서 방출되는 상기 폐열을 전기에너지로 변환하는 단계;
상기 고압 송전 직류 케이블에 설치된 센서가 상기 열전 에너지 하베스터에서 변환된 전기 에너지를 이용하여 구동되어 상기 고압 송전 직류 케이블의 고장을 진단하고 해당 고장점을 탐지하는 단계;
프로세서가 상기 센서에 의해 진단된 고장 및 탐지된 고장점에 대한 정보를 생성하는 단계; 및
통신 인터페이스부가 상기 프로세서에 의해 생성된 고장 및 고장점에 대한 정보를 모니터링 장치로 송신하는 단계;를 포함하고,
상기 열전 에너지 하베스터가 상기 고압 송전 직류 케이블(HVDC)에서 방출되는 상기 폐열을 상기 전기에너지로 변환하는 단계는,
배터리의 완전 방전 상태에서도 상기 열전 에너지 하베스터에 의해 변환된 상기 전기에너지에 의해 상기 센서가 즉시 구동될 수 있도록 하기 위해 냉시동(cold start) 방식으로 상기 전기에너지를 승압하여 상기 센서로 제공하는,
자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법.
- 삭제
- 삭제
- 제 12항에 있어서,
상기 고압 송전 직류 케이블에 설치된 센서가 상기 열전 에너지 하베스터에서 변환된 전기 에너지를 이용하여 구동되어 상기 고압 송전 직류 케이블의 고장을 진단하고 해당 고장점을 탐지하는 단계는,
상기 고압 송전 직류 케이블에서 상기 센서가 설치된 지점의 전압, 전류, 부분 방전, 주변 온도, 진동 중 적어도 하나 이상을 감지하도록 구성되는 것을 특징으로 하는 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법.
- 제 12항에 있어서,
상기 프로세서가 상기 센서에 의해 진단된 고장 및 탐지된 고장점에 대한 정보를 생성하는 단계는,
상기 프로세서가 상기 고압 송전 직류 케이블의 부분 방전 여부, 부분 방전 위치, 주변 온도 이상 감지 정보, 기울기 이상 정보, 전압 또는 전류 이상 정보 및 진동 이상 감지 정보 중 적어도 하나 이상을 생성하도록 구성되는 것을 특징으로 하는 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170152571A KR102003966B1 (ko) | 2017-11-15 | 2017-11-15 | 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170152571A KR102003966B1 (ko) | 2017-11-15 | 2017-11-15 | 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190055639A KR20190055639A (ko) | 2019-05-23 |
KR102003966B1 true KR102003966B1 (ko) | 2019-07-25 |
Family
ID=66681301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170152571A KR102003966B1 (ko) | 2017-11-15 | 2017-11-15 | 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102003966B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282620A1 (ko) * | 2021-07-06 | 2023-01-12 | 한국전력공사 | Hvdc 케이블 부분방전 진단 시스템 및 방법 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210026910A (ko) | 2019-09-02 | 2021-03-10 | 삼성전자주식회사 | 외부 에너지 신호로부터 전력을 생성하는 전력 공급 장치 및 방법 |
CN110470960B (zh) * | 2019-09-05 | 2021-03-09 | 国网北京市电力公司 | 电缆局部放电的分析方法及装置、存储介质及处理器 |
CN112904147B (zh) * | 2021-01-22 | 2022-05-17 | 贵州电网有限责任公司 | 一种输电线路故障及预放电监测装置及信号处理方法 |
CN114113906A (zh) * | 2021-12-02 | 2022-03-01 | 北京国网富达科技发展有限责任公司 | 一种数据上报方法及系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110105963A (ko) * | 2010-03-22 | 2011-09-28 | 엘에스전선 주식회사 | 케이블의 결함위치 추정 장치 및 그 방법 |
KR101785987B1 (ko) * | 2014-12-08 | 2017-10-17 | 중소기업은행 | 실시간 압력계측형 송전선 모니터링 시스템 및 실시간 압력계측형 송전선 모니터링 방법 |
-
2017
- 2017-11-15 KR KR1020170152571A patent/KR102003966B1/ko active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023282620A1 (ko) * | 2021-07-06 | 2023-01-12 | 한국전력공사 | Hvdc 케이블 부분방전 진단 시스템 및 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20190055639A (ko) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102003966B1 (ko) | 자가발전형 고압 송전 직류 케이블의 실시간 고장진단 모니터링을 위한 센싱 장치, 모니터링 시스템 및 방법 | |
EP2869158B1 (en) | Signal processing apparatus | |
US7680460B2 (en) | Wireless process field device diagnostics | |
US6970807B2 (en) | Diagnostic system and method for electric leak detecting device | |
US9614395B2 (en) | Wireless charging system and foreign metal object detection method for the system | |
KR102027743B1 (ko) | 전력 케이블 접속부의 통전 및 온도 통합 감시 시스템 | |
KR101764735B1 (ko) | 누수감지센서의 구동회로 | |
CN104349560B (zh) | 用于路灯照明系统的故障检测装置及其运行方法 | |
KR102265423B1 (ko) | 초음파센서를 이용한 배터리 안전상태 진단 모니터링 시스템 | |
JP4199559B2 (ja) | 三相誘導モータ絶縁劣化監視装置 | |
KR102000431B1 (ko) | 초음파를 이용한 변압기 감시 장치 | |
JP2009168533A (ja) | 計測または制御手段における信号状態の診断装置 | |
CN115699490A (zh) | 开路故障的自诊断方法、计算机化调查系统和模块化逆变器 | |
US20110246105A1 (en) | Method and apparatus for testing at least one temperature sensor in a vehicle | |
KR101644220B1 (ko) | 케이블 접속점 열화 감지 시스템 및 케이블 접속점 열화 감지 시스템의 제어방법 | |
CN107024270B (zh) | 无线检测,诊断建筑物或设备状态参数的方法 | |
JP2006170714A (ja) | 地絡検出装置、地絡検出装置の閾値設定方法 | |
EP3379097A1 (en) | Magnetic field communication system and method | |
KR102462796B1 (ko) | Dc/ac단 절연 및 접지이상 계측에 의한 전기차 충전기 보호 시스템 | |
CN111948719B (zh) | Gis内部异物诊断装置和诊断方法 | |
JP7101333B2 (ja) | 電源システム | |
JP2000261920A (ja) | 電気機器用圧力モニタ装置 | |
EP3379208A1 (en) | Magnetic field communication system and method | |
JP3962992B2 (ja) | 非接地電源の絶縁検出装置 | |
JP2016058049A (ja) | 無線測定システム、無線センサ端末及び機器故障の予兆測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |