KR101943251B1 - 작업 기계 - Google Patents

작업 기계 Download PDF

Info

Publication number
KR101943251B1
KR101943251B1 KR1020177023402A KR20177023402A KR101943251B1 KR 101943251 B1 KR101943251 B1 KR 101943251B1 KR 1020177023402 A KR1020177023402 A KR 1020177023402A KR 20177023402 A KR20177023402 A KR 20177023402A KR 101943251 B1 KR101943251 B1 KR 101943251B1
Authority
KR
South Korea
Prior art keywords
target
engine
value
power
charge
Prior art date
Application number
KR1020177023402A
Other languages
English (en)
Other versions
KR20170107044A (ko
Inventor
마사토시 호시노
신지 이시하라
겐타로 이토가
Original Assignee
히다찌 겐끼 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다찌 겐끼 가부시키가이샤 filed Critical 히다찌 겐끼 가부시키가이샤
Publication of KR20170107044A publication Critical patent/KR20170107044A/ko
Application granted granted Critical
Publication of KR101943251B1 publication Critical patent/KR101943251B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • B60L11/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0677Engine power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/248Current for loading or unloading
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명의 과제는 배터리의 축전 잔량의 적절한 관리를 가능하게 하는 작업 기계를 제공하는 것이다. 본 발명은 배터리의 축전 잔량을 연산하는 배터리 컨트롤러(35)와, 연산한 축전 잔량에 기초하여, 배터리가 출력하는 전력을, 소정의 범위로 유지하기 위한 충방전 요구량을 연산하는 충방전 요구 연산부(41A)와, 전동 발전기의 목표 회전수 명령값을 연산하는 목표 회전수 연산부(41B)와, 연산한 목표 회전수 명령값에 따라 전동 발전기를 제어하는 인버터(32)를 갖고, 배터리 컨트롤러(35) 및 인버터(32)의 적어도 한쪽은 배터리(34)의 실제의 충방전량을 연산하고, 목표 회전수 연산부(41B)는 충방전 요구량과, 실제의 충방전량의 차로부터 목표 회전수 보정값을 산출하여 목표 회전수 명령값을 보정하는 구성으로 하고 있다.

Description

작업 기계
본 발명은 엔진 및 전동 발전기에 의해 유압 펌프를 구동하는 하이브리드 시스템이 적용된 작업 기계에 관한 것이다.
이러한 종류의 하이브리드 시스템이 적용된 작업 기계, 소위 하이브리드 작업 기계에 있어서는, 유압 펌프의 부하가 클 때에는, 축전 장치의 전력을 사용하여 전동 발전기를 역행 동작시킴으로써 엔진의 동력을 어시스트하고, 엔진으로 전동 발전기를 회생 구동시킴으로써 축전 장치를 충전하는 기술이 알려져 있다.
또한, 하이브리드 작업 기계의 종래 기술의 하나로서, 엔진의 동력을 제어하는 엔진 제어 수단과, 전동 발전기의 동작을 제어하는 전동 발전 제어 수단을 구비하고, 엔진 제어 수단은 회전수의 저하에 따라 토크가 일정한 비율로 증가하는 드룹 특성으로 엔진을 동작시키고, 전동 발전 제어 수단은 목표 회전수를 부여함으로써, 실제의 회전수가 목표 회전수에 일치하도록 제어를 행하는 회전수 제어로, 전동 발전기를 동작시키는 하이브리드 건설 기계가 알려져 있다(예를 들어, 특허문헌 1 참조).
구체적으로는, 이 종래 기술의 하이브리드 건설 기계에 의하면, 전동 발전 제어 수단이, 엔진의 동작 특성(회전수-토크 특성)에 있어서 저연비나 저배기가 되는 영역에 대응하는 회전수를 목표 회전수로 하여 전동 발전기에 부여하고, 주로 전동 발전기를 회전수 제어로 동작시키도록 하고 있다. 이때, 엔진은 엔진 제어 수단에 의해 드룹 특성에 따라, 그 제어된 회전수에 대응하는 토크를 발생하므로, 차체의 부하가 변화되어도, 엔진의 회전수와 토크를 항상 저연비나 저배기가 되는 영역 내에 유지할 수 있다.
일본 특허 제4800514호 공보
그러나, 상기 드룹 특성은 엔진의 회전수를 거의 일정하게 유지하는 데 필요한 동력을 얻기 위한 간편한 방법이고, 엔진의 회전수의 증가에 따라, 엔진의 각 기통으로의 연료의 분사량을 감소시키지만, 이 연료의 분사량과 엔진의 토크에 엄밀한 대응 관계는 없다. 일반적으로 엔진은, 엔진의 기통 등의, 엔진을 구성하는 기기마다, 혹은 엔진 자체마다, 연료 분사 상태, 연소 상태 및 그것들의 결과에서 발생하는 토크에 변동이 있다. 또한, 연료의 성상이나 기온, 기압 등의 엔진의 운전 조건에 의해서도 토크가 변동된다. 따라서, 이것들 토크의 변동에 의해, 특허문헌 1에 개시된 종래 기술의 하이브리드 건설 기계에 있어서는, 드룹 특성에 기초하여, 엔진의 회전수를 전동 발전기로 제어해도, 엔진의 토크가 드룹 특성과 같이 되지 않는 경우가 발생한다.
예를 들어, 유압 펌프의 부하가 일정하고, 축전 장치의 축전 잔량(SOC)이 감소하고, 축전 장치를 충전하기 위한 목표 충전량이 산출되고, 이 산출된 목표 충전량에 대응한 토크를 증가할 수 있도록, 드룹 특성에 따라 엔진의 회전수를 저하시키는 경우를 생각한다. 이 경우에, 실제로 엔진이 발생하는 토크가, 본래의 드룹 특성에 따른 토크보다 클 때는, 산출된 목표 회전수를 유지하기 위해 전동 발전기가 회생 구동하고, 그 토크의 어긋남에서 발생한 에너지가 축전 장치에 충전되기 때문에, 목표 충전량을 초과한 충전량이 축전 장치에 충전된다. 한편, 실제로 엔진이 발생하는 토크가, 본래의 드룹 특성에 따른 토크보다 작을 때는, 산출된 목표 회전수를 유지하기 위한 전동 발전기의 회생 구동에 의한 에너지의 회생이 저하되기 때문에, 목표 충전량까지 충전할 수 없다. 또한, 축전 장치의 축전 잔량이 커지고, 축전 장치로부터 방전시키는 목표 방전량이 산출되었을 때도 마찬가지로, 목표 방전량과 같은 방전은 어렵다. 게다가, 축전 장치의 축전 잔량이 적정한 상태에서, 축전 장치의 충방전이 불필요한 경우에 충방전하거나, 방전이 필요할 때에 충전하거나, 충전이 필요할 때에 방전하거나 하는 등, 축전 장치의 적절한 관리가 곤란해진다.
이에 대해, 예를 들어 유압 펌프의 부하의 증가에 따라, 엔진의 토크를 증가할 수 있도록, 드룹 특성에 따라 엔진의 회전수를 저하시키는 경우를 생각한다. 이 경우에, 실제로 엔진이 발생하는 토크가, 본래의 드룹 특성에 따른 토크보다도 클 때는, 목표 회전수를 유지하기 위해 전동 발전기가 회생 구동하고, 그 토크의 어긋남에서 발생한 에너지가 축전 장치에 충전되고, 본래의 드룹 특성으로부터의 괴리에 의한 의도하지 않은 충전이 행해진다. 한편, 실제로 엔진이 발생하는 토크가, 본래의 드룹 특성에 따른 토크보다 작을 때는, 목표 회전수를 유지하기 위해 전동 발전기가 역행 구동하고, 본래의 드룹 특성으로부터의 괴리에 의한 의도하지 않은 방전이 행해진다. 어느 것에 있어서도, 상정한 토크가 얻어지지 않는 경우, 전동 발전기의 회생 구동 또는 역행 구동에 의해, 목표 회전수의 유지가 행해지기 때문에, 축전 잔량의 적절한 관리가 곤란해진다.
그리고, 축전 장치의 축전 잔량을 적절하게 관리할 수 없는 경우에는, 예를 들어 축전 장치의 축전 잔량의 저하가 진행되고, 전동 발전기에 의한 역행 구동이 불능이 되어, 충분한 작업성을 확보할 수 없게 된다는 문제가 있었다.
본 발명은 이와 같은 종래 기술의 실상으로 이루어진 것이고, 그 목적은 축전 장치의 축전 잔량의 적절한 관리를 가능하게 하는 작업 기계를 제공하는 데 있다.
이 목적을 달성하기 위해, 본 발명은, 엔진과, 상기 엔진으로 구동하는 유압 펌프와, 상기 유압 펌프가 토출하는 압유로 구동하는 유압 작업부와, 상기 엔진과의 사이에서 토크의 전달을 행하는 전동 발전기와, 상기 전동 발전기와의 사이에서 전력을 수수하는 축전 장치와, 상기 엔진의 회전수의 저하에 대응하여 상기 엔진의 토크가 소정의 기울기로 증가하는 드룹 특성으로 상기 엔진을 동작시키는 컨트롤러를 구비하고, 상기 컨트롤러는, 상기 축전 장치의 축전 잔량을 연산하는 축전 잔량 연산부와, 상기 축전 잔량 연산부에서 연산한 축전 잔량에 기초하여, 상기 축전 장치가 출력하는 전력을, 소정의 범위로 유지하기 위한 충방전 요구값을 연산하는 충방전 요구 연산부와, 상기 전동 발전기의 목표 회전수 명령값을 연산하는 목표 회전수 연산부와, 상기 목표 회전수 연산부에서 연산한 목표 회전수 명령값에 따라 상기 전동 발전기를 제어하는 전동 발전기 제어부를 갖고, 상기 축전 잔량 연산부 및 상기 전동 발전기 제어부의 적어도 한쪽은 상기 축전 장치의 실충방전값을 연산하고, 상기 목표 회전수 연산부는 상기 충방전 요구값과, 상기 실충방전값의 차로부터 목표 회전수 보정값을 산출하여 상기 목표 회전수 명령값을 보정하는 것을 특징으로 하고 있다.
본 발명의 작업 기계에 의하면, 축전 장치의 축전 잔량의 적절한 관리를 가능하게 하고, 충분한 작업성을 확보할 수 있다. 그리고, 전술한 것 이외의 과제, 구성 및 효과는 이하의 실시 형태의 설명으로부터 명백해진다.
도 1은 본 발명에 관한 작업 기계의 일례로서 예를 든 하이브리드 유압 셔블의 외관을 도시하는 도면이다.
도 2는 본 발명의 제1 실시 형태에 관한 하이브리드 유압 셔블의 구성을 도시하는 도면이다.
도 3은 도 2의 차체 컨트롤러의 목표 회전수 연산에 관한 제어를 도시하는 도면이다.
도 4는 상기 차체 컨트롤러로 목표 엔진 동력으로부터 목표 회전수를 구하기 위한 그래프이고, (a)는 회전수와 토크의 관계, (b)는 목표 엔진 동력과 목표 회전수의 관계이다.
도 5는 상기 차체 컨트롤러에 의한 보정 회전수의 리미터 처리의 상한값의 설정 방법을 나타내는 그래프이다.
도 6은 상기 차체 컨트롤러의 연산 처리를 도시하는 공정도이다.
도 7은 본 발명의 제2 실시 형태에 관한 작업 기계의 차체 컨트롤러의 목표 회전수 연산에 관한 제어를 도시하는 도면이다.
도 8은 상기 차체 컨트롤러의 목표 회전수 기준값 연산부의 연산을 나타내는 그래프이다.
도 9는 상기 차체 컨트롤러의 연산 처리를 도시하는 공정도이다.
도 10은 부하 동력이 정확하게 연산되지 않은 경우의, 상기 차체 컨트롤러의 목표 회전수 기준값 연산부의 연산을 나타내는 그래프이다.
도 11은 부하 동력이 큰 경우의, 상기 목표 회전수 기준 연산부의 연산을 나타내는 그래프이다.
도 12는 드룹 특성이 변동된 경우의, 상기 목표 회전수 기준값 연산부의 연산을 나타내는 그래프이다.
도 13은 본 발명의 제3 실시 형태에 관한 작업 기계의 차체 컨트롤러의 목표 회전수 연산에 관한 제어를 도시하는 도면이다.
도 14는 상기 차체 컨트롤러의 연산 처리를 도시하는 공정도이다.
도 15는 상기 차체 컨트롤러로 제어한 경우의 출력량의 시계열을 나타내는 그래프이고, (a)는 부하 동력의 출력, (b)는 전동 발전기의 출력이다.
이하, 본 발명에 관한 작업 기계를 실시하기 위한 형태를 도면에 기초하여 설명한다.
[제1 실시 형태]
본 발명에 관한 작업 기계의 제1 실시 형태는, 예를 들어 도 1에 도시하는 하이브리드 유압 셔블(이하, 편의적으로 유압 셔블이라고 칭함)(1)에 적용된다. 유압 셔블(1)은 주행체(2)와, 주행체(2) 상에 선회 프레임(도시하지 않음)을 통해 선회 가능하게 설치한 선회체(3)와, 선회체(3)의 전방에 설치되고 상하 방향으로 회동하여 굴삭 등의 작업을 행하는 다관절형의 프론트 작업기(4)를 구비한다.
주행체(2)는 트랙 프레임(6)과, 트랙 프레임(6)에 설치되어 선회체(3)를 선회시키는 선회 전동기(7)(도 2 참조)와, 트랙 프레임(6)의 전후 방향을 따르는 일단에 설치되어 회전 구동하는 스프로킷(구동륜)(8)과, 스프로킷(8)을 회전시키는 주행 모터(9)와, 트랙 프레임(6)의 전후 방향을 따르는 타단에 설치된 아이들러(유동륜)(10)와, 이것들 스프로킷(8) 및 아이들러(10)의 외주에 무단상으로 감은 크롤러(11)를 갖는다. 주행체(2)는 스프로킷(8)이 회전 구동함으로써 크롤러(11)가 회동하고 지면과 미끄럼 이동하여, 차체가 이동하도록 되어 있다.
선회체(3)는 전방부에 설치된 운전실(13)과, 후방부에 설치되어 차체의 중량의 밸런스를 유지하는 카운터 웨이트(14)와, 후방부에 설치되어 후술하는 엔진(15)(도 2 참조)을 수용하는 엔진 룸(16)과, 선회 전동기(7), 주행 모터(9), 후술하는 붐 실린더(4a), 아암 실린더(4b) 및 버킷 실린더(4c) 등의 액추에이터의 구동을 제어하는 액추에이터 구동 제어 시스템(17)(도 2 참조)을 구비한다.
프론트 작업기(4)는 유압 펌프(21)가 토출하는 압유로 구동하는 유압 작업 장치이고, 기단이 선회체(3)에 회동 가능하게 설치되어 상하 방향으로 회동하는 붐(4A)과, 붐(4A)의 선단에 회동 가능하게 설치된 아암(4B)과, 아암(4B)의 선단에 회동 가능하게 설치된 버킷(4C)을 갖는다. 프론트 작업기(4)는 선회체(3)와 붐(4A)을 접속하여 신축으로 붐(4A)을 회동시키는 붐 실린더(4a)와, 붐(4A)과 아암(4B)을 접속하여 신축으로 아암(4B)을 회동시키는 아암 실린더(4b)와, 아암(4B)과 버킷(4C)을 접속하여 신축으로 버킷(4C)을 회동시키는 버킷 실린더(4c)를 갖는다. 붐(4A), 아암(4B), 버킷(4C) 및 선회체(3)의 각 동작은 후술하는 조작 레버 장치(24A, 24B)의 유압 조작 신호(제어 파일럿 압력)로 지시된다. 주행체(2)의 동작은 후술하는 주행용의 조작 페달 장치의 유압 조작 신호(제어 파일럿 압력)로 지시된다.
이어서, 선회체(3)에 탑재된 액추에이터 구동 제어 시스템(17)의 구성에 대하여, 도 2를 참조하여 설명한다.
도 2에 도시한 바와 같이, 액추에이터 구동 제어 시스템(17)은 엔진(15)과, 엔진(15)으로 구동하는 유압 펌프(21)와, 유압 펌프(21)가 토출한 압유의 흐름을 제어하는 방향 전환 밸브(22)와, 파일럿 압유로서의 작동유를 방향 전환 밸브(22)로 공급하는 파일럿 펌프(도시하지 않음)와, 유압 펌프(21) 및 파일럿 펌프로 공급하는 작동유를 저장하는 작동유 탱크(23)와, 운전실(13)에 설치되어 액추에이터(4a 내지 4c)의 원하는 동작을 가능하게 하고, 운전실(13) 내의 조작자가 파지하여 조작하는 조작 레버(24A1, 24B1)를 탑재한 조작 레버 장치(24A, 24B)와, 운전실(13)에 설치되어 주행체(2)의 원하는 동작을 가능하게 하고, 운전실(13) 내의 조작자가 답입하여 조작하는 조작 페달(도시하지 않음)을 탑재한 조작 페달 장치(도시하지 않음)와, 조작 레버 장치(24A, 24B) 및 조작 페달 장치에 입구측을 접속하고, 방향 전환 밸브(22)의 후술하는 수압실에 출구측을 접속한 셔틀 밸브 블록(25)을 포함한다.
엔진(15)은 내부의 각 기통 내로의 연료 분사량을 조정하는 전자 거버너(15A)를 갖는다. 유압 펌프(21)는, 예를 들어 가변 용량형 유압 펌프로 이루어지고, 경사판(도시하지 않음)과, 경사판의 경사각을 조정하여 토출하는 압유의 유량을 제어하는 포지티브 제어 방식의 레귤레이터(21A)를 갖는다.
레귤레이터(21A)는 셔틀 밸브 블록(25)에 접속되고, 조작 레버 장치(24A, 24B)의 조작 부재인 조작 레버(24A1, 24B2) 및 조작 페달 장치의 조작 페달의 조작량(요구 유량)이 증가하고, 셔틀 밸브 블록(25)을 통해 수신한 유압 조작 신호가 상승함에 따라 유압 펌프(21)의 경사판의 경사각(용량)을 증가시킴으로써, 유압 펌프(21)의 토출 유량을 증가시킨다. 레귤레이터(21A)는 도시하지 않지만, 유압 펌프(21)의 토출압이 높아짐에 따라 유압 펌프(21)의 틸팅각(용량)을 줄이고, 유압 펌프(21)의 흡수 토크를 미리 설정한 최대 토크를 초과하지 않도록 제어하는 토크 제한 제어 기능을 갖는다.
방향 전환 밸브(22)는, 예를 들어 센터 바이패스 라인에 설치하는 오픈 센터형의 스풀 밸브로 이루어지고, 유압 펌프(21)와 액추에이터(4a 내지 4c) 사이에서 유압 회로를 구성한다. 방향 전환 밸브(22)는 도시하지 않지만, 외각을 갖는 하우징 내의 스트로크에 의해, 유압 펌프(21)로부터 토출한 압유의 유량 및 방향을 제어하는 스풀과, 셔틀 밸브 블록(25)으로부터의 제어 파일럿 압력이 작용하여 스풀의 스트로크량을 변경하는 수압부를 갖는다.
조작 레버 장치(24A, 24B) 및 조작 페달 장치는 파일럿 펌프로부터 토출한 압유로 생성한 1차압을 당해 각 장치에 구비한 감압 밸브(리모컨 밸브)의 조작 개방도에 따라 2차압으로 감압하여 제어 파일럿 압력(유압 조작 신호)을 생성한다. 제어 파일럿 압력은 방향 전환 밸브(22)의 수압실로 보내져, 방향 전환 밸브(22)를 중립 위치로부터 전환 조작한다. 셔틀 밸브 블록(25)은 조작 레버 장치(24A, 24B)가 생성하는 유압 조작 신호 중 선회 조작을 지시하는 유압 조작 신호 이외의 유압 조작 신호와, 조작 페달 장치가 생성하는 유압 조작 신호 중 가장 압력이 높은 유압 조작 신호를 선택하여 레귤레이터(21A)로 출력한다.
액추에이터 구동 제어 시스템(17)은 엔진(15)의 구동축(회전축) 상에 배치하고, 엔진(15)과의 사이에서 토크를 전달함으로써, 엔진(15)의 동력의 어시스트 및 발전을 행하는 전동 발전기(MG)(31)와, 선회체(3)를 구동하는 선회 전동기(MG)(7)와, 전동 발전기(31) 및 선회 전동기(7)의 동작을 제어하는 인버터(32, 33)와, 인버터(32, 33)를 통해 전동 발전기(31) 및 선회 전동기(7)와의 사이에서 전력의 수수를 행하는 축전 장치로서의 배터리(34)와, 배터리(34)의 동작을 제어하는 배터리 컨트롤러(35)를 구비한다.
또한, 액추에이터 구동 제어 시스템(17)은 엔진(15)의 목표 회전수를 설정하는 목표 회전수 설정부(36)와, 엔진(15)의 회전수를 검출하는 회전수 검출 장치로서의 회전수 센서(37)와, 회전수 센서(37) 및 전자 거버너(15A)에 접속되어, 엔진(15)의 동작을 제어하는 엔진 컨트롤러(38)와, 조작 레버 장치(24A, 24B) 및 조작 페달 장치에서 감압한 제어 파일럿 압력을 검출하는 조작량 검출 장치로서의 압력 센서(39A, 39B)와, 유압 펌프(21)와 방향 전환 밸브(22) 사이에 설치되어 유압 펌프(21)로부터 토출한 압유의 토출압을 검출하는 토출압 검출 장치로서의 토출압 센서(40)와, 인버터(32, 33), 배터리 컨트롤러(35), 목표 회전수 설정부(36), 엔진 컨트롤러(38) 및 압력 센서(39A, 39B)에 접속되어 이것들 각 기기와의 다양한 신호의 입출력으로 차체 전체의 동작을 제어하는 차체 컨트롤러(41)를 포함한다.
전동 발전기(31)는 엔진(15) 및 유압 펌프(21)의 회전축에 연결되어, 엔진(15)의 동력(운동 에너지)을 전력(전기 에너지)으로 변환하여 인버터(32)로 출력하는 발전기로서의 회생 구동 기능과, 인버터(32)로부터 공급되는 전력으로 구동하고, 엔진(15)의 동력을 어시스트하여 유압 펌프(21)를 구동하는 전동기로서의 역행 구동 기능을 갖는다. 선회 전동기(7)는 선회체(3)의 제동 시의 동력을 전력으로 변환하여 인버터(33)로 출력하는 회생 구동 기능을 갖는다.
인버터(32)는 전동 발전기(31)가 발전기로서 기능할 때는, 전동 발전기(31)에서 생성한 교류 전력을 직류 전력으로 변환하여 배터리(34)로 출력하고, 전동 발전기(31)가 전동기로서 기능할 때는, 배터리(34)로부터의 직류 전력을 교류 전력으로 변환하여 전동 발전기(31)로 공급하는 전동 발전기 제어부이다. 인버터(33)는 선회 전동기(7)에 의한 회생 구동 기능이 작동할 때는, 선회 전동기(7)에서 생성한 교류 전력을 직류 전력으로 변환하여 배터리(34)로 출력하고, 선회 전동기(7)가 선회체(3)를 구동하는 역행 구동 기능이 동작할 때는, 배터리(34)로부터의 직류 전력을 교류 전력으로 변환하여 선회 전동기(7)로 공급하는 선회 전동기 제어부이다.
배터리(34)는 배터리 컨트롤러(35)로부터의 제어 명령을 입력하고, 인버터(32, 33)로 직류 전력을 공급하여 방전하거나, 혹은 인버터(32, 33)로부터 공급된 직류 전력을 축적하여 충전함으로써, 전동 발전기(31)에서 회생한 전기 에너지 및 선회 전동기(7)에서 회생한 전기 에너지를 축적한다. 배터리 컨트롤러(35)는 배터리(34)의 전압 및 전류를 검출하고, 배터리(34)에 축적되어 있는 전기 에너지의 양, 소위 축전 잔량(SOC)을 추정하여 차체 컨트롤러(41)로 출력하는 축전 잔량 연산부를 구비한다. 배터리 컨트롤러(35)는 배터리(34)로부터 출력되는 전압이나, 전압과 전류의 적산값(전력)에 기초하여, 배터리(34)의 축전 잔량을 0 내지 100% 범위에서 연산한다.
목표 회전수 설정부(36)는 엔진(15)의 목표 회전수를 설정하는 목표 회전수 설정 다이얼(엔진 컨트롤 다이얼)이다.
엔진 컨트롤러(38)는 엔진(15)의 목표 회전수 및 엔진(15)의 실제의 회전수(실회전수)를 차체 컨트롤러(41) 및 회전수 센서(37)로부터 각각 입력하고, 목표 회전수와 실회전수의 편차를 연산한다. 엔진 컨트롤러(38)는 연산한 편차에 기초하여 목표 연료 분사량을 연산하고, 목표 연료 분사량에 대응하는 제어 명령을 전자 거버너(15A)로 출력한다. 전자 거버너(15A)는 엔진 컨트롤러(38)로부터 입력된 제어 명령에 의해 작동하고, 목표 연료 분사량에 상당하는 연료를 엔진(15)의 각 기통 내로 분사하여 공급한다.
엔진(15)의 동작은 엔진(15)의 실회전수가 목표 회전수로 유지되도록, 엔진(15)의 토크를 발생시키는 제어가 된다. 엔진 컨트롤러(38)는 엔진 제어부로서 기능하고, 엔진(15)의 회전수의 저하에 대응하여 엔진(15)의 토크가 소정의 기울기로 증가하는 거버너 특성, 즉 드룹 특성으로 엔진(15)을 동작시킨다. 엔진 컨트롤러(38)는 엔진(15)의 동작 제어로서, 드룹 특성을 따른 드룹 제어를 행한다.
따라서, 엔진(15)의 각 기통으로의 목표 연료 분사량은 엔진(15)의 실회전수와 무부하 시의 회전수가 일치하고 있는 경우에 0이 되고, 실회전수가 목표 회전수보다도 저하됨에 따라, 엔진(15)의 토크가 엔진(15)의 사양으로 정해지는 최대 토크에 도달할 때까지 증가한다. 또한, 목표 회전수는 작업 내용 등에 따른 오퍼레이터에 의한 목표 회전수 설정부(36)의 조작으로 설정된다. 실회전수는 무부하 시의 회전수로부터, 최대 토크를 발생하는 회전수까지에 걸쳐서, 유압 펌프(21)의 부하에 따라 드룹 특성에 따라 변동된다.
이어서 컨트롤러(41)는 각 기기로 출력하는 제어 명령에 관한 연산을 행하는 제어 연산 회로(도시하지 않음)를 갖고, 예를 들어 전동 발전기(31) 및 선회 전동기(7)에 대하여 다음의 제어를 행한다.
(1) 선회 전동기(7)의 구동 제어
압력 센서(39A)는 조작 레버 장치(24A)가 생성한 유압 조작 신호 중 좌우 방향의 선회 조작을 지시하는 유압 조작 신호를 유도하는 파일럿 유로에 접속되고, 이 파일럿 유로에 있어서의 유압 조작 신호를 검출한다. 차체 컨트롤러(41)는 압력 센서(39A)의 검출 신호(전기 신호)를 입력하고, 압력 센서(39A)에서 검출된 유압 조작 신호에 따라, 선회 전동기(7)의 구동 제어를 행한다.
차체 컨트롤러(41)는 입력한 압력 센서(39A)의 검출 신호가 좌측 방향의 선회 조작을 지시하는 유압 조작 신호일 때는, 인버터(33)의 동작을 제어하여 선회 전동기(7)를 전동기로서 구동하는 역행 제어를 행한다. 이에 의해, 선회 전동기(7)가 인버터(33)로부터 공급된 전력에 의해 작동함으로써, 선회체(3)가 유압 조작 신호에 대응한 속도로 좌선회한다.
또한, 차체 컨트롤러(41)는 입력한 압력 센서(39A)의 검출 신호가 우측 방향의 선회 조작을 지시하는 유압 조작 신호일 때는, 인버터(33)의 동작을 제어하여 선회 전동기(7)를 전동기로서 구동하는 역행 제어를 행한다. 이에 의해, 선회 전동기(7)가 인버터(33)로부터 공급된 전력에 의해 작동함으로써, 선회체(3)가 유압 조작 신호에 대응한 속도로 우선회한다.
(2) 선회 전동기(7)의 회생 제어
차체 컨트롤러(41)는 선회체(3)의 선회 동작의 제동 시에, 인버터(33)의 동작을 제어하여 선회 전동기(7)를 발전기로서 동작시키는 발전 제어를 행함으로써, 선회 전동기(7)로부터 전기 에너지를 회수한다. 그리고, 차체 컨트롤러(41)는 회수한 전기 에너지를 배터리(34)에 축적함으로써, 배터리(34)의 축전 잔량이 상승한다.
(3) 전동 발전기(31)의 동작 제어[배터리(34)의 축전 관리 제어]
차체 컨트롤러(41)는 유압 펌프(21)의 흡수 동력, 즉 유압 펌프(21)의 부하가 낮고, 또한 배터리 컨트롤러(35)로 관리되는 배터리(34)의 축전 잔량이 적을 때에, 인버터(32)에 대하여, 전동 발전기(31)를 발전기로서 동작시키는 발전 제어를 행한다. 이에 의해, 전동 발전기(31)가 잉여의 전력을 발생시킴으로써, 배터리(34)에 의한 충전 동작이 행해지고, 배터리(34)의 축전 잔량이 상승한다.
한편, 차체 컨트롤러(41)는 유압 펌프(21)의 흡수 동력, 즉 유압 펌프(21)의 부하가 크고, 또한 배터리 컨트롤러(35)로 관리되는 배터리(34)의 축전 잔량이 소정량 이상일 때에, 인버터(32)에 대하여, 배터리(34)의 전력을 공급하여 전동 발전기(31)를 전동기로서 동작시키는 역행 제어를 행한다. 이에 의해, 전동 발전기(31)가 엔진(15)의 동력을 어시스트하게 되고, 유압 펌프(21)가 엔진(15) 및 전동 발전기(31)에 의해 구동된다. 따라서, 배터리(34)에 의한 방전 동작이 행해지고, 배터리(34)의 축전 잔량이 감소한다.
이어서, 상기(3)의 배터리(34)의 축전 관리 제어를 고려한 전동 발전기(31)의 동작 제어를 실현하는 차체 컨트롤러(41)의 구성에 대하여, 도 3을 참조하여 상세하게 설명한다.
도 3에 도시한 바와 같이, 차체 컨트롤러(41)는 배터리(34)에 대한 충전 요구 또는 방전 요구(전력), 즉 충방전 요구값을 연산하는 충방전 요구 연산부(41A)와, 전동 발전기(31)에 대한 목표 회전수 명령값을 연산하는 목표 회전수 연산부(41B)를 구비한다. 충방전 요구 연산부(41A)는 배터리(34)의 축전 잔량의 기준값이, 예를 들어 축전 용량의 50%로 설정되어 있는 경우에, 배터리 컨트롤러(35)의 축전 잔량 연산부에서 연산된 축전 잔량이 기준값보다 많을 때, 그 기준값과의 차에 따른 방전 요구량을 연산한다. 또한, 충방전 요구 연산부(41A)는 배터리 컨트롤러(35)로 연산된 축전 잔량이 기준값보다 적을 때, 그 기준값과의 차에 따른 충전 요구량을 연산한다. 여기서, 방전 요구를 정, 충전 요구를 부라고 하여, 이것들 방전 요구 및 충전 요구를, 하나의 파워(전력)로서 나타낸다.
목표 회전수 연산부(41B)는 목표 회전수 기준값 연산부(42)와, 목표 회전수 보정값 연산부(43)를 포함한다. 목표 회전수 기준값 연산부(42)는 목표 회전수 설정부(36)에서 설정된 목표 회전수와 같은 값의 회전수가 목표 회전수 기준값으로서 연산되어 출력된다. 목표 회전수 기준값 연산부(42)에 의한 연산은 후술하는 제2 실시 형태에 있어서의 동력 레이트 리미터부(42A)로부터의 출력을 엔진 최대 출력 P1로 고정한 경우와 마찬가지로 되어 있다.
이어서, 목표 회전수 보정값 연산부(43)의 연산 방법에 대하여 설명한다.
배터리(34)의 실제의 충방전량, 즉 실충방전값은 충방전 요구 연산부(41A)가 출력하는 충방전 요구량(전력)에 대한, 전동 발전기(31)의 인버터(32)로부터의 출력(충방전량)으로부터 추정할 수 있다. 배터리 컨트롤러(35)에 있어서도, 배터리(34)의 충방전량을 연산하고 있다. 이로 인해, 목표 회전수 보정값 연산부(43)는 충방전 요구 연산부(41A)에서 연산되는 충방전 요구량에 대한, 인버터(32)로부터 출력되는 충방전량 또는 배터리 컨트롤러(35)로 연산된 충방전량의 어느 것을 사용하여, 충방전 요구량과, 실제의 충방전량의 차를 연산하고, 그 차의 크기에 따라, 전동 발전기(31)의 보정 회전수, 즉 목표 회전수 보정값을 연산한다.
구체적으로, 목표 회전수 보정값 연산부(43)는 PI 제어부(43A)와, 회전수 레이트 리미터부(43B)와, 회전수 리미터부(43C)를 구비한다. PI 제어부(43A)는 보정 회전수의 연산으로서 소정의 게인에 기초하여 PI(비례ㆍ적분) 제어를 사용하여, 충방전 요구량과 실제의 충방전량의 차분을 연산하고 나서, 이 차분에 따른 PI 제어를 행한다. PI 제어부(43A)는 충방전 요구량과 실제의 충방전량이 일치하도록, 전동 발전기(31)의 목표 회전수 보정값을 연산한다. 그리고, PI 제어부(43A)는 연산한 차분이 정(+)일 때는, 그 차분의 크기에 따른 부의 목표 회전수 보정값을 산출하고, 그 차분이 부(-)일 때는, 그 차분의 크기에 따른 정의 목표 회전수 보정값을 연산한다.
회전수 레이트 리미터부(43B)는 PI 제어부(43A)에서 연산한 목표 회전수 보정값에 대하여, 이 목표 회전수 보정값을 얻기 전에 연산한 목표 회전수 보정값의 변화율이, 미리 정한 소정의 상한값 또는 하한값을 초과하는 경우에, 회전수 레이트 리미터 처리를 행하여, 얻어진 목표 회전수 보정값의 변화율을 제한하고, 그 상한값 또는 하한값에 상당하는 목표 회전수 보정값으로 한다.
회전수 리미터부(43C)는 회전수 레이트 리미터부(43B)에서 회전수 레이트 리미터 처리가 실시된 후의 목표 회전수 보정값이, 미리 정한 상한값 또는 하한값(부의 목표 회전 보정값의 상한값)을 초과하는 경우에, 그 목표 회전수 보정값을 상한값 또는 하한값으로 하는 리미터 처리를 행한다. 회전수 리미터부(43C)에서 리미터 처리하는 상한값 및 하한값은 엔진(15), 유압 펌프(21) 및 전동 발전기(31)가 허용하는 최대 회전수의 최솟값으로부터 정해진다. 목표 회전수 연산부(41B)에서는 목표 회전수 보정값 연산부(43)에서 연산된 목표 회전수 보정값을, 목표 회전수 기준값 연산부(42)에서 연산된 목표 회전수 기준값에 더하고, 이 값을 목표 회전수 명령값으로서 인버터(32)로 출력한다. 인버터(32)는 목표 회전수 연산부(41B)에서 연산된 목표 회전수 명령값에 기초하여 전동 발전기(31)의 구동을 제어하고, 전동 발전기(31)의 실제의 회전수를 목표 회전수 명령값에 일치시키는 제어를 행한다.
이어서, 회전수 리미터부(43C)에서 리미터 처리하는 상한값 또는 하한값의 설정 방법에 대하여, 도 4를 참조하여 설명한다.
도 4에 도시한 바와 같이, 목표 회전수 설정부(36)에서 설정된 드룹 특성선을 D로 하고, 엔진(15)의 실제의 드룹 특성선을 Dp로 한 경우에, 충방전 요구 연산부(41A)로부터의 충전 요구량이 Pr일 때는, 목표 엔진 동력 Pe1(=Pp+Pr)에 따르는 등동력선 T1과 드룹 특성선 D의 교점 E1인 회전수 Na1*이 목표 회전수 기준값(제1 목표 회전수)으로서 연산된다. 실제로는, 목표 엔진 동력 Pe1에 따르는 등동력선 T1과 드룹 특성선 Dp의 교점, 즉 토크 E1p로 엔진(15)이 운전되지만, 목표 엔진 동력 Pe1이 부하 동력 Pp보다 크기 때문에, 전동 발전기(31)에 의한 배터리(34)의 충전이 행해지고, 충방전 요구 연산부(41A)로부터의 충전 요구에 따를 수 있다.
그런데, 충방전 요구 연산부(41A)로부터의 방전 요구량이 Pa일 때는, 목표 엔진 동력 Pe2(=Pp-Pa)에 따르는 등동력선 T2와 드룹 특성선 Dp의 교점의 회전수(도시하지 않음)까지, 목표 회전수 기준값을 보정하려고 하면, 도 4에 도시한 바와 같이, 전동 발전기(31)의 회전수가 지나치게 높아질 우려가 있다. 그래서, 회전수 리미터부(43C)에서, 목표 회전수 보정값의 상한값 및 하한값을 설정하고, 목표 회전수 연산부(41B)에서 연산되는 목표 회전수 명령값이, 미리 정한 소정의 회전수, 즉 NaL*을 초과하지 않도록 회전수 리미터 처리를 행한다.
이어서, 상기 제1 실시 형태에 관한 액추에이터 구동 제어 시스템(17)의 연산 처리에 대하여, 도 5를 참조하여 설명한다.
먼저, 배터리 컨트롤러(35)에서 배터리(34)의 축전 잔량이 연산된다(스텝 1, 이후 「S1」이라고 나타냄). 그리고, 배터리 컨트롤러(35)에서 연산한 축전 잔량의 정보가 충방전 요구 연산부(41A)에 출력되고, 이 축전 잔량에 따른 충방전 요구량이 충방전 요구 연산부(41A)에서 연산된다(S2).
계속해서, 목표 회전수 설정부(36)에서 설정된 목표 회전수가, 목표 회전수 기준값 연산부(42)에 판독되고(S3), 이 판독된 목표 회전수와 같은 값의 회전수가 목표 회전수 기준값 연산부(42)에서 목표 회전수 기준값과 연산되어 출력된다(S4).
상기 S3 및 S4와 병행하여, 인버터(32)를 통해, 배터리(34)의 실제의 충방전량이 목표 회전수 보정값 연산부(43)에 판독됨과 함께, 충방전 요구 연산부(41A)에서 연산된 충방전 요구량이 목표 회전수 보정값 연산부(43)에 판독된다(S5). 그리고, 이것들 충방전 요구량과 실제의 충방전량의 차분이 연산되고, 이 차분에 따른 PI 제어가 PI 제어부(43A)에서 행해져 목표 회전수 보정값이 연산된다(S6).
계속해서, 상기 S6에서 얻어진 목표 회전수 보정값에 대하여, 회전수 레이트 리미터부(43B)에서 변화율의 제한이 행해진다(S7). 이 S7에서 변화율을 제한한 목표 회전수 보정값에 대하여, 회전수 리미터부(43C)에서 상한값 및 하한값의 제한이 행해진다(S8).
이후, 상기 S4에서 얻어진 목표 회전수 기준값과, 상기 S8에서 얻어진 목표 회전수 보정값을 가산하는 연산이 행해지고, 인버터(32)로 출력하는 목표 회전수 명령값이 된다(S9).
이와 같이 구성한 본 발명의 제1 실시 형태에 의하면, 목표 회전수 기준값 연산부(42)가 고장나거나 하여, 목표 회전수 기준값 연산부(42)에서 연산된 목표 회전수 기준값이, 유압 펌프(21)의 부하 동력에 적합한 엔진 동력에 상당하는 회전수로부터 괴리되는 경우라도, 목표 회전수 보정값 연산부(43)에서 연산된 목표 회전수 보정값을 사용하여 목표 회전수 기준값을 피드백 제어함으로써, 엔진 동력을 부하 동력에 일치시키는 목표 회전수 명령값에 보정하는 협조 제어를 실현할 수 있다. 또한, 목표 회전수 보정값 연산부(43)에 있어서는, 엔진(15)에 대한 드룹 제어와는 관계없이, 전동 발전기(31)의 목표 회전수 보정값을 연산하는 구성으로 하고 있기 때문에, 엔진(15)의 동작 제어가 드룹 특성으로부터 괴리되는 경우라도, 견고한 제어를 실현할 수 있다.
즉, 엔진(15)의 토크가 드룹 특성으로부터 괴리된 경우라도, 충방전 요구 연산부(41A)에서 연산한 충방전 요구값과, 배터리 컨트롤러(35) 또는 인버터(32)에서 연산한 배터리(34)의 실제의 충방전값의 차로부터, 목표 회전수 연산부(41B)의 목표 회전수 보정값 연산부(43)에서 목표 회전수 보정값을 산출하고, 전동 발전기(31)의 목표 회전수 명령값을 피드백 제어하여 보정하고 있기 때문에, 배터리(34)의 축전 잔량을 적절한 범위로 유지할 수 있다. 따라서, 배터리(34)의 축전 잔량의 적절한 관리가 가능해지고, 배터리(34)의 축전 잔량의 저하가 진행된 경우에 발생할 수 있는 작업성의 저하를 방지할 수 있기 때문에, 유압 셔블(1)의 충분한 작업성을 확보할 수 있다.
또한, 목표 회전수 보정값 연산부(43)에 있어서는, 충방전 요구량과 실제의 충방전량이 일치하도록 PI 제어부(43A)에서 PI 제어를 행하여 목표 회전수 보정값을 연산한 후에, 이 연산한 목표 회전수 보정값을 회전수 레이트 리미터부(43B)에서 회전수 레이트 리미터 처리하는 구성으로 하고 있다. 이 결과, 목표 회전수 보정값 연산부(43)로부터 출력되는 목표 회전수 보정값의 급변을 억제할 수 있고, 전동 발전기(31)의 목표 회전수 명령값의 급변을 방지할 수 있기 때문에, 엔진(15)의 회전수의 급변을 방지할 수 있고, 엔진(15)의 구동 변화를 점차 행할 수 있다. 따라서, 전동 발전기(31)의 구동의 급변에 수반하는, 엔진 동력의 급격한 속도 변화를 억제할 수 있다. 특히, 드룹 특성에 따라 제어되는 엔진(15)에 있어서는, 엔진 토크의 급변을 방지할 수 있기 때문에, 엔진(15)의 연비 악화, 환경 부하를 갖는 배기 가스나 소음의 증가를 억제할 수 있다.
또한, 회전수 레이트 리미터부(43B)에서 회전수 레이트 리미터 처리한 후의 목표 회전수 보정값이, 미리 정한 상한값 또는 하한값을 초과하는 경우에, 회전수 리미터부(43C)에서 리미터 처리하는 구성으로 하고 있다. 따라서, 작업에 수반하는 유압 펌프(21)의 부하의 변동이 큰 유압 셔블(1)에 있어서도, 목표 회전수 보정값의 상한값 및 하한값, 즉 절대량의 제한을 설정하고, 목표 회전수 보정값의 변화를 억제함으로써, 전동 발전기(31)의 회전수의 큰 변동을 억제할 수 있고, 엔진(15)의 구동 변화를 억제할 수 있기 때문에, 엔진(15)의 과회전을 방지할 수 있다.
따라서, 충방전 요구 연산부(41A)로부터의 방전 요구에 따르지 않지만, 전동 발전기(31)의 회전수의 과도한 증대를 방지할 수 있고, 엔진(15)의 구동 변화 시에 발생하는 배기 가스의 증대를 억제할 수 있음과 함께, 과대한 목표 회전수 보정값에 의한, 오버랩이나 러그 다운의 발생을 방지할 수 있다. 따라서, 엔진(15), 유압 펌프(21) 및 전동 발전기(31) 등의 구동계의 손상을 방지할 수 있고, 이것들 구동계의 내구성을 향상시킬 수 있다. 또한, 회전수 리미터부(43C)에 의해 목표 회전수 보정값의 제한을 행함으로써, 목표 회전수 기준값 연산부(42)에 의한 피드 포워드적인 목표 회전수 기준값의 연산의 간섭을 억제할 수도 있다.
[제2 실시 형태]
본 발명의 제2 실시 형태가 전술한 제1 실시 형태와 다른 것은, 제1 실시 형태는, 도 3에 도시한 바와 같이 목표 회전수 설정부(36)에서 설정한 목표 회전수를 목표 회전수 기준값으로 하여 연산하는 목표 회전수 기준값 연산부(42)에 대하여, 제2 실시 형태는, 도 6에 도시한 바와 같이 엔진(15)의 드룹 특성에 따른 목표 회전수 기준값을 연산하는 목표 회전수 기준값 연산부(42a)로 한 것이다.
차체 컨트롤러(41)는 유압 펌프(21)의 펌프 동력, 즉 부하 동력을 연산하기 위한 부하 동력 연산부(41C)와, 이 연산된 부하 동력값과 충방전 요구 연산부(41A)에서 연산된 충방전 요구값에 기초하여 목표 엔진 동력을 연산하는 목표 엔진 동력 연산부(41D)를 구비한다.
부하 동력 연산부(41C)는 토출압 센서(40)에서 검출된 유압 펌프(21)로부터의 압유의 토출압과, 압력 센서(39A, 39B)에서 검출된 조작 레버 장치(24A, 24B)의 조작량으로부터 추정되는 작동유의 압력에 기초하여, 유압 펌프(21)의 출력을 연산한다. 부하 동력 연산부(41C)는 유압 펌프(21)의 토출압 및 토출 유량에 대응하는 작동유 효율 또는 압력 손실로부터 유압 펌프(21)의 출력을 보정하고, 유압 펌프(21)의 흡수 동력을 연산하고, 이 흡수 동력을, 엔진축에서의 부하 동력으로 하여 연산한다.
목표 엔진 동력 연산부(41D)는 부하 동력 연산부(41C)에서 연산된 부하 동력값과, 충방전 요구 연산부(41A)에서 연산된 충방전 요구량에 상당하는 동력값의 차로부터 목표 엔진 동력을 연산한다. 따라서, 목표 엔진 동력은 부하 동력이 작고 방전 요구가 커지면 부가 되는 경우가 있고, 부하 동력 및 충전 요구의 각각이 커지면 엔진(15)의 최대 출력을 초과하는 경우도 있다.
이어서, 목표 회전수 기준값 연산부(42a)의 연산 방법에 대하여 설명한다.
목표 회전수 기준값 연산부(42a)는 동력 레이트 리미터부(42A)와, 드룹 참조부(42B)를 구비한다. 동력 레이트 리미터부(42A)는 목표 엔진 동력 연산부(41D)에서 연산된 목표 엔진 동력의, 이 목표 엔진 동력을 연산하기 전에 연산한 목표 엔진 동력에 대한 변화율이, 미리 정한 소정의 변화율의 상한값 또는 하한값을 초과하는 경우에, 그 상한값 또는 하한값으로 제한하는 동력 레이트 리미터 처리를 행하여, 연산한 목표 엔진 동력의 변화율을 제한한다. 즉, 동력 레이트 리미터부(42A)는 목표 엔진 동력의 변화율에 대한 상한값 또는 하한값을 갖고 있고, 이 상한값 또는 하한값에 기초하여 목표 엔진 동력의 변화율을 평준화하고, 엔진 토크의 급변에 수반하는 연비의 악화나, 환경 부하를 갖는 배기 가스의 증대를 억제한다. 드룹 참조부(42B)는 동력 레이트 리미터부(42A)에서 평준화된 목표 엔진 동력에 기초하여, 도 7에 도시하는 엔진(15)의 드룹 특성을 참조하여 목표 회전수 기준값(제1 목표 회전수)을 연산한다.
목표 회전수 연산부(41B)는 목표 회전수 보정값 연산부(43)에서 연산된 보정 회전수와, 목표 회전수 기준값 연산부(42a)에서 연산된 제1 목표 회전수를 가산하고, 제2 또는 제3 목표 회전수를 연산한다. 이것들 제2 또는 제3 목표 회전수는 상기 제1 실시 형태에 있어서의 목표 회전수 명령값이고, 보정 회전수가 정인 경우를, 제2 목표 회전수로 하고, 보정 회전수가 부인 경우를, 제3 목표 회전수로 한다. 또한, 제2 목표 회전수가 되는 경우는, 충방전 요구량과 실제의 충방전량이 일치하지 않는 경우에 있어서도, 목표 회전수 보정값 연산부(43)의 회전수 리미터부(43C)에서, 보정 회전수의 크기에 상한값 또는 하한값을 설정하고, 제2 목표 회전수의 급격한 상승을 억제한다.
이어서, 드룹 참조부(42B)의 연산 방법에 대하여, 도 7을 참조하여 설명한다.
엔진(15)은 도 7의 (a)에 도시한 바와 같이, 회전수의 저하에 따라 토크가 증가하는 드룹 특성에 따라 구동 제어된다. 도 7의 (a)는 회전수 N1에서 토크가 최대인 최대 토크 P1이 되고, 작업 내용 등에 따라 오퍼레이터가 목표 회전수 설정부(36)를 조작함으로써, 최대 토크 P1을 부여하는 회전수를 조정할 수 있고, 도 7의 (a) 중의 드룹 특성선 A를 회전수 방향으로 이동시키는 것에 대응한다. 예를 들어, 도 7의 (a)에 도시하는 드룹 특성선 A가 선택되어 있는 상태에서, 엔진(15)이 회전수 N1에서 최대 토크 P1을 발생하고, 회전수 N0에서는 아이들 상태에서 회전수를 유지하기 위한 토크 P0을 발생한다. 또한, 회전수 N0은 엔진(15)의 무부하 시의 회전수를 초과하는 값이 아니다.
목표 회전수 기준값은 목표 엔진 동력에 대응하는 회전수이기 때문에, 도 7의 (b)에 도시한 바와 같이, 목표 엔진 동력이 P0으로부터 P1까지 증가하는 경우에, 목표 회전수는 도 7의 (a)에 도시하는 드룹 특성선 A에 따라, N0으로부터 N1로 감소한다. 목표 엔진 동력이 P0보다 작은 경우, 목표 회전수는 N0을 상한으로 한다. 목표 엔진 동력이 P1보다 큰 경우는, 선택된 드룹 특성선 A에 있어서 P1이 최대 토크이기 때문에, 목표 회전수는 N1을 하한으로 한다.
따라서, 드룹 참조부(42B)에서는, 도 7의 (b)에 도시하는 목표 엔진 동력과 목표 회전수의 관계를 나타내는 맵을 사용하여, 목표 엔진 동력으로부터 목표 회전수를 산출하고, 이 산출한 목표 회전수를 목표 회전수 기준값으로 하여 연산한다.
또한, 목표 회전수 기준값 연산부(42a)는 회전수와 토크의 관계로부터, 도 8에 도시한 바와 같이, 목표 회전수 설정부(36)에서 설정한 드룹 특성선을 D로 하고, 유압 펌프(21)의 부하 동력을 Pp로 한 경우에, 충방전 요구량이 0일 때는, 목표 엔진 동력을 부하 동력 Pp로 하고, 드룹 특성선 D와 부하 동력 Pp에 따르는 등동력선 Tp의 교점의 회전수 Na3*을 목표 회전수 기준값으로 함으로써, 엔진(15)이 부하 동력을 발생하고, 전동 발전기(31)가 발생하는 동력(전력)이 0이 되기 때문에, 실제의 충방전량이, 충방전 요구 연산부(41A)에서 연산된 충방전 요구량과 같이 된다.
또한, 목표 회전수 기준값 연산부(42a)는 충전 요구량이 Pr인 경우, 목표 엔진 동력을 Pp로부터 「-Pr」을 감산한 Pe1(=Pp+Pr)로 하고, Pe1에 따르는 등동력선 T1과 드룹 특성선 D의 교점의 회전수 Na1*을 목표 회전수 기준값으로 한다. 이에 비해, 방전 요구량이 Pa인 경우는, 목표 엔진 동력을 Pp로부터 「+Pa」를 감산한 Pe2(=Pp-Pa)로 하고, Pe2에 따르는 등동력선 T2와 드룹 특성선 D의 교점의 회전수 Na2*을 목표 회전수 기준값으로 한다. 이 결과, 드룹 특성선 D에 따른 엔진 토크를 발생하기 위해, 충방전 요구 연산부(41A)에서 연산된 충방전 요구량과, 실제의 충방전량을 일치시킬 수 있다.
이어서, 상기 제2 실시 형태에 관한 액추에이터 구동 제어 시스템(17)의 연산 처리에 대하여, 도 9를 참조하여 설명한다.
먼저, 배터리 컨트롤러(35)의 축전 잔량 연산부에서 배터리(34)의 축전 잔량이 연산되고(S1), 이 축전 잔량에 따른 충방전 요구량이 충방전 요구 연산부(41A)에서 연산된다(S2). 그리고, 이것들 S1 및 S2와 병렬하고, 유압 펌프(21)의 부하 동력이 부하 동력 연산부(41C)에서 연산된다(S11).
계속해서, 상기 S11에서 연산된 부하 동력과, 상기 S2에서 연산된 충방전 요구량의 차가, 목표 엔진 동력 연산부(41D)에서 목표 엔진 동력으로서 연산된다(S12). 이 연산된 목표 엔진 동력에 대하여, 동력 레이트 리미터부(42A)에서 변화율의 제한이 행해진다(S13).
또한, 목표 회전수 설정부(36)에서 설정된 목표 회전수가, 목표 회전수 기준값 연산부(42a)에 판독되고(S3), 이 판독된 목표 회전수로 결정되는 드룹 특성에 기초하여, 상기 S13에서 제한을 가한 후의 목표 엔진 동력을 출력할 수 있는 회전수를 드룹 참조부(42B)에서 목표 회전수 기준값으로 하여 연산된다(S14).
상기 S12, S13, S3 및 S14와 병행하여, 배터리(34)의 실제의 충방전량이 목표 회전수 보정값 연산부(43)에 판독됨과 함께, 충방전 요구 연산부(41A)에서 연산된 충방전 요구량이 목표 회전수 보정값 연산부(43)에 판독된다(S5). 그리고, 이것들 충방전 요구량과 실제의 충방전량의 차분에 따른 PI 제어가 PI 제어부(43A)에서 행해지고(S6), 회전수 레이트 리미터부(43B)에 의한 변화율의 제한이 행해지고(S7), 회전수 리미터부(43C)에 의한 상한값 및 하한값의 제한이 행해져 목표 회전수 보정값이 연산된다(S8).
이후, 상기 S14에서 얻어진 목표 회전수 기준값과, 상기 S8에서 얻어진 목표 회전수 보정값을 가산하는 연산이 행해지고, 목표 회전수 명령값이 된다(S9).
이어서, 부하 동력 연산부(41C)에서 부하 동력이 정확하게 연산되지 않은 경우의 목표 회전수 기준값 연산부(42a)의 동작을, 회전수와 토크의 관계로부터, 도 10에 기초하여 설명한다.
도 8에 도시한 경우와 마찬가지로, 목표 회전수 설정부(36)에서 설정한 드룹 특성선을 D로 하고, 목표 엔진 동력이 부하 동력 Pp인 경우를 상정한다. 이 경우에, 충방전 요구 연산부(41A)로부터의 충방전 요구가 0이고, 부하 동력 연산부(41C)에서 부하 동력이 Pph(>Pp)로 실제의 부하 동력 Pp보다 크게 연산되었을 때는, 드룹 특성선 D와 부하 동력 Pph의 교점의 회전수 Na4*이 목표 회전수 기준값으로서 목표 회전수 기준값 연산부(42a)에서 연산된다.
이 결과, 엔진(15)은 부하 동력 Pph의 동력을 발생하도록 구동하기 위해, 이때의 부하 동력 Pph와 실제의 부하 동력 Pp의 차분, 즉 「Pph-Pp」의 동력에 의해, 전동 발전기(31)가 발전기로서 구동되고, 이 전동 발전기(31)가 발전한 전력이 배터리(34)에 공급되어 충전된다. 이 상태가 계속되면, 배터리(34)의 충전이 계속해서 행해지기 때문에, 배터리 컨트롤러(35)의 축전 잔량 연산부에서 연산되는 배터리(34)의 축전 잔량이 높아져 간다. 배터리(34)의 축전 잔량이 소정값 이상이 되면, 충방전 요구 연산부(41A)로부터 방전 요구가 출력된다. 그러면, 목표 엔진 동력 연산부(41D)의 출력이, 부하 동력 Pph보다도 작은 값이 되고, 이 작은 값이 된 부하 동력에 기초하여 목표 회전수 기준값이 목표 회전수 기준값 연산부(42a)에서 연산된다. 따라서, 이 동작이 반복됨으로써, 엔진 동력의 목표값이, 점차 실제의 부하 동력 Pp로 수렴해 간다.
이에 비해, 충방전 요구량이 0이고, 부하 동력 연산부(41C)에서 부하 동력이 Ppl(<Ph)로 실제의 부하 동력 Pp보다 작게 연산되었을 때는, 드룹 특성선 D와 부하 동력 Ppl의 교점의 회전수 Na5*이 목표 회전수 기준값으로서 목표 회전수 기준값 연산부(42a)에서 연산된다. 그러면, 엔진(15)은 부하 동력 Ppl 이상의 동력을 출력할 수 없기 때문에, 실제의 부하 동력 Pp와 부하 동력 Ppl의 차분, 즉 「Pp-Ppl」의 동력을, 전동 발전기(31)가 모터로서 구동하여 어시스트하고, 전동 발전기(31)의 구동에 필요한 전력이 배터리(34)로부터 출력되어 방전된다.
이 상태가 계속하면, 배터리(34)의 방전이 계속해서 행해지기 때문에, 배터리 컨트롤러(35)의 축전 잔량 연산부에서 연산되는 배터리(34)의 축전 잔량이 낮아져 간다. 배터리(34)의 축전 잔량이 소정값보다 낮아지면, 충방전 요구 연산부(41A)로부터 충전 요구가 출력된다. 그러면, 목표 엔진 동력 연산부(41D)의 출력이, 부하 동력 Ppl보다도 큰 값이 되고, 이 큰 값이 된 부하 동력에 기초하여 목표 회전수 기준값이 목표 회전수 기준값 연산부(42a)에서 연산된다. 따라서, 이 동작이 반복됨으로써, 엔진 동력의 목표값이, 점차 실제의 부하 동력 Pp로 수렴해 간다.
이상의 결과, 목표 엔진 동력 연산부(41D)에서 연산되는 배터리(34)의 충방전 요구를 활용하여, 목표 회전수 기준값 연산부(42a)에서 엔진(15)의 목표 회전수 기준값을 연산하고, 그 목표 회전수 기준값을 목표 회전수 명령값으로 하여 인버터(32)에서 전동 발전기(31)의 구동을 제어함으로써, 목표 회전수 기준값을 적절한 값으로 보정할 수 있다.
또한, 상술한 목표 회전수 보정값 연산부(43)에 의한 목표 회전수 명령값의 보정에 의해, 목표 엔진 동력 연산부(41D) 및 목표 회전수 기준값 연산부(42a)에 의한 목표 회전수 명령값의 수렴 처리를 보다 조기에 실현할 수 있다.
즉, 도 10에 도시한 상태에 있어서, 충방전 요구 연산부(41A)로부터의 충방전 요구량이 0이고, 부하 동력 연산부(41C)에서 부하 동력이 Pph로 연산된 경우에, 목표 회전수 보정값 연산부(43)에서 목표 회전수 보정값이 0이라고 연산되면, 목표 회전수 기준값이 Na4*이 되고, 전동 발전기(31)가 「Pph-Pp」의 동력으로 발전기로서 구동되어 배터리(34)의 충전을 행한다. 따라서, 전동 발전기(31)의 실제의 충방전량은 「-(Pph-Pp)」가 된다.
이때, 충방전 요구가 0이고, 실제의 충방전량 「-(Pph-Pp)」를 뺀 값, 즉 「Pph-Pp」(>0)에 비례하는 목표 회전수 보정값이 목표 회전수 보정값 연산부(43)에서 연산되어 출력되기 때문에, 목표 회전수 명령값은 Na4*보다도 큰 값이 된다. 따라서, 목표 회전수 보정값 연산부(43)에서 연산된 목표 회전수 보정값을, 목표 회전수 기준값 연산부(42a)에서 연산된 목표 회전수 기준값에 대하여, 피드백 제어함으로써, 목표 회전수 명령값이 보정되기 때문에, 엔진 동력의 목표값을, 보다 조기에 실제의 부하 동력 Pp로 수렴시킬 수 있다.
이 결과, 도 10에 도시한 바와 같이, 부하 동력 연산부(41C)에서 부하 동력이 실제의 부하 동력 Pp보다 크게(Pph), 또는 작게(Ppl) 연산된 경우의 각각에 있어서, 목표 회전수 보정값 연산부(43)에 의한 보정 처리를 사용함으로써, 목표 회전수 연산부(41B)로부터 출력되는 목표 회전수 명령값을, 보다 조기에 보정할 수 있다. 따라서, 엔진 동력의 목표값을, 보다 신속하게 실제의 부하 동력 Pp에 수렴할 수 있기 때문에, 엔진(15)의 동력 추정 오차에 기인한 불필요한 배터리(34)의 충방전을, 보다 적절하고 또한 효과적으로 방지할 수 있다.
이어서, 엔진 최대 토크에 상당하는 엔진 최대 출력보다도, 부하 동력 연산부(41C)에서 연산되는 부하 동력 Pp가 큰 경우의, 목표 회전수 기준값 연산부(42a)의 연산 방법에 대하여, 도 11을 참조하여 설명한다.
도 11에 도시한 바와 같이, 목표 회전수 설정부(36)에서 설정된 드룹 특성선을 D로 하고, 충방전 요구 연산부(41A)로부터의 충방전 요구량이 0인 경우는, 도 9에 도시한 경우와 마찬가지로, 목표 엔진 동력이 부하 동력 Pp가 되지만, 부하 동력 Pp가, 엔진 최대 출력을 초과하는 동력이기 때문에, 목표 회전수 기준값은 엔진 최대 토크를 발생시키는 것이 가능한 Na1*이 된다. 이때, 엔진(15)의 동력으로는 부족한 동력을, 전동 발전기(31)가 부담하여 엔진(15)의 구동을 어시스트하고, 제1 목표 회전수 Na1*을 실현한다. 따라서, 이 경우에는 충방전 요구 연산부(41A)로부터의 충방전 요구량이 0이라도, 배터리(34)의 방전이 이루어져 전동 발전기(31)에 의한 엔진(15)의 어시스트가 행해진다.
한편, 충방전 요구 연산부(41A)로부터의 충전 요구량이 Pr인 경우도, 목표 엔진 동력 Pe1(=Pp+Pr)이 엔진 최대 출력을 초과하고 있기 때문에, 목표 회전수 기준값이 Na1*이 되고, 엔진(15)의 구동을, 전동 발전기(31)에서 동력 Ma분의 어시스트가 행해진다.
또한, 충방전 요구 연산부(41A)로부터의 방전 요구량이 Pa인 경우는, 목표 엔진 동력 Pe2(=Pp-Pa)가 엔진 최대 출력을 초과하지 않기 때문에, 도 9에 도시한 경우와 마찬가지로, Pe2가 목표 엔진 동력이 되고, 이 목표 엔진 동력 Pe2에 따르는 등동력선 T2와 드룹 특성선 D의 교점의 회전수 Na2*이 목표 회전수 기준값으로서 연산된다.
이어서, 엔진(15)의 드룹 특성이 변동된 경우에 있어서의, 목표 회전수 연산부(41B)의 연산 방법에 대하여, 도 12를 참조하여 설명한다.
도 12에 도시한 바와 같이, 목표 회전수 설정부(36)에서 설정되고 드룹 참조부(42B)에서 참조하는 이상적인 드룹 특성선을 D로 한 경우에, 엔진(15)의 운전 시의 환경 등에 의해, 드룹 특성선이 D로부터 Dp 혹은 Dm으로 변화된 것으로 한다. 드룹 특성선 Dp에서는 이상적인 드룹 특성선 D에 비해, 동일한 엔진 회전수로 보다 큰 엔진 토크를 얻을 수 있고, 드룹 특성선 Dm에서는 드룹 특성선 D에 비해, 동일한 엔진 회전수로 보다 작은 엔진 토크가 된다.
이 상태에서, 부하 동력이 Pp이고 충전 요구량이 Pr인 경우는, 도 12에 도시한 바와 같이, 목표 엔진 동력이 Pe1(=Pp+Pr)이 된다. 그리고, 목표 회전수 기준값 연산부(42a)에서 연산되는 드룹 특성선 D와, 목표 엔진 동력 Pe1에 따르는 등동력선 T1의 교점의 회전수 Na1*이 목표 회전수 명령값(제1 목표 회전수)이 되고, 이 목표 회전수 명령값으로 인버터(32)를 통해 전동 발전기(31)를 제어함으로써, 엔진(15)은 토크 E1로 구동(운전)된다.
그런데, 실제의 드룹 특성선이 Dp였던 경우에는, 엔진(15)은 목표 회전수 Na1*에 상당하는 토크 E1H로 운전되게 되고, 상기 목표 엔진 동력 Pe1보다 큰 동력을 발생시킨다. 따라서, 전동 발전기(31)는 충전 요구량 Pr을 초과하는 발전을 행하고, 배터리(34)가 과충전이 된다. 이 경우에는, 배터리(34)의 실제의 충전량이 충전 요구량보다 크기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 보정 회전수가 정인 값(정의 목표 회전수 보정값), 즉 충전 요구량을 억제하는 연산이 된다. 따라서, 이 연산에 의해, 목표 회전수 연산부(41B)의 출력은 목표 회전수 기준값 연산부(42a)에서 구한 목표 회전수 기준값 Na1*보다 큰 제2 목표 회전수가 된다.
따라서, 드룹 참조부(42B)에서 참조하는 드룹 특성선이 D로부터 Dp로 변화된 경우에, 엔진(15)은 토크 E1H보다 낮은, 토크 E1p로 운전되게 되고, 목표 엔진 동력 Pe1을 발생하고, 실제의 충전량을 충전 요구량 Pr에 일치시킬 수 있다.
마찬가지로, 부하 동력이 Pp이고 충전 요구량이 Pr인 경우에 있어서, 실제의 드룹 특성선이 Dm일 때는, 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na1*로 운전하면, 엔진 토크가 감소하여 토크 E1L이 되고, 충전 요구량 Pr에 대하여, 전동 발전기(31)는 발전기로서 기능하지 않고, 전동기로서 구동하고 엔진(15)의 어시스트를 행하여 제1 목표 회전수를 실현한다. 그런데, 이 경우에는, 실제의 충전량이 충전 요구량 Pr보다 작기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 보정 회전수가 정인 값(정의 목표 회전수 보정값), 즉 충전 요구량을 억제하는 연산이 된다. 따라서, 이 연산에 의해, 목표 회전수 연산부(41B)의 출력은 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na1*보다 큰 제2 목표 회전수가 된다.
이로 인해, 드룹 참조부(42B)에서 참조하는 드룹 특성선이 D로부터 Dm으로 변화된 경우에, 엔진(15)은 토크 E1L보다 높은, 토크 E1m으로 운전되게 되어, 목표 엔진 동력 Pe1을 발생하고, 실제의 충전량을 충전 요구량 Pr에 일치시킬 수 있다.
또한, 부하 동력이 Pp이고 방전 요구량이 Pa인 경우에 있어서, 실제의 드룹 특성선이 Dp일 때는, 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na2*로 운전하면, 엔진(15)의 토크가 E2H가 되고, 방전 요구량 Pa에 대하여, 전동 발전기(31)는 전동기로서 기능하지 않고, 발전기로서 구동되어 배터리(34)의 충전을 행한다. 이 경우에는, 실제의 방전량이 방전 요구량 Pa보다 작기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 정의 목표 회전수 보정값, 즉 방전 요구량을 높이는 연산이 된다. 따라서, 이 연산에 의해, 목표 회전수 연산부(41B)의 출력은 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na2*보다 큰 제2 목표 회전수가 된다.
따라서, 드룹 참조부(42B)에서 참조하는 드룹 특성선이 D로부터 Dp로 변화된 경우에, 엔진(15)은 토크 E2H보다 낮은, 토크 E2p로 운전되게 되어, 목표 엔진 동력 Pe2를 발생하고, 실제의 방전량을 방전 요구량 Pp에 일치시킬 수 있다.
또한, 부하 동력이 Pp이고 방전 요구량이 Pa인 경우에, 실제의 드룹 특성선이 Dm일 때는, 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na2*로 운전하면, 엔진(15)은 토크를 출력하지 않고, 엔진(15)이 전동 발전기(31)에 의해 회전되는 모터링 상태가 된다. 이 경우에는, 실제의 방전량이, 방전 요구량 Pa보다 크기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 보정 회전수가 부인 값(부의 목표 회전수 보정값), 즉 방전 요구량을 억제하는 연산이 된다. 따라서, 이 연산에 의해, 목표 회전수 연산부(41B)의 출력은 목표 회전수 기준값 연산부(42a)에서 구한 제1 목표 회전수 Na2*보다 작은 제3 목표 회전수가 된다.
이로 인해, 드룹 참조부(42B)에서 참조하는 드룹 특성선이 D로부터 Dm으로 변화된 경우에, 엔진(15)은 토크 E2m으로 운전되게 되어, 목표 엔진 동력 Pe2를 발생하고, 실제의 방전량을 방전 요구량 Pp에 일치시킬 수 있다.
또한, 부하 동력이 Pp이고 충방전 요구량이 0인 경우에, 실제의 드룹 특성선이 Dp일 때는, 엔진(15)은 부하 동력 Pp에 따르는 등동력선 Tp와 드룹 특성선 Dp의 교점, 즉 토크 E3p로 운전된다. 또한, 이 경우에, 실제의 드룹 특성선이 Dm일 때는, 엔진(15)은 부하 동력 Pp에 따르는 등동력선 Tp와 드룹 특성선 Dm의 교점, 즉 토크 E3m으로 운전된다. 따라서, 어떤 경우에 있어서도, 부하 동력 Pp에 따르는 등동력선 Tp와 드룹 특성선 D의 교점인 제1 목표 회전수 Na3*을 기준으로 하여, 제1 목표 회전수를 보정함으로써, 배터리(34)의 충방전 요구를 만족시킬 수 있다.
이어서, 압력 센서(39A, 39B) 및 토출압 센서(40)의 어느 것이 고장나거나 하여 이상이 발생한 경우의, 목표 회전수 연산부(41B)의 연산 방법에 대하여 설명한다.
압력 센서(39A, 39B) 및 토출압 센서(40)의 어느 것이 고장나거나 하여 이상이 발생한 경우는, 부하 동력 연산부(41C)에서의 부하 동력의 연산을 할 수 없게 되지만, 충방전 요구 연산부(41A)에서 연산되는 충방전 요구량을 사용하여, 목표 회전수 연산부(41B)에서 목표 회전수를 연산한다.
즉, 부하 동력이 증가한 경우는, 전동 발전기(31)의 목표 회전수가 즉시 변화되지 않기 때문에, 전동 발전기(31)를 역행시켜 엔진 토크를 일정하게 하고, 유압 펌프(21)의 회전수가 저하되지 않도록 제어한다. 이때, 충방전 요구 연산부(41A)로부터 충전 요구가 있으면, 전동 발전기(31)를 역행시켜 배터리(34)를 방전시키기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 보정 회전수가 감소하고, 제3 목표 회전수도 감소한다. 또한, 배터리(34)가 방전되어 있기 때문에, 배터리(34)의 축전 잔량이 점차 감소해 가고, 충방전 요구 연산부(41A)로부터의 충전 요구량이 증가해 가고, 목표 회전수 기준값 연산부(42a)에서 연산되는 제1 목표 회전수도 감소한다. 결과적으로, 엔진(15)의 회전수가 저하되고, 보다 큰 엔진 토크가 발생한다.
또한, 부하 동력이 감소한 경우도, 전동 발전기(31)의 목표 회전수가 즉시 변화되지 않기 때문에, 전동 발전기(31)를 회생시켜 엔진 토크를 일정하게 하고, 유압 펌프(21)의 회전수가 증가하지 않도록 제어한다. 이때, 충방전 요구 연산부(41A)로부터 충전 요구가 있으면, 전동 발전기(31)를 회생시켜 배터리(34)를 충전시키기 때문에, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 보정 회전수가 증가하고, 제3 목표 회전수도 증가한다. 또한, 배터리(34)를 충전하고 있기 때문에, 배터리(34)의 축전 잔량이 점차 증가해 가고, 충방전 요구 연산부(41A)로부터의 충전 요구량이 감소해 가고, 목표 회전수 기준값 연산부(42a)에서 연산되는 제1 목표 회전수도 증가한다. 결과적으로, 엔진(15)의 회전수가 증가하고, 엔진 토크가 억제된다.
이상에 의해, 부하 동력이 증가 및 감소하는 어떤 경우에, 부하 동력 연산부(41C)에서의 부하 동력의 연산을 할 수 없어도, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에 의한 PI 제어에 의해, 목표 엔진 동력 연산부(41D)에 의한 목표 엔진 동력의 연산을, 충방전 요구 연산부(41A)에서 연산되는 충방전 요구량으로 대용할 수 있고, 실제의 충방전량을, 충방전 요구 연산부(41A)로부터 출력되는 충방전 요구량에 일치시킬 수 있다.
따라서, 부하 동력에 따른 엔진 토크의 증감을 행할 수 있기 때문에, 부하 동력 연산부(41C)에서 연산한 부하 동력이 실제의 값으로부터 괴리되어 있는 경우라도, 엔진 동력을 적절하고 또한 빠르게 제어하는 것이 가능해진다. 이 결과, 유압 셔블(1)로서 거의 동일한 동작을 확보할 수 있고, 오퍼레이터에게 위화감을 부여하지 않고 조작성을 확보할 수 있기 때문에, 유압 셔블(1)의 작업성의 저하를 억제할 수 있다.
단, 배터리(34)의 충방전량이나 축전 잔량이 변화되어 가면, 전동 발전기(31)의 목표 회전수가 변화되기 때문에, 부하 동력 연산부(41C)에서 연산되는 부하 동력을 사용하는 경우에 비해, 배터리(34)의 충전 또는 방전의 전력량이나 그 빈도가 증가하는 경향이 되어, 엔진(15)의 연비를 저하시키거나, 배터리(34)의 수명을 저하시키거나 해 버릴 우려가 있다.
그래서, 압력 센서(39A, 39B) 및 토출압 센서(40)가 각각 정상적으로 기능하는 경우에는, 목표 엔진 동력 연산부(41D)에서, 부하 동력과 충방전 요구량의 합을 연산하고 피드 포워드적으로 연산하여 목표 엔진 동력으로 하고, 목표 회전수 보정값이 커지기 전부터, 엔진 동력을 적정한 동작점으로 제어한다. 즉, 목표 회전수 보정값 연산부(43)에서 연산되는 목표 회전수 보정값이 커지는 것은, 배터리(34)의 실제의 충방전량과 충방전 요구량의 괴리가 커졌을 때, 요컨대 배터리(34)로부터의 방전 또는 충전이 과대하게 되어 있는 경우이고, 배터리(34)의 수명은 충방전량과 상관 관계가 있다. 따라서, 압력 센서(39A, 39B) 및 토출압 센서(40)의 어느 것이 고장난 경우에 한하여, 충방전 요구량을 목표 엔진 동력으로 하도록 전환함으로써, 엔진(15)의 연비 저하나, 배터리(34)의 수명 저하를 가능한 한 방지할 수 있다.
[제3 실시 형태]
본 발명의 제3 실시 형태가 전술한 제2 실시 형태와 다른 것은, 제2 실시 형태는, 도 6에 도시한 바와 같이 부하 동력 연산부(41C)에서 연산된 부하 동력에 기초하여 목표 엔진 동력을 연산하는 목표 엔진 동력 연산부(41D)에 대해, 제3 실시 형태는, 도 13에 도시한 바와 같이 임의의 상수로부터 목표 엔진 동력을 연산하는 목표 엔진 동력 연산부(41Da)로 한 것이다.
목표 엔진 동력 연산부(41Da)에서 사용하는 상수는 상기 제2 실시 형태에 관한 부하 동력 연산부(41C)에서 연산되는 부하 동력의 대체 신호로서 사용하는 것이고, 이 부하 동력의 최솟값으로부터 최댓값까지의 범위로 설정되어 있다. 목표 엔진 동력 연산부(41Da)는 정상 상태에 있어서, 엔진 동력이 부하 동력의 실제의 값과 일치하도록 목표 회전수 명령값을 연산한다. 따라서, 본 제3 실시 형태에 있어서는, 부하 동력 연산부(41C)에서 연산되는 부하 동력 정보를 사용하지 않고, 목표 회전수 명령값을 연산할 수 있다. 따라서, 부하 동력 연산부(41C)에서 연산되는 부하 동력과, 실제의 부하 동력의 값(참값)이 괴리되는 경우라도, 목표 회전수 명령값을 연산할 수 있고, 엔진 동력을 적절하게 제어할 수 있다.
이어서, 상기 제3 실시 형태에 관한 액추에이터 구동 제어 시스템(17)의 연산 처리에 대하여, 도 14를 참조하여 설명한다.
먼저, 배터리(34)의 축전 잔량이 연산되고(S1), 이 축전 잔량에 따른 충방전 요구량이 연산된다(S2).
계속해서, 목표 엔진 동력 연산부(41Da)에서, 미리 정해진 상수를 판독하고(S21), 이 상수와, 상기 S2에서 연산된 충방전 요구량의 차로부터 목표 엔진 동력이 연산된다(S12). 그 후, 이 목표 엔진 동력에 대하여 변화율의 제한이 행해진다(S13).
또한, 목표 회전수 설정부(36)에서 설정된 목표 회전수가 판독되고(S3), 이 목표 회전수로 결정되는 드룹 특성에 기초하여 목표 회전수 기준값이 연산된다(S14).
상기 S21, S12, S13, S3 및 S14와 병행하여, 배터리(34)의 실제의 충방전량과, 상기 S2에서 연산한 충방전 요구량이 판독되고(S5), 이것들 충방전 요구량과 실제의 충방전량의 차분에 따른 PI 제어(S6), 변화율의 제한(S7), 상한값 및 하한값의 제한이 행해지고, 목표 회전수 보정값이 연산된다(S8).
이 후, 상기 S14에서 얻어진 목표 회전수 기준값과, 상기 S8에서 얻어진 목표 회전수 보정값을 가산하여 목표 회전수 명령값이 연산된다(S9).
여기서, 유압 셔블(1)은 도 15의 (a)에 도시한 바와 같이, 작업 중의 부하 동력이 시간과 함께 변화된다. 이로 인해, 목표 엔진 동력 연산부(41Da)에서 사용하는 상수를 일정한 값, 예를 들어 PC값으로 고정해 버리면, 부하 동력의 실제의 값(참값)으로부터 연산되는 목표 엔진 동력값과, 목표 엔진 동력 연산부(41Da)에서 연산되는 목표 엔진 동력값 사이에 괴리가 발생해 버린다.
즉, 충방전 요구 연산부(41A)로부터 출력되는 충방전 요구량이 0인 경우에는, 목표 엔진 동력 연산부(41Da)에서 연산되는 목표 엔진 동력이 상수 PC가 되기 때문에, 도 15의 (b)에 도시한 바와 같이, 부하 동력의 참값과 상수 PC의 차가 전동 발전기(31)로 출력되게 되고, 전동 발전기(31)로의 출력이 정인 경우는, 전동기로서 기능하여 배터리(34)의 방전이 행해지고, 전동 발전기(31)로의 출력이 부인 경우는, 발전기로서 기능하여 배터리(34)의 충전이 행해진다. 한편, 배터리(34)의 적절하게 사용 가능한 기간, 즉 수명은 배터리(34)의 충방전량에 상관 관계가 있기 때문에, 배터리(34)의 수명의 저하를 방지하기 위해서는, 부하 동력의 참값과, 엔진 동력의 차를 조기에 해소시키는 것이 바람직하다.
그리고, 엔진 동력을 부하 동력의 참값에 조기에 일치시키기 위해서는, 목표 회전수 보정값 연산부(43)에 의한 목표 회전수 보정값의 보정량을 보다 크게 할 필요가 있다. 이 보정량을 크게 하기 위해서는, (1) PI 제어부(43A)에서의 PI 제어 시의 게인을 높이는 것, (2) 회전수 레이트 리미터부(43B)에서의 변화율을 크게 하는 것, (3) 회전수 리미터부(43C)에서의 상한값 및 하한값을 크게 하는 것 중 적어도 어느 하나 이상을 행함으로써 실현할 수 있다.
그러나, 부하 동력 연산부(41C)에서 연산되는 부하 동력값을, 올바른 값으로서 이용할 수 있는 경우에, 상기와 같이 엔진 동력을 부하 동력의 참값에 조기에 일치시키는 처리를 행하면, 충방전 요구 연산부(41A)로부터 출력된 충방전 요구량에 기초하여 연산을 행하는 목표 회전수 기준값 연산부(42a)에 의한 피드 포워드의 작용과, 실제의 충방전량을 고려하여 연산을 행하는 목표 회전수 보정값 연산부(43)에 의한 피드백의 작용이 서로 간섭하고, 목표 회전수 기준값 연산부(42a)에서 연산한 목표 회전수 기준값을, 목표 회전수 보정값 연산부(43)에서 연산한 목표 회전수 보정값으로 보정한 목표 회전수 명령값이, 증감을 주기적으로 반복하는, 즉 진동과 같이 변화되는 경우가 있다.
따라서, 압력 센서(39A, 39B) 및 토출압 센서(40)의 어느 고장 등의 이상이 검지되지 않는 경우에는, 목표 회전수 보정값 연산부(43)의 PI 제어부(43A)에서의 PI 제어 시의 게인, 회전수 레이트 리미터부(43B)에서의 변화율, 회전수 리미터부(43C)에서의 상한값 및 하한값 모두 변화시키지 않고 통상의 설계값으로 하고, 이것들 압력 센서(39A, 39B) 및 토출압 센서(40)의 적어도 어느 하나의 고장 등의 이상이 검지된 경우에만, 목표 회전수 보정값 연산부(43)에 의한 목표 회전수 보정값의 보정량이, 이것들 압력 센서(39A, 39B) 및 토출압 센서(40)의 적어도 어느 하나의 고장 등의 이상이 검지되지 않는 경우보다도 커지도록, PI 제어부(43A)에서의 PI 제어 시의 게인을 높게 하거나, 회전수 레이트 리미터부(43B)에서의 변화율을 크게 하거나, 회전수 리미터부(43C)에서의 상한값 및 하한값을 크게 하거나 한다. 이 결과, 상술한 목표 회전수 명령값의 주기적인 변화를 방지할 수 있기 때문에, 배터리(34)의 수명 저하를 방지할 수 있다.
[기타]
또한, 본 발명은 전술한 실시 형태에 한정되는 것은 아니고, 다양한 변형 형태가 포함된다. 예를 들어, 전술한 실시 형태는 본 발명을 이해하기 쉽게 설명하기 위해 설명한 것이고, 본 발명은 설명한 모든 구성을 반드시 구비하는 것에 한정되는 것은 아니다.
상기 각 실시 형태에서는 유압 셔블(1)로 이루어지는 경우에 대하여 설명했지만, 이 경우에 한정되지 않고, 하이브리드 휠 로더, 크레인 등의 작업 기계여도 된다.
또한, 상기 제각 실시 형태에 있어서는, PI 제어부(43A), 회전수 레이트 리미터부(43B), 회전수 리미터부(43C)의 순으로 처리하는 목표 회전수 보정값 연산부(43)로 했지만, 회전수 레이트 리미터부(43B)와 회전수 리미터부(43C)의 순을 바꾸거나, 이것들 회전수 레이트 리미터부(43B) 및 회전수 리미터부(43C)를 적시 없애거나 해도 된다. 또한 마찬가지로, 상기 제2 및 제3 실시 형태에 있어서의, 목표 회전수 기준값 연산부(42a)의 동력 레이트 리미터부(42A)에 대해서도, 적시 없애도 된다.
또한, 상기 제2 실시 형태에 있어서, 드룹 참조부(42B)에서 참조하는 드룹 특성과, 실제의 엔진(15)의 드룹 특성의 괴리가 작은 경우에는, 드룹 특성선의 기울기를 (Nm/rpm)의 차원에서 나타낼 수 있기 때문에, 목표 회전수 기준값 연산부(42a)의 동력 레이트 리미터부(42A)에서의 목표 엔진 동력의 변화량(kW/S)과, 목표 회전수 보정값 연산부(43)의 회전수 레이트 리미터부(43B)에서의 변화량(rpm/s)의 물리적인 의미를 동일 정도로 설계할 수도 있다. 예를 들어, 드룹 특성의 기울기가 A(Nm/rpm)이고, 목표 회전수 설정부(36)에서 최대 토크를 부여하는 회전수가 N1(rpm)로 설정되어 있는 경우에는, 단위 변환을 위한 상수 C=1000×(60/2π)를 이용하고, 회전수 레이트 리미터부(43B)에 의한 상한값(설정값)=(동력 레이트 리미터부(42A)에 의한 상한값(설정값)/N1×C)/A를 사용하여 변환하여 행한다.
1 : 유압 셔블(작업 기계)
4 : 프론트 작업기(유압 작업 장치)
15 : 엔진
21 : 유압 펌프
24A, 24B : 조작 레버 장치(조작 장치)
31 : 전동 발전기
32 : 인버터(전동 발전기 제어부)
34 : 배터리(축전 장치)
35 : 배터리 컨트롤러(축전 잔량 연산부)
38 : 엔진 컨트롤러(컨트롤러)
39A, 39B : 압력 센서(조작량 검출 장치)
40 : 토출압 센서(토출압 검출 장치)
41 : 차체 컨트롤러(컨트롤러)
41A : 충방전 요구 연산부
41B : 목표 회전수 연산부
41C : 부하 동력 연산부
41D, 41Da : 목표 엔진 동력 연산부

Claims (8)

  1. 엔진과,
    상기 엔진으로 구동하는 유압 펌프와,
    상기 유압 펌프가 토출하는 압유로 구동하는 유압 작업부와,
    상기 유압 작업부를 조작하기 위한 조작 장치와,
    상기 조작 장치의 조작량을 검출하는 조작량 검출 장치와,
    상기 유압 펌프의 토출압을 검출하는 토출압 검출 장치와,
    상기 엔진과의 사이에서 토크의 전달을 행하는 전동 발전기와,
    상기 전동 발전기와의 사이에서 전력을 수수하는 축전 장치와,
    상기 엔진의 회전수의 저하에 대응하여 상기 엔진의 토크가 소정의 기울기로 증가하는 드룹 특성으로 상기 엔진을 동작시키는 컨트롤러를 구비하고,
    상기 컨트롤러는,
    상기 축전 장치의 축전 잔량을 연산하는 축전 잔량 연산부와,
    상기 축전 잔량 연산부에서 연산한 축전 잔량에 기초하여, 상기 축전 장치가 출력하는 전력을, 소정의 범위로 유지하기 위한 충방전 요구값을 연산하는 충방전 요구 연산부와,
    상기 전동 발전기의 목표 회전수 명령값을 연산하는 목표 회전수 연산부와,
    상기 목표 회전수 연산부에서 연산한 목표 회전수 명령값에 따라 상기 전동 발전기를 제어하는 전동 발전기 제어부와,
    상기 충방전 요구값에 기초하여, 상기 엔진의 목표 엔진 동력을 연산하는 목표 엔진 동력 연산부와,
    상기 엔진의 부하 동력값을 연산하는 부하 동력 연산부를 갖고,
    상기 축전 잔량 연산부 및 상기 전동 발전기 제어부의 적어도 한쪽은 상기 축전 장치의 실충방전값을 연산하고,
    상기 목표 회전수 연산부는 상기 충방전 요구값과, 상기 실충방전값의 차로부터 목표 회전수 보정값을 산출하여 상기 목표 회전수 명령값을 보정하는 동시에,
    상기 엔진의 회전수와 토크의 관계를 나타내는 드룹 특성선과, 상기 목표 엔진 동력을 따르는 등동력선의 교점의 회전수를, 상기 전동 발전기의 제1 목표 회전수로 하여 연산하고,
    실충전값이 충전 요구값보다 크거나, 혹은 실방전값이 방전 요구값보다 작은 경우에, 상기 제1 목표 회전수보다 큰 제2 목표 회전수를 상기 목표 회전수 명령값으로서 연산하고,
    상기 실충전값이 상기 충전 요구값보다 작거나, 혹은 상기 실방전값이 상기 방전 요구값보다 큰 경우에, 상기 제1 목표 회전수보다 작은 제3 목표 회전수를 상기 목표 회전수 명령값으로 하여 연산하고,
    상기 목표 엔진 동력 연산부는, 상기 충방전 요구값 및 상기 부하 동력값에 기초하여, 상기 목표 엔진 동력을 연산하는 동시에, 상기 토출압 검출 장치 및 상기 조작량 검출 장치의 적어도 한쪽의 검출값에 이상이 발생한 경우에, 상기 충방전 요구값에 기초하여, 상기 목표 엔진 동력을 연산하는
    것을 특징으로 하는 작업 기계.
  2. 제1항에 있어서, 상기 목표 회전수 연산부는 상기 목표 회전수 보정값의 변화율의 상한값을 갖고 있는
    것을 특징으로 하는 작업 기계.
  3. 제1항에 있어서, 상기 목표 회전수 연산부는 상기 목표 회전수 보정값의 상한값 및 하한값을 갖고 있는
    것을 특징으로 하는 작업 기계.
  4. 제1항에 있어서, 상기 목표 회전수 연산부는 상기 목표 엔진 동력의 변화율의 상한값을 갖고 있는
    것을 특징으로 하는 작업 기계.
  5. 제1항에 있어서, 상기 목표 회전수 연산부는 상기 토출압 검출 장치 및 상기 조작량 검출 장치의 적어도 한쪽의 검출값에 이상이 발생한 경우에, 상기 검출값에 이상이 발생하지 않은 경우보다도, 상기 목표 회전수 보정값을 크게 하는
    것을 특징으로 하는 작업 기계.
  6. 삭제
  7. 삭제
  8. 삭제
KR1020177023402A 2015-06-05 2016-06-01 작업 기계 KR101943251B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-115024 2015-06-05
JP2015115024A JP6321580B2 (ja) 2015-06-05 2015-06-05 作業機械
PCT/JP2016/066167 WO2016194941A1 (ja) 2015-06-05 2016-06-01 作業機械

Publications (2)

Publication Number Publication Date
KR20170107044A KR20170107044A (ko) 2017-09-22
KR101943251B1 true KR101943251B1 (ko) 2019-01-28

Family

ID=57441303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177023402A KR101943251B1 (ko) 2015-06-05 2016-06-01 작업 기계

Country Status (6)

Country Link
US (1) US10273656B2 (ko)
EP (1) EP3305617B1 (ko)
JP (1) JP6321580B2 (ko)
KR (1) KR101943251B1 (ko)
CN (1) CN107249951B (ko)
WO (1) WO2016194941A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019876A (ko) * 2020-08-10 2022-02-18 주식회사 호룡 하이브리드 특수 상용차

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015215818A1 (de) * 2015-08-19 2017-02-23 Zf Friedrichshafen Ag Antriebsstrang eines Mobilfahrzeugs
BR112019013927A2 (pt) 2017-01-06 2020-02-18 Ntt Docomo, Inc. Terminal de usuário e método de radiocomunicação
JP7248593B2 (ja) 2017-05-15 2023-03-29 ダイナパワー カンパニー エルエルシー 余剰電力の抽出方法及びシステム
KR102644617B1 (ko) * 2019-05-23 2024-03-06 현대자동차주식회사 엔진 부분부하 토크 제어장치 및 제어 방법
US20230406286A1 (en) * 2022-06-17 2023-12-21 Bae Systems Controls Inc. Parallel variable speed generator control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112998A (ja) * 2003-09-29 2004-04-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2008018786A (ja) * 2006-07-11 2008-01-31 Denso Corp ハイブリッド車両の制御装置
JP2008049761A (ja) * 2006-08-23 2008-03-06 Shin Caterpillar Mitsubishi Ltd ハイブリッド制御システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800514B2 (ja) 2001-07-18 2011-10-26 日立建機株式会社 ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム
JP2003172443A (ja) * 2001-12-10 2003-06-20 Honda Motor Co Ltd 車両用動力伝達制御装置
JP2005130564A (ja) * 2003-10-22 2005-05-19 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2007262978A (ja) * 2006-03-28 2007-10-11 Shin Caterpillar Mitsubishi Ltd ハイブリッド作業機械の出力制御装置及びハイブリッド作業機械の出力制御方法
US8509974B2 (en) * 2010-08-23 2013-08-13 Cummins Inc. Hybrid power train rate control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112998A (ja) * 2003-09-29 2004-04-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2008018786A (ja) * 2006-07-11 2008-01-31 Denso Corp ハイブリッド車両の制御装置
JP2008049761A (ja) * 2006-08-23 2008-03-06 Shin Caterpillar Mitsubishi Ltd ハイブリッド制御システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220019876A (ko) * 2020-08-10 2022-02-18 주식회사 호룡 하이브리드 특수 상용차
KR102376332B1 (ko) 2020-08-10 2022-03-21 주식회사 호룡 하이브리드 특수 상용차

Also Published As

Publication number Publication date
EP3305617B1 (en) 2020-09-16
EP3305617A4 (en) 2019-02-20
WO2016194941A1 (ja) 2016-12-08
US10273656B2 (en) 2019-04-30
JP2017001442A (ja) 2017-01-05
CN107249951B (zh) 2019-11-22
JP6321580B2 (ja) 2018-05-09
CN107249951A (zh) 2017-10-13
KR20170107044A (ko) 2017-09-22
EP3305617A1 (en) 2018-04-11
US20180087241A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
KR101943251B1 (ko) 작업 기계
JP4862078B2 (ja) 建設機械および建設機械の制御方法
JP5356436B2 (ja) 建設機械の制御装置
US7669413B2 (en) Hybrid construction machine
US9187294B2 (en) Hybrid construction machine and method for controlling the same
JP5974014B2 (ja) ハイブリッド駆動式の油圧作業機械
KR101804433B1 (ko) 건설 기계
JP6122765B2 (ja) 作業機械
JP6091444B2 (ja) ハイブリッド建設機械
CN108137035B (zh) 混合动力工程机械
KR101945655B1 (ko) 건설 기계의 제어 장치
JP6539462B2 (ja) ハイブリッド作業機械
CN103661359A (zh) 混合动力式工程机械
JP6406832B2 (ja) 建設機械の制御装置
JP2019002407A (ja) 建設機械の制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant