KR101925929B1 - 태양 전지 및 그의 제조 방법 - Google Patents

태양 전지 및 그의 제조 방법 Download PDF

Info

Publication number
KR101925929B1
KR101925929B1 KR1020130004929A KR20130004929A KR101925929B1 KR 101925929 B1 KR101925929 B1 KR 101925929B1 KR 1020130004929 A KR1020130004929 A KR 1020130004929A KR 20130004929 A KR20130004929 A KR 20130004929A KR 101925929 B1 KR101925929 B1 KR 101925929B1
Authority
KR
South Korea
Prior art keywords
layer
dielectric layer
conductivity type
substrate
amorphous silicon
Prior art date
Application number
KR1020130004929A
Other languages
English (en)
Other versions
KR20140092970A (ko
Inventor
이유진
윤은혜
박상욱
심승환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020130004929A priority Critical patent/KR101925929B1/ko
Publication of KR20140092970A publication Critical patent/KR20140092970A/ko
Application granted granted Critical
Publication of KR101925929B1 publication Critical patent/KR101925929B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양 전지 및 그의 제조 방법에 관한 것이다.
본 발명에 따른 태양 전지의 일례는 제1 도전성 타입의 불순물을 함유하는 기판; 기판의 전면(front surface)에 위치하고, 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부; 전면의 반대면인 기판의 후면(back surface)에 위치하는 후면 보호막; 후면 보호막의 후면에 위치하고, 복수의 개구부를 구비하는 유전체층; 제1 도전성 타입의 불순물을 기판보다 고농도로 함유하는 후면 전계부; 에미터부와 연결되는 제1 전극; 및 후면 전계부와 연결되는 제2 전극;을 포함하고, 후면 전계부는 유전체층의 후면에 위치하며, 유전체층의 개구부에 의해 노출된 후면 보호막과 접촉하는 접촉부를 포함한다.

Description

태양 전지 및 그의 제조 방법{SOLAR CELL AND MANUFACTURING METHOD THEREOF}
본 발명은 태양 전지 및 그의 제조 방법에 관한 것이다.
최근 석유나 석탄과 같은 기존 에너지 자원의 고갈이 예측되면서 이들을 대체할 대체 에너지에 대한 관심이 높아지고 있다. 그 중에서도 태양 전지는 태양 에너지로부터 전기 에너지를 생산하는 전지로서, 에너지 자원이 풍부하고 환경오염에 대한 문제점이 없어 주목 받고 있다.
일반적인 태양 전지는 p형과 n형처럼 서로 다른 도전성 타입(conductive type)의 반도체로 이루어진 기판(substrate) 및 에미터부(emitter layer), 그리고 기판과 에미터부에 각각 연결된 전극을 구비한다. 이때, 기판 에미터부의 계면에는 p-n 접합이 형성되어 있다.
이러한 태양 전지에 빛이 입사되면 반도체에서 복수의 전자-정공쌍이 생성되고, 생성된 전자-정공쌍은 전자와 정공으로 각각 분리되어 전자와 정공은 n형의 반도체와 p형 반도체쪽으로, 예를 들어 에미터부와 기판쪽으로 이동하고, 기판과 에미터부와 전기적으로 연결된 전극에 의해 수집되며, 이 전극들을 전선으로 연결하여 전력을 얻는다.
본 발명이 이루고자 하는 기술적 과제는 태양 전지의 효율을 향상시키기 위한 태양 전지 및 태양 전지의 제조 방법을 제공하는데 그 목적이 있다.
본 발명에 따른 태양 전지의 일례는 제1 도전성 타입의 불순물을 함유하는 기판; 기판의 전면(front surface)에 위치하고, 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부; 전면의 반대면인 기판의 후면(back surface)에 위치하는 후면 보호막; 후면 보호막의 후면에 위치하고, 복수의 개구부를 구비하는 유전체층; 제1 도전성 타입의 불순물을 기판보다 고농도로 함유하는 후면 전계부; 에미터부와 연결되는 제1 전극; 및 후면 전계부와 연결되는 제2 전극;을 포함하고, 후면 전계부는 유전체층의 후면에 위치하며, 유전체층의 개구부에 의해 노출된 후면 보호막과 접촉하는 접촉부를 포함한다.
여기서, 후면 보호막은 진성 비정질 실리콘(i-a-Si) 재질을 포함할 수 있으며, 후면 보호막은 실질적으로 기판의 후면 전체에 형성될 수 있다. 이때, 후면 보호막의 두께는 1.5nm ~ 40nm 사이일 수 있다.
또한, 후면 전계부는 유전체층 및 후면 보호막과 직접 접촉하고, 제1 도전성 타입의 불순물이 도핑되는 제1 후면 전계층; 및 제1 후면 전계층의 후면에 위치하며, 제1 후면 전계층과 직접 접촉하고, 제1 도전성 타입의 불순물이 제1 후면 전계층보다 고농도로 도핑된 제2 후면 전계층;을 포함할 수 있다.
여기서, 제1 후면 전계층은 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층을 포함할 수 있고, 제1 후면 전계층의 두께는 10nm ~ 30nm 사이일 수 있다.
아울러, 제2 후면 전계층은 제1 비정질 실리콘층보다 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층 및 제1 비정질 실리콘층보다 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층을 포함할 수 있고, 제2 후면 전계층의 두께는 10nm ~ 70nm 사이일 수 있다.
또한, 유전체층은 실리콘 질화막(SiNx)일 할 수 있고, 두께는 50nm ~ 200nm 사이일 수 있다.
여기서, 유전체층에서 개구부와 개구부 사이의 간격은 100μm ~ 500 μm 사이일 할 수 있다.
이때, 유전체층에 형성된 개구부의 평면 형상은 라인 타입 또는 도트(dot) 타입일 수 있고, 이와 같은 유전체층은 실리콘 질화막(SiNx), 실리콘 산화막(SiOx) ,실리콘 산화질화막(SiOxNy) 및 실리콘 카바이드막(SiC) 중 적어도 하나로 형성될 수 있다.
아울러, 후면 전계부의 단위 면적당 면저항은 10Ω/sq ~ 50 Ω/sq 사이일 수 있다.
또한, 본 발명에 따른 태양 전지 제조 방법의 일례는 제1 도전성 타입의 불순물을 함유하는 기판의 전면에 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부를 형성하는 단계; 전면의 반대면인 기판의 후면에 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막을 형성하는 단계; 후면 보호막의 후면에 유전체층을 형성하는 단계; 유전체층에 복수의 개구부를 형성하는 단계; 유전체층의 개구부에 의해 노출된 후면 보호막과 접촉하는 콘택부를 포함하는 후면 전계부를 유전체층의 후면에 형성하는 단계; 에미터부 위에 제1 전극을 형성하는 단계; 및 후면 전계부의 후면에 제2 전극을 형성하는 단계;를 포함할 수 있다.
여기서, 복수의 개구부를 형성하는 단계는 레이저 빔을 이용하여 유전체층을 관통하지 않는 복수의 홈을 유전체층에 형성하는 단계; 및 식각액을 이용하여 복수의 홈을 더 식각하여, 유전체층을 관통하는 복수의 개구부를 형성하는 단계;를 포함할 수 있다.
또한, 후면 전계부를 형성하는 단계는 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층을 유전체층 및 유전체층의 개구부에 의해 노출된 후면 보호막의 후면에 증착하는 단계; 및 제1 비정질 실리콘층보다 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층을 제1 비정질 실리콘층의 후면에 형성하는 단계를 포함하고, 제1 비정질 실리콘층보다 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층을 제2 비정질 실리콘층 위에 형성하는 단계;를 더 포함할 수 있다.
아울러, 유전체층을 형성하는 단계에서, 유전체층의 공정 온도는 300℃ ~ 400℃ 사이일 수 있다.
본 발명에 따른 태양 전지 및 태양 전지 제조 방법은 기판의 후면에 패시베이션 기능이 극대화된 후면 보호막을 형성하고, 아울러, 이와 같은 후면 보호막이 손상되지 않도록 후면 전계부를 형성함으로써, 태양 전지의 효율을 극대화할 수 있다.
도 1은 본 발명에 따른 태양 전지의 일례에 대한 일부 사시도이다.
도 2는 도 1에 도시한 태양 전지를 Ⅱ-Ⅱ선을 따라 잘라 도시한 단면도이다.
도 3은 도 2에서 A부분을 확대한 확대도이다.
도 4 내지 도 10은 본 발명에 따른 태양 전지를 제조하는 방법의 일례를 설명하기 위한 도이다.
도 11은 본 발명에 따른 태양 전지의 다른 일례에 대한 일부 사시도이고, 도 12는 도 11에 도시한 태양 전지를 ⅩⅡ-ⅩⅡ선을 따라 잘라 도시한 단면도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한 어떤 부분이 다른 부분 위에 “전체적”으로 형성되어 있다고 할 때에는 다른 부분의 전체 면(또는 전면)에 형성되어 있는 것뿐만 아니라 가장 자리 일부에는 형성되지 않은 것을 뜻한다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 태양 전지에 대하여 설명한다.
도 1은 본 발명에 따른 태양 전지의 일례에 대한 일부 사시도이고, 도 2는 도 1에 도시한 태양 전지를 Ⅱ-Ⅱ선을 따라 잘라 도시한 단면도이이고, 도 3은 도 2에서 A부분을 확대한 확대도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 태양 전지의 일례는 기판(110), 에미터부(120), 반사 방지막(130), 후면 보호막(190), 유전체층(180), 후면 전계부(170)(back surface field, BSF), 제1 전극(140) 및 제2 전극(150)을 포함한다.
도 1에서는 본 발명에 따른 태양 전지가 유전체층(180) 및 반사 방지막(130)을 포함하는 것을 일례로 도시하고 있으나, 본 발명은 이와 다르게 유전체층(180) 및 반사 방지막(130)이 생략되는 것도 가능하다. 그러나, 태양 전지의 효율을 고려했을 때, 유전체층(180) 및 반사 방지막(130)이 포함되는 것이 더 나은 효율이 발생하므로, 유전체층(180) 및 반사 방지막(130)이 포함되는 것을 일례로 설명한다.
기판(110)은 제1 도전성 타입, 예를 들어 p형 도전성 타입의 불순물을 함유하는 실리콘으로 이루어진 반도체 기판(110)이다. 기판(110)이 p형의 도전성 타입을 가질 경우, 붕소(B), 갈륨, 인듐 등과 같은 3가 원소의 불순물을 함유한다. 하지만, 이와는 달리, 기판(110)은 n형 도전성 타입일 수 있고, 실리콘 이외의 다른 반도체 물질로 이루어질 수도 있다. 기판(110)이 n형의 도전성 타입을 가질 경우, 기판(110)은 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소의 불순물을 함유할 수 있다. 이하에서는 기판(110)이 n형의 도전성 타입을 가지는 경우를 일례로 설명한다.
도 1 및 도 2에 도시된 바와 같이, 기판(110)의 표면은 텍스처링(texturing)처리되어 있는 요철면인 텍스처링 표면(texturing surface)을 가질 수 있다.
에미터부(120)는 빛이 입사되는 기판(110)의 전면 위에 위치하며, 기판(110)의 도전성 타입과 반대인 제2 도전성 타입, 예를 들어, n형의 도전성 타입의 불순물을 함유하여 반도체 기판(110)과 p-n 접합을 이룬다.
이와 같은 p-n 접합에 의해 외부로부터 기판(110)에 빛이 입사되어 생성된 전하인 전자-정공 쌍은 전자와 정공으로 분리되어 전자는 n형 쪽으로 이동하고 정공은 p형 쪽으로 이동한다. 따라서, 기판(110)이 p형이고 에미터부(120)가 n형일 경우, 분리된 정공은 기판(110)쪽으로 이동하고 분리된 전자는 에미터부(120)쪽으로 이동하여, 기판(110)에서 정공은 다수 캐리어가 되며, 에미터부(120)에서 전자는 다수 캐리어가 된다.
여기서, 에미터부(120)는 기판(110)과 p-n접합을 형성하므로, 본 실시예와 달리, 기판(110)이 n형의 도전성 타입을 가질 경우, 에미터부(120)는 p형의 도전성 타입을 가진다. 이 경우, 분리된 전자는 기판(110)쪽으로 이동하고 분리된 정공은 에미터부(120)쪽으로 이동한다.
에미터부(120)가 n형의 도전성 타입을 가질 경우, 에미터부(120)는 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소의 불순물을 기판(110)에 도핑하여 형성될 수 있고, 반대로 p형의 도전성 타입을 가질 경우, 붕소(B), 갈륨, 인듐 등과 같은 3가 원소의 불순물을 기판(110)에 도핑하여 형성될 수 있다.
반사 방지막(130)은 에미터부(120)의 전면 위에 위치하며, 알루미늄 산화막(Al2O3), 실리콘 질화막(SiNx), 실리콘 산화막(SiOx) ,실리콘 산화질화막(SiOxNy) 및 실리콘 카바이드막 (SiC) 중 적어도 하나로 형성될 수 있고, 단일막으로도 형성이 가능하나, 도 1 및 도 2에 도시된 바와 같이, 복수의 막으로도 형성될 수 있다.
도 1 및 도 2에서는 반사 방지막(130)이 두 개의 막으로 형성된 경우를 일례로 도시하였으며, 이와 같은 경우, 반사 방지막(130)은 에미터부(120)의 전면에 바로 접하여 형성된 제1 반사 방지막(130a)과 제1 반사 방지막(130a)의 전면 위에 접하여 형성된 제2 반사 방지막(130b)을 포함할 수 있다.
여기서, 제1 반사 방지막(130a)은 알루미늄 산화막(Al2O3)으로 형성될 수 있으며, 이와 같은 제1 반사 방지막(130a)은 반사 방지막(130)으로서의 기능뿐만 아니라 패시베이션 기능도 함께 수행할 수 있다.
아울러, 제2 반사 방지막(130b)은 실리콘 질화막(SiNx)으로 형성될 수 있다. 그러나, 이와 다르게, 실리콘 산화막(SiOx) ,실리콘 산화질화막(SiOxNy), 또는 실리콘 카바이드막(SiC) 으로도 형성될 수 있다.
이와 같은 반사 방지막(130)은 태양 전지로 입사되는 빛의 반사도를 줄이고 특정한 파장 영역의 선택성을 증가시켜, 태양 전지의 효율을 높인다.
제1 전극(140)은 기판의 전면에 위치하여, 에미터부(120)에 직접 접하며, 에미터부(120)와 전기적으로 연결되어 있다. 이와 같은 제1 전극(140)은 도 1에 도시된 바와 같이, 복수의 핑거 전극(141) 및 복수의 전면 버스바(143)를 포함할 수 있다.
여기서, 복수의 핑거 전극(141)은 에미터부(120) 위에 위치하여 에미터부(120)와 전기적으로 연결되어 있고, 서로 이격하여 정해진 방향으로 뻗어있다. 복수의 핑거 전극(141)은 에미터부(120)쪽으로 이동한 전하, 예를 들면, 전자를 수집한다.
그리고, 복수의 전면 버스바(143)는 에미터부(120) 위에서 복수의 핑거 전극(141)을 서로 전기적으로 연결시키며, 복수의 핑거 전극(141)과 교차하는 방향으로 뻗어 있다. 이와 같은 복수의 전면 버스바(143)는 태양 전지를 서로 연결시키는 인터커넥터(미도시)와 연결되며, 복수의 핑거 전극(141)에 의해 수집되어 이동하는 전하를 수집하여 외부 장치로 출력한다.
복수의 핑거 전극(141)과 전면 버스바(143)는 적어도 하나의 도전성 물질로 이루어져 있고, 이들 도전성 물질의 예는 니켈(Ni), 구리(Cu), 은(Ag), 알루미늄(Al), 주석(Sn), 아연(Zn), 인듐(In), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나일 수 있지만, 이외의 다른 도전성 금속 물질로 이루어질 수 있다.
다음, 후면 보호막(190)은 도 1 및 도 2에 도시된 바와 같이, 기판(110)의 전면과 반대면인 기판(110)의 후면 위에 위치하며, 진성 비정질 실리콘(i-a-Si) 재질을 포함하여 형성될 수 있다. 일례로, 후면 보호막(190)은 진성 비정질 실리콘(i-a-Si) 재질만으로 형성될 수 있다. 이와 같은 후면 보호막(190)은 복수의 홀(미도시)을 구비하지 않으며, 기판(110)의 후면 위에 전체적으로 형성될 수 있다.
이와 같은 후면 보호막(190)은 기판(110) 후면 근처에서 전하의 재결합율을 감소시키는 패시베이션 기능을 수행하고, 기판(110)을 통과한 빛의 내부 반사율을 향상시켜 기판(110)을 통과한 빛의 재입사율을 높일 수 있다.
다음, 유전체층(180)은 후면 보호막(190)의 후면 위에 위치하고, 복수의 개구부를 구비할 수 있다. 이와 같은 유전체층(180)은 실리콘 질화막(SiNx), 실리콘 산화막(SiOx) ,실리콘 산화질화막(SiOxNy) 및 실리콘 카바이드막(SiC) 중 적어도 하나로 형성될 수 있고, 단일막 또는 복수의 막으로 형성될 수 있다.
이와 같은 유전체층(180)은 복수의 개구부를 통하여 노출된 후면 보호막(190)에 후면 전계부(170)가 부분적으로 접촉되도록 하기 위하여, 레이저 빔을 유전체층(180)에 조사할 때, 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)을 보호하는 기능을 한다.
다음, 후면 전계부(170)는 유전체층(180)의 후면에 위치하며, 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190)과 직접 접촉하는 접촉부(C170)를 포함할 수 있다. 즉, 후면 전계부(170)는 유전체층(180)의 후면 위 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190)의 후면 위에 위치하며, 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190)과 직접 접촉될 수 있다.
따라서, 후면 전계부(170)는 유전체층(180)과 제2 전극(150) 사이 및 유전체층(180)과 개구부에 의해 노출된 후면 보호막(190) 사이에 위에 위치할 수 있다.
이와 같은 후면 전계부(170)의 단위 면적당 면저항은 10Ω/sq ~ 50 Ω/sq일 수 있다.
여기서, 후면 전계부(170)의 단위 면적당 면저항을 10Ω/sq 이상으로 한정하는 것은 후면 전계부(170)의 단위 면적당 면저항은 낮을수록 좋으나, 면저항을 낮추기 위해서는 불순물의 함유량을 늘려야한다. 따라서, 너무 과도하게 면저항을 낮추면 후면 전계부(170)에 함유되는 불순물의 양이 과도하게 증가하여, 후면 전계부(170) 내에 과도하게 함유되거나 도핑된 불순물에 의해 캐리어의 재결합 밀도가 높아져 오히려 개방 전압(Voc)가 하강할 수 있는데, 이를 방지하기 위함이다.
아울러, 후면 전계부(170)의 단위 면적당 면저항을 50 Ω/sq 이하로 한정하는 것은 캐리어가 후면 전계부(170)을 통과할 때 최소한의 저항 마진을 확보한 상태에서, 면저항이 과도하게 증가하게 되면, 후면 전계부(170)를 형성한 이후, 제2 전극(150)을 형성할 때에, 컨택 저항이 높아져서 필 펙터(F.F)가 감소될 수 있는데, 이를 방지하기 위함이다. 그러나, 이와 같은 후면 전계부(170)의 단위 면적당 면저항은 반드시 이에 한정되는 것은 아니고, 변경가능하다.
이와 같은 후면 전계부(170)는 기판(110)보다 높게 제1 도전성 타입의 불순물을 함유할 수 있으며, 후면 전계 기능을 수행함으로써, 기판(110)과의 불순물 농도 차이로 인해, 기판(110)과 전위차를 발생시키는 전위 장벽을 형성시킬 수 있다.
따라서, 기판(110)이 n형의 도전성 타입을 가지고, 에미터부(120)가 p형의 도전성 타입을 가지는 경우, 후면 전계부(170)는 기판(110)보다 높은 n형 전계를 형성하여, 기판(110)의 다수 캐리어인 전자가 후면 전계부(170)를 통하여 제2 전극(150)으로 보다 잘 이동할 수 있도록 하고, 에미터부(120)의 다수 캐리어인 정공이 제2 전극(150) 방향으로 이동하는 것을 방지하는 기능을 할 수 있다.
이와 같은 후면 전계부(170)는 제1 도전성 타입의 불순물을 함유한 비정질 실리콘층이나 제1 도전성 타입의 불순물을 함유한 미세 결정질 실리콘층(170B2)을 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 증착하여 형성될 수 있다.
다음, 제2 전극(150)은 후면 전계부(170)의 후면 위에 위치하여 후면 전계부(170)와 직접 접촉하고, 후면 보호막(190)과 후면 전계부(170)를 통하여 기판(110)과 전기적으로 연결되며 금속 물질을 포함할 수 있다.
이와 같은 제2 전극(150)은 도 1 및 도 2에 도시된 바와 같이, 후면 전극층(151)과 후면 버스바(153)를 포함하여 형성될 수 있다.
여기서, 후면 전극층(151)은 일례로, 증착(evaporation)법이나 도금(plating) 법 등을 이용하여, 후면 전계부(170) 위에서 후면 버스바(153)가 형성되는 영역을 제외한 나머지 영역 위에 전체적으로 형성될 수 있으며, 니켈(Ni), 구리(Cu), 은(Ag), 주석(Sn), 아연(Zn), 인듐(In), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나이거나, 이외의 다른 도전성 물질로 이루어질 수도 있다.
다음, 후면 버스바(153)는 후면 전계부(170) 위에 위치하며, 후면 전극층(151)과 직접 접촉하여 전기적으로 연결될 수 있다. 이와 같은 후면 버스바(153)는 전면 버스바(143)와 동일한 방향으로 뻗어 있는 스트라이프 형상일 수 있고, 후면 버스바(153)는 전면 버스바(143)과 마주보는 위치에 위치할 수 있다.
이와 같은 후면 버스바(153)는 전면 버스바(143)와 동일하게, 인터커넥터와 직접 접촉되어 연결되어, 기판(110)으로부터 후면 전극층(151)으로 수집되는 캐리어를 외부 장치로 출력한다.
이와 같은, 후면 버스바(153)는 은(Ag)과 같은 하나의 도전성 물질로 이루어져 있지만, 이에 한정되지 않고, 니켈(Ni), 구리(Cu), 알루미늄(Al), 주석(Sn), 아연(Zn), 인듐(In), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나이거나 이외의 다른 도전성 물질로 이루어질 수도 있다.
그러나, 제2 전극(150)의 구조는 후면 전극층(151) 및 후면 버스바(153)를 포함하는 구조로 반드시 한정되는 것은 아니고, 전술한 바와 다르게 형성될 수 있다.
도 11은 본 발명에 따른 태양 전지의 다른 일례에 대한 일부 사시도이고, 도 12는 도 11에 도시한 태양 전지를 ⅩⅡ-ⅩⅡ선을 따라 잘라 도시한 단면도이다.
도 11 및 도 12는 제2 전극(150’)의 구조를 제외한 나머지 부분에 대한 구성은 도 1 및 도 2에 도시된 바와 동일하므로 생략한다.
도 11 및 도 12에 도시된 바와 같이, 본 발명에 따른 대양 전지의 다른 일례는 제2 전극(150’)이 양면형 태양 전지 구조를 형성하기 위하여 제1 전극(140)과 동일하게, 제1 방향으로 길게 형성된 복수의 후면 핑거 전극(151’)과 제1 방향과 교차하는 제2 방향으로 길게 형성되며, 복수의 후면 핑거 전극(151’)을 서로 연결시키는 후면 버스바(153’)를 포함하여 형성될 수 있다.
다시, 도 1 및 도 2에서, 이와 같은 구조를 갖는 본 실시예에 따른 태양 전지의 동작은 다음과 같다.
태양 전지로 빛이 조사되어 반사 방지막(130)과 에미터부(120)를 통해 반도체의 기판(110)으로 입사되면 빛 에너지에 의해 반도체의 기판(110)에서 전자-정공 쌍이 발생한다. 이때, 반사 방지막(130)에 의해 기판(110)으로 입사되는 빛의 반사 손실이 줄어들어 기판(110)으로 입사되는 빛의 양이 증가한다.
이들 전자-정공 쌍은 기판(110)과 에미터부(120)의 p-n접합에 의해 서로 분리되어 정공과 전자는, 예를 들어, p형의 도전성 타입을 갖는 에미터부(120)와 n형의 도전성 타입을 갖는 기판(110)쪽으로 각각 이동한다. 이처럼, 에미터부(120)쪽으로 이동한 정공은 핑거 전극(141)에 의해 수집되어 전면 버스바(143)로 전달되어 수집되고, 기판(110)쪽으로 이동한 전자는 후면 전극층(151)으로 수집된 후 후면 버스바(153)로 전달된다. 이러한 전면 버스바(143)와 후면 버스바(153)를 도선으로 연결하면 전류가 흐르게 되고, 이를 외부에서 전력으로 이용하게 된다.
한편, 본 발명에 따른 태양 전지의 일례는 전술한 바와 같이, 후면 보호막(190)은 복수의 개구부(또는 개구홀 내지 관통홀)을 구비하지 않고 기판(110)의 후면 위에 전체적으로 위치할 수 있다.
이와 같이, 후면 보호막(190)이 복수의 개구부를 구비하지 않고 기판(110)의 후면 위에 전체적으로 위치하는 경우, 기판(110)에 대한 패시베이션 기능을 더욱 강화할 수 있다.
즉, 전술한 바와 같은 패시베이션 기능이 약화된 경우, 태양 전지는 후면 전계부(170) 영역 근처에서 전자와 정공이 서로 재결합(recombination)되는 양이 많아지고, 포화 암 전류(Jo, dark saturation current)가 증가되어 태양 전지의 효율이 감소될 수 있는 문제점이 있다.
그러나, 본 발명과 같이, 후면 보호막(190)이 복수의 개구부를 구비하지 않고 기판(110)의 후면 위에 전체적으로 위치하는 경우 이와 같은 재결합을 감소시키고, 포화 암 전류(Jo)를 감소시킬 수 있어, 태양 전지의 효율이 증가될 수 있다.
이때, 후면 보호막(190)이 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 경우, 후면 보호막(190)의 패시베이션 기능을 더욱 향상시킬 수 있어, 태양 전지의 효율을 더욱 증가시킬 수 있다.
아울러, 전술한 바와 같은 후면 보호막(190)의 패시베이션 기능이 저하되지 않도록, 후면 전계부(170)를 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 위치하도록 함으로써, 태양 전지의 효율을 더욱 증가시킬 수 있다.
즉, 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)이 기판(110)의 후면 위에 위치하더라도, 레이저나 국부적 열처리등을 이용하여 도펀트를 기판(110)의 후면에 국부적으로 열확산시켜, 후면 전계부(170)를 기판(110)의 후면 내에 부분적으로 형성하는 경우, 후면 전계부(170)를 형성하기 위하여 기판(110)이나 후면 보호막(190)이 고온의 열을 받는 것을 피할 수 없다.
이와 같이, 후면 보호막(190)이나 기판(110)이 고온의 열을 받는 경우, 후면 보호막(190)이나 기판(110)의 열 손상은 피할 수 없고, 이와 같은 열 손상으로 인하여 기판(110)의 막질이 저하되고, 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)의 패시베이션 특성이 저하될 수 있다.
그러나, 본 발명에 따른 태양 전지는 전술한 바와 같이, 후면 전계부(170)가 기판(110)의 후면 내에 형성되지 아니하고, 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 위치하도록 함으로써, 태양 전지의 효율을 극대화할 수 있다.
이와 같은 본 발명의 후면 보호막(190), 유전체층(180), 및 후면 전계부(170)에 대해, 도 3을 참조하여 보다 상세히 설명하면 다음과 같다.
도 3에 도시된 바와 같이, 본 발명에 따른 태양 전지는 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)이 기판(110)의 후면 위에 위치하고, 후면 보호막(190) 위에 복수의 개구부를 구비하는 유전체층(180)이 위치하고, 유전체층(180) 위와 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 후면 전계부(170)가 위치할 수 있다.
여기서, 후면 전계부(170)는 도 3에 도시된 바와 같이, 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 위치하고 직접 접촉하고, 제1 도전성 타입의 불순물이 도핑되는 제1 후면 전계층(170A)과 제1 후면 전계층(170A) 위에 직접 접촉하고, 제1 후면 전계층(170A)보다 제1 도전성 타입의 불순물 농도가 높은 제2 후면 전계층(170B)을 포함할 수 있다. 여기서, 제1 후면 전계층(170A)과 제2 후면 전계층(170B)은 전술한 후면 전계 기능을 수행할 수 있다.
여기서, 제1 후면 전계층(170A)은 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층(170A)을 포함할 수 있으며, 아울러, 제2 후면 전계층(170B)은 제1 비정질 실리콘층(170A)보다 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층(170B1)과 제1 비정질 실리콘층(170A)보다 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층(170B2)을 포함할 수 있다.
여기서, 제2 후면 전계층(170B)의 미세 결정질 실리콘층(170B2)은 제2 전극(150)과 직접 접촉하여 제2 전극(150)과 오믹 컨텍(ohmic contact)을 형성할 수 있으며, 제1 후면 전계층(170A)의 제1 비정질 실리콘층(170A) 및 제2 후면 전계층(170B)의 제2 비정질 실리콘층(170B1)은 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)과 제2 후면 전계층(170B)의 미세 결정질 실리콘층(170B2) 사이에 위치하여, 버퍼층으로서 역할을 할 수 있다.
즉, 제1 비정질 실리콘층(170A) 및 제2 비정질 실리콘층(170B1)은 실리콘층은 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)과 미세 결정질 실리콘층(170B2) 사이에 위치하여, 제1 도전성 타입의 불순물 농도가 점진적으로 증가되도록 하여, 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)으로부터 제2 전극(150)으로 이동할수록 각층의 면저항이 점진적으로 감소하도록 할 수 있다. 이에 따라, 기판(110)으로부터 제2 전극(150) 방향으로 이동하는 캐리어가 더욱 원할하게 이동할 수 있다.
아울러, 후면 보호막(190)으로부터 제2 전극(150)으로 이동함에 따라, 저농도 제1 비정질 실리콘층(170A), 고농도 제2 비정질 실리콘층(170B1), 고농도 미세 결정질 실리콘층(170B2)으로 형성되도록 하여, 각 층의 접합면에서의 결함을 최소화할 수 있어, 캐리어가 이동할 때에 재결합되는 양을 최소화할 수 있다.
이때, 도 3에서는 제2 후면 전계층(170B)에 제1 비정질 실리콘층(170A)보다 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층(170B1)이 포함되는 것을 일례로 도시하고 있으나, 이와 같은 제2 비정질 실리콘층(170B1)은 생략될 수도 있다.
따라서, 제2 비정질 실리콘층(170B1)이 생략되는 경우, 제1 비정질 실리콘층(170A)보다 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층(170B2)이 제1 후면 전계층(170A) 위에 직접 접촉할 수 있다.
또한, 본 발명에 따른 유전체층(180)은 전술한 바와 같이, 실리콘 질화막(SiNx), 실리콘 산화막(SiOx) 및 실리콘 산화질화막(SiOxNy) 및 실리콘 카바이드막 (SiC) 중 적어도 하나로 형성될 수 있으나, 바람직하게는 후면 보호막(190)이 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 것을 고려하여, 후면 보호막(190)의 패시베이션 기능에 대한 영향을 최소화하기 위하여 상대적으로 공정 온도가 낮은 실리콘 질화막(SiNx)으로 형성할 수 있다.
이때, 후면 보호막(190)의 두께(T190)는 1.5nm ~ 40nm 사이일 수 있으며, 제1 후면 전계층(170A)의 두께(T170A)는 10nm ~ 30nm 사이, 제2 후면 전계층(170B)의 두께(T170B)는 10nm ~ 70nm 사이일 수 있고, 유전체층(180)의 두께는 50nm ~ 200nm 사이일 수 있다.
여기서, 유전체층(180)의 두께를 50nm 이상으로 하는 것은 유전체층(180)을 후면 보호막(190)의 후면 위에 형성한 이후, 레이저 빔을 유전체층(180)에 선택적으로 조사하여 복수의 개구부를 형성할 때에, 후면 보호막(190)의 커버막(cover layer)으로서 충분한 두께에 대한 마진을 확보하기 위함이고, 유전체층(180)의 두께를 200nm 이하로 한정하는 것은 커버막(cover layer)으로서 충분한 두께에 대한 마진을 확보한 상태에서, 유전체층(180)의 두께가 과도하게 두꺼워지면 유전체층(180)에 개구부를 형성하는 레이저 빔의 출력 전력(power)가 과도하게 높아질 수 있고, 유전체층(180)을 형성하는 공정 시간을 고려한 것이다. 그러나, 유전체층(180)의 두께는 반드시 이에 한정되는 것은 아니고, 변경될 수도 있다.
여기서, 후면 보호막(190)의 두께(T190)가 1.5nm 이상이 되도록 하는 것은 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)이 최소한의 패시베이션 기능을 수행하도록 위함이며, 40nm 이하가 되도록 하는 것은 후면 보호막(190)이 충분한 패시베이션 기능을 수행할 수 있는 두께로 형성되도록 하면서도, 후면 보호막(190)의 증착 공정 시간을 고려한 것이다.
아울러, 유전체층(180)에 형성된 개구부와 개구부 사이의 간격(D1)은 100μm ~ 500 μm 사이일 수 있다. 이와 같이 유전체층(180)에 형성된 복수의 개구부의 평면 형상은 라인 타입 또는 도트(dot) 타입일 수 있다.
이와 같이, 본 발명에 따른 태양 전지의 일례는 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)이 기판(110)의 후면 위에 전체적으로 위치하고, 후면 전계부(170)가 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 위치하고, 유전체층(180)의 개구부를 통하여 후면 보호막(190)에 직접 접촉되는 구조를 가지도록 함으로써, 태양 전지의 효율을 극대화할 수 있다.
지금까지는 본 발명에 따른 태양 전지의 구조에 대해서 설명하였으나, 이하에서는 이와 같은 태양 전지를 제조하는 방법에 대해서 설명한다.
도 4 내지 도 10은 본 발명에 따른 태양 전지를 제조하는 방법의 일례를 설명하기 위한 도이다.
본 발명은 도 4에 도시된 바와 같이, 제1 도전성 타입의 불순물을 함유하는 기판(110)의 전면에 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부(120)를 형성할 수 있다.
여기서, 기판(110)은 도 4에 도시된 바와 같이, 기판(110)의 전면 및 후면 모두 텍스처링 처리가 되어 있어, 기판(110)의 전면 및 후면의 표면에 복수의 요철이 형성되어 있을 수 있다. 그러나, 이와 다르게, 기판(110)의 전면에만 복수의 요철이 형성된 경우도 가능하다.
이와 같이, 기판(110)이 제1 도전성 타입의 불순물을 함유하고, 기판(110)의 표면에 요철이 형성된 상태에서, 열 확산로에 기판(110)을 안착시킨 이후, 제2 도전성 타입의 불순물을 포함하는 공정 가스를 기판(110)의 전면에 확산시켜 에미터부(120)를 형성할 수 있다.
그러나, 이와 다르게, 기판(110)의 전면에 제 2 도전성 타입의 불순물을 함유하는 도펀트 페이스트를 도포하여 열 확산로로 열 확산시켜 형성하는 것도 가능하다. 이와 같은 에미터부(120)를 형성하는 방법은 특별히 제한되지 않는다.
다음, 도 5에 도시된 바와 같이, 기판(110)의 전면에 에미터부(120)가 형성된 이후, 전면의 반대면인 기판(110)의 후면에 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막(190)을 형성할 수 있다.
이와 같은 후면 보호막(190)은 일례로, 플라즈마 증착 기상 방법(Plasma-enhanced chemical vapor deposition; PECVD)을 이용하여, 200℃ ~ 300℃ 사이의 공정 온도에서 형성될 수 있다. 그러나, 다른 방법으로 형성하는 것도 가능하다.
이후, 도 6에 도시된 바와 같이, 후면 보호막(190) 위에 후면 보호막(190) 위에 유전체층(180)을 형성할 수 있다.
유전체층(180)을 형성하는 단계에서는 실리콘 질화물(SiNx)을 진성 비정질 실리콘(i-a-Si) 재질로 형성된 후면 보호막(190) 위에 300℃ ~ 400℃ 사이의 공정 온도로 형성할 수 있다.
이와 같은 공정 온도는 진성 비정질 실리콘(i-a-Si) 재질로 형성된 후면 보호막(190)에 대한 막 특성 저하를 최소로 할 수 있어, 후면 보호막(190)의 패시베이션 특성 저하를 최소화할 수 있다.
그러나, 이는 필수적인 것은 아니며, 실리콘 질화물(SiNx) 대신 상대적으로 공정 온도가 더 높긴 하지만, 실리콘 산화물(SiOx), 실리콘 산화질화물(SiOxNy) 또는 실리콘 카바이드막(SiC)으로 유전체층(180)을 형성하는 것도 가능하다.
다음, 도 7 및 8에 도시된 바와 같이, 유전체층(180)에 복수의 개구부 (OP180)를 형성할 수 있다.
보다 구체적으로 설명하면, 복수의 개구부(OP180)를 형성하는 단계는 먼저, 도 7에 도시된 바와 같이, 레이저 빔(LB)을 이용하여 유전체층(180)에 유전체층(180)이 완전히 관통되지 않는 복수의 홈(H180)을 형성한 이후, 도 8에 도시된 바와 같이, 식각액을 이용하여 유전체층(180)에 형성된 복수의 홈(H180)을 더 식각함으로써, 유전체층(180)이 완전히 관통되는 복수의 개구부(OP180)를 형성할 수 있다.
여기서, 레이저 조사 장치(LRA)에 의해 조사되는 레이저 빔(LB)의 평면 형상은 라인 타입 또는 도트(dot) 타입일 수 있다.
이와 같이, 레이저 빔(LB)을 이용하여, 유전체층(180)을 완전히 관통시키지 않고, 유전체층(180)에 홈을 형성하는 것은 유전체층(180)과 접촉하여 위치하는 진성 비정질 실리콘(i-a-Si) 재질의 후면 보호막(190)에 대한 영향을 최소화하기 위함이다.
즉, 레이저 빔(LB)을 이용하여 유전체층(180)을 완전히 관통시키는 경우, 레이저 빔(LB)에 의해 진성 비정질 실리콘(i-a-Si) 재질의 후면 보호막(190)이 열 손상을 받을 수 있고, 이로 인하여, 후면 보호막(190)의 패시베이션 기능이 저하될 수 있다.
그러나, 본 발명과 같이, 레이저 빔(LB)이 조사된 유전체층(180)에 소정의 두께(R180)가 남도록, 완전히 관통되지 않은 홈을 형성한 이후, 식각액을 이용하여 유전체층(180)이 완전히 관통되는 복수의 개구부(OP180)를 형성하는 경우, 후면 보호막(190)에 대한 열 손상을 최소화할 수 있다.
여기서, 식각액을 이용하여 유전체층(180)에 형성된 복수의 홈(H180)을 더 식각할 때에는 유전체층(180)에 형성된 복수의 홈(H180) 내부면 뿐만 아니라 유전체층(180)의 전체 표면을 식각함으로써, 유전체층(180)에 형성된 홈의 내부면도 함께 식각되도록 할 수 있다.
이와 같이, 유전체층(180)에 복수의 개구부(OP180)가 형성된 이후, 도 9에 도시된 바와 같이, 유전체층(180) 및 유전체층(180)의 개구부에 의해 노출된 후면 보호막(190) 위에 후면 전계부(170)를 형성할 수 있다.
이때, 후면 전계부(170)를 형성하는 단계는 저농도로 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층(170A)을 유전체층(180) 및 유전체층(180)의 개구부를 통해 노출된 후면 보호막(190) 위에 증착하는 단계, 제1 비정질 실리콘층(170A)보다 제1 도전성 타입의 불순물이 상대적으로 고농도로 도핑된 제2 비정질 실리콘층(170B1)을 제1 비정질 실리콘층(170A) 위에 형성하는 단계 및 제1 도전성 타입의 불순물이 상대적으로 고농도로 도핑된 미세 결정질 실리콘층(170B2)을 제2 비정질 실리콘층(170B1) 위에 형성하는 단계를 더 포함할 수 있다.
이와 같은 후면 전계부(170) 형성 단계 역시, 플라즈마 증착 기상 방법(Plasma-enhanced chemical vapor deposition; PECVD)을 이용하여 수행될 수 있다.
다음, 에미터부(120) 위에 반사 방지막(130)과 제1 전극(140)을 형성하고, 후면 전계부(170) 위에 제2 전극(150)을 형성하여, 도 10에 도시된 바와 같은 태양 전지를 제조할 수 있다.
여기서, 에미터부(120) 위에 반사 방지막(130)과 제1 전극(140)을 형성하는 과정은 후면 보호막(190)을 기판(110)의 후면에 형성하기 이전에 수행될 수도 있다.
아울러, 후면 전계부(170) 위에 제2 전극(150)을 형성하는 과정은 비정질 실리콘 재질을 포함하는 후면 보호막(190)이나 후면 전계부(170)를 고려하여, 상대적으로 공정 온도가 낮은 증착(evaporation)법이나 도금(plating) 법 등을 이용하여 수행될 수 있다.
이와 같이, 본 발명에 따른 태양 전지 제조 방법은 비정질 실리콘 재질을 포함하는 후면 보호막(190)이나 후면 전계부(170)가 제조 공정 중 열 손상을 거의 받지 않거나 최소화되도록 함으로써, 태양 전지의 효율을 극대화시킬 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (21)

  1. 제1 도전성 타입의 불순물을 함유하는 기판;
    상기 기판의 전면(front surface)에 위치하고, 상기 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부;
    상기 전면의 반대면인 상기 기판의 후면(back surface)에 위치하는 후면 보호막;
    상기 후면 보호막의 후면에 위치하고, 복수의 개구부를 구비하는 유전체층;
    상기 제1 도전성 타입의 불순물을 함유하는 후면 전계부;
    상기 에미터부와 연결되는 제1 전극; 및
    상기 후면 전계부와 연결되는 제2 전극;을 포함하고,
    상기 후면 전계부는 상기 유전체층의 후면에 위치하며, 상기 유전체층의 개구부에 의해 노출된 상기 후면 보호막과 접촉하는 접촉부를 포함하는 태양 전지.
  2. 제1 항에 있어서,
    상기 후면 보호막은 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 태양 전지.
  3. 제2 항에 있어서,
    상기 후면 보호막은 실질적으로 상기 기판의 후면 전체에 형성되는 태양 전지.
  4. 제2 항에 있어서,
    상기 후면 보호막의 두께는 1.5nm ~ 40nm 사이인 태양 전지.
  5. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 후면 전계부는
    상기 유전체층 및 상기 후면 보호막과 직접 접촉하고, 상기 제1 도전성 타입의 불순물이 도핑되는 제1 후면 전계층; 및
    상기 제1 후면 전계층의 후면에 위치하며, 상기 제1 후면 전계층과 직접 접촉하고, 상기 제1 도전성 타입의 불순물이 상기 제1 후면 전계층보다 고농도로 도핑된 제2 후면 전계층;을 포함하는 태양 전지.
  6. 제5 항에 있어서,
    상기 제1 후면 전계층은
    상기 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층을 포함하는 태양 전지.
  7. 제5 항에 있어서,
    상기 제1 후면 전계층의 두께는 10nm ~ 30nm 사이인 태양 전지.
  8. 제6 항에 있어서,
    상기 제2 후면 전계층은
    상기 제1 비정질 실리콘층보다 상기 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층을 포함하는 태양 전지.
  9. 제8 항에 있어서,
    상기 제2 후면 전계층은
    상기 제1 비정질 실리콘층보다 상기 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층을 더 포함하는 태양 전지.
  10. 제5 항에 있어서,
    상기 제2 후면 전계층의 두께는 10nm ~ 70nm 사이인 태양 전지.
  11. 제1 항에 있어서,
    상기 유전체층은 실리콘 질화막(SiN)인 태양 전지.
  12. 제1 항에 있어서,
    상기 유전체층의 두께는 50nm ~ 200nm 사이인 태양 전지.
  13. 제1 항에 있어서,
    상기 유전체층에서 개구부와 개구부 사이의 간격은 100μm ~ 500 μm 사이인 태양 전지.
  14. 제8 항에 있어서,
    상기 유전체층에 형성된 개구부의 평면 형상은 라인 타입 또는 도트(dot) 타입인 태양 전지.
  15. 제8 항에 있어서,
    상기 유전체층은 실리콘 질화막(SiN), 실리콘 산화막(SiO) ,실리콘 산화질화막(SiON) 및 실리콘 카바이드막(SiC) 중 적어도 하나로 형성되는 태양 전지.
  16. 제8 항에 있어서,
    상기 후면 전계부의 단위 면적당 면저항은 10Ω/sq ~ 50 Ω/sq 사이인 태양 전지.
  17. 제1 도전성 타입의 불순물을 함유하는 기판의 전면에 상기 제1 도전성 타입과 반대인 제 2 도전성 타입의 불순물을 함유하는 에미터부를 형성하는 단계;
    상기 전면의 반대면인 상기 기판의 후면에 진성 비정질 실리콘(i-a-Si) 재질을 포함하는 후면 보호막을 형성하는 단계;
    상기 후면 보호막의 후면에 유전체층을 형성하는 단계;
    상기 유전체층에 복수의 개구부를 형성하는 단계;
    상기 유전체층의 개구부에 의해 노출된 상기 후면 보호막과 접촉하는 콘택부를 포함하는 후면 전계부를 상기 유전체층의 후면에 형성하는 단계;
    상기 에미터부 위에 제1 전극을 형성하는 단계; 및
    상기 후면 전계부의 후면에 제2 전극을 형성하는 단계;를 포함하는 태양 전지 제조 방법.
  18. 제17 항에 있어서,
    상기 복수의 개구부를 형성하는 단계는
    레이저 빔을 이용하여 상기 유전체층을 관통하지 않는 복수의 홈을 상기 유전체층에 형성하는 단계; 및
    식각액을 이용하여 상기 복수의 홈을 더 식각하여, 상기 유전체층을 관통하는 상기 복수의 개구부를 형성하는 단계;를 포함하는 태양 전지 제조 방법.
  19. 제17 항 내지 제18 항 중 어느 하나의 항에 있어서,
    상기 후면 전계부를 형성하는 단계는
    상기 제1 도전성 타입의 불순물이 도핑된 제1 비정질 실리콘층을 상기 유전체층 및 상기 유전체층의 개구부에 의해 노출된 상기 후면 보호막의 후면에 증착하는 단계; 및
    상기 제1 비정질 실리콘층보다 상기 제1 도전성 타입의 불순물 농도가 높은 제2 비정질 실리콘층을 상기 제1 비정질 실리콘층의 후면에 형성하는 단계를 포함하는 태양 전지 제조 방법.
  20. 제19 항에 있어서,
    상기 후면 전계부를 형성하는 단계는
    상기 제1 비정질 실리콘층보다 상기 제1 도전성 타입의 불순물 농도가 높은 미세 결정질 실리콘층을 상기 제2 비정질 실리콘층 위에 형성하는 단계;를 더 포함하는 태양 전지 제조 방법.
  21. 제17 항에 있어서,
    상기 유전체층을 형성하는 단계에서,
    상기 유전체층의 공정 온도는 300℃ ~ 400℃ 사이인 태양 전지 제조 방법.
KR1020130004929A 2013-01-16 2013-01-16 태양 전지 및 그의 제조 방법 KR101925929B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130004929A KR101925929B1 (ko) 2013-01-16 2013-01-16 태양 전지 및 그의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130004929A KR101925929B1 (ko) 2013-01-16 2013-01-16 태양 전지 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
KR20140092970A KR20140092970A (ko) 2014-07-25
KR101925929B1 true KR101925929B1 (ko) 2018-12-06

Family

ID=51739348

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130004929A KR101925929B1 (ko) 2013-01-16 2013-01-16 태양 전지 및 그의 제조 방법

Country Status (1)

Country Link
KR (1) KR101925929B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198045A (zh) 2014-06-18 2015-12-30 Mag技术株式会社 酸性水电解槽及其酸性水的使用方法
CN104465811A (zh) * 2014-11-13 2015-03-25 晶澳(扬州)太阳能科技有限公司 一种局部背表面场n型太阳能电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237363A (ja) 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
US20100186802A1 (en) 2009-01-27 2010-07-29 Peter Borden Hit solar cell structure
US20120291861A1 (en) 2010-01-27 2012-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same
JP2013008960A (ja) 2011-05-25 2013-01-10 Semiconductor Energy Lab Co Ltd 光電変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2931498B2 (ja) * 1993-04-21 1999-08-09 シャープ株式会社 太陽電池及びその製造方法
KR101166361B1 (ko) * 2010-09-03 2012-07-23 엘지전자 주식회사 태양전지
KR101699301B1 (ko) * 2010-09-28 2017-01-24 엘지전자 주식회사 양면 수광형 태양전지 모듈
KR20120088029A (ko) * 2010-10-18 2012-08-08 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101179365B1 (ko) * 2010-12-31 2012-09-03 현대중공업 주식회사 전후면전계 태양전지 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237363A (ja) 2005-02-25 2006-09-07 Sanyo Electric Co Ltd 光起電力素子
US20100186802A1 (en) 2009-01-27 2010-07-29 Peter Borden Hit solar cell structure
US20120291861A1 (en) 2010-01-27 2012-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photovoltaic cell, including a crystalline silicon oxide passivation thin film, and method for producing same
JP2013008960A (ja) 2011-05-25 2013-01-10 Semiconductor Energy Lab Co Ltd 光電変換装置

Also Published As

Publication number Publication date
KR20140092970A (ko) 2014-07-25

Similar Documents

Publication Publication Date Title
KR101046219B1 (ko) 선택적 에미터를 갖는 태양전지
EP2506310B1 (en) Bifacial solar cell
KR20120023391A (ko) 태양전지 및 이의 제조 방법
KR20120031629A (ko) 태양전지 및 이의 제조 방법
KR20120084104A (ko) 태양전지
KR101630526B1 (ko) 태양 전지
US10573767B2 (en) Solar cell
US20120118372A1 (en) Solar cell
KR101925928B1 (ko) 태양 전지 및 그의 제조 방법
KR101166361B1 (ko) 태양전지
KR101910642B1 (ko) 태양 전지 및 그 제조 방법
KR101882439B1 (ko) 태양 전지 및 그 제조 방법
KR101925929B1 (ko) 태양 전지 및 그의 제조 방법
KR101975580B1 (ko) 태양전지
KR20130037395A (ko) 태양 전지
KR20130064456A (ko) 태양 전지
KR101186529B1 (ko) 태양 전지
KR101983361B1 (ko) 양면 수광형 태양전지
KR101828423B1 (ko) 태양 전지
KR101897168B1 (ko) 태양 전지
KR101130193B1 (ko) 태양 전지
KR20100064478A (ko) 태양 전지
KR101788163B1 (ko) 태양 전지 및 이의 제조 방법
KR101979843B1 (ko) 태양전지
KR101786982B1 (ko) 태양 전지 및 그의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right