KR101888173B1 - 자석 구조체 및 이를 구비하는 스퍼터링 장치 - Google Patents
자석 구조체 및 이를 구비하는 스퍼터링 장치 Download PDFInfo
- Publication number
- KR101888173B1 KR101888173B1 KR1020160148863A KR20160148863A KR101888173B1 KR 101888173 B1 KR101888173 B1 KR 101888173B1 KR 1020160148863 A KR1020160148863 A KR 1020160148863A KR 20160148863 A KR20160148863 A KR 20160148863A KR 101888173 B1 KR101888173 B1 KR 101888173B1
- Authority
- KR
- South Korea
- Prior art keywords
- magnet
- electromagnet
- permanent magnet
- magnetic field
- wire
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/081—Magnetic constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
- H01F7/16—Rectilinearly-movable armatures
- H01F7/1638—Armatures not entering the winding
- H01F7/1646—Armatures or stationary parts of magnetic circuit having permanent magnet
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
Abstract
본 발명은 영구 자석과, 영구 자석의 적어도 일면 상에 접촉되어 마련된 적어도 하나의 전자석을 포함하는 자석 구조체 및 이를 구비하는 스퍼터링 장치를 제시한다.
Description
본 발명은 스퍼터링 장치에 관한 것으로, 특히 공정 균일도를 향상시킬 수 있는 자석 구조체 및 이를 구비하는 스퍼터링 장치에 관한 것이다.
스퍼터링 장치는 반도체, FPD(LCD, OLED 등) 또는 태양 전지 제조 시 기판 상에 박막을 증착하는 장치이다. 또한, 스퍼터링 장치는 롤투롤(roll to roll) 장치에도 이용될 수 있다. 예컨데, 마그네트론 스퍼터링(Magnetron sputtering) 장치는 진공 상태의 챔버(chamber) 내로 가스를 주입하여 플라즈마를 생성시키고, 이온화된 가스 입자를 증착하고자 하는 타겟(target) 물질과 충돌시킨 후 충돌에 의해 스퍼터된 입자를 기판에 증착시킨다. 이때, 타겟에 자기력선을 형성하기 위해 자석 유닛이 기판과 대향하여 타겟 후면에 배치된다. 즉, 타겟 전면에 기판이 마련되며 타겟 후면에 자석 유닛이 마련된다. 자석 유닛은 일반적으로 영구 자석을 이용한다. 이러한 마그네트론 스퍼터링 장치는 상대적으로 저온에서 박막을 제조할 수 있고, 전기장에 의해 가속된 이온들이 기판에 치밀하게 증착되고 증착 속도가 빠른 장점 때문에 널리 사용하고 있다.
한편, 대면적의 기판 상에 박막을 증착하기 위해 인라인 또는 클러스터 시스템을 이용한다. 인라인 및 클러스터 시스템은 로드 챔버와 언로드 챔버 사이에 복수개의 처리 챔버가 마련되어 로드 챔버로 로딩된 기판이 복수개의 처리 챔버를 통과하면서 연속된 공정을 진행하게 된다. 이러한 인라인 및 클러스터 시스템에서 스퍼터링 장치는 적어도 하나의 처리 챔버 내에 마련되며, 자석 유닛이 일정 간격을 두고 설치된다.
그런데, 자석 유닛에 의한 고정 자기장이 존재하기 때문에 타겟 표면의 침식은 전기장 및 자기장에 의한 플라즈마 밀도에 의해 결정된다. 특히, 자석 유닛은 가장자리, 즉 길이 방향의 적어도 일 단부에 그라운드 전위가 인가되기 때문에 기판의 가장자리의 플라즈마 밀도가 다른 영역에 비해 크고, 그에 따라 타겟의 가장자리가 다른 영역에 비해 스퍼터링 속도가 빠르게 된다. 따라서, 기판 상에 증착되는 박막의 두께 분포가 균일하지 못해 막질 분포 저하 문제를 발생시키고, 플라즈마 밀도 차이에 의한 타겟의 특정 부분의 과도 침식에 의한 타겟 효율 감소 문제를 발생시킨다.
이러한 문제를 해결하기 위해 가장자리의 두께가 중앙부의 두께보다 두꺼운 타겟을 이용할 수 있다. 이러한 타겟을 제조하기 위해 평면 타겟의 중앙부를 연마하여 두께를 얇게 하는 등 추가적인 공정으로 평면 타겟을 가공해야 한다. 그러나, 평면 타겟을 가공함으로써 재료의 손실이 발생되고, 추가적인 공정에 의한 비용이 발생된다. 또한, 타겟을 가공하는 과정에서 타겟이 손상되는 등의 문제가 발생할 수도 있다.
문제 해결의 다른 방법으로, 션트(shunt) 등을 이용하여 타겟 표면의 자기장의 강도를 조절하거나, 자석의 가장자리에 라이너를 이용하여 거리를 조절하거나, 자석의 가장자리 위치에 Z축 모터를 추가하는 방법 등이 있다. 그러나, 이러한 방법들은 제작 비용이 증가하며, 수작업으로 자기장의 강도를 조절해야 하고, 자기장 강도의 조정이 국소적으로 이루어지지 않기 때문에 수회의 반복 작업이 필요하여 작업 시간이 많이 필요하는 등의 단점이 있다.
본 발명은 타겟의 국부적인 과도 침식을 방지할 수 있고 면내 분포를 개선할 수 있는 자석 구조체 및 이를 구비하는 스퍼터링 장치를 제공한다.
본 발명은 전체적으로 균일한 자기장을 발생시키며, 국부적인 자기장의 조절이 가능한 자석 구조체 및 이를 구비하는 스퍼터링 장치를 제공한다.
본 발명의 일 양태에 따른 자석 구조체는 영구 자석과, 상기 영구 자석의 적어도 일면 상에 접촉되어 마련된 적어도 하나의 전자석을 포함한다.
상기 전자석은 보빈과, 상기 보빈을 감싸도록 마련된 와이어를 포함한다.
상기 전자석을 복수개 포함하며, 각 전자석은 직렬 또는 병렬 연결된다.
상기 전자석은 적어도 일 영역이 다른 영역과 다르게 자기장의 세기가 조절된다.
상기 전자석은 와이어의 턴수, 저항, 보빈의 재질 및 형상, 와이어에 인가되는 전압, 전류 중 어느 하나에 의해 자기장의 세기가 변화된다.
상기 전자석의 폭은 상기 영구 자석의 폭과 같거나 다르다.
상기 전자석은 상기 영구 자석의 가장자리로부터 길이 방향의 30% 이내에 마련된다.
상기 전자석의 적어도 일측에 마련된 냉각 수단을 더 포함한다.
상기 영구 자석, 전자석 및 냉각 수단을 몰딩하는 몰딩부를 더 포함한다.
본 발명의 다른 양태에 따른 스퍼터링 장치는 기판이 안착되는 기판 안착부; 상기 기판 안착부와 대향되어 마련되며, 소정 간격 이격되어 적어도 하나 이상 마련되는 자석 유닛; 및 상기 기판 안착부와 자석 유닛 사이에 마련된 적어도 하나의 타겟을 포함하고, 상기 자석 유닛은 제 1 자석과, 상기 제 1 자석과, 상기 제 1 자석 외측에 마련된 제 2 자석을 포함하고, 상기 제 1 및 제 2 자석 중 적어도 하나는 영구 자석과, 상기 영구 자석의 적어도 일면 상에 접촉되어 마련된 전자석을 포함한다.
상기 전자석은 와이어의 턴수, 재질, 보빈의 재질 및 형상, 와이어에 인가되는 전압, 전류 중 어느 하나에 의해 상기 자기장의 세기가 조절된다.
상기 전자석은 상기 타겟의 가장자리로부터 길이 방향의 30% 이내에 마련된다.
상기 전자석의 적어도 일측에 마련된 냉각 수단을 더 포함한다.
본 발명의 실시 예들에 따른 자석 구조체는 영구 자석과 결합된 전자석을 포함할 수 있다. 또한, 전자석은 보빈의 재질 및 형상, 와이어의 권선 수, 굵기, 저항, 권선 후 인가되는 전압 및 전류 등에 따라 자기장의 세기를 조절할 수 있다. 특히, 외부 제어 장치를 통해 전자석의 자기장의 세기를 국부적으로 조절하거나, 자석 구조체 전체 영역의 자기장의 세기를 조절할 수 있다. 즉, 스퍼터링 장치 내부의 진공을 파괴하지 않고 장치 외부에서 자기장의 세기를 조절할 수 있다.
따라서, 본 발명의 자석 구조체를 스퍼터링 장치에 적용함으로써 자기장의 세기를 진공 환경 내에서 조절할 수 있고, 타겟의 국부적인 침식을 방지할 수 있으며 기판의 막질 분포를 향상시킬 수 있다.
도 1은 본 발명의 일 실시 예에 따른 스퍼터링 장치의 개략 단면도.
도 2 내지 도 4는 본 발명의 실시 예들에 따른 자석 구조체의 개략 평면도.
도 5 및 도 6은 본 발명의 실시 예들에 따른 자석 구조체의 결합 예시도.
도 7 내지 도 9는 본 발명의 실시 예들에 따른 자석 구조체의 전자석의 단면도.
도 10 및 도 11은 본 발명의 다른 실시 예에 따른 자석 구조체의 단면도.
도 12는 비교 예와 본 발명의 실시 예에 따른 자기장의 세기를 도시한 그래프.
도 2 내지 도 4는 본 발명의 실시 예들에 따른 자석 구조체의 개략 평면도.
도 5 및 도 6은 본 발명의 실시 예들에 따른 자석 구조체의 결합 예시도.
도 7 내지 도 9는 본 발명의 실시 예들에 따른 자석 구조체의 전자석의 단면도.
도 10 및 도 11은 본 발명의 다른 실시 예에 따른 자석 구조체의 단면도.
도 12는 비교 예와 본 발명의 실시 예에 따른 자기장의 세기를 도시한 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 스퍼터링 장치의 개략 단면도이고, 도 2 내지 도 4는 본 발명의 실시 예들에 따른 자석 구조체의 개략 평면도이다. 또한, 도 5 및 도 6은 본 발명의 실시 예들에 따른 자석 구조체의 결합 예시도이고, 도 7 내지 도 9는 본 발명의 실시 예들에 따른 자석 구조체의 전자석의 단면도이다.
도 1을 참조하면, 본 발명에 따른 스퍼터링 장치는 자석 유닛(100)과, 백킹 플레이트(200), 타겟(300) 및 기판 안착부(400)를 포함할 수 있다. 또한, 자석 유닛(100)은 요크(110)와, 제 1 자석(120) 및 제 2 자석(130)을 포함할 수 있고, 제 1 및 제 2 자석(120, 130)은 영구 자석(1100) 및 전자석(1200)을 포함할 수 있다. 여기서, 기판 안착부(400)와 자석 유닛(100)은 서로 대향되도록, 즉 서로 마주보도록 마련될 수 있다. 이때, 기판 안착부(400)는 장치 내에 상측, 하측 또는 측부에 마련될 수 있고, 이와 마주보도록 자석 유닛(100)이 마련될 수 있다. 예를 들어, 기판 안착부(400)가 하측에 마련되면 자석 유닛(100)은 상측에 마련되고, 기판 안착부(400)가 상측에 마련되면 자석 유닛(100)은 하측에 마련될 수 있다. 또한, 기판 안착부(400)가 측면에 수직으로 마련될 경우 자석 유닛(100)은 이와 대면하는 타 측면에 마련될 수 있다. 본 실시 예에서는 기판 안착부(400)가 상측에 마련되고 자석 유닛(100)이 하측에 마련되는 경우를 도시하고 설명한다.
1. 자석 유닛
자석 유닛(100)은 기판(S)과 대향하도록 마련되며, 요크(110), 제 1 자석(120) 및 제 2 자석(130)을 포함할 수 있다. 또한, 자석 유닛(100; 100A, 100B, 100C)은 적어도 둘 이상 마련될 수 있고, 수평(X) 및 수직(Y) 방향으로 왕복 이동할 수 있다. 즉, 자석 유닛(100)보다 큰 대면적 기판(S)에 박막을 증착하는 경우 자석 유닛(100)은 적어도 둘 이상 마련될 수 있다. 이때, 적어도 둘 이상의 자석 유닛(100)은 동일 크기 및 동일 구조로 마련되고 동일 간격으로 이격될 수 있다.
요크(110)는 평판 또는 원통형 형상이고, 요크(110)의 일면 또는 표면에 제 1 자석(120) 및 제 2 자석(130)이 설치된다. 즉, 평판형 요크(110)의 일면에 제 1 및 제 2 자석(120, 130)이 설치되거나, 원통형 요크(110)의 표면에 제 1 및 제 2 자석(120, 130)이 설치될 수 있다. 요크(110)는 예를 들면 페라이트계의 스테인레스 등을 이용할 수 있다. 제 1 자석(120)은 요크(110)의 중앙부에 고정되고, 제 2 자석(130)은 제 1 자석(120)과 이격되어 요크(110)의 주변에 고정된다. 여기서, 제 1 및 제 2 자석(120, 130)의 높이 및 폭은 동일할 수 있다. 그러나, 제 1 자석(120)의 폭이 제 2 자석(130)보다 넓을 수도 있는 등 다양하게 변형 가능하다.
제 1 자석(120)은 요크(110)의 일면으로부터 소정 높이로 형성되며 직선 형태 또는 폐루프(closed loop) 형상으로 마련될 수도 있다. 즉, 제 1 자석(120)은 도 2 및 도 3에 도시된 바와 같이 소정의 길이 및 폭을 갖는 직선 형태로 마련될 수도 있고, 도 4에 도시된 바와 같이 폐루프 형태로 마련될 수도 있다. 직선 형태의 경우 즉 X 방향으로 소정의 폭을 갖고 이와 직교하는 Y 방향으로 소정의 길이를 갖는 대략 바(bar) 형상으로 마련될 수 있다. 이때, X 방향은 기판(S)의 이동 방향일 수 있다. 폐루프 형태의 제 1 자석(120)은 도 4에 도시된 바와 같이 서로 소정 간격 이격되며 동일 길이의 제 1 및 제 2 장변부(122a, 122b)와 제 1 및 제 2 장변부(122a, 122b)의 가장자리에 제 1 및 제 2 장변부(122a, 122b)을 연결하도록 마련된 제 1 및 제 2 단변부(124a, 124b)를 포함할 수 있다. 여기서, 제 1 및 제 2 단변부(124a, 124b)는 직선 형태로 마련되어 제 1 및 제 2 장변부(122a, 122b)의 가장자리를 연결한다. 따라서, 제 1 자석(120)은 장변부(122a, 122b) 및 단변부(124a, 124b)가 직사각형의 형상을 이루도록 마련될 수 있다. 그러나, 제 1 자석(120)은 직사각형의 형상 뿐만 아니라 원형 또는 폐루프 형상을 갖는 다양한 형상으로 마련될 수 있다. 예를 들어, 장변부와 단변부가 만나는 모서리 부분이 라운드 하게 형성될 수도 있다. 또한, 제 1 자석(120)의 장변부(122a, 122b)는 요크(110)의 중앙부로부터 소정 간격 이격되어 마련될 수 있다.
제 2 자석(130)은 제 1 자석(120)과 소정 간격 이격되며, 제 1 자석(120) 외측에 마련된다. 즉, 제 2 자석(130)은 직선 형상 또는 폐루프 형상의 제 1 자석(120) 외측에 마련된다. 이러한 제 2 자석(130)은 제 1 자석(120)과 동일 형상으로 마련될 수 있는데, 직선 형상 또는 폐루프 형상으로 마련될 수 있다. 즉, 도 2에 도시된 바와 같이 제 1 자석(120)과 소정 간격 이격되어 직선 형상으로 마련될 수도 있고, 도 3 및 도 4에 도시된 바와 같이 폐루프 형상으로 마련될 수도 있다. 폐루프 형상의 제 2 자석(130)은 도 3 및 도 4에 도시된 바와 같이 제 1 자석(120)의 제 1 및 제 2 장변부(122a, 122b)와 소정 간격 이격되고 이보다 길게 제 3 및 제 4 장변부(132a, 132b)가 마련될 수 있고, 제 3 및 제 4 장변부(132a, 132b)의 가장자리에서 제 3 및 제 4 장변부(132a, 132b)를 서로 연결하도록 제 3 및 제 4 단변부(134a, 134b)가 마련될 수 있다. 따라서, 제 2 자석(130)은 장변부(132a, 132b) 및 단변부(134a, 134b)가 직사각형의 형상을 이루면서 제 1 자석(120)을 둘러싸도록 마련될 수 있다. 그러나, 제 2 자석(130)은 직사각형의 형상 뿐만 아니라 폐루프 형상을 갖는 다양한 형상으로 마련될 수 있다. 예를 들어, 장변부와 단변부가 만나는 모서리 부분이 라운드 하게 형성될 수도 있다.
한편, 제 1 자석(120) 및 제 2 자석(130)은 영구 자석(1100) 및 전자석(1200)을 포함할 수 있다. 즉, 요크(110) 상에 접촉되어 마련된 영구 자석(1100)과, 영구 자석(1100) 상에 접촉되어 마련된 전자석(1200)을 포함할 수 있다. 따라서, 전자석(1200)이 타겟(300)과 대향될 수 있다. 또한, 전자석(1200)은 자기장의 세기를 조절할 수 있다. 즉, 전자석(1200)을 구성하는 와이어의 턴수 및 와이어의 재질(즉 저항) 등과 전자석(1200)에 인가되는 전압, 전류 등에 의해 자기장은 조절 가능하다. 즉, 전자석(1200)에 의해 생성되는 자기장을 조절할 수 있고, 그에 따라 영구 자석(1100)과 전자석(1200)에 의해 생성되는 전체 자기장의 세기를 조절할 수 있다. 그리고, 영구 자석(1100)에 의해 생성되는 자기장의 세기는 전자석(1200)에 의해 생성되는 자기장의 세기와 같거나 다를 수 있다. 즉, 전자석(1200)의 와이어 턴수 및 저항, 전자석(1200)에 인가되는 전압, 전류 등에 의해 자기장의 세기를 조절할 수 있고, 그에 따라 전자석(1200)은 영구 자석(1100)에 의해 생성된 자기장보다 크거나 작거나 또는 같은 자기장을 생성할 수 있다. 따라서, 영구 자석(1100)과 전자석(1200)을 결합함으로써 기존의 영구 자석(1100)만 이용하는 경우에 비해 큰 자기장을 생성할 수 있다. 물론, 영구 자석(1100)과 전자석(1200)을 결합함으로써 영구 자석(1100)만을 이용하는 경우에 비해 작은 자기장을 생성할 수 있다. 그러나, 영구 자석(1100)과 전자석(1200)을 결합함으로써 전체적으로 균일한 자기장을 생성할 수 있다. 즉, 기존의 영구 자석(1100)만 이용하는 경우 자기장의 세기가 균일하지 못해 타겟의 가장자리 부근의 침식을 크게 하였지만, 영구 자석(1100)과 전자석(1200)을 결합함으로써 전체적인 자기장의 세기를 균일하게 할 수 있고, 그에 따라 타겟의 국부적인 침식을 방지할 수 있다.
영구 자석(1100)은 서로 다른 극성을 갖도록 마련된다. 즉, 제 1 자석(120)의 영구 자석(1100)이 N극을 갖는다면 제 2 자석(130)의 영구 자석(1100)은 S극을 갖고, 제 1 자석(120)의 영구 자석(1100)이 S극을 갖는다면 제 2 자석(130)의 영구 자석(1100)은 N극을 갖는다. 따라서, 제 1 자석(120)이 도 2 및 도 3에 도시된 바와 같이 일자 형태를 가지면 자석 유닛(100)의 영구 자석(1100)은 S-N-S의 배열을 갖거나 N-S-N의 배열을 가질 수 있다. 또한, 제 1 자석(120)이 도 4에 도시된 바와 같이 폐루프 형태를 가지면 자석 유닛(100)의 영구 자석(1100)은 S-N-N-S의 배열을 갖거나 N-S-S-N의 배열을 가질 수 있다. 그러나, 본 발명은 극성이 다른 두 자석으로 이루어진 자석 유닛(100)이 복수 마련되는 경우 뿐만 아니라 복수의 자석이 극성이 다르게 배열되는 경우도 포함될 수 있으므로 N-S-…-S-N로 자석 배열이 이루어질 수도 있다. 이러한 영구 자석(1100)은 예를 들면 네오듐, 철 및 붕소를 주성분으로 하는 이방성 또는 등방성 소결 자석, 사마륨 코발트 자석, 페라이트 자석 등을 이용할 수 있다.
전자석(1200)은 영구 자석(1100)과 결합되어 마련될 수 있다. 전자석(1200)은 다양한 방법으로 영구 자석(1100)과 결합될 수 있다. 예를 들어, 전자석(1200)은 도 5에 도시된 바와 같이 접착제(1310)를 이용하여 영구 자석(1100)과 접착될 수 있고, 소정의 결합 부재를 이용하여 영구 자석(1100)과 전자석(1200)을 결합시킬 수 있다. 결합 부재의 예로서 도 6에 도시된 바와 같이 전자석(1200)의 하측 가장자리로부터 영구 자석(1100)의 측면 및 하면을 감싸도록 마련된 지그(1320)를 포함할 수 있다. 물론, 지그(1320)은 전자석(1200)의 하측 가장자리로부터 영구 자석(1100)의 측면에 형성되거나, 영구 자석(1100)의 측면 및 하면의 일부에 형성될 수도 있다. 이러한 전자석(1200)은 단면이 대략 I자 형태의 보빈(1210)과, 보빈(1210)을 감싸도록 마련된 와이어(1220)를 포함할 수 있다. 즉, 전자석(1200)은 코일(1220)이 권선된 보빈(1210)의 일부가 영구 자석(1100) 상에 결합되어 이루어질 수 있다.
보빈(1210)은 절연성 재질 또는 금속성 재질로 이루어질 수 있다. 절연성 재질로 이루어지는 경우 보빈(1210)은 금속성 재질의 표면에 절연성 재질이 코팅될 수 있고, 전체가 절연성 재질로 이루어질 수도 있다. 이러한 보빈(1210)은 수직부(1211)와, 수직부(1211)의 하부 및 상부에 각각 마련된 제 1 및 제 2 수평부(1212, 1213)를 포함할 수 있다. 즉, 보빈(1210)은 단면이 대략 I자 형태로 이루어질 수 있다. 수직부(1211)는 와이어(1220)가 접촉되어 권선된다. 즉, 와이어(1220)는 수직부(1211)에 접촉되어 수직부(1211)를 감싸도록 권선된다. 그리고, 수직부(1211)의 높이에 따라 권선되는 와이어(1220)의 높이가 결정될 수 있다. 따라서, 수직부(1211)의 높이가 높고, 수평부(1212, 1213)의 폭이 넓을수록 와이어(1220)의 권선 수가 증가할 수 있다. 또한, 보빈(1210)은 제 1 및 제 2 수평부(1212, 1213)의 어느 하나가 영구 자석(1100) 상에 접촉될 수 있는데, 본 실시 예는 제 1 수평부(1212)가 영구 자석(1100) 상에 접촉되는 경우를 설명한다. 한편, 영구 자석(1100) 상에 접촉되어 마련되는 제 1 수평부(1212)는 영구 자석(1100)과 동일한 폭으로 마련될 수 있다. 즉, 제 1 수평부(1212)는 일 방향으로 영구 자석(1100)과 같거나 다른 길이를 갖고, 일 방향과 직교하는 타 방향으로 영구 자석(1100)과 동일한 폭을 갖는 대략 직사각형의 판 형상으로 마련될 수 있다. 또한, 제 2 수평부(1213)는 제 1 수평부(1212)와 동일 형상으로 마련될 수 있다. 즉, 제 2 수평부(1213)는 제 1 수평부(1212)와 동일 길이 및 폭을 가질 수 있다. 그러나, 제 2 수평부(1213)는 제 1 수평부(1212)보다 좁은 폭 또는 넓은 폭으로 마련될 수 있다. 이때, 제 2 수평부(1213)는 보빈(1210)에 권선되는 와어어(1220)의 폭보다 넓은 폭을 가질 수 있다. 즉, 와이어(1220)는 보빈(1210)의 수직부(1211)을 권선하도록 마련되는데, 보빈(1210)에 권선된 와이어(1220)의 일 방향으로의 폭이 제 2 수평부(1213)의 폭보다 좁거나 같을 수 있다. 이에 따라 와이어(1220)의 이탈을 방지할 수 있다. 그러나, 와이어(1220)가 수직부(1211)에 권선되기 때문에 와이어(1220)가 이탈되지 않으므로 와이어(1220)의 일 방향의 폭이 제 2 수평부(1213)의 폭보다 넓을 수도 있다. 또한, 수직부(1211)는 제 1 및 제 2 수평부(1212, 1213)의 중앙부에 마련될 수 있다. 따라서, 수직부(1211)를 사이에 두고 일측 및 타측의 와이어(1200)의 폭이 동일할 수 있다.
와이어(1220)는 도전성 재질로 이루어질 수 있다. 예를 들어, 와이어(1220)는 소정의 굵기를 갖는 알루미늄, 구리 등의 도전성 재질로 이루어질 수 있다. 또한, 와이어(1220)는 표면에 절연성 물질이 코팅될 수 있다. 예를 들어, 에나멜, 폴리머 등이 도전성 와이어의(1220) 표면에 코팅될 수 있다. 와이어(1220)는 보빈(1210)의 수직부(1211)를 감도록 소정 수로 권선될 수 있다. 이러한 와이어(1220)의 권선 수, 굵기 및 재질(즉 저항), 보빈(1210)의 재질 및 형상, 그리고 권선 후 와이어(1220)에 인가되는 전압 및 전류 등에 의해 전자석(1200)의 자기장의 세기가 조절될 수 있다. 따라서, 원하는 세기의 자기장을 얻을 수 있도록 와이어(1220)의 권선 수, 재질, 보빈(1210)의 재질 및 형상 등을 결정할 수 있다. 한편, 와이어(1220)는 단일로 이루어져 보빈(1210)을 감을 수 있고, 적어도 둘 이상으로 이루어져 보빈(1210)을 감을 수 있다. 예를 들어, 도 7에 도시된 바와 같이 보빈(1210)의 수직부(1211)과 접촉되어 수직부(1211)을 감도록 형성된 제 1 와이어(1221)와, 제 1 와이어(1221)과 접촉되어 제 1 와이어(1221)를 감도록 형성된 제 2 와이어(1222)를 포함할 수 있다. 즉, 보빈(1210)에 접촉되어 제 1 와이어(1221)가 권선되고, 제 1 와이어(1221)에 접촉되어 제 2 와이어(1222)가 권선될 수 있다. 또한, 제 1 와이어(1221)는 보빈(1210)의 일 영역을 감싸도록 마련될 수 있고, 제 2 와이어(1222)는 보빈(1210)의 타 영역을 감싸도록 마련될 수 있다. 예를 들어, 도 8에 도시된 바와 같이 상측으로부터 수직부(1211)의 중간까지 제 1 와이어(1221)가 권선될 수 있고, 수직부(1211)의 중간부터 하측까지는 제 2 와이어(1222)가 권선될 수 있다. 또한, 제 1 및 제 2 와이어(1221, 1222)가 교대로 권선될 수도 있다. 예를 들어, 도 8에 도시된 바와 같이 홀수번째는 제 1 와이어(1221)가 권선되고 짝수번째는 제 2 와이어(1222)가 권선될 수도 있다. 이때에도 제 1 및 제 2 와이어(1221, 1222)가 병렬 연결됨으로써 합성 저항값을 감소시킬 수 있다. 이렇게 제 1 및 제 2 와이어(1221, 1222)로 이루어질 경우 제 1 및 제 2 와이어(1221, 1222)는 상호 병렬 연결될 수 있다. 제 1 및 제 2 와이어(1221, 1222)가 병렬 연결됨으로써 제 1 및 제 2 와이어(1221, 1222)의 합성 저항값이 감소될 수 있다. 한편, 상기 실시 예는 두개의 와이어가 병렬 연결되는 경우를 설명하였으나, 셋 이상의 와이어가 권선되고 이들이 병렬 연결될 수도 있다.
한편, 영구 자석(1100) 상에 마련되는 전자석(1200)은 영구 자석(1100)의 전체 상부에 마련될 수 있고, 영구 자석(1100) 상의 적어도 일부에 마련될 수 있다. 예를 들어, 타겟의 침식이 가장 많은 부분(즉 타겟의 가장자리로부터 길이 방향)으로 30% 이내의 영역에 전자석(1200)이 마련될 수 있다. 즉, 영구 자석(1100)의 가장자리로부터 길이 방향으로 30% 이내의 영역에 전자석(1200)이 마련될 수 있다. 따라서, 타겟(200)의 침식이 많은 가장자리 부분의 영구 자석(1100) 상에 전자석(1200)을 마련하고 전자석(1200)의 자기장의 세기를 조절하여 위치에 따라 원하는 자기장의 세기를 갖도록 할 수 있다. 또한, 전자석(1200)은 영구 자석(1100) 상에 복수 마련될 수 있다. 이때, 복수의 전자석(1200)은 영구 자석(1100) 상에 밀착되어 마련될 수도 있고, 소정의 간격으로 이격되어 마련될 수도 있다. 즉, 영구 자석(1100)은 제 1 길이를 갖고, 그 상부에 제 1 길이보다 짧은 제 2 길이를 갖는 복수의 전자석(1200)이 서로 접촉되도록 마련될 수 있고, 소정의 간격으로 마련될 수 있다. 예를 들어, 영구 자석(1100)이 3m의 길이로 마련되고, 전자석(1200)이 50cm의 길이로 마련되어 복수의 전자석(1200)이 접촉되도록 마련될 수 있고, 5cm의 간격으로 이격되어 마련될 수도 있다. 한편, 복수의 전자석(1200)은 서로 직렬 또는 병렬 연결될 수 있다. 즉, 영구 자석(1100) 상에 적어도 둘 이상의 복수의 전자석(1200)이 마련되는 각각의 전자석(1200)은 서로 직렬 또는 병렬 연결될 수 있다. 이때, 복수의 전자석(1200)은 적어도 하나의 와이어(1220)의 권선 방향이 다를 수 있다. 예를 들어, 홀수번째 전자석(1200)은 시계 방향으로 와이어(1220)이 권선되고, 짝수번째 전자석(1200)은 반시계 방향으로 와이어(1220)가 권선될 수 있다. 이러한 복수의 전자석(1200)은 와이어(1220)들이 서로 직렬 또는 병렬 연결될 수 있다.
2.
백킹
플레이트
백킹 플레이트(200)는 자석 유닛(100)과 기판 안착부(400) 사이에 마련된다. 또한, 백킹 플레이트(200)의 일면에는 타겟(300)이 고정된다. 즉, 타겟(300)은 기판(S)과 대면하는 백킹 플레이트(200)의 일면에 고정된다. 한편, 백킹 플레이트(200)를 마련하지 않고, 자석 유닛(100) 하측에 타겟(300)을 마련하는 것도 가능하다.
3.
타겟
타겟(300)은 백킹 플레이트(200)에 고정되며, 기판(S)에 증착될 물질로 구성된다. 이러한 타겟(300)은 금속 물질 또는 금속 물질을 포함하는 합금일 수 있다. 또한, 타겟(300)은 금속 산화물, 금속 질화물 또는 유전체일 수도 있다. 예를 들어, 타겟(300)은 Mg, Ti, Zr, V, Nb, Ta, Cr, Mo, W, Pd, Pt, Cu, Ag, Au, Zn, Al, In, C, Si 및 Sn 등에서 선택되는 원소를 주성분으로 하는 재료가 이용될 수 있다. 한편, 백킹 플레이트(200)와 타겟(300)은 총두께가 5㎜∼50㎜ 정도로 마련될 수 있다.
4. 기판
안착부
기판 안착부(400)는 증착 물질이 기판(S)에 균일하게 증착될 수 있도록 기판(S)을 고정한다. 기판 안착부(400)는 기판(S)이 안착되면 고정 수단 등을 이용하여 기판(S)의 가장자리를 고정하거나, 기판(S)의 뒷면에서 기판(S)을 고정할 수 있다. 기판 안착부(400)는 기판(S)의 뒷면을 모두 지지하여 고정하기 위해 기판(S)의 형상을 갖는 대략 사각형 또는 원형의 형상으로 마련될 수 있다. 또한, 기판 안착부(400)는 기판(S)의 가장자리 부분을 고정하기 위해 소정 길이를 갖는 네 개의 바가 상하좌우에 소정 간격 이격되어 마련되고 바의 가장자리가 서로 접촉됨으로써 중앙부가 빈 사각의 틀 형상으로 마련될 수 있다. 한편, 기판 안착부(400)는 기판(S)이 안착된 상태에서 일 방향으로 이동할 수 있다. 예를 들어, 일 방향으로 진행하면서 기판(S) 상에 박막을 증착할 수 있다. 따라서, 기판 안착부(400)의 기판(S)이 안착되지 않은 면에는 기판 안착부(400)를 이동시키는 이동 수단(미도시)이 마련될 수 있다. 이동 수단은 기판 안착부(400)와 접촉하여 이동시키는 롤러와, 기판 안착부(400)와 이격되어 자기력으로 이동시키는 자기 이송 수단 등을 포함할 수 있다. 물론, 기판 안착부(400)의 일부가 이동 수단으로 기능할 수도 있다. 또한, 정지형 스퍼터링 장치일 경우 고정 수단이 필요하지 않을 수 있다. 이때, 기판 안착부(400)는 기판(S)을 리프트 시키는 리프트 핀이 구비될 수도 있다. 그러나, 정지형 스퍼터링 장치에서 수직으로 스퍼터링할 경우 기판(S)을 기립시키고 고정하는 고정 수단이 구비될 수 있다. 한편, 기판(S)은 반도체, FPD(LCD, OLED 등), 태양 전지 등을 제조하기 위한 기판일 수 있으며, 실리콘 웨이퍼, 글래스 등일 수 있다. 또한, 기판(S)은 롤투롤에 적용되는 필름형 기판일 수도 있다. 본 실시 예에서 기판(S)은 글래스 등의 대면적 기판을 이용한다.
상기한 바와 같이 본 발명의 일 실시 예에 따른 자석 구조체는 영구 자석(1100)과 전자석(1200)이 결합되어 마련될 수 있다. 또한, 전자석(1200)은 자기장의 세기를 조절할 수 있다. 즉, 전자석(1200)은 와이어(1220)의 권선 수, 굵기, 재질, 보빈(1210)의 재질 및 형상, 권선 후 인가되는 전압 및 전류 등에 따라 자기장의 세기를 조절할 수 있다. 예를 들어, 전자석(1200)은 전류의 세기 및 방향에 따라 자기장의 세기 및 방향을 조절할 수 있는데, 플레밍의 오른손 법칙에 따라 전류의 방향이 시계 방향이면 자기장의 방향이 위로 향하고, 전류의 방향이 반시계 방향이면 자기장의 방향이 아래로 향하게 된다. 즉, 와이어(1220)의 권선 방향으로 전류를 인가하면 자기장의 세기를 증가시킬 수 있고, 와이어(1220)의 권선 방향과 반대 방향으로 전류를 인가하면 자기장의 세기를 감소시킬 수 있다. 따라서, 영구 자석(1100)만을 이용하는 경우에 비해 위치에 따라 원하는 자기장의 세기를 갖도록 할 수 있다. 또한, 전자석만을 이용할 경우 원하는 자기장을 얻기 위하여 큰 전압 또는 전류가 필요하지만, 영구 자석과 결합됨으로써 적은 전압 또는 전류를 인가하여도 원하는 자기장을 얻을 수 있다. 결국, 전체적으로 균일하거나 국부적으로 자기장의 세기를 제어할 수 있어 타겟의 국부적인 침식을 방지할 수 있고 기판의 막질 분포를 향상시킬 수 있다.
한편, 본 발명에 따른 자석 구조체는 전자석에 소정의 전류 또는 전압이 인가됨으로써 전자석이 가열될 수 있다. 따라서, 전자석을 냉각시키기 위한 냉각 수단이 마련될 수 있다. 이러한 냉각 수단을 포함하는 본 발명의 다른 실시 예에 따른 자석 구조체의 단면도를 도 10 및 도 11에 도시하였다.
도 10에 도시된 바와 같이, 본 발명의 다른 실시 예에 따른 자석 구조체는 영구 자석(1100)과, 영구 자석(1100) 상에 마련된 전자석(1200)과, 전자석(1200)의 일측에 마련된 냉각 수단(1400)을 포함할 수 있다. 여기서, 영구 자석(1100)과 전자석(1200)이 결합된 자석 구조체가 수평 방향으로 적어도 둘 이상 마련될 수 있고, 인접한 전자석(1200) 사이에 냉각 수단(1400)이 마련될 수 있다. 냉각 수단(1400)은 물, 공기 또는 기타 냉매를 공급하는 냉매 공급부(미도시)와, 이들이 순환될 수 있는 냉매 순환로를 포함할 수 있다. 도 10의 실시 예에 도시된 냉각 수단(1400)은 냉매 순환로이다.
또한, 도 11에 도시된 바와 같이, 냉각 수단(1400)을 포함하는 자석 구조체는 영구 자석(1100), 전자석(1200) 및 냉각 수단(1400)을 덮도록 몰딩부(1500)가 마련될 수 있다. 몰딩부(1500)를 이용하여 자석 구조체를 몰딩함으로써 자석 구조체가 하나의 모듈 단위로 제작될 수 있다.
도 12는 비교 예에 따른 영구 자석의 자기장의 세기와 본 발명의 실시 예에 따른 영구 자석과 전자석의 결합된 자석 구조체의 자기장의 세기를 비교한 그래프이다. 도 12에서 A는 비교 예에 따른 영구 자석만 이용할 경우의 자기장의 세기이고, B, C 및 D는 실시 예에 따른 영구 자석과 전자석을 결합한 자석 구조체의 자기장의 세기이다. 또한, B는 전자석에 전압을 인가하지 않은 상태의 자기장의 세기이고, C 및 D는 각각 +6V 및 -6V의 전압을 인가했을 때의 자기장의 세기이다. 여기서, 전자석은 0.8㎜ 굵기의 구리로 이루어진 와이어를 50회 권선하였다. 도시된 바와 같이, 영구 자석과 전자석을 결합한 경우 영구 자석만 이용하는 경우에 비해 높은 자기장의 세기를 나타낸다. 또한, (-) 전압을 인가한 경우 전압을 인가하지 않은 경우에 비해 자기장의 세기가 감소하고 (+) 전압을 인가한 경우 전압을 인가하지 않은 경우에 비해 자기장의 세기가 증가한다.
한편, 본 발명에 따른 영구 자석과 전자석이 결합된 자석은 인가되는 전압에 따라 영구 자석보다 적은 자기장의 세기를 가질 수도 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.
100 : 자석 유닛 110 : 요크
120 : 제 1 자석 120 : 제 2 자석
200 : 타겟 300 : 백킹 플레이트
400 : 기판 안착부 1100 : 영구 자석
1200 : 전자석 1310, 1320 : 결합 부재
1400 : 냉각 수단 1500 : 몰딩부
120 : 제 1 자석 120 : 제 2 자석
200 : 타겟 300 : 백킹 플레이트
400 : 기판 안착부 1100 : 영구 자석
1200 : 전자석 1310, 1320 : 결합 부재
1400 : 냉각 수단 1500 : 몰딩부
Claims (13)
- 타겟을 포함하는 스퍼터링 장치에 이용되며, 타겟 주변의 자기장을 조절하기 위한 자석 구조체로서,
수평 방향으로 배열된 복수의 영구 자석과,
상기 복수의 영구 자석의 일면 상에 접촉되어 마련된 복수의 전자석을 포함하고,
상기 전자석은 수직 방향으로 상기 영구 자석의 일면 상에 마련되며,
상기 전자석은 상기 영구 자석보다 상기 타겟에 가깝게 위치되고,
상기 전자석과 영구 자석은 동일한 수로 마련되며,
상기 복수의 영구 자석은 인접한 영구 자석의 극성이 서로 다르게 배열된 자석 구조체.
- 청구항 1에 있어서, 상기 전자석은 보빈과, 상기 보빈을 감싸도록 마련된 와이어를 포함하는 자석 구조체.
- 청구항 2에 있어서, 상기 전자석을 복수개 포함하며, 각 전자석은 직렬 또는 병렬 연결된 자석 구조체.
- 청구항 1에 있어서, 상기 전자석은 적어도 일 영역이 다른 영역과 다르게 자기장의 세기가 조절되는 자석 구조체.
- 청구항 4에 있어서, 상기 전자석은 와이어의 턴수, 저항, 보빈의 재질 및 형상, 와이어에 인가되는 전압, 전류 중 어느 하나에 의해 자기장의 세기가 변화되는 자석 구조체.
- 청구항 1에 있어서, 상기 전자석의 폭은 상기 영구 자석의 폭과 같거나 작거나 넓은 자석 구조체.
- 청구항 6에 있어서, 상기 전자석은 상기 영구 자석의 가장자리로부터 길이 방향의 30% 이내에 마련된 자석 구조체.
- 청구항 1 내지 7 중 어느 한 항에 있어서, 상기 전자석의 적어도 일측에 마련된 냉각 수단을 더 포함하는 자석 구조체.
- 청구항 8에 있어서, 상기 영구 자석, 전자석 및 냉각 수단을 몰딩하는 몰딩부를 더 포함하는 자석 구조체.
- 삭제
- 삭제
- 삭제
- 삭제
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160148863A KR101888173B1 (ko) | 2016-11-09 | 2016-11-09 | 자석 구조체 및 이를 구비하는 스퍼터링 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160148863A KR101888173B1 (ko) | 2016-11-09 | 2016-11-09 | 자석 구조체 및 이를 구비하는 스퍼터링 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180051916A KR20180051916A (ko) | 2018-05-17 |
KR101888173B1 true KR101888173B1 (ko) | 2018-08-13 |
Family
ID=62486185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160148863A KR101888173B1 (ko) | 2016-11-09 | 2016-11-09 | 자석 구조체 및 이를 구비하는 스퍼터링 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101888173B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102340351B1 (ko) | 2021-05-26 | 2021-12-16 | 고영효 | 마그네트론 스퍼터링 장치의 자기회로 및 그 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187973A (ja) * | 2001-12-10 | 2003-07-04 | Ans Inc | 電磁石を用いた有機電界発光素子製作用蒸着装置及びこれを用いた蒸着方法 |
JP2013104073A (ja) * | 2011-11-11 | 2013-05-30 | Ulvac Japan Ltd | マグネトロンスパッタリング装置及びマグネトロンスパッタリング方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4865710A (en) * | 1988-03-31 | 1989-09-12 | Wisconsin Alumni Research Foundation | Magnetron with flux switching cathode and method of operation |
TWI338721B (en) | 2009-10-16 | 2011-03-11 | Suntek Prec Corp | A sputtering apparatus with a side target and a method for sputtering a workpiece having non-planer surfaces |
-
2016
- 2016-11-09 KR KR1020160148863A patent/KR101888173B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003187973A (ja) * | 2001-12-10 | 2003-07-04 | Ans Inc | 電磁石を用いた有機電界発光素子製作用蒸着装置及びこれを用いた蒸着方法 |
JP2013104073A (ja) * | 2011-11-11 | 2013-05-30 | Ulvac Japan Ltd | マグネトロンスパッタリング装置及びマグネトロンスパッタリング方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102340351B1 (ko) | 2021-05-26 | 2021-12-16 | 고영효 | 마그네트론 스퍼터링 장치의 자기회로 및 그 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20180051916A (ko) | 2018-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20130035924A (ko) | 마그네트론 스퍼터 장치 및 방법 | |
CN109750265B (zh) | 溅镀系统、在基板上沉积材料的方法及判定溅镀靶材的生命周期的结束的方法 | |
US9911526B2 (en) | Magnet unit and magnetron sputtering apparatus | |
EP2162899B1 (en) | Multitarget sputter source and method for the deposition of multi-layers | |
KR101888173B1 (ko) | 자석 구조체 및 이를 구비하는 스퍼터링 장치 | |
JP7301857B2 (ja) | マグネトロンスパッタリング装置 | |
US6249200B1 (en) | Combination of magnets for generating a uniform external magnetic field | |
US8168045B2 (en) | Apparatus for an enhanced magnetic plating method | |
JP7084932B2 (ja) | 磁石構造体、磁石ユニット及びこれを含むマグネトロンスパッタリング装置 | |
JP7084931B2 (ja) | マグネトロンスパッタリング装置の磁石制御システム | |
JP2010248576A (ja) | マグネトロンスパッタリング装置 | |
KR20200051947A (ko) | 스퍼터링 장치 | |
CN108977787B (zh) | 一种磁控溅射镀膜阴极结构 | |
US20110062015A1 (en) | Coating apparatus and coating method | |
KR20140126517A (ko) | 마그넷 유닛 및 이를 구비하는 스퍼터링 장치 | |
CN114582690A (zh) | 半导体工艺设备及其磁控管机构 | |
CN110770364A (zh) | 磁控溅射阴极系统 | |
JP2009235497A (ja) | スパッタリング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |