KR101873714B1 - Metal block for fluid transportation - Google Patents

Metal block for fluid transportation Download PDF

Info

Publication number
KR101873714B1
KR101873714B1 KR1020180056676A KR20180056676A KR101873714B1 KR 101873714 B1 KR101873714 B1 KR 101873714B1 KR 1020180056676 A KR1020180056676 A KR 1020180056676A KR 20180056676 A KR20180056676 A KR 20180056676A KR 101873714 B1 KR101873714 B1 KR 101873714B1
Authority
KR
South Korea
Prior art keywords
metal block
layer
present
ion nitriding
sealing
Prior art date
Application number
KR1020180056676A
Other languages
Korean (ko)
Inventor
유명호
Original Assignee
주식회사 유니락
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유니락 filed Critical 주식회사 유니락
Priority to KR1020180056676A priority Critical patent/KR101873714B1/en
Application granted granted Critical
Publication of KR101873714B1 publication Critical patent/KR101873714B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

The purpose of the present invention is to provide a method for manufacturing a new metal block, and a metal block according to the same. It is possible to continuously maintain solid sealing even when repetitive assembling is performed on a metal block having a complicated shape. According to the purpose of the present invention, a metal block made of stainless steel having an oxidized chromium layer present therein is firstly electrolytically polished. Next, an ion nitriding process is performed to form an ion nitriding layer. While a part of the ion nitriding layer is efficiently removed by secondarily electrolytically polishing the same, high concentration surface N and C composite diffusion is induced, and thus the surface of a layer on which an educed phase is present is hardened. Accordingly, hardness of a sealing part of the metal block is increased to Hv400 or greater while corrosion resistance is maintained. Therefore, it is possible to effectively perform metal sealing.

Description

유체이송용 메탈블럭{METAL BLOCK FOR FLUID TRANSPORTATION}[0001] METAL BLOCK FOR FLUID TRANSPORTATION [0002]

본 발명은 반도체 장비, 발전 설비, 해양 플랜트, 항공기 등에 적용되는 유체제어용 메탈 블럭에 관한 것으로 좀 더 상세하게는 메탈 블럭의 표면처리에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal block for fluid control applied to a semiconductor device, a power generation facility, an offshore plant, an aircraft, and the like, and more particularly to a surface treatment of a metal block.

가스 또는 액체와 같은 유체제어시스템에서 메탈 블럭은 각종 밸브, 레귤레이터, 가스킷 등을 연결하는 블럭으로, 독성, 부식성 등을 가진 유체를 사용하는 장비에서 매우 중요한 실링용 부품이라 할 수 있다(도 7 참조). 특히, 반도체 공정 중 반응 가스를 공급 및 차단하도록 제어하는 밸브패키지의 제어부와 배관부를 연결하는 중요부품이다. 종래 제품의 경우는 도 1과 같이 메탈 블럭(Metal Block)을 전해연마 공정으로 산화크롬층의 비율을 높여 내식성을 향상시키고 있으며, SS316L 금속 모재에 전해연마를 하여 CrO : FeO 층을 2:1 이상의 두께로 유지한다.In a fluid control system such as a gas or liquid, a metal block is a block connecting various valves, regulators, gaskets, and the like, and is a sealing part that is very important in equipment using a fluid having toxicity, corrosiveness, etc. ). Particularly, it is an important part connecting the control section of the valve package and the piping section for controlling the supply and shutdown of the reaction gas during the semiconductor process. In the case of the conventional product, the corrosion resistance is improved by increasing the proportion of the chromium oxide layer by the electrolytic polishing process of the metal block as shown in FIG. 1. Electrolytic polishing is performed on the SS316L metal base material to increase the CrO: FeO layer to 2: 1 or more .

이러한 구조를 가지는 메탈 블럭의 실링부는 전해연마 후 Hv300 정도로 관리하여 반복 체결이 가능하도록 하고 있지만, 전해연마에 의해 석출된 석출물 중 질소 농도 구배에 의해 부식이 일어날 수 있어, 메탈 블럭에서 반복된 조립을 실시하게 되면 실링부위에서 리크(Leak)가 발생하는 문제가 있다. 특히, 소재의 특징상 단조나 인발로 심하게 처리된 소재는 석출에 의해 결정입자가 늘어나면서, 이로 인해 국부적으로 내식성 저하부위가 나타난다.The sealing part of the metal block having such a structure is controlled to about Hv300 after electrolytic polishing so that it can be repetitively fastened. However, corrosion can be caused by the nitrogen concentration gradient among the precipitates precipitated by the electrolytic polishing, There is a problem that leakage occurs at the sealing part. Particularly, due to the characteristics of the material, the crystal grains are stretched due to the precipitation of the material which has been severely treated by forging or drawing, resulting in localized corrosion resistance.

최종적으로 메탈실링부는 물리적 툴(Burnishing tool)에 의한 표면경화처리를 하여 실링의 견고성으로 진공도를 유지하지만 반복적 조립에 의해 고진공 실링 성능 구현에 문제가 발생된다. Finally, the metal sealing part is surface-hardened by a physical tool (burnishing tool) to maintain the degree of vacuum due to the rigidity of the sealing. However, there is a problem in implementing high vacuum sealing performance by repeated assembly.

이를 해결하기 위한 기존 기술로서 이온질화를 적용한 사례가 있지만 상술한 문제점을 해결하지 못하였고, 이는 도 2와 같이 고온에서 스테인레스스틸(Stainless Steel) 모재에 질화공정을 실시하여 이온질화층을 형성하여 제품화를 시도한 것이다. 공정상 표면을 추가로 연마해야 하지만, 메탈 블럭에서 실링부(Sealing)부의 형상이 복잡할 경우에는 적용하기 어렵다. As a conventional technique for solving this problem, ion nitriding is applied, but the above-mentioned problem can not be solved. This is because the nitriding process is performed on the base material of stainless steel at high temperature as shown in FIG. 2 to form an ion nitriding layer, . The surface must be further polished in the process, but it is difficult to apply when the shape of the sealing part in the metal block is complicated.

등록특허 10-1237915호에는 질화처리 후 쇼트피닝 처리를 공개하고 있으나 상술한 바와 같이 복잡한 형상으로 가공된 제품에는 적용할 수 없다. Japanese Patent Laid-Open No. 10-1237915 discloses a shot peening process after nitriding, but it can not be applied to a product that has been processed into a complicated shape as described above.

따라서 본 발명의 목적은 복잡한 형상을 갖는 메탈 블럭에 대해 반복적인 조립을 실시하여도 지속적으로 견고한 실링을 유지할 수 있는 새로운 메탈 블럭의 제조방법과 그에 따른 메탈 블럭을 제공하고자 하는 것이다. Accordingly, an object of the present invention is to provide a method of manufacturing a new metal block and a metal block according to the present invention, which can maintain stable sealing even when repeatedly assembled to a metal block having a complicated shape.

상기 목적에 따라 본 발명은, 산화크롬층이 존재하는 스테인레스스틸로 된 메탈 블럭에 대해 이온질화 공정을 실시한 다음 전해연마를 실시하여 이온질화층의 일부를 효율적으로 제거하면서 고농도의 표면 N,C 복합 확산을 유도하여, 석출상이 존해하는 층을 표면경화처리 하는 것으로 내식성을 유지한 상태로 메탈 블럭의 실링부 경도를 Hv400 이상으로 높여 메탈 실링을 효과적으로 할 수 있도록 하였다. According to the above-mentioned object, the present invention provides a method for manufacturing a high-density surface N, C composite by efficiently performing an ion nitriding process on a stainless steel metal block having a chromium oxide layer and then performing electrolytic polishing to efficiently remove a part of the ion- By inducing diffusion and surface hardening treatment of the layer in which the precipitated phase is retained, the hardness of the sealing part of the metal block is increased to Hv 400 or more while the corrosion resistance is maintained, so that the metal sealing can be effectively performed.

상기에서 이온질화층 형성 이전에도 전해연마를 실시하여 더욱 우수한 품질의 표면처리를 이룰 수 있다. The electrolytic polishing is performed before the formation of the ion nitriding layer as described above, so that the surface treatment with higher quality can be achieved.

본 발명에 따르면, 메탈 블럭을 가공성이 좋은 스테인레스스틸 소재로 가공하기 때문에 정교한 형상을 정밀하게 비교적 쉽게 제작할 수 있고, 이를 1차 전해연마함으로써 표면청정도를 확보하며, 여기에 이온질화층을 형성하여 이후 다시 2차 전해연마를 실시하여 이온질화층의 표층을 약간 연마하여 부식을 일으킬 수 있는 석출물을 제거하여 갈바닉 부식을 방지하고 잔류하는 크롬(Cr)을 산화크롬층으로 만들어 내식성을 크게 향상시킬 수 있다. 그에 따라 본 발명의 메탈 블럭은 독성 가스나 부식을 일으키는 유체를 취급하는 경우에도 우수한 내식성으로 높은 신뢰도를 유지할 수 있으며, 메탈 블럭에 대해 각종 유닛들을 반복적으로 조립하여도 고경도 특성과 더불어 고내식성으로 인해 여전히 안정적이고도 안전하게 동작할 수 있다. According to the present invention, since the metal block is processed into a stainless steel material having excellent processability, it is possible to manufacture a precise and relatively easy shape, and it is possible to secure the surface cleanliness by primary electrolytic polishing, thereby forming an ion- The surface of the ion nitrided layer is slightly polished to remove precipitates which may cause corrosion to prevent galvanic corrosion and to make residual chromium (Cr) as a chromium oxide layer, thereby significantly improving corrosion resistance . Accordingly, the metal block of the present invention can maintain high reliability due to excellent corrosion resistance even when handling toxic gas or corrosive fluid, and even when various units are repeatedly assembled with respect to the metal block, the metal block has high hardness and high corrosion resistance Can still operate reliably and safely.

도 1 및 도 2는 종래 기술에 따라 제조된 메탈 블럭의 표면처리 결과 형성된 층상 구조를 보여준다.
도 3은 전해연마에 의해 형성되는 산화크롬층의 구조를 보여주는 단면도이다.
도 4는 본 발명에 따른 메탈 블럭의 제조방법에 의한 메탈 블럭의 모재와 표면처리된 층상 구조를 보여주는 단면도이다.
도 5는 본 발명의 메탈 블럭의 제조방법과 그에 따른 표면처리 결과를 보여주는 순서도이다.
도 6은 메탈 블럭의 실링 부위를 보여주는 단면도이며 본 발명에 따른 버니싱 처리에 대한 설명을 위한 것이다.
도 7은 유체제어시스템에 적용되는 메탈 블럭의 사진이다.
Figures 1 and 2 show layered structures formed as a result of surface treatment of metal blocks prepared according to the prior art.
3 is a cross-sectional view showing the structure of a chromium oxide layer formed by electrolytic polishing.
4 is a cross-sectional view showing a base material of a metal block and a layered structure surface-treated by the method of manufacturing a metal block according to the present invention.
5 is a flowchart showing a method of manufacturing a metal block according to the present invention and a surface treatment result thereof.
FIG. 6 is a cross-sectional view showing a sealing portion of the metal block and is for explanation of the burnishing process according to the present invention. FIG.
7 is a photograph of a metal block applied to a fluid control system.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 의한 메탈 블럭의 제조는 가공성이 좋지만 경도가 떨어지는 스테인레스스틸을 모재로하여 메탈 블럭의 형태를 갖추도록 가공한 다음, 1차 전해여마와 이온질화 및 2차 전해연마를 통해 고경도와 내식성을 모두 구비하게 하는 것이다. 스테인레스스틸에 대한 전해연마(EP:Electric Polishing) 처리는 도 3과 같이 표층에 산화크롬층을 갖는 스테인레스스틸 표층을 연마하여 산화크롬층의 두께를 얇게 만들어 표면청정도를 좋게한다. 단조처리된 소재에 대한 전해연마는 S-phase 석출상이 있어 부식을 일으킬 수 있다. 특히, 소재의 특징상 단조나 인발로 심하게 처리된 소재는 결정입자가 늘어나면서, 이로 인해 국부적으로 내식성 저하부위가 나타난다.The production of the metal block according to the present invention can be carried out by forming the metal block using stainless steel having good workability but lowering hardness as the base metal and then subjecting it to primary hardening and ion nitriding and secondary electrolytic polishing to obtain hardness and corrosion resistance All of them. In the electrolytic polishing (EP) treatment for stainless steel, as shown in FIG. 3, a surface layer of stainless steel having a chromium oxide layer on the surface layer is polished to thin the thickness of the chromium oxide layer to improve surface cleanliness. Electrolytic polishing of forged materials can cause corrosion due to S-phase precipitate phase. Particularly, due to the characteristics of the material, the material which has been severely treated by forging or drawing has crystal grains stretched out, resulting in a locally low corrosion resistance region.

이에 본 발명은 고경도 스테인레스 단조 소재를 메탈 블럭으로 가공 한 후 EP를 이용해 산화층을 일부 연마한 후에 이온질화 공정으로 탄소 및 질화복합 확산을 일으켜 탄소, 질소 석출물이 일부 확산되더라도 두꺼운 질화층을 형성 한 다음, 다시 표면층을 전해연마하였다. 2차 전해연마는 석출물이 형성된 표층을 제거하고 확산경화층과 혼합된 층을 유지하며 광택을 내게한다. Accordingly, the present invention relates to a method of manufacturing a high-strength stainless steel forging material by processing a metal block and then partially polishing the oxide layer using EP, followed by diffusion of carbon and nitride by an ion nitriding process to form a thick nitride layer even if carbon and nitrogen precipitates are partially diffused Then, the surface layer was electrolytically polished again. The secondary electrolytic polishing removes the surface layer on which the precipitate is formed and maintains the layer mixed with the diffusion hardened layer and makes it glossy.

즉, 1차 전해연마를 통해 스테인레스스틸의 산화크롬층을 얇게 다듬고 그 상태에서 이온질화층을 두껍게 형성하여 고경도화하고, 이온질화 공정에 의해 표면에 표출되어 부식을 일으킬 수 있는 석출물들을 다시 2차 전해연마를 통해 제거함과 동시에 이온질화층 표면에 잔류하는 크롬을 산화크롬으로 만들어 산화크롬층을 형성함으로써 내식성을 강화하였다. That is, the chromium oxide layer of stainless steel is thinned through the primary electrolytic polishing, and the ion nitriding layer is thickened and hardened in the state, and the precipitates which are exposed on the surface by the ion nitriding process, And the chromium oxide remaining on the surface of the ion nitriding layer is made into chromium oxide to form a chromium oxide layer, thereby enhancing the corrosion resistance.

본 발명의 메탈 블럭은 빅커스 경도 300gram의 하중으로 표면을 측정하였을 때, 표면경도가 Hv400 ~ Hv600으로 유지하여 고진공의 실링을 확보하며, 독성 가스나 부식성 유체를 운반하는 유닛을 반복적으로 조립하여도 유체에 의해 부식을 일으키지 않아 실링 기능을 유지하는 수명이 매우 길어진다. 즉, 경도가 낮은 경우, 고진공 실링 동작에 의해 개스킷에 의해 가압된 부분이 함몰변형되어 고진공 실링 기능이 상실되어 메탈 블럭의 수명이 짧아지는데, 본 발명에 의해 고경도화된 부분의 두께가 두껍게 형성되어 이러한 문제가 해결된다. The metal block of the present invention has a surface hardness of Hv 400 to Hv 600 when the surface is measured with a load of 300 grams of Vickers hardness to ensure high vacuum sealing and even when a unit for carrying toxic gas or corrosive fluid is repeatedly assembled It does not cause corrosion by the fluid and the lifetime to maintain the sealing function becomes very long. That is, when the hardness is low, the portion pressurized by the gasket is deformed by the high vacuum sealing operation, and the high vacuum sealing function is lost to shorten the service life of the metal block. According to the present invention, This problem is solved.

다시말해, 도 4는 종래의 제품인 도 1과 다르게 실링 부위에 이온질화법을 적용하여 스테인레스스틸의 내부에 N, C을 최대 고농도로 과량 침입시켜서 결정 격자는 최대한 그대로 유지시키면서 내식성을 떨어뜨리지 않도록 표층에 산화크롬층을 형성한 것이다. In other words, FIG. 4 shows an example in which the ionic nitriding method is applied to the sealing part unlike the conventional product of FIG. 1, so that N and C are intruded into the stainless steel in the maximum concentration at a maximum concentration to keep the crystal lattice as much as possible, In which a chromium oxide layer is formed.

이온질화공정에서 필요이상의 고농도 침입형 원소인 N, C에 의해 (Cr,Fe)xNy가 석출되어 나오게 된다. 상기 과정은 본 발명의 공정 상의 특징으로서, 오히려 강제로 고농도로 이온질화층 (N,C 고농도 확산층) 두께를 두껍게 형성하여 고경도층의 두께로 인해 고경도 유지 수명을 장기화하며, 두꺼운 이온질화층의 최 표층에 표출된 석출물 고용층을 2차 전해연마로 제거하는 동시에 (Cr,Fe)xNy 석출물을 산화크롬층으로 만들어 내부식성까지 향상시킨 것이다. (Cr, Fe) xNy is precipitated by N and C which are high-concentration interstitial elements more than necessary in the ion nitriding process. The above process is characterized in that the thickness of the ion nitriding layer (N, C heavily doped diffusion layer) is thickly formed at a high concentration to forcibly maintain the high hardness retention life due to the thickness of the hard hard layer, (Cr, Fe) .sub.xNy precipitates are formed into a chromium oxide layer, and corrosion resistance is improved to the extent that the precipitated solid solution layer is removed by secondary electrolytic polishing.

이렇게 제조된 메탈 블럭 제품은 우수한 내식성 및 내구성을 확보함으로서 반복 조립에 의해서도 실링 기능을 우수하게 유지할 수 있어 반도체 장비의 조립시간과 비용절감이 가능하며, 이는 반도체 장비의 수명 증가로 이어지게 된다.  Since the metal block product thus obtained has excellent corrosion resistance and durability, it is possible to maintain the sealing function even by repeated assembly, thereby reducing the assembling time and cost of the semiconductor equipment, which leads to an increase in the life of the semiconductor equipment.

이하는 좀 더 상세한 공정에 대한 설명이다. The following is a more detailed description of the process.

도 5는 본 발명의 공정을 개략적으로 설명한 순서도이다. 5 is a flowchart schematically illustrating the process of the present invention.

스테인레스스틸 모재로 메탈 블럭을 가공한다.Metal block is processed with stainless steel base material.

가공된 메탈 블럭을 1차 전해연마 처리한다.The processed metal block is subjected to the first electrolytic polishing.

전해 연마 공정의 조건은 다음과 같다.The conditions of the electrolytic polishing process are as follows.

5~ 20A/cm2 의 전류밀도, 5 내지 40초, 바람직하게는, 10 ~ 30sec 공정시간, 40 내지 80℃, 바람직하게는, 60 ~ 70℃의 전해액 온도, 0.5 내지 3mm, 바람직하게는, 0.5 ~ 1mm 전극 간격을 유지한다.A current density of 5 to 20 A / cm 2 , an electrolytic solution temperature of 5 to 40 seconds, preferably 10 to 30 seconds, an electrolyte temperature of 40 to 80 ° C, preferably 60 to 70 ° C, 0.5 to 1 mm Maintain electrode spacing.

1차 전해 연마가 끝나면 스테인레스스틸의 산화크롬층의 두께가 얇아지고 표면청정도가 좋아진다. When the first electrolytic polishing is finished, the thickness of the chromium oxide layer of stainless steel is reduced and the surface cleanliness is improved.

다음, 이온질화를 실시한다. 이온질화는 저온 플라즈마를 이용한 이온 플라즈마 공정으로 실시한다. 공정 온도는 300 내지 600℃, 바람직하게는, 400 ~ 540℃의 저온에서 질소를 400 내지 800sccm으로(본 실시예는 600sccm) 주입하여 고농도 확산층을 형성시킨다. 공정 진공도는 0.1 내지 1Torr(본 실시예는 0.4Torr), 전력량은 10 내지 30kW(본 실시예의 경우, 18kw)로 한다.Next, ion nitriding is performed. Ion nitridation is performed by an ion plasma process using a low temperature plasma. Nitrogen is injected at 400 to 800 sccm (600 sccm in this embodiment) at a low temperature of 300 to 600 캜, preferably 400 to 540 캜, to form a high concentration diffusion layer. The process vacuum degree is 0.1 to 1 Torr (0.4 Torr in the present embodiment) and the amount of electric power is 10 to 30 kW (18 kw in this embodiment).

이온질화 공정은 질소의 고농도 고속확산을 위해 100 내지 350℃에서 수소 기체를 400 내지 800LPM의 속도로 흘려준다. 이때, 온도는 점진적 및 단계적으로 상승시키며, 그에 따라 이온소스에 흘려주는 전류도 5 내지 20A 범위에서 점진적 및 단계적으로 상승시킨다. 온도를 400℃로 승온하면서부터 수소와 질소를 동시에 흘려주며 두 기체의 유량이 전체적으로 400 내지 800LPM의 속도가 되게한다. 전류량은 좀 더 높여 20 내지 25A가 되게 한다. 이와 같은 상태로 200 내지 400분 정도 유지한 후 500℃로 승온하여 수소를 흘려주고 전류량을 다소 낮춘 상태로 60 내지 100분 정도 유지한다. 이후 질소를 흘려주며 10 내지 60분 공정을 진행하다가 온도를 300℃ 정도로 낮추어 10 내지 40분 정도 유지한다. 공정의 마지막 단계는 수소를 흘려주면서 온도를 상온 내지 80℃ 정도로 낮추어 40 내지 80분 정도 유지하여 종료한다. 상기에서 공정온도와 인가전류량은 양의 상관관계가 되도록 제어하며, 수소와 질소를 동시에 흘려주는 단계에서 가장 긴 시간동안 공정을 실시한다. In the ion nitriding process, hydrogen gas is flowed at a rate of 400 to 800 LPM at 100 to 350 DEG C for high-speed diffusion of nitrogen at a high concentration. At this time, the temperature is gradually increased and gradually increased, thereby gradually increasing the current flowing in the ion source in the range of 5 to 20A. As the temperature is raised to 400 ° C, hydrogen and nitrogen are simultaneously flowed and the flow rate of the two gases is made to be 400 to 800 LPM as a whole. The amount of current is increased to 20 to 25A. After maintaining the temperature for 200 to 400 minutes in this state, the temperature is raised to 500 ° C., hydrogen is flowed, and the amount of current is kept lowered for 60 to 100 minutes. Thereafter, nitrogen is flowed and the process is performed for 10 to 60 minutes, and the temperature is lowered to about 300 ° C and maintained for about 10 to 40 minutes. The final step of the process is to terminate by flowing the hydrogen and lowering the temperature from room temperature to about 80 ° C for about 40 to 80 minutes. In the above, the process temperature is controlled to be a positive correlation with the applied current amount, and the process is performed for the longest time in the step of simultaneously flowing hydrogen and nitrogen.

이와 같이 형성된 이온 질화층을 10 내지 40um로 형성한 후 내부식성을 향상하기 위하여 2차 전해연마 공정으로 이온질화층의 일부를 산화크롬층으로 형성하며, 산화크롬층의 두께는 1 내지 5um 정도로 하여 표면 경도 및 내부식성을 향상한다. 2 차 전해연마 공정의 조건은 상기한 1차 전해연마에서와 같다. In order to improve the corrosion resistance after forming the ion-nitrided layer in the thickness of 10 to 40 um, a part of the ion-nitrided layer is formed of a chromium oxide layer by a secondary electrolytic polishing process, and the thickness of the chromium oxide layer is set to about 1 to 5 um Surface hardness and corrosion resistance. The conditions of the secondary electrolytic polishing process are the same as those in the above-mentioned primary electrolytic polishing.

2차 전해연마를 통해 내식성의 향상과 함께 고광택을 얻게된다. Secondary electrolytic polishing improves corrosion resistance and achieves high gloss.

상기에서, 1차 전해연마는 경우에 따라 생략할 수 있다. 또한, 전해연마 전에 버니싱 처리를 함으로써 조도와 경도를 향상시킬 수 있다. 이는 1차 전해연마 전 그리고 2차 전해연마 전에 모두 적용될 수 있다. 즉, 메탈 블럭의 블럭 실링 부위(도 6 참조)는 가공 후 물리적으로 버니싱 처리하여 조도와 경도를 올린다. 이때, 조도는 Ra 0.15 이내로 하고, 경도는 Hv300 이내로 하는 것이 바람직하다.In the above, the primary electrolytic polishing may be omitted depending on the case. In addition, burnishing treatment can be performed before electrolytic polishing to improve the roughness and hardness. This can be applied both before the first electrolytic polishing and before the second electrolytic polishing. That is, the block sealing portion (see FIG. 6) of the metal block is subjected to burnishing treatment after physical processing to raise the roughness and hardness. At this time, it is preferable that the roughness is within Ra 0.15 and the hardness is within Hv300.

상기와 같은 공정은 메탈 블럭 외에 고경도와 내식성을 요하면서 형상이 정교하게 되어야 하는 각종 금속 부품에 적용될 수 있다. The above-described process can be applied to various metal parts which require high precision and corrosion resistance in addition to the metal block.

본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

Claims (1)

산화크롬층이 존재하는 스테인레스스틸 모재로 소정 형상의 실링용 부품을 가공하는 단계;
이온 질화 공정을 실시하여 이온질화층을 형성하는 단계; 및
이온질화층이 형성된 부품을 전해연마하여 산화크롬층을 형성하는 단계;를 포함하는 것을 특징으로 하는 고경도 및 고내식성 실링용 부품의 제조방법.
Processing a sealing part of a predetermined shape with a stainless steel base material in which a chromium oxide layer is present;
Performing an ion nitriding process to form an ion nitriding layer; And
And forming a chromium oxide layer by electrolytically polishing the part having the ion nitriding layer formed thereon.
KR1020180056676A 2018-05-17 2018-05-17 Metal block for fluid transportation KR101873714B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180056676A KR101873714B1 (en) 2018-05-17 2018-05-17 Metal block for fluid transportation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180056676A KR101873714B1 (en) 2018-05-17 2018-05-17 Metal block for fluid transportation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180014110A Division KR101864101B1 (en) 2018-02-05 2018-02-05 Metal block for fluid transportation

Publications (1)

Publication Number Publication Date
KR101873714B1 true KR101873714B1 (en) 2018-07-03

Family

ID=62918240

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180056676A KR101873714B1 (en) 2018-05-17 2018-05-17 Metal block for fluid transportation

Country Status (1)

Country Link
KR (1) KR101873714B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156351A (en) * 1991-07-11 1993-06-22 Tougou Seisakusho:Kk Manufacture of coil spring with oil tempered wire
US5605179A (en) * 1995-03-17 1997-02-25 Insync Systems, Inc. Integrated gas panel
KR0149700B1 (en) * 1994-11-24 1998-11-16 이수강 Method for manufacturing dove tail for turbine blade

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156351A (en) * 1991-07-11 1993-06-22 Tougou Seisakusho:Kk Manufacture of coil spring with oil tempered wire
KR0149700B1 (en) * 1994-11-24 1998-11-16 이수강 Method for manufacturing dove tail for turbine blade
US5605179A (en) * 1995-03-17 1997-02-25 Insync Systems, Inc. Integrated gas panel

Similar Documents

Publication Publication Date Title
CN101139692B (en) Martensitic stainless steel cementation method and product thereof
AU2012247863B2 (en) Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method
EP2841617B1 (en) Method for solution hardening of a cold deformed workpiece of a passive alloy, and a member solution hardened by the method
WO1998012361A1 (en) Case-hardened stainless steel bearing component and process for manufacturing the same
JP2005533185A (en) Stainless steel surface hardening
KR101864101B1 (en) Metal block for fluid transportation
JP2015514874A5 (en)
JP2001012609A (en) Metal c-ring gasket and manufacture of metal gasket
KR101873714B1 (en) Metal block for fluid transportation
US20210355577A1 (en) Process for coating a conductive component and conductive component coating
KR101742685B1 (en) Low-Temperature Vacuum Carburizing Method
CN109972077B (en) Nitriding process for carburizing Ferrium steel
CN110644028B (en) Method for rapidly preparing expansion alpha phase on surface of metal material
CN108893708B (en) Nitriding method for improving hardness of 904L stainless steel without reducing corrosion resistance
KR101614259B1 (en) Method for formation of hardened layer on martensitic precipitation-hardening stainless steel by the application of in-situ combination of aging treatment and plasma nitrocaburizing treatment
KR200495020Y1 (en) High Corrosion Resistant Coating Film For High Precision Regulator Member and Manufacturing Method thereof
RU2380598C2 (en) Method of manufacturing spindle from steel for pipeline fittings
JP2003073800A (en) Surface treatment method for steel material, and steel material having impact resistance, abrasion resistance, and corrosion resistance
JP2004052023A (en) Nitriding method
Park et al. Development of New Modified “Super Saturated NitroCarburizing” for Modern High Pressure Injector in Powertrain
JPS5848027B2 (en) Ion nitriding method for stainless steel
KR102372202B1 (en) The manufacturing method of the plating treatment for substitution steel product
KR20050000627A (en) Method for heat treatment in gasnitriding
JPH04180559A (en) Production of high corrosion resistant stainless steel
Driscoll et al. Electrochemical Corrosion and Film Analysis Studies of Fe and Fe-18Cr in IN H2SO4

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant