JPH04180559A - Production of high corrosion resistant stainless steel - Google Patents

Production of high corrosion resistant stainless steel

Info

Publication number
JPH04180559A
JPH04180559A JP31061890A JP31061890A JPH04180559A JP H04180559 A JPH04180559 A JP H04180559A JP 31061890 A JP31061890 A JP 31061890A JP 31061890 A JP31061890 A JP 31061890A JP H04180559 A JPH04180559 A JP H04180559A
Authority
JP
Japan
Prior art keywords
stainless steel
voltage
oxygen ions
ions
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31061890A
Other languages
Japanese (ja)
Inventor
Haruhiko Kajimura
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31061890A priority Critical patent/JPH04180559A/en
Publication of JPH04180559A publication Critical patent/JPH04180559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce high corrosion resistant stainless steel stable in a range over a long period by introducing oxygen ions into the surface layer of stainless steel while stepwise changing acceleration voltage between high voltage and low voltage, and specifying the introduction amount of oxygen ions. CONSTITUTION:Introducing treatment of oxygen ions is performed on the surface layer of stainless steel. In this case, the acceleration voltage in introduction of oxygen ions is stepwise changed to a low voltage from not higher than 30keV till a high voltage not lower than 100keV or to a high voltage from not lower than 100keV till a low voltage not higher than 30keV. Furthermore, the introduction amount of oxygen ions due to acceleration voltage in the respective steps is regulated to >=1X10<15> ions/cm<2>. Moreover, the whole introduction amount of oxygen ions is regulated to >=1X10<16> ions/cm<2>. Thereby oxide is formed to the deep position of the surface layer. Accordingly, high corrosion resistant stainless steel is obtained which is extremely low in the eluted amount of metal in a passive electric potential region and capable of maintaining corrosion resistance in a range over a long period.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高耐食性ステンレス鋼の製造方法、特に、微
量の金属溶出が問題となる食品工業、半導体製造工業、
あるいは原子力発電等の分野で用いられる金属溶出の極
めて少ない高耐食性ステンレス鋼の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing highly corrosion-resistant stainless steel, particularly in the food industry, semiconductor manufacturing industry, where trace amounts of metal elution are a problem,
The present invention also relates to a method for manufacturing highly corrosion-resistant stainless steel with extremely low metal elution, which is used in fields such as nuclear power generation.

(従来の技術) ステンレス鋼は耐食材料として種々の分野で幅広く用い
られているが、食品工業、半導体製造工業などの分野に
おいては、腐食により罹微量の金属が溶出しても製品の
品質を劣化させるので問題となる。また、原子力発電所
においては、冷却水中に溶出した微量の金属元素が炉内
において放射化し、ステンレス鋼等の使用鋼材の腐食に
伴い形成される腐食生成物である表面酸化皮膜中に取り
込まれるか、あるいは付着し、これによって設備の検査
などの際に作業者が被曝するという健康上の問題がある
(Prior art) Stainless steel is widely used as a corrosion-resistant material in various fields, but in fields such as the food industry and semiconductor manufacturing industry, even if a small amount of metal is leached due to corrosion, the quality of the product will deteriorate. This is a problem because it causes In addition, in nuclear power plants, trace amounts of metal elements eluted into the cooling water become radioactive in the reactor and become incorporated into the surface oxide film, which is a corrosion product formed as the steel materials used, such as stainless steel, corrode. This poses a health problem in that workers are exposed to radiation when inspecting equipment.

ステンレス鋼はもともと耐食性を発揮する不動態電位域
において用いられているが、上記のように微量であって
も金属の溶出が問題となる工業分野においては、金属溶
出の極めて少ない、より耐食性の良い材料の開発が望ま
れる。
Stainless steel is originally used in the passive potential range where it exhibits corrosion resistance, but in the industrial field where metal elution is a problem, even in minute quantities, as mentioned above, stainless steel is used as a material with better corrosion resistance and extremely less metal elution. Development of materials is desired.

従来、このような極装置の金属溶出を抑制する方法とし
て、電解研摩による方法、酸化性雰囲気中での高温熱処
理により酸化皮膜を形成させる方法(特公平2−191
6号公報)、硝酸処Pl!;こより酸化皮膜を形成させ
る方法(特公平1 56719号公報)、などが提室さ
れている。
Conventionally, methods for suppressing metal elution from such electrode devices include a method using electrolytic polishing and a method of forming an oxide film by high temperature heat treatment in an oxidizing atmosphere (Japanese Patent Publication No. 2-191).
6), nitric acid treatment Pl! A method of forming an oxide film from this (Japanese Patent Publication No. 156719) has been proposed.

また、耐食性を向上させる一般的な方法として、高耐食
性のセラミフクスで金属表面を被覆する方法やCrなど
の金属イオンを素地金属表面に圧入する方法なども考え
られている。
Further, general methods for improving corrosion resistance include a method of coating the metal surface with highly corrosion-resistant ceramic fuchs and a method of press-fitting metal ions such as Cr into the surface of the base metal.

(発明が解決しようとする課題) しかしながら、電解研磨や酸化性雰囲気中における高温
熱処理、あるいは硝酸処理では金属溶出に対する抑制効
果は十分ではない。すなわち、これらの方法はいずれも
鋼表面における腐食反応あるいは気体との平衡反応によ
り不動態皮膜(酸化物)を形成させる方法であって、溶
液中であればCrの酸化物主体の不動態皮膜が形成され
、気体中であれば酸素との親和力が大きい元素はど酸化
されやすく、ステンレス鋼の場合まずCrの酸化物が生
成する。しかし、不動態皮膜の形成反応が溶液中あるい
は気体中での平衡反応であるので、十分な耐食性を有す
る皮膜組成とすることが困難である。また、酸化皮膜な
とでは欠陥部分が生しやすく、皮ll*′、こ割れが入
ったり、ポーラス(多孔質)になったりする場合があり
、剥離の懸念もある。
(Problems to be Solved by the Invention) However, electrolytic polishing, high-temperature heat treatment in an oxidizing atmosphere, or nitric acid treatment do not have a sufficient suppressing effect on metal elution. In other words, all of these methods form a passive film (oxide) through a corrosion reaction on the steel surface or an equilibrium reaction with a gas. Elements that are formed and have a high affinity for oxygen in a gas are easily oxidized, and in the case of stainless steel, Cr oxides are first produced. However, since the formation reaction of the passive film is an equilibrium reaction in a solution or gas, it is difficult to form a film composition with sufficient corrosion resistance. In addition, an oxide film is likely to have defective parts, and may become cracked, cracked, or porous, and there is also a concern that it may peel off.

また、高耐食性セラミックスでコーティングする方法は
密着性に問題があり、使用中に剥離した場合には金属溶
出により製品不良率が著しく増大する。Crなどの金属
イオンを注入する方法では、イオン電流量を大きくでき
ないので所定の性能を得るためには処理時間を長くしな
ければならず、処理コストが高くなる。
In addition, the method of coating with highly corrosion-resistant ceramics has a problem with adhesion, and if it peels off during use, the product defect rate will significantly increase due to metal elution. In the method of implanting metal ions such as Cr, the amount of ion current cannot be increased, so the processing time must be increased in order to obtain a predetermined performance, which increases the processing cost.

本発明の目的は、不動態電位域における金属溶出量が極
めて小さく、かつ、その耐食性を長期にわたって持続さ
せ得る高耐食性ステンレス鋼の製造方法を提供すること
にある。
An object of the present invention is to provide a method for manufacturing highly corrosion-resistant stainless steel that has an extremely small amount of metal leached in the passive potential range and that can maintain its corrosion resistance over a long period of time.

(課題を解決するための手段) 一般に、金属の溶出は金属の表面における電気化学反応
によって引き起こされる。従って、金属溶出を抑制する
ためにはこの電気化学反応を抑制するように表面を処理
することが必要となる。金属の表面を酸化物で覆うと、
酸化物は電気抵抗が大きいため電気化学反応は生しに<
<、腐食が抑制されると考えられる。
(Means for Solving the Problems) Generally, metal elution is caused by an electrochemical reaction on the surface of the metal. Therefore, in order to suppress metal elution, it is necessary to treat the surface to suppress this electrochemical reaction. When the surface of a metal is covered with an oxide,
Because oxides have high electrical resistance, electrochemical reactions are not possible.
<, corrosion is thought to be suppressed.

このような考え方のもとに、本発明者は、ステンレス鋼
の表面に酸化vIJ(Cr酸化物)を形成させる方法と
して酸素イオン注入法を通用し、熱平衡により定まる量
を超える酸素イオンを鋼中に導入して表面のみならず内
部にも酸化物を形成させる高耐食性ステンレス鋼の製造
方法を提案した(特願平2−127449号)。
Based on this idea, the present inventor used oxygen ion implantation method as a method to form oxidized vIJ (Cr oxide) on the surface of stainless steel, and introduced oxygen ions into the steel in an amount exceeding the amount determined by thermal equilibrium. proposed a method for manufacturing highly corrosion-resistant stainless steel in which oxides are formed not only on the surface but also inside (Japanese Patent Application No. 127449/1999).

この方法によれば、金属溶出量の極めて小さい高耐食性
ステンレス鋼を製造することができる。
According to this method, highly corrosion-resistant stainless steel with extremely small amount of metal elution can be produced.

しかし、厳しい腐食環境下においては表面の酸化物皮膜
層が溶出し、耐食性が徐々番こ劣化する。
However, in a severe corrosive environment, the oxide film layer on the surface dissolves and the corrosion resistance gradually deteriorates.

そこで本発明者は酸素イオン注入法についてさらに詳細
に検討を重ねた結果、酸素イオンの加速電圧を高電圧か
ら低電圧に、あるいは低電圧がら高電圧に段階的に変化
させることにより、耐食性を長期間維持し得ることを見
い出した。
Therefore, as a result of further detailed studies on the oxygen ion implantation method, the inventors of the present invention found that corrosion resistance could be extended by changing the oxygen ion acceleration voltage stepwise from high voltage to low voltage, or from low voltage to high voltage. It was found that it can be maintained for a long period of time.

本発明はこのような知見に基づいてなされたもので、そ
の要旨は「表面層に酸素イオン注入処理を施す高耐食性
ステンレス鋼の製造方法であって、酸素イオン注入処理
の加速電圧を100keV以上の高電圧から30keV
以下の低電圧に、あるいは30keV以下の低電圧から
100keV以上の高電圧に段階的に変化させ、各段階
の加速電圧による酸素、イオン注入量をI Xl015
ions/c+m2以上で、かつ、酸素イオンの全注入
量をI Xl0I6ions/cm2以上とすることを
特徴とする高耐食性ステンレス鋼の製造方法Jにある。
The present invention was made based on such knowledge, and the gist thereof is ``a method for manufacturing highly corrosion-resistant stainless steel in which the surface layer is subjected to oxygen ion implantation treatment, the acceleration voltage of oxygen ion implantation treatment being set to 100 keV or higher. High voltage to 30keV
The oxygen and ion implantation amount is changed stepwise from the following low voltage, or from the low voltage of 30 keV or less to the high voltage of 100 keV or more, and the amount of oxygen and ion implantation is adjusted according to the acceleration voltage of each step.
ions/c+m2 or more, and the total amount of oxygen ions implanted is IXl0I6ions/cm2 or more.

本発明方法の対象となるのは、Cr含有量が13%(以
下、「%」は重量%を意味する)以上のステンレス鋼で
あッテ、例えば5115409、SO3493など17
) 7 x ライト系ステンレス鋼、SO5304、S
O3316、SOS 310などのオーステナイト系ス
テンレス鋼である。なお、A11oy 600、A11
oy 690など、Crを13%以上含有するNj基合
金(これらも、本明細書では「ステンレス鋼」の範晴に
含める)についてもこの方法は有効である。
The method of the present invention is applied to stainless steels with a Cr content of 13% or more (hereinafter, "%" means weight%), such as 5115409, SO3493, etc.
) 7 x Light stainless steel, SO5304, S
Austenitic stainless steel such as O3316 and SOS 310. In addition, A11oy 600, A11
This method is also effective for Nj-based alloys containing 13% or more of Cr, such as OY 690 (these are also included in the scope of "stainless steel" in this specification).

前記の酸素イオン注入処理は、例えば、酸素ガスをフリ
ーマン型イオン源でイオン化し、これを質量分離器に通
し、所定の加速電圧で加速して圧入する方法により行う
ことができる。
The oxygen ion implantation process can be performed, for example, by ionizing oxygen gas with a Freeman ion source, passing it through a mass separator, accelerating it at a predetermined acceleration voltage, and press-injecting it.

(作用) 一般に、耐食性の維持;こ必要なCrの不動態皮膜を形
成させるには13%以上のC「含有量が必要である。C
r含有量が少ないと耐食性の維持に必要なCrの不動態
皮膜が十分には形成されない。
(Function) Generally, to maintain corrosion resistance and form the necessary Cr passive film, a C content of 13% or more is required.
If the r content is low, a sufficient passive film of Cr, which is necessary to maintain corrosion resistance, will not be formed.

第1図は、本発明方法による酸化物(Cr酸化物)皮膜
の形成状況を従来の方法(例えば、酸処理あるいは酸化
性雰囲気中での高温熱処理)による場合と比較して模式
的に示した圀である。同図において、酸処理による場合
((a)図)は、素地のステンレス鋼1の表面に形成さ
れる皮膜2は極めて薄いものである。また、熱処理によ
る場合((b)図)は、素地のステンレス鋼1の表面に
おける平衡反応により酸化物皮膜3が形成されるので、
主として綱1の表面より外側に皮膜が成長する。しかし
、前述のように均一な皮膜にはなりにくい。これに対し
て、本発明方法による場合((C)図)は、表面反応に
よらず、酸素イオンに加速電圧をかけて多量の酸素イオ
ンを強制的に素11!!綱中Sこ[丁ら込もたぬ、ステ
ンレス鋼1の表面のみならず内部の酸素緊を増大させ、
均一な酸化物皮膜層4を形成させることができる。
Figure 1 schematically shows the formation of an oxide (Cr oxide) film by the method of the present invention in comparison with that by conventional methods (for example, acid treatment or high-temperature heat treatment in an oxidizing atmosphere). It's a country. In the figure, in the case of acid treatment (Figure (a)), the film 2 formed on the surface of the base stainless steel 1 is extremely thin. In addition, in the case of heat treatment (Figure (b)), the oxide film 3 is formed by an equilibrium reaction on the surface of the base stainless steel 1.
The film mainly grows on the outside of the surface of the rope 1. However, as mentioned above, it is difficult to form a uniform film. On the other hand, in the case of the method of the present invention (Figure (C)), a large amount of oxygen ions are forced out by applying an accelerating voltage to the oxygen ions, regardless of the surface reaction. ! In addition to increasing the oxygen tension not only on the surface of the stainless steel 1 but also inside it,
A uniform oxide film layer 4 can be formed.

本発明で用いる酸素イオン注入法は、前記のように酸素
イオンを強制的に、すなわち熱平衡により定まる量を超
えて鋼中に導入し、酸化物を形成させることを特徴とす
る方法である。この酸化物(皮膜)は表面反応により形
成されたものではなく、素地鋼と注入した酸素イオンと
の反応により生した層であって、欠陥がなく、割れが入
ったり、剥離したりする恐れが全くない。
The oxygen ion implantation method used in the present invention is a method characterized by forcibly introducing oxygen ions into steel, that is, in an amount exceeding the amount determined by thermal equilibrium, as described above, to form an oxide. This oxide (film) is not formed by a surface reaction, but is a layer formed by a reaction between the base steel and the injected oxygen ions, and is free from defects and is not susceptible to cracking or peeling. Not at all.

酸素イオンの全注入量は、前記の特願平2−12744
9号の明細書に記載したように、l Xl0Ihion
s/cm”未満では腐食抑制効果はほとんどないので、
I Xl0I6ions/c!1”以上とすることが必
要である。
The total amount of oxygen ions implanted is as described in the above-mentioned Japanese Patent Application No. 2-12744.
As described in the specification of No. 9, lXl0Ihion
If it is less than "s/cm", there is almost no corrosion inhibition effect.
I Xl0I6ions/c! It is necessary to set it to 1" or more.

酸素イオンの全注入量の上限は特に定める必要はないが
、注入量が多くなると処理に長時間を要するので、通常
はI XIO”1ons/cm2程度が上限となる。
Although it is not necessary to set an upper limit for the total amount of oxygen ions to be implanted, the higher the amount of implanted oxygen ions, the longer the process will take, so the upper limit is usually about IXIO''1 ons/cm2.

酸素イオンの注入深さは、例えば加速電圧120keV
、注入イオン11 X 10”1ons/cm”で約2
500人である。
The implantation depth of oxygen ions is, for example, an acceleration voltage of 120 keV.
, implanted ions 11 x 10"1ons/cm" approximately 2
There are 500 people.

注入する酸素イオン種としては、0゛および0□。The oxygen ion species to be implanted are 0゛ and 0□.

のいずれでもよい。Either of these is fine.

注入前の試料の表面状態は特に定める必要はないが、平
坦であるほど酸素イオンをより均一に注入することがで
きる6表面粗さは中心線平均粗さ(Ra)で0.1μ−
以下にするのが望ましい。
The surface condition of the sample before implantation does not need to be determined in particular, but the flatter the surface, the more uniformly oxygen ions can be implanted.6 The surface roughness is 0.1 μ- in center line average roughness (Ra).
It is desirable to do the following.

酸素イオンの加速電圧を高電圧から低電圧に、あるいは
低電圧から高電圧に段階的に変化させるのは、酸素イオ
ンの注入深さを段階的に変化させ、表面の浅い位置から
深い位置までの表面層部分の深さ方向における注入酸素
イオン量を均一化することで深さ方向の耐食性を均一化
すると共に、最表面に高い注入酸素イオン量の層を形成
させることによって、最表面から深い位置にわたって高
い耐食性を付与し、これにより耐食性の長時間維持を可
能とするためである。
Changing the acceleration voltage of oxygen ions from high voltage to low voltage or from low voltage to high voltage in stages changes the implantation depth of oxygen ions in stages, from shallow to deep on the surface. By making the amount of oxygen ions implanted in the depth direction of the surface layer portion uniform, the corrosion resistance in the depth direction is made uniform, and by forming a layer with a high amount of implanted oxygen ions on the outermost surface, it is possible to This is because it provides high corrosion resistance over a long period of time, thereby making it possible to maintain corrosion resistance for a long time.

加速電圧を高電圧側は100keV以上、低電圧側は3
0keV以下とするの:ま、この条件かみ外れると耐食
性を長期閤維持するという点で効果が少ないからである
。なお、加速電圧の下限↓ま1okeVで、これ以下で
は注入効果よりもスパッタ効果が優勢となり、有効な注
入はできない。
The acceleration voltage is 100 keV or more on the high voltage side and 3 on the low voltage side.
Setting it to 0 keV or less: Well, if this condition is not met, there will be little effect in maintaining corrosion resistance over a long period of time. Note that the lower limit of the accelerating voltage is ↓ or 1okeV, and below this, the sputtering effect becomes more dominant than the injection effect, and effective implantation cannot be performed.

各段階の加速電圧における酸素イオン注入量をI Xl
0I6ions/c!12以上とするのは、酸素イオン
注入量がこれより少ないと、前記の加速電圧を段階的に
変化させる注入処理によっても、注入酸素イオン量が深
さ方向で均一にならず、耐食性の改善がはかばかしくな
いからである。
The oxygen ion implantation amount at each stage of acceleration voltage is I
0I6ions/c! 12 or more is because if the amount of oxygen ions implanted is less than this, the amount of implanted oxygen ions will not be uniform in the depth direction even with the implantation process in which the accelerating voltage is changed stepwise, and the corrosion resistance will not be improved. Because it's not ridiculous.

(実施例) 供試材として第1表に示すステンレス鋼およびNi基合
金を用い、表面を粗さRa=0.O1μ瓢まで研磨した
のちアセトンで脱脂を行い、加速電圧を20〜400k
eVの範囲内で高電圧から低電圧へ、あるいは低電圧か
ら高電圧へ段階的変化させながら酸素イオン(0゛)注
入処理を行った。なお、比較のため、特定の加速電圧に
固定した処理も行った。
(Example) Stainless steel and Ni-based alloy shown in Table 1 were used as test materials, and the surface roughness Ra = 0. After polishing to 01μ, degrease with acetone and increase the acceleration voltage to 20 to 400k.
Oxygen ion (0°) implantation treatment was performed while changing the voltage stepwise from high voltage to low voltage or from low voltage to high voltage within the eV range. For comparison, a process was also performed in which a specific acceleration voltage was fixed.

第  1  表      (4位: 11L、%)加
速電圧の段階的な変化およびそれぞれの加速電圧におけ
る酸素イオンの注入量並びにそれらを合計した全注入量
を第2表に示す。
Table 1 (4th place: 11L, %) Table 2 shows the stepwise changes in acceleration voltage, the amount of oxygen ions implanted at each acceleration voltage, and the total amount of implantation.

酸素イオン注入後、5%硫酸中において定電位腐食試験
を実施し、試験片に流れる腐食電流を測定した。金属の
溶解は電気化学反応(例えば、Fe−*Fe”+’le
−,Cr−+Cr”°+3e−,Ni−+Ni”+2e
−)であり、腐食電流は金属の溶出量に対応するので、
この電流値を比較することにより金属溶出量の差を判定
できる。なお、定電位腐食試験における設定電位は1.
lV(飽和カロメル電極基準)である。この電位はステ
ンレス鋼の不動態電位領域外にあり、第2図に示すよう
に、酸素イオン注入処理を行わない場合(破!#りは試
験直後から電流値が高い値を示すのに対し、酸素イオン
圧入処理を行った場合(実線)は未処理材と同し電流値
を示すまでに約20分を要する。この時間は酸素イオン
注入処理により付与された耐食性が失われるまでに要す
る時間(耐食性持続時間)で、長時間の腐食試験を行わ
ずに比較的短時間で耐食性を評価することができる。
After oxygen ion implantation, a constant potential corrosion test was conducted in 5% sulfuric acid, and the corrosion current flowing through the test piece was measured. Melting of metals is caused by electrochemical reactions (e.g. Fe-*Fe"+'le
-, Cr-+Cr"°+3e-, Ni-+Ni"+2e
−), and the corrosion current corresponds to the amount of metal eluted, so
By comparing these current values, it is possible to determine the difference in the amount of metal eluted. The set potential in the constant potential corrosion test is 1.
lV (based on saturated calomel electrode). This potential is outside the passive potential range of stainless steel, and as shown in Figure 2, when oxygen ion implantation is not performed (failure! When oxygen ion injection treatment is performed (solid line), it takes about 20 minutes to show the same current value as the untreated material.This time is the time required until the corrosion resistance imparted by oxygen ion injection treatment is lost ( (corrosion resistance duration), corrosion resistance can be evaluated in a relatively short period of time without conducting long-term corrosion tests.

測定結果を第2表に併せ示す、同表から、最低加速電圧
を30keV以下、最高加速電圧100keν以上でか
つ各電圧における注入量をl XIO”1ons/c+
m”以上にし、しかも酸素イオンの全注入量をlXl0
”tons/cm”以上にした本発明例(No、1〜8
)においては、単独の加速電圧で注入処理をした場合(
比較例隘10.12〜17および19)に比べ、耐食性
持続時間が大幅に延びていることがわかる。
The measurement results are also shown in Table 2. From the same table, the minimum accelerating voltage is 30 keV or less, the maximum accelerating voltage is 100 keν or more, and the injection amount at each voltage is lXIO"1ons/c+
m” or more, and the total amount of oxygen ions implanted is lXl0
Examples of the present invention (No. 1 to 8) in which the value was ``tons/cm'' or more
), when implantation is performed using a single accelerating voltage (
It can be seen that the corrosion resistance duration was significantly extended compared to Comparative Examples Nos. 10.12 to 17 and 19).

酸素イオンの加速電圧を段階的に変化させても、本発明
方法で規定した条件から外れる場合(比較例階20〜2
3)は耐食性持続時間は短かった。
Even if the acceleration voltage of oxygen ions is changed stepwise, the conditions deviate from the conditions specified in the method of the present invention (comparative example floors 20 to 2).
3) had a short corrosion resistance duration.

(以下、余白) 箪2表 (発明の効果) 本発明方法によれば、不動L!i電位域における金属溶
出量が極めて小さく、かつ、その耐食性が長期にわたっ
て持続する高耐食性ステンレス鋼を製造することができ
る。この鋼は食品工業、半導体製造工業などの微量の金
属溶出が問題となる工業分野において、高耐食性材料と
して実用性の高いものである。
(Hereinafter, blank space) Table 2 (Effects of the invention) According to the method of the present invention, Fudo L! It is possible to produce highly corrosion-resistant stainless steel in which the amount of metal eluted in the i potential range is extremely small and whose corrosion resistance lasts for a long period of time. This steel is highly practical as a highly corrosion-resistant material in industrial fields where trace amounts of metal elution are a problem, such as the food industry and semiconductor manufacturing industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼表面における酸化物の形成状況を示す断面
模式図で、(81図は酸処理による場合、0))図は高
温熱処理による場合、(C) [mは本発明方法による
場合である。 第2図は、実施例で用いた耐食性判定試験の説明図であ
る。
Fig. 1 is a schematic cross-sectional view showing the formation of oxides on the steel surface, (Fig. 81 is when acid treatment is performed, 0))) is when high temperature heat treatment is applied, and (C) [m is when the method of the present invention is applied. It is. FIG. 2 is an explanatory diagram of the corrosion resistance determination test used in the examples.

Claims (1)

【特許請求の範囲】[Claims]  表面層に酸素イオン注入処理を施す高耐食性ステンレ
ス鋼の製造方法であって、酸素イオン注入処理の加速電
圧を100keV以上の高電圧から30keV以下の低
電圧に、あるいは30keV以下の低電圧から100k
eV以上の高電圧に段階的に変化させ、各段階の加速電
圧による酸素イオン注入量を1×10^1^5ions
/cm^2以上で、かつ、酸素イオンの全注入量を1×
10^1^6ions/cm^2以上とすることを特徴
とする高耐食性ステンレス鋼の製造方法。
A method for producing highly corrosion-resistant stainless steel in which the surface layer is subjected to oxygen ion implantation treatment, the acceleration voltage of oxygen ion implantation treatment being reduced from a high voltage of 100 keV or more to a low voltage of 30 keV or less, or from a low voltage of 30 keV or less to 100 kV.
The voltage was changed stepwise to a high voltage of eV or higher, and the amount of oxygen ions implanted was 1×10^1^5 ions depending on the acceleration voltage at each stage.
/cm^2 or more, and the total amount of oxygen ions implanted is 1×
A method for producing highly corrosion resistant stainless steel, characterized in that the corrosion resistance is 10^1^6 ions/cm^2 or more.
JP31061890A 1990-11-15 1990-11-15 Production of high corrosion resistant stainless steel Pending JPH04180559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31061890A JPH04180559A (en) 1990-11-15 1990-11-15 Production of high corrosion resistant stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31061890A JPH04180559A (en) 1990-11-15 1990-11-15 Production of high corrosion resistant stainless steel

Publications (1)

Publication Number Publication Date
JPH04180559A true JPH04180559A (en) 1992-06-26

Family

ID=18007430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31061890A Pending JPH04180559A (en) 1990-11-15 1990-11-15 Production of high corrosion resistant stainless steel

Country Status (1)

Country Link
JP (1) JPH04180559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250214B1 (en) * 1995-12-22 2000-04-01 이구택 The method for color stainless steel sheet
EP1548139A1 (en) * 2002-07-31 2005-06-29 National Institute of Advanced Industrial Science and Technology Ultra-low carbon stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250214B1 (en) * 1995-12-22 2000-04-01 이구택 The method for color stainless steel sheet
EP1548139A1 (en) * 2002-07-31 2005-06-29 National Institute of Advanced Industrial Science and Technology Ultra-low carbon stainless steel
EP1548139A4 (en) * 2002-07-31 2005-08-31 Nat Inst Of Advanced Ind Scien Ultra-low carbon stainless steel
US7648586B2 (en) 2002-07-31 2010-01-19 National Institute Of Advanced Industrial & Technology Ultra-low carbon stainless steel

Similar Documents

Publication Publication Date Title
EP1000181B1 (en) Process for the treatment of austenitic stainless steel articles
EP0146152B1 (en) Solderable palladium-nickel coatings
JPH03504253A (en) How to treat titanium structures
KR101819918B1 (en) Method of Plasma electrolytic oxidation
JPH04180559A (en) Production of high corrosion resistant stainless steel
US4168183A (en) Process for improving the fatigue properties of structures or objects
KR20180107422A (en) Stainless steel with excellent surface gloss and corrosion resistance, method of method for treating surface the same
JPH08144089A (en) Vacuum chamber member made of aluminum or aluminum alloy
JPH0421764A (en) Production of stainless steel having high corrosion resistance
GB2031955A (en) Inhibiting fretting corrosion of titanium
Mitrovic‐Scepanovic et al. The Nature of Anodic Films on Nickel and Single Phase Nickel‐Molybdenum Alloys
US6017777A (en) Method of forming a plating layer of a lead frame
US2793108A (en) Method of producing metal powder
US2472786A (en) Method of pickling metal contact surfaces
US3378411A (en) Stress corrosion crack inhibitors
US2754222A (en) Preparation of steel for glassing and resultant article
JP5012384B2 (en) Surface treatment method
JP3064562B2 (en) Crevice corrosion resistant surface-modified Ti or Ti-based alloy member
KR100289286B1 (en) Stainless Nitride Products
JPS63100145A (en) Corrosion-resisting copper alloy and its production
JP2010209457A (en) Method of manufacturing surface treated member for semiconductor liquid crystal manufacturing apparatus
JPH08288444A (en) Lead frame preparation
US3539427A (en) Process for surface treatment of lead and its alloys
JPS6134171A (en) Production of catalytic material
JPS62174364A (en) Manufacture of high purity iron-carbon alloy