KR101856756B1 - 신호 발생기 및 신호 발생기를 포함하는 측정 시스템 - Google Patents

신호 발생기 및 신호 발생기를 포함하는 측정 시스템 Download PDF

Info

Publication number
KR101856756B1
KR101856756B1 KR1020160147201A KR20160147201A KR101856756B1 KR 101856756 B1 KR101856756 B1 KR 101856756B1 KR 1020160147201 A KR1020160147201 A KR 1020160147201A KR 20160147201 A KR20160147201 A KR 20160147201A KR 101856756 B1 KR101856756 B1 KR 101856756B1
Authority
KR
South Korea
Prior art keywords
signal
local oscillation
oscillation signal
signal generator
test
Prior art date
Application number
KR1020160147201A
Other languages
English (en)
Inventor
강노원
박정일
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020160147201A priority Critical patent/KR101856756B1/ko
Priority to CN201680090482.1A priority patent/CN109906386B/zh
Priority to PCT/KR2016/013052 priority patent/WO2018084353A1/ko
Application granted granted Critical
Publication of KR101856756B1 publication Critical patent/KR101856756B1/ko
Priority to US16/387,449 priority patent/US11125797B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0892Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/28Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response
    • G01R27/32Measuring attenuation, gain, phase shift or derived characteristics of electric four pole networks, i.e. two-port networks; Measuring transient response in circuits having distributed constants, e.g. having very long conductors or involving high frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Abstract

본 발명의 일 실시예에 따른 측정 시스템은, 분석기; 상기 분석기의 제어에 따라 제1 안테나로 제1 전자파 신호를 전송하는 제1 확장 모듈; 제2 안테나를 통해 제2 전자파 신호를 수신하는 제2 확장 모듈; 상기 분석기의 제어에 따라 제1 국부발진 신호를 생성하고, 상기 제1 국부발진 신호를 이용하여 상기 제1 전자파 신호의 기준 특성 및 상기 제1 안테나의 제1 테스트 특성을 검출하는 제1 신호 발생기; 그리고 상기 분석기의 제어에 따라 제2 국부발진 신호를 생성하고, 상기 제2 국부발진 신호를 이용하여 상기 제2 안테나의 제2 테스트 특성을 검출하는 제2 신호 발생기를 포함하고, 상기 제1 신호 발생기는, 상기 분석기로부터 전달되는 명령들을 내부 명령들로 변환하는 제어기; 그리고 상기 내부 명령들에 따라 상기 제1 국부발진 신호를 생성하는 국부발진 신호 발생기를 포함한다.

Description

신호 발생기 및 신호 발생기를 포함하는 측정 시스템{SIGNAL GENERATOR AND MEASUREMENT SYSTEM INCLUDING SIGNAL GENERATOR}
본 발명은 무선 통신에 관한 것으로, 더 상세하게는 무선 통신과 연관된 신호 발생기 및 신호 발생기를 포함하는 측정 시스템에 관한 것이다.
무선 통신에 필수적인 장치들 중 하나는 안테나이다. 통상적으로 안테나는 대량 생산 공정을 통해 생산된다. 대량 생산된 안테나들의 특성들은 동일하지 않고 서로 다를 수 있다. 안테나들을 사용하는 주변 회로들을 안테나들의 특성들에 맞게 튜닝하기 위하여, 안테나들의 특성들을 측정하는 테스트가 수행될 수 있다.
안테나들의 특성들은 반사 계수, 이득 및 방사패턴 등을 포함할 수 있다. 안테나들의 특성들을 측정하기 위하여, 벡터 회로망 분석기(Vector Network Analyzer, VNA)가 사용될 수 있다. 벡터 회로망 분석기는 동축 케이블과 같은 마이크로파/RF 케이블들을 통해 안테나들에 연결되고, 안테나들의 특성들을 측정한다.
벡터 회로망 분석기의 위치와 안테나들의 위치들 사이의 거리가 증가할수록, 케이블들의 길이 또한 증가한다. 케이블들의 길이가 증가하면, 케이블들에서 전자파 신호의 매우 큰 감쇠가 발생할 수 있다. 따라서, 벡터 회로망 분석기가 안테나들의 특성들을 정상적으로 측정하지 못할 수 있다.
본 발명의 목적은 벡터 회로망 분석기가 안테나들의 특성들을 분석하는 것을 지원하는 측정 시스템 및 신호 발생기를 제공하는 것이다. 특히, 본 발명은 벡터 회로망 분석기의 제조사에 관계없이 낮은 비용으로 안테나들의 특성들을 측정하는 것을 지원하는 신호 발생기 및 측정 시스템을 제공하고자 한다.
본 발명의 실시 예에 따른 측정 시스템은, 벡터 회로망 분석기; 상기 분석기의 제어에 따라 제1 안테나로 제1 전자파 신호를 전송하는 제1 확장 모듈; 제2 안테나를 통해 제2 전자파 신호를 수신하는 제2 확장 모듈; 상기 분석기의 제어에 따라 제1 국부발진 신호를 생성하고, 상기 제1 국부발진 신호를 이용하여 상기 제1 전자파 신호의 기준 특성 및 상기 제1 안테나의 제1 테스트 특성을 검출하는 제1 신호 발생기; 그리고 상기 분석기의 제어에 따라 제2 국부발진 신호를 생성하고, 상기 제2 국부발진 신호를 이용하여 상기 제2 안테나의 제2 테스트 특성을 검출하는 제2 신호 발생기를 포함하고, 상기 제1 신호 발생기는, 상기 분석기로부터 전달되는 명령들을 내부 명령들로 변환하는 제어기; 그리고 상기 내부 명령들에 따라 상기 제1 국부발진 신호를 생성하는 국부발진 신호 발생기를 포함한다.
실시 예로서, 상기 제1 신호 발생기는 상기 분석기로부터 기준 신호를 수신하고, 상기 기준 신호에 기반하여 기준 국부발진 신호 및 제1 테스트 국부발진 신호를 생성하고, 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호를 상기 제1 확장 모듈로 전달한다.
실시 예로서, 상기 제1 확장 모듈은 상기 기준 국부발진 신호를 상기 제1 전자파 신호와 혼합하고, 상기 혼합의 결과를 기준 중간 주파수 신호로서 상기 제1 신호 발생기로 출력하고, 상기 제1 신호 발생기는 상기 기준 중간 주파수 신호를 상기 분석기로 전달한다.
실시 예로서, 상기 제1 확장 모듈은 상기 기준 국부발진 신호의 직류 성분을 기준 검출 신호로서 상기 제1 신호 발생기로 전달하고, 상기 제1 신호 발생기는 상기 기준 검출 신호를 이용하여 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호의 레벨들을 조절한다.
실시 예로서, 상기 제1 확장 모듈은 상기 제1 전자파 신호가 상기 제1 안테나로부터 반사된 신호를 상기 제1 테스트 국부발진 신호와 혼합하고, 상기 혼합의 결과를 제1 테스트 중간 주파수 신호로서 상기 제1 신호 발생기로 전달하고, 상기 제1 신호 발생기는 상기 제1 테스트 중간 주파수 신호를 상기 분석기로 전달한다.
실시 예로서, 상기 제1 신호 발생기는 상기 분석기로부터 주파수들의 목록을 수신하고, 상기 수신된 목록을 저장하고, 그리고 상기 분석기로부터 전달되는 트리거 신호에 응답하여 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호의 주파수를 상기 목록에 등재된 상기 주파수들 중 다른 하나의 주파수로 변경한다.
실시 예로서, 상기 트리거 신호는 별도의 하드웨어 신호선을 통해 전달된다.
실시 예로서, 상기 명령들 및 상기 목록은 이더넷(ethernet) 채널을 통해 전달된다.
실시 예로서, 상기 제2 신호 발생기는 상기 제1 신호 발생기로부터 상기 기준 신호를 수신하고, 상기 기준 신호에 기반하여 제2 테스트 국부발진 신호를 생성하고, 상기 제2 테스트 국부발진 신호를 상기 제2 확장 모듈로 전달한다.
실시 예로서, 상기 제2 확장 모듈은 상기 제2 테스트 국부발진 신호를 상기 제2 전자파 신호와 혼합하고, 상기 혼합의 결과를 제2 테스트 중간 주파수 신호로서 상기 제2 신호 발생기로 전달하고, 상기 제2 신호 발생기는 상기 제2 테스트 중간 주파수 신호를 상기 분석기로 전달한다.
실시 예로서, 상기 제2 확장 모듈은 상기 제2 테스트 국부발진 신호의 직류 성분을 테스트 검출 신호로서 상기 제1 신호 발생기로 전달하고, 상기 제1 신호 발생기는 상기 테스트 검출 신호를 이용하여 상기 제2 테스트 국부발진 신호의 레벨을 조절한다.
실시 예로서, 상기 제2 신호 발생기는 상기 제1 신호 발생기로부터 주파수들의 목록을 수신하고, 상기 수신된 목록을 저장하고, 그리고 상기 제1 신호 발생기로부터 전달되는 트리거 신호에 응답하여 상기 제2 테스트 국부발진 신호의 주파수를 상기 목록에 등재된 상기 주파수들 중 다른 하나의 주파수로 변경한다.
실시 예로서, 상기 주파수의 변경 및 그에 따른 상기 제2 안테나의 특성의 검출이 완료되면, 상기 제2 신호 발생기는 상기 분석기로 상기 트리거 신호를 출력한다.
실시 예로서, 상기 제1 신호 발생기는 상기 기준 신호에 기반하여 상기 전자파 신호를 생성하고, 상기 전자파 신호를 상기 제1 확장 모듈을 통해 상기 제1 안테나로 전달한다.
실시 예로서, 상기 분석기는 상기 전자파 신호를 상기 제1 확장 모듈을 통해 상기 제2 안테나로 전달한다.
본 발명의 실시 예에 따른 신호 발생기는, 제1 채널을 통해 수신되는 명령들을 내부 명령들로 변환하는 제어기; 그리고 상기 내부 명령들이 따라 국부발진 신호를 생성하고, 제2 채널을 통해 수신되는 트리거 신호에 응답하여 상기 국부발진 신호의 주파수를 변경하는 국부발진 신호 발생기를 포함한다.
실시 예로서, 제3 채널을 통해 전달되는 검출 신호에 응답하여 상기 국부발진 신호의 감쇠율을 조절하는 가변 감쇠기를 더 포함한다.
실시 예로서, 상기 국부발진 신호를 제1 국부발진 신호 및 제2 국부발진 신호로 분배하는 신호 분배기를 더 포함한다.
실시 예로서, 기준 신호를 수신하고, 기준 신호에 응답하여 진동 신호를 출력하는 전압 제어 발진기를 더 포함하고, 상기 국부발진 신호 발생기는 상기 진동 신호에 응답하여 상기 국부발진 신호를 출력한다.
실시 예로서, 온도 제어 발진기; 제1 모드에서 상기 기준 신호를 상기 전압 제어 발진기로 전달하고 제2 모드에서 상기 온도 제어 발진기의 출력을 상기 기준 신호로서 상기 전압 제어 발진기로 전달하는 제1 스위치; 그리고 상기 제1 모드에서 상기 진동 신호를 외부로 출력하고, 상기 제2 모드에서 상기 진동 신호를 주파수 체감기를 통해 상기 외부로 출력하는 스위치들을 더 포함한다.
본 발명의 실시 예들에 따르면, 저비용으로 제조사에 관계없이 안테나들의 특성들을 측정하는 것을 지원하는 신호 발생기 및 측정 시스템이 제공된다.
도 1은 일 실시 예에 따른 측정 시스템을 보여준다.
도 2는 다른 예에 따른 측정 시스템을 보여준다.
도 3은 본 발명의 실시 예에 따른 측정 시스템의 예를 보여준다.
도 4는 본 발명의 실시 예에 따른 제1 신호 발생기의 예를 보여준다.
도 5는 제1 신호 발생기에서 국부발진 신호 발생기와 연관된 블록들의 예를 보여준다.
도 6은 본 발명의 실시 예에 따른 측정 시스템의 동작 방법을 보여주는 순서도이다.
도 7은 도 3의 측정 시스템의 응용 예를 보여준다.
도 8은 도 3의 측정 시스템의 다른 응용 예를 보여준다.
이하에서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시 예를 첨부된 도면을 참조하여 설명하기로 한다.
도 1은 일 실시 예에 따른 측정 시스템(10)을 보여준다. 도 1을 참조하면, 측정 시스템(10)은 벡터 회로망 분석기(11), 신호 분배기(12), 주파수 혼합기(13), 그리고 안테나를 포함한다.
벡터 회로망 분석기(11)는 전자파 신호를 출력할 수 있다. 신호 분배기(12)는 전자파 신호를 분배하여 국부발진 신호(Local Oscillation Signal), 전자파 신호(Radio Frequency Signal) 등과 같이 안테나(14)의 특성을 측정하는 데에 필요한 다양한 신호들을 생성할 수 있다. 분배된 신호들은 동축 케이블(15)과 같은 전자파 케이블을 통해 주파수 혼합기(13)로 전달된다. 주파수 혼합기(13)는 안테나(14)를 통해 송신되는 신호, 안테나(14)를 통해 수신되는 신호, 안테나(14)로부터 반사되는 신호와 같은 안테나(14)와 연관된 다양한 신호들을 분배된 신호들과 혼합(mixing)할 수 있다. 혼합의 결과는 벡터 회로망 분석기(11)로 전달된다. 벡터 회로망 분석기(11)는 혼합의 결과에 기반하여 안테나(14)의 특성들을 측정(또는 검출)할 수 있다.
통상적으로 주파수 혼합기(13)는 안테나(14)에 인접하여 배치되고, 신호 분배기(12)는 벡터 회로망 분석기(11)에 인접하여 배치된다. 따라서, 벡터 회로망 분석기(11)와 안테나(14) 사이의 거리가 증가할수록, 신호 분배기(12)와 주파수 혼합기(13) 사이의 거리가 증가하고, 전자파 케이블(15)의 길이가 증가한다. 전자파 케이블(15)의 길이가 증가하면, 전자파 케이블(15) 내에서 발생하는 신호 감쇠의 영향이 증가할 수 있다. 즉, 주파수 혼합기(13)에 도달하는 신호들의 레벨들이 낮아지고, 안테나(14)의 특성들을 측정하는 것이 정상적으로 수행되지 않을 수 있다.
도 2는 다른 예에 따른 측정 시스템(20)을 보여준다. 도 2를 참조하면, 측정 시스템(20)은 벡터 회로망 분석기(21), 신호 발생기(22), 주파수 혼합기(23), 그리고 안테나(24)를 포함한다. 도 1의 측정 시스템(20)과 비교하면, 신호 분배기(12) 대신에 신호 발생기(22)가 제공된다.
벡터 회로망 분석기(21) 및 신호 발생기(22) 사이의 통신 채널(26)은 이더넷(Ethernet)에 기반할 수 있다. 따라서, 벡터 회로망 분석기(21) 및 신호 발생기(22)는 거리에 관계없이 정상적으로 통신을 수행할 수 있다. 신호 발생기(22)는 벡터 회로망 분석기(21)와의 거리에 관계없이 안테나(24) 및 주파수 혼합기(23)에 인접하게 배치될 수 있다. 따라서, 신호 발생기(22) 및 주파수 혼합기(23) 사이의 전자파 케이블(25)의 길이가 감소되고, 주파수 혼합기(23)에 도달하는 신호들의 레벨들이 감쇠되는 것이 방지된다.
그러나 벡터 회로망 분석기(21)의 시제품들 및 신호 발생기(22)의 시제품들 대부분은 서로 명령 체계 및 신호 체계가 호환되지 않는다. 예를 들어, 특정한 벡터 회로망 분석기를 사용하는 경우, 동일한 명령 체계 및 신호 체계를 사용하는 신호 발생기 외에 다른 저가의 신호 발생기들은 측정 시스템(20)에 사용될 수 없다. 서로 다른 명령 체계 또는 신호 체계를 갖는 벡터 회로망 분석기 및 신호 발생기를 이용하여 측정 시스템(20)을 구성하여도, 벡터 회로망 분석기 및 신호 발생기의 성능이 온전히 발휘되지 않고 억제되는 문제가 발생한다. 이러한 문제를 방지하기 위하여, 본 발명은 다양한 벡터 회로망 분석기들과 호환되는 명령 체계 및 신호 체계를 갖고, 이들을 이용하여 안테나들의 특성을 측정하는 데에 필요한 다양한 신호들을 생성하는 신호 발생기 및 신호 발생기를 포함하는 측정 시스템을 제공하고자 한다.
도 3은 본 발명의 실시 예에 따른 측정 시스템(100)의 예를 보여준다. 도 3을 참조하면, 측정 시스템(100)은 벡터 회로망 분석기(110), 제1 신호 발생기(120), 제2 확장 모듈(130), 제1 안테나(140), 제2 신호 발생기(150), 제2 확장 모듈(160), 그리고 제2 안테나(170)를 포함한다.
벡터 회로망 분석기(110)는 전자파 신호(RF) 및 기준 신호(REF)를 출력할 수 있다. 전자파 신호(RF)는 제1 안테나(140)를 통해 전송될 신호일 수 있다. 예를 들어, 전자파 신호(RF)는 수 내지 수십 GHz의 주파수를 가질 수 있다. 전자파 신호(RF)는 제1 확장 모듈(130)로 전달될 수 있다. 기준 신호(REF)는 제1 및 제2 신호 발생기들(120, 150)이 다양한 신호들을 생성하는데에 기준이 되는 신호일 수 있다. 기준 신호(REF)는 10MHz의 주파수를 가질 수 있다. 기준 신호(REF)는 제1 신호 발생기(120)로 전달될 수 있다.
벡터 회로망 분석기(110)는 제1 신호 발생기(120)로부터 기준 중간 주파수 신호(IF_Ref) 및 제1 테스트 중간 주파수 신호(IF_T1)를 수신하고, 제2 신호 발생기(150)로부터 제2 테스트 중간 주파수 신호(IF_T2)를 수신할 수 있다. 기준 중간 주파수 신호(IF_Ref)는 전자파 신호(RF)의 특성을 나타낼 수 있다. 제1 테스트 중간 주파수 신호(IF_T1)는 제1 안테나(140)의 특성을 나타낼 수 있다. 제2 테스트 중간 주파수 신호(IF_T2)는 제2 안테나(170)의 특성을 나타낼 수 있다. 벡터 회로망 분석기(110)는 제1 및 제2 테스트 중간 주파수 신호들(IF_T1, IF_T2)을 기준 중간 주파수 신호(IF_Ref)와 비교하여 제1 및 제2 안테나들(140, 170)의 특성들을 측정(또는 검출)할 수 있다.
벡터 회로망 분석기(110)는 제어 채널(CNT)을 통해 제1 신호 발생기(120)에 연결될 수 있다. 벡터 회로망 분석기(110)는 제어 채널(CNT)을 통해 제1 신호 발생기(120)에 명령들 및 제1 안테나(140)의 테스트들을 위한 주파수들의 목록을 전달할 수 있다. 예를 들어, 제어 채널(CNT)은 이더넷(Ethernet)에 기반할 수 있다.
벡터 회로망 분석기(110)는 트리거 신호(TRIG)를 제1 신호 발생기(120)로 전달할 수 있다. 트리거 신호(TRIG)는 제어 채널(CNT)과 분리된 별도의 하드웨어 신호선으로 구성될 수 있다. 트리거 신호(TRIG)는 테스트 대상인 주파수의 변경을 요청하는 신호일 수 있다.
제1 신호 발생기(120)는 벡터 회로망 분석기(100)로부터 기준 신호(REF)를 수신한다. 제1 신호 발생기(120)는 기준 신호(REF)로부터 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)를 생성할 수 있다. 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)는 제1 확장 모듈(130)로 전달된다.
제1 신호 발생기(120)는 제1 확장 모듈(130)로부터 기준 중간 주파수 신호(IF_Ref), 제1 테스트 중간 주파수 신호(IF_T1), 그리고 기준 검출 신호(DET_Ref)를 수신한다. 제1 신호 발생기(120)는 기준 중간 주파수 신호(IF_Ref) 및 제1 테스트 중간 주파수 신호(IF_T1)를 벡터 회로망 분석기(110)로 전달할 수 있다. 제1 신호 발생기(120)는 기준 검출 신호(DET_Ref)를 이용하여 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)의 레벨들을 조절할 수 있다.
제1 신호 발생기(120)는 벡터 회로망 분석기(110)로부터 수신된 기준 신호(REF)를 제2 신호 발생기(150)로 전달할 수 있다.
제1 신호 발생기(120)는 벡터 회로망 분석기(110)로부터 제어 채널(CNT)을 통해 명령들 및 주파수들의 목록을 수신할 수 있다. 제1 신호 발생기(120)는 제어 채널(CNT)을 통해 제2 신호 발생기(150)와 연결된다. 제1 신호 발생기(120)는 벡터 회로망 분석기(110)로부터 수신되는 명령들 및 주파수들을 목록을 제어 채널(CNT)을 통해 제2 신호 발생기(150)로 전달(또는 중계)할 수 있다. 예를 들어, 제어 채널(CNT)은 이더넷(Ethernet)에 기반할 수 있다.
제1 신호 발생기(120)는 벡터 회로망 분석기(110)로부터 트리거 신호(TRIG)를 수신한다. 제1 신호 발생기(120)는 트리거 신호(TRIG)에 응답하여 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)의 주파수를 변경할 수 있다. 제1 신호 발생기(120)는 트리거 신호(TRIG)를 제2 신호 발생기(150)로 전달할 수 있다. 트리거 신호(TRIG)는 제어 채널(CNT)과 분리된 별도의 하드웨어 신호선을 통해 전달될 수 있다.
제1 확장 모듈(130)은 제1 신호 발생기(120)로부터 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)를 수신할 수 있다. 제1 확장 모듈(130)은 기준 국부발진 신호(LO_Ref)를 전자파 신호(RF)와 혼합하여 기준 중간 주파수 신호(IF_Ref)를 출력할 수 있다. 제1 확장 모듈(130)은 기준 국부발진 신호(LO_Ref)의 직류 성분을 추출하여 기준 검출 신호(DET_Ref)로 출력할 수 있다. 제1 확장 모듈(130)은 전자파 신호(RF)가 제1 안테나(140)로부터 반사된 신호를 제1 테스트 국부발진 신호(LO_T1)와 혼합하여 제1 테스트 중간 주파수 신호(IF_T1)로 출력할 수 있다.
제1 확장 모듈(130)은 제1 방향성 결합기(131), 제1 직류 성분 추출기(132), 제1 혼합기(133), 제1 방향성 결합기(134), 제2 혼합기(135), 그리고 제1 포트(136)를 포함한다.
제1 방향성 결합기(131)는 기준 국부발진 신호(LO_Ref)를 커플링(coupling)하여 제1 직류 성분 추출기(132) 및 제1 혼합기(133)로 각각 전달할 수 있다. 제1 직류 성분 추출기(132)는 제1 방향성 결합기(131)의 출력의 직류 성분을 추출하여 기준 검출 신호(DET_Ref)로 출력할 수 있다.
제1 혼합기(133)는 제1 방향성 결합기(131)의 출력 및 제2 방향성 결합기의 출력을 혼합할 수 있다. 혼합의 결과는 기준 중간 주파수 신호(IF_Ref)로 출력될 수 있다. 제2 방향성 결합기(134)는 안테나(140)를 향하여 전송되는 전자파 신호(RF)를 커플링하여 제1 혼합기(133)로 전달할 수 있다. 제2 방향성 결합기(134)는 전자파 신호(RF)가 안테나(140)로부터 반사되는 신호를 커플링하여 제2 혼합기(135)로 전달할 수 있다. 제2 혼합기(135)는 제2 방향성 결합기(134)의 출력 및 제1 테스트 국부발진 신호(LO_T1)를 혼합할 수 있다. 혼합의 결과는 제1 테스트 중간 주파수 신호(IF_T1)로 출력될 수 있다.
제1 포트(136)는 제1 안테나(140)가 연결되는 포트일 수 있다.
제1 확장 모듈(130)을 참조하여 설명된 바와 같이, 기준 검출 신호(DET_Ref)는 제1 혼합기(130)에 전달된 기준 국부발진 신호(LO_Ref)의 직류 성분을 나타낸다. 제1 신호 발생기(120)는 기준 국부발진 신호(LO_Ref)를 출력할 때의 직류 성분 및 기준 검출 신호(DET_Ref)가 나타내는 직류 성분의 차이로부터, 제1 신호 발생기(120) 및 제1 확장 모듈 사이(130)에서 기준 국부발진 신호(LO_Ref) 또는 제1 테스트 국부발진 신호(LO_T1)가 전송되는 케이블(예를 들어 동축 케이블)의 감쇠를 판별할 수 있다. 제1 신호 발생기(120)는 판별된 감쇠를 반영하여 기준 국부발진 신호(LO_Ref) 또는 제1 테스트 국부발진 신호(LO_T1)의 레벨을 조절할 수 있다.
기준 중간 주파수 신호(IF_Ref)는 전자파 신호(RF)의 특성을 나타낸다. 제1 테스트 중간 주파수 신호(IF_T1)는 전자파 신호(RF)가 제1 안테나(140)로부터 반사된 성분을 나타낸다. 따라서, 벡터 회로망 분석기(110)는 기준 중간 주파수 신호(IF_Ref) 및 제1 테스트 중간 주파수 신호(IF_T1)를 이용하여 제1 안테나(140)의 특성을 판별할 수 있다.
기준 신호(REF)는 약 10MHz의 주파수를 갖는다. 기준 중간 주파수 신호(IF_Ref)는 전자파 신호(RF)와 기준 국부발진 신호(LO_Ref)가 혼합된 결과이다. 예를 들어, 기준 중간 주파수 신호(IF_Ref)는 전자파 신호(RF)의 주파수가 기준 국부발진 신호(LO_Ref)의 주파수에 의해 감소된 주파수를 가질 수 있다. 기준 중간 주파수 신호(IF_Ref)의 주파수는 전자파(RF) 또는 기준 국부발진 신호(LO_Ref)의 주파수보다 낮을 수 있다. 마찬가지로, 제1 테스트 중간 주파수 신호(IF_T1)의 주파수는 전자파(RF) 또는 제1 테스트 국부발진 신호(IF_T1)의 주파수보다 낮다. 따라서, 기준 신호(REF), 기준 중간 주파수 신호(IF_Ref), 그리고 제1 테스트 중간 주파수 신호(IF_T1)가 케이블 내에서 경험하는 감쇠는 전자파(RF), 기준 국부발진 신호(LO_Ref), 또는 제1 테스트 국부발진 신호(LO_T1)가 경험하는 감쇠보다 적다. 트리거 신호(TRIG)는 고주파 신호가 아닐 수 있다. 제어 채널(CNT)은 이더넷(CNT)에 기반할 수 있다. 따라서, 벡터 회로망 분석기(110) 및 제1 신호 발생기(120) 사이에서 교환되는 신호들은 벡터 회로망 분석기(110) 및 제1 신호 발생기(120) 사이의 거리에 따른 영향을 다른 고주파 신호들보다 적게 받는다.
제2 신호 발생기(150)는 제1 신호 발생기(120)로부터 기준 신호(REF)를 수신한다. 제2 신호 발생기(150)는 기준 신호(REF)로부터 제2 테스트 국부발진 신호(LO_T2)를 생성할 수 있다. 제2 테스트 국부발진 신호(LO_T2)는 제2 확장 모듈(160)로 전달된다.
제2 신호 발생기(150)는 제2 확장 모듈(160)로부터 제2 테스트 중간 주파수 신호(IF_T1), 그리고 테스트 검출 신호(DET_T2)를 수신한다. 제2 신호 발생기(150)는 제2 테스트 중간 주파수 신호(IF_T2)를 벡터 회로망 분석기(110)로 전달할 수 있다. 제2 신호 발생기(150)는 테스트 검출 신호(DET_T2)를 이용하여 제2 테스트 국부발진 신호(LO_T2)의 레벨을 조절할 수 있다.
제2 신호 발생기(150)는 제1 신호 발생기(120)로부터 제어 채널(CNT)을 통해 명령들 및 주파수들의 목록을 수신할 수 있다.
제2 신호 발생기(150)는 제1 신호 발생기(120)로부터 트리거 신호(TRIG)를 수신한다. 제2 신호 발생기(150)는 트리거 신호(TRIG)에 응답하여 제2 테스트 국부발진 신호(LO_T2)의 주파수를 변경할 수 있다. 제2 신호 발생기(150)는 트리거 신호(TRIG)를 벡터 회로망 분석기(110)로 전달할 수 있다. 트리거 신호(TRIG)는 제어 채널(CNT)과 분리된 별도의 하드웨어 신호선을 통해 전달될 수 있다.
제2 확장 모듈(160)은 제2 신호 발생기(150)로부터 제2 테스트 국부발진 신호(LO_T2)를 수신할 수 있다. 제2 확장 모듈(160)은 제2 테스트 국부발진 신호(LO_T2)의 직류 성분을 추출하여 테스트 검출 신호(DET_T2)로 출력할 수 있다. 제2 확장 모듈(160)은 전자파 신호(RF)가 제2 안테나(170)를 통해 수신된 신호(RF')를 제2 테스트 국부발진 신호(LO_T2)와 혼합하여 제2 테스트 중간 주파수 신호(IF_T2)로 출력할 수 있다.
제2 확장 모듈(160)은 제3 방향성 결합기(161), 제2 직류 성분 추출기(162), 제3 혼합기(163), 그리고 제2 포트(164)를 포함한다.
제3 방향성 결합기(161)는 제2 테스트 국부발진 신호(LO_T2)를 커플링(coupling)하여 제2 직류 성분 추출기(162) 및 제3 혼합기(163)로 각각 전달할 수 있다. 제2 직류 성분 추출기(162)는 제3 방향성 결합기(161)의 출력의 직류 성분을 추출하여 테스트 검출 신호(DET_T2)로 출력할 수 있다.
제3 혼합기(163)는 제3 방향성 결합기(161)의 출력 및 수신된 전자파 신호(RF')를 혼합할 수 있다. 혼합의 결과는 제2 테스트 중간 주파수 신호(IF_T2)로 출력될 수 있다.
제2 포트(164)는 제2 안테나(170)가 연결되는 포트일 수 있다.
제2 확장 모듈(160)을 참조하여 설명된 바와 같이, 테스트 검출 신호(DET_T2)는 제2 혼합기(160)에 전달된 제2 테스트 국부발진 신호(LO_T2)의 직류 성분을 나타낸다. 제2 신호 발생기(150)는 제2 테스트 국부발진 신호(LO_T2)를 출력할 때의 직류 성분 및 테스트 검출 신호(DET_T2)가 나타내는 직류 성분의 차이로부터, 제2 신호 발생기(150) 및 제2 확장 모듈 사이(160)에서 제2 테스트 국부발진 신호(LO_T1)가 전송되는 케이블(예를 들어 동축 케이블)의 감쇠를 판별할 수 있다. 제2 신호 발생기(150)는 판별된 감쇠를 반영하여 제2 테스트 국부발진 신호(LO_T2)의 레벨을 조절할 수 있다.
도 4는 본 발명의 실시 예에 따른 제1 신호 발생기(120)의 예를 보여준다. 도 3 및 도 4를 참조하면, 제1 신호 발생기(120)는 제1 내지 제3 신호 처리부들(121~123), 국부발진 신호 발생기(124), 감쇠 처리부(125), 제어기(126), 그리고 표시 화면(127)을 포함한다.
제1 신호 처리부(121)는 기준 신호(REF)를 처리할 수 있다. 제1 신호 처리부(121)는 제1 증폭기(A1) 및 제1 신호 분배기(DVD1)를 포함한다. 제1 증폭기(A1)는 벡터 회로망 분석기(110)로부터 수신되는 기준 신호(REF)를 증폭할 수 있다. 제1 신호 분배기(DVD1)는 제1 증폭기(A1)의 출력을 국부발진 신호 발생기(124) 및 제2 신호 발생기(150)로 각각 전달할 수 있다. 예를 들어, 제1 신호 분배기(DVD1)는 방향성 결합기 또는 전력 분배기일 수 있다.
제2 신호 처리부(122)는 기준 중간 주파수 신호(IF_Ref)를 처리할 수 있다. 제2 신호 처리부(122)는 제1 저대역 통과 필터(LPF1) 및 제2 증폭기(A2)를 포함한다. 제2 저대역 통과 필터(LPF1)는 기준 중간 주파수 신호(IF_Ref)에 대해 저대역 통과 필터링을 수행할 수 있다. 제2 증폭기(A2)는 제1 저대역 통과 필터(LPF1)의 출력을 증폭하여 벡터 회로망 분석기(110)로 전달할 수 있다.
제3 신호 처리부(123)는 제1 테스트 중간 주파수 신호(IF_T1)를 처리할 수 있다. 제3 신호 처리부(123)는 제2 저대역 통과 필터(LPF2) 및 제3 증폭기(A3)를 포함한다. 제3 저대역 통과 필터(LPF3)는 제1 테스트 중간 주파수 신호(IF_T1)에 대해 저대역 통과 필터링을 수행할 수 있다. 제3 증폭기(A3)는 제2 저대역 통과 필터(LPF2)의 출력을 증폭하여 벡터 회로망 분석기(110)로 전달할 수 있다.
국부발진 신호 발생기(124)는 제1 신호 처리부(121)로부터 기준 신호(REF)를 수신한다. 국부발진 신호 발생기(124)는 제어기(126)의 제어에 따라 국부발진 신호(LO)를 출력할 수 있다.
국부발진 신호 발생기(124)는 랜덤 액세스 메모리(RAM) 및 읽기 전용 메모리(ROM)을 포함한다. 읽기 전용 메모리(ROM)는 국부발진 신호 발생기(124)의 초기화 코드, 제어기(126)가 동작하는 데에 필요한 펌웨어와 같은 다양한 코드들을 저장할 수 있다. 랜덤 액세스 메모리(RAM)는 국부발진 신호 발생기(124)가 동작하는 동안에 발생하는 다양한 데이터를 저장할 수 있다. 예를 들어, 제어기(126)는 주파수들의 목록, 그리고 레벨 보상 값들을 저장할 수 있다.
국부발진 신호 발생기(124)는 벡터 회로망 분석기(110)로부터 트리거 신호(TRIG)를 수신할 수 있다. 트리거 신호(TRIG)에 응답하여, 국부발진 신호 발생기(124)는 목록에 등재된 주파수들 중 초기 주파수 또는 현재의 주파수와 다른 주파수를 갖는 국부발진 신호(LO)를 출력할 수 있다. 트리거 신호(TRIG)에 의해 선택되는 주파수들의 순서는 주파수들의 목록과 함께 제어기(126)로부터 수신될 수 있다.
감쇠 처리부(125)는 제1 신호 발생기(120) 및 제1 확장 모듈(130) 사이에서 발생하는 감쇠에 따라 국부발진 신호(LO)의 감쇠율을 조절할 수 있다. 감쇠 처리부(125)는 가변 이득 증폭기(GA), 가변 감쇠기(ATT), 제2 신호 분배기(DVD2), 제4 및 제5 증폭기들(A4, A5), 그리고 감쇠 로직(ALC)을 포함한다.
가변 이득 증폭기(GA)는 감쇠 로직(ALC) 또는 제어기(126)에 의해 가변되는 이득을 가질 수 있다. 가변 감쇠기(ATT)는 감쇠 로직(ALC)의 제어에 따라 가변되는 감쇠율을 가질 수 있다. 감쇠 로직(ALC)은 제1 확장 모듈(130)로부터 기준 검출 신호(DET_Ref)를 수신하고, 기준 검출 신호(DET_Ref)에 기반하여 가변 감쇠기(ATT)의 감쇠율을 조절할 수 있다. 제2 신호 분배기(DVD2)는 가변 감쇠기(ATT)의 출력을 분배하여 제4 및 제5 증폭기들(A4, A5)에 각각 전달할 수 있다. 예를 들어, 제2 신호 분배기(DVD2)는 방향성 결합기 또는 전력 분배기일 수 있다. 제4 및 제5 증폭기들(A4, A5)은 제2 신호 분배기(DVD2)의 출력을 각각 기준 국부발진 신호(LO_Ref) 및 제1 테스트 국부발진 신호(LO_T1)로 출력할 수 있다.
제어기(126)는 제어 채널(CNT)을 통해 벡터 회로망 분석기(110) 및 제2 신호 발생기(150)와 각각 연결된다. 제어기(126)는 벡터 회로망 분석기(110)로부터 명령들을 수신할 수 있다. 제어기(126)는 벡터 회로망 분석기(110)의 명령들을 내부 명령들로 변환할 수 있다. 제어기(126)는 벡터 회로망 분석기(110)의 명령 체계에 기반하여, 벡터 회로망 분석기(110)에 응답들을 전송할 수 있다. 제어기(126)는 변환된 내부 명령들에 기반하여 국부발진 신호 발생기(124), 감쇠 처리부(125), 및 표시 화면(127)을 제어할 수 있다. 제어기(126)는 벡터 회로망 분석기(110)로부터 주파수들의 목록을 수신하고, 저장할 수 있다. 제어기(126)는 벡터 회로망 분석기(110)로부터 전달된 명령들 및 주파수들의 목록을 제2 신호 발생기(150)로 전달할 수 있다.
표시 화면(127)은 제어기(126)에 의해 구동되며, 제1 신호 발생기(120)의 상태들 및 제1 신호 발생기에 의해 처리되는 신호들을 보여줄 수 있다.
예를 들어, 국부발진 신호 발생기(124), 감쇠 처리부(125), 제어기(126), 그리고 표시 화면(127)은 각각 모듈들로 구현될 수 있다. 국부발진 신호 발생기(124), 감쇠 처리부(125), 그리고 표시 화면(127)은 USB 인터페이스를 통해 제어기(126)에 연결될 수 있다. 표시 화면(127)은 터치 인터페이스를 포함할 수 있다.
예시적으로, 제어기(126)에 키보드, 마우스 등과 같은 사용자 인터페이스 장치들이 추가로 연결될 수 있다. 예를 들어, 사용자 인터페이스 장치들은 USB 인터페이스를 통해 제어기(126)에 연결될 수 있다.
상술된 바와 같이, 제어기(126)는 제1 타입, 예를 들어 이더넷(Ethernet) 인터페이스를 통해 제1 명령 체계 또는 제1 신호 체계를 갖는 벡터 회로망 분석기(110)와 통신할 수 있다. 제어기(126)는 제1 명령 체계 또는 제1 신호 체계를 제2 명령 체계 또는 제2 신호 체계로 변환할 수 있다. 제어기(126)는 제2 타입, 예를 들어 USB 인터페이스를 통해 제2 명령 체계 또는 제2 신호 체계를 갖는 국부발진 신호 발생기(124), 감쇠 처리부(125), 그리고 표시 화면(127) 중 적어도 하나와 통신할 수 있다. 제어기(126)를 적용함으로써, 서로 다른 명령 체계들 또는 신호 체계들을 갖는 벡터 회로망 분석기(110) 및 국부발진 신호 발생기(124)가 테스트를 위한 다양한 신호들을 용이하게 제공할 수 있다. 특히, 국부발진 신호 발생기(124)는 빠른 주파수 변경을 위해 별도의 하드웨어 신호선으로 제공되는 트리거 신호(TRIG)를 수신 및 송신하도록 구성되며, 따라서 테스트 속도가 향상된다.
또한, 제어기(126) 또는 국부발진 신호 발생기(124)는 주파수들에 따른 손실 경로 편차(예를 들어 기울기)에 대한 보정 값(calibration level)을 더 관리할 수 있다. 목록에 등재된 주파수들 사이에 대해, 제어기(126) 또는 국부발진 신호 발생기(124)는 대응하는 설정 값들의 기울기를 이용하여 보정 값을 계산할 수 있다.
제2 신호 발생기(150)는 도 4에 도시된 제1 신호 발생기(120)와 유사하게 구성될 수 있다. 예를 들어, 제1 신호 처리부(120)에서 제1 신호 분배기(DVD1)가 제거되고, 감쇠 처리부(125)에서 제2 신호 분배기(DVD2)가 제거되고, 제4 및 제5 증폭기들(A4, A5) 중 하나가 제공되는 것을 제외하면, 그리고 제어 채널(CNT)의 출력이 제거되는 것을 제외하면, 제2 신호 처리부(150)는 제1 신호 처리부(120)와 동일한 구조를 가질 수 있다.
다른 예로서, 제2 신호 처리부(150)는 제1 신호 처리부(120)와 동일한 구성을 갖고, 기준 신호(REF)의 출력 포트, 감쇠 처리부(125)의 두 개의 출력 포트들 중 하나, 그리고 제어 채널(CNT)의 출력 포트가 비활성화될 수 있다.
도 5는 제1 신호 발생기(120)에서 국부발진 신호 발생기(124)와 연관된 블록들의 예를 보여준다. 도 4 및 도 5를 참조하면, 제1 신호 발생기(120)는 제1 내지 제3 스위치들, 제1 내지 제2 주파수 체감기들(FD1, FD2), 온도 제어 발진기(TCXO), 전압 제어 발진기(VCXO), 생성 블록(GB), 필터 뱅크(FB), 제1 및 제2 가변 저항들(VB1, VB2), 증폭기(A), 그리고 감쇠 로직(ALC)을 포함한다.
기준 신호(REF)는 온도 제어 발진기(TCXO) 및 제1 스위치(S1)에 전달될 수 있다. 제1 스위치(S1)는 제어기(126)의 제어에 응답하여 기준 신호(REF) 또는 온도 제어 발진기(TCXO)의 출력을 전압 제어 발진기(VCXO)로 전달할 수 있다. 예를 들어, 제1 스위치(S1) 및 온도 제어 발진기(TCXO)는 도 4의 제1 신호 처리부(121)에 옵션으로 추가될 수 있다.
전압 제어 발진기(VCXO)의 출력은 생성 블록(GB) 및 제2 스위치(S2)로 전달된다. 제2 스위치는 제어기(126)의 제어에 따라 전압 제어 발진기(S2)의 출력을 제3 스위치(S3) 및 제1 주파수 체감기(FD1) 중 하나로 전달한다. 예를 들어, 제1 주파수 체감기는 1/10의 체감 비를 가질 수 있다. 제3 스위치(S3)는 제어기(126)의 제어에 따라 제2 스위치(S2)의 출력 및 제1 주파수 체감기(FD1)의 출력 중 하나를 제2 신호 발생기(150, 도 3 참조)로 출력할 수 있다. 제2 및 제3 스위치들(S2, S3), 그리고 제1 주파수 체감기(FD1)는 도 4의 제1 신호 처리부(121)에 옵션으로 제공될 수 있다.
전압 제어 발진기(VCXO)는 도 4의 제1 신호 처리부(121)의 제1 신호 분배기(DVD1)에 대응할 수 있다.
생성 블록(GB)은 전압 제어 발진기(VCXO)의 출력에 대해 거친 튜닝 및 정교한 튜닝을 수행하여 10GHz 내지 20GHz 대역의 주파수를 갖는 신호를 생성할 수 있다. 예를 들어, 거친 튜닝은 위상 고정 및 조화파 생성을 포함할 수 있다. 정교한 튜닝은 가변 모듈러스(modulus) DDS (Direct Digital Synthesis)를 포함할 수 있다.
제2 주파수 체감기(FD2)는 생성 블록(GB)의 출력 신호의 주파수는 1/N으로 체감할 수 있다. 제2 주파수 체감기(FD2)의 체감 비는 제어기(126)에 의해 제어될 수 있다. 제2 주파수 체감기(FD2)의 체감 비는 목록에 등재된 주파수들 중에서 목표 주파수에 따라 결정될 수 있다. 필터 뱅크(FB)는 제2 주파수 체감기(FD2)의 출력을 필요한 대역에서 필터링할 수 있다. 필터 뱅크(FB)의 통과 대역 및 차단 대역은 제어기(126)에 의해 제어될 수 있다. 필터 뱅크(FB)의 통과 대역 및 차단 대역은 목록에 등재된 주파수들 중에서 목표 주파수에 따라 결정될 수 있다.
제1 가변 저항(VR1)의 저항값은 감쇠 로직(ALC)에 의해 조절될 수 있다. 필터 뱅크(FB)의 출력 신호는 제1 가변 저항(VR1)을 통해 증폭기(A)로 전달된다. 감쇠 로직(ALC)에 의해 제1 가변 저항(VR1)의 저항값이 조절되면, 제1 가변 저항(VR1)을 통과하는 신호의 감쇠율이 조절될 수 있다. 제1 가변 저항(VR1) 및 증폭기(A)는 도 4의 가변 감쇠기(ATT)에 대응할 수 있다. 증폭기(A)의 출력은 제2 가변 저항(VR2)으로 전달된다. 제2 가변 저항(VR2)의 저항값은 제어기(126)에 의해 제어될 수 있다. 제2 가변 저항(VR2)을 통과한 신호는 국부발진 신호(LO)로 출력될 수 있다.
도 6은 본 발명의 실시 예에 따른 측정 시스템(100)의 동작 방법을 보여주는 순서도이다. 도 3, 도 4 및 도 6을 참조하면, S110 단계에서 벡터 회로망 분석기(110)는 제어 채널(CNT)을 통해 제1 신호 발생기(120)에 정보 확인을 요청할 수 있다. 예를 들어, 벡터 회로망 분석기(110)는 제1 명령 체계에 따라 정보 확인을 요청할 수 있다.
S115 단계에서, 제1 신호 발생기(120)의 제어기(126)는 제1 명령 체계에 따라 벡터 회로망 분석기(110)에 제어 채널(CNT)을 통해 정보 응답을 전달할 수 있다. 정보 응답이 수신되면, 벡터 회로망 분석기(110)는 제1 신호 발생기(120)가 제1 명령 체계에 따라 동작하는 장치임을 식별할 수 있다. 이후에, S120 단계에서, 벡터 회로망 분석기(110)는 제어 채널(CNT)을 통해 제1 신호 발생기(120)에 주파수 목록을 전송할 수 있다. 제1 신호 발생기(120)의 제어기(126)는 주파수 목록을 저장할 수 있다. S125 단계에서, 제1 신호 발생기(120)의 제어기(126)는 제어 채널(CNT)을 통해 주파수 목록을 제2 신호 발생기(150)의 제어기(예를 들어, 156)로 전달할 수 있다. 제2 신호 발생기(150)의 제어기(156)는 주파수 목록을 저장할 수 있다.
S130 단계에서, 제1 신호 발생기(120)의 제어기(126) 및 제2 신호 발생기(150)의 제어기(156) 각각은 명령어 변환을 수행할 수 있다. 예를 들어, 제어기(126)는 제어 채널(CNT)을 통해 벡터 회로망 분석기(110)로부터 전달된 명령들, 그리고 저장된 주파수 목록에 기반하여 국부발진 신호 발생기(124)를 제어하기 위한 제2 타입의 명령들을 생성할 수 있다. 제어기(156)는 제어 채널(CNT)을 통해 제1 신호 발생기(120)로부터 전달된 명령들, 그리고 저장된 주파수 목록에 기반하여 국부발진 신호 발생기(예를 들어, 154)를 제어하기 위한 제2 타입의 명령들을 생성할 수 있다.
S135 단계에서, 제1 신호 발생기(120)의 제어기(126) 및 제2 신호 발생기(150)의 제어기(156)는 레벨 보상 값들을 호출할 수 있다. 예를 들어, 레벨 보상 값들은 제어기들(126, 156)에 미리 저장되거나, 주파수 목록과 함께 수신되거나, 또는 주파수 목록에 기반하여 제어기들(126, 156)이 계산할 수 있다.
S140 단계에서, 제어기(126)는 국부발진 신호 발생기(124)로 제2 타입의 명령들을 전송할 수 있다. 제어기(156)는 국부발진 신호 발생기(154)로 제2 타입의 명령들을 전송할 수 있다. 예를 들어, 제2 타입의 명령들은 USB 인터페이스를 통해 전달될 수 있다. 명령들은 주파수 목록 및 레벨 보상 값들을 포함할 수 있다.
S145 단계에서, 국부발진 신호 발생기(124)는 제어기(126)로부터 전달된 주파수 목록 및 레벨 보상 값들을 저장할 수 있다. 국부발진 신호 발생기(154)는 제어기(156)로부터 전달된 주파수 목록 및 레벨 보상값들을 저장할 수 있다.
S150 단계에서, 완료 보고가 수행된다. 예를 들어, 국부발진 신호 발생기(124)는 제어기(126)에 주파수 목록 및 레벨 보상 값들의 적용이 완료되었음을 보고할 수 있다. 국부발진 신호 발생기(154)는 제어기(156)에 주파수 목록 및 레벨 보상 값들의 적용이 완료되었음을 보고할 수 있다. 제어기(156)는 주파수 목록 및 레벨 보상 값들의 적용이 완료되었음을 제어기(126)에 보고할 수 있다. 제어기(126)는 주파수 목록 및 레벨 보상 값들의 적용이 완료되었음을 벡터 회로망 분석기(110)에 보고할 수 있다. 예를 들어, 완료 보고는 벡터 회로망 분석기(110)가 완료 여부를 제1 신호 발생기(120)에 질의함으로써, 그리고 제1 신호 발생기(120)가 완료 여부를 제2 신호 발생기(150)에 질의함으로써 수행될 수 있다. 다른 예로서, 완료 보고는 제2 신호 발생기(150)가 제1 신호 발생기(120)에 완료 보고함에 따라, 그리고 제1 신호 발생기(120)가 벡터 회로망 분석기(110)에 완료 보고함에 따라 수행될 수 있다.
S155 단계에서, 정보 확인이 수행된다. 예를 들어, 명령들의 실행이 완료되었는지 확인될 수 있다. 정보 확인은 벡터 회로망 분석기(110)가 제1 신호 발생기(120)에 확인을 요청함으로써, 그리고 제1 신호 발생기(120)가 제2 신호 발생기(150)에 확인을 요청함으로써 수행될 수 있다.
S160 단계에서, 트리거가 수행된다. 벡터 회로망 분석기(110)는 트리거 신호(TRIG)를 활성화할 수 있다. 국부발진 신호 발생기(124)는 트리거 신호(TRIG)에 응답하여 주파수를 변환할 수 있다. 국부발진 신호 발생기(124)는 국부발진 신호 발생기(154)로 트리거 신호(TRIG)를 전달할 수 있다. 국부발진 신호 발생기(154)는 트리거 신호(TRIG)에 응답하여 주파수를 변환할 수 있다. 국부발진 신호 발생기(154)는 트리거 신호(TRIG)를 벡터 회로망 분석기(110)로 전달할 수 있다. 벡터 회로망 분석기(110)는 제1 및 제2 신호 발생기들(120, 150)을 통해 전달되는 신호들을 이용하여 제1 및 제2 안테나들(140, 170)의 특성들을 측정할 수 있다.
도 7은 도 3의 측정 시스템(100)의 응용 예(200)를 보여준다. 도 7을 참조하면, 측정 시스템(200)은 벡터 회로망 분석기(210), 제1 신호 발생기(220), 제2 확장 모듈(230), 제1 안테나(240), 제2 신호 발생기(250), 제2 확장 모듈(260), 그리고 제2 안테나(270)를 포함한다. 제1 확장 모듈(230)은 제1 방향성 결합기(231), 제1 직류 성분 추출기(232), 제1 혼합기(233), 제1 방향성 결합기(234), 제2 혼합기(235), 그리고 제1 포트(236)를 포함한다. 제2 확장 모듈(260)은 제3 방향성 결합기(261), 제2 직류 성분 추출기(262), 제3 혼합기(263), 그리고 제2 포트(264)를 포함한다.
도 3의 측정 시스템(100)과 비교하면, 벡터 회로망 분석기(210)는 전자파 신호(RF)를 출력하지 않는다. 제1 신호 발생기(220)는 기준 신호(REF)로부터 전자파 신호(RF)를 생성할 수 있다. 전자파 신호(REF)는 국부발진 신호 발생기(124, 도 4 참조) 또는 별도의 발진 신호 발생기를 이용하여 생성될 수 있다. 예를 들어, 전자파 신호(REF)는 국부발진 신호(LO)를 커플링, 체배 또는 체감하여 생성될 수 있다.
도 8은 도 3의 측정 시스템(100)의 다른 응용 예(300)를 보여준다. 도 8을 참조하면, 측정 시스템(300)은 벡터 회로망 분석기(310), 제1 신호 발생기(320), 제2 확장 모듈(330), 제1 안테나(350), 제2 신호 발생기(350), 제2 확장 모듈(370), 그리고 제2 안테나(380)를 포함한다.
예시적으로, 측정 시스템(300)은 밀리미터파에 적용될 수 있다. 밀리미터파의 케이블에 의한 감쇠는 GHz 파의 케이블에 의한 감쇠보다 상대적으로 적다. 따라서, 밀리미터파의 측정 시스템(300)에서, 감쇠 적용을 위한 검출 신호들(DET_Ref, DET_T2, 도 3 참조)은 사용되지 않을 수 있다.
제1 확장 모듈(330)은 제1 및 제2 주파수 체배기들(331, 333), 제1 내지 제3 증폭기들(332, 337, 340), 제 및 제2 저대역 통과 필터들(338, 341), 제1 및 제2 복합기들(336, 339), 제1 방향성 결합기(334), 전력 분배기(335), 그리고 제1 포트를 포함한다.
제1 주파수 체배기(331)는 제1 신호 발생기(320)로부터 출력되는 전자파 신호(RF)의 주파수를 체배할 수 있다. 제1 증폭기(332)는 제1 주파수 체배기(331)의 출력을 증폭할 수 있다. 제2 주파수 체배기(333)는 제1 증폭기(332)의 출력의 주파수를 체배할 수 있다. 제1 방향성 결합기(334)는 제2 주파수 체배기(333)로부터 안테나(350)로 전달되는 신호를 커플링하여 제1 혼합기(336)로 출력할 수 있다. 제1 방향성 결합기(334)는 제1 안테나(350)에서 반사되어 제1 방향성 결합기(334)로 전달되는 신호를 커플링하여 제2 복합기(339)로 전달할 수 있다.
전력 분배기(335)는 제1 신호 발생기(320)로부터 출력되는 제1 테스트 국부발진 신호(LO_T1)의 전력을 분배하여 제1 및 제2 복합기들(336, 339)로 각각 전달할 수 있다. 제1 복합기(336)는 제1 방향성 결합기(334)의 출력 및 전력 분배기(335)의 출력을 혼합하여 출력할 수 있다. 제2 증폭기(337)는 제1 혼합기(336)의 출력을 증폭할 수 있다. 제1 저대역 통과 필터(338)는 증폭기(337)의 출력에 대해 저대역 필터링을 수행할 수 있다. 제1 저대역 통과 필터(338)의 출력은 기준 중간 주파수 신호(IF_Ref)로 출력될 수 있다.
제2 혼합기(339)는 전력 분배기(335)의 출력 및 제1 방향성 결합기(334)의 출력을 혼합할 수 있다. 제3 증폭기(340)는 제2 혼합기(339)의 출력을 증폭할 수 있다. 제2 저대역 통과 필터(341)는 제3 증폭기(340)의 출력에 대해 저대역 필터링을 수행할 수 있다. 제2 저대역 통과 필터(341)의 출력은 제1 테스트 중간 주파수 신호(IF_T1)로 출력될 수 있다.
제1 포트(342)는 제1 안테나(350)가 연결되는 포트일 수 있다.
제2 확장 모듈(370)은 제2 방향성 결합기(371), 커패시터(372), 제3 혼합기(373), 제4 증폭기(374), 제5 증폭기(375), 제3 저대역 통과 필터(376), 그리고 제2 포트(377)를 포함한다.
제1 방향성 결합기(371)는 안테나(380)를 통해 수신되는 신호(RF')를 커플링하여 출력할 수 있다. 커패시터(372)는 직류 성분을 제거할 수 있다. 제4 증폭기(374)는 제2 테스트 국부발진 신호(LO_T2)를 증폭할 수 있다. 제3 혼합기(373)는 제4 증폭기(374)의 출력 및 커패시터(372)를 통해 전달되는 신호를 혼합할 수 있다. 제5 증폭기(375)는 제3 혼합기(373)의 출력을 증폭할 수 있다. 제3 저대역 통과 필터는 제5 증폭기(375)의 출력에 대해 저대역 필터링을 수행할 수 있다. 제3 저대역 통과 필터(376)의 출력은 제2 테스트 중간 주파수 신호(IF_T2)로 출력될 수 있다.
제2 포트(377)는 제2 안테나(380)가 연결되는 포트일 수 있다.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나, 본 발명의 범위와 기술적 사상에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 상술한 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100, 200, 300; 측정 시스템
110, 210, 310; 벡터 회로망 분석기
120, 220, 320; 제1 신호 발생기
121; 제1 신호 처리부
122; 제2 신호 처리부
123; 제3 신호 처리부
124; 국부발진 신호 발생기
125; 신호 감쇠부
126; 제어기
127; 표시 화면
130, 230, 330; 제1 확장 모듈
140, 240, 350; 제1 안테나
150, 250, 360; 제2 신호 발생기
160, 260, 370; 제2 확장 모듈
170, 270, 380; 제2 안테나

Claims (20)

  1. 분석기;
    상기 분석기의 제어에 따라 제1 안테나로 제1 전자파 신호를 전송하는 제1 확장 모듈;
    제2 안테나를 통해 제2 전자파 신호를 수신하는 제2 확장 모듈;
    상기 분석기의 제어에 따라 제1 국부발진 신호를 생성하고, 상기 제1 국부발진 신호를 이용하여 상기 제1 전자파 신호의 기준 특성 및 상기 제1 안테나의 제1 테스트 특성을 검출하는 제1 신호 발생기; 그리고
    상기 분석기의 제어에 따라 제2 국부발진 신호를 생성하고, 상기 제2 국부발진 신호를 이용하여 상기 제2 안테나의 제2 테스트 특성을 검출하는 제2 신호 발생기를 포함하고,
    상기 제1 신호 발생기는,
    상기 분석기로부터 전달되는 제1 타입의 명령들을 제2 타입의 내부 명령들로 변환하는 제어기; 그리고
    상기 내부 명령들에 따라 상기 제1 국부발진 신호를 생성하는 국부발진 신호 발생기를 포함하고,
    상기 제1 타입은 상기 분석기의 타입에 따라 결정되고, 상기 제2 타입은 상기 국부 발진 신호 발생기에 따라 결정되는 측정 시스템.
  2. 제1항에 있어서,
    상기 제1 신호 발생기는 상기 분석기로부터 기준 신호를 수신하고, 상기 기준 신호에 기반하여 기준 국부발진 신호 및 제1 테스트 국부발진 신호를 생성하고, 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호를 상기 제1 확장 모듈로 전달하는 측정 시스템.
  3. 제2항에 있어서,
    상기 제1 확장 모듈은 상기 기준 국부발진 신호를 상기 제1 전자파 신호와 혼합하고, 상기 혼합의 결과를 기준 중간 주파수 신호로서 상기 제1 신호 발생기로 출력하고,
    상기 제1 신호 발생기는 상기 기준 중간 주파수 신호를 상기 분석기로 전달하는 측정 시스템.
  4. 제2항에 있어서,
    상기 제1 확장 모듈은 상기 기준 국부발진 신호의 직류 성분을 기준 검출 신호로서 상기 제1 신호 발생기로 전달하고,
    상기 제1 신호 발생기는 상기 기준 검출 신호를 이용하여 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호의 레벨들을 조절하는 측정 시스템.
  5. 제2항에 있어서,
    상기 제1 확장 모듈은 상기 제1 전자파 신호가 상기 제1 안테나로부터 반사된 신호를 상기 제1 테스트 국부발진 신호와 혼합하고, 상기 혼합의 결과를 제1 테스트 중간 주파수 신호로서 상기 제1 신호 발생기로 전달하고,
    상기 제1 신호 발생기는 상기 제1 테스트 중간 주파수 신호를 상기 분석기로 전달하는 측정 시스템.
  6. 분석기;
    상기 분석기의 제어에 따라 제1 안테나로 제1 전자파 신호를 전송하는 제1 확장 모듈;
    제2 안테나를 통해 제2 전자파 신호를 수신하는 제2 확장 모듈;
    상기 분석기의 제어에 따라 제1 국부발진 신호를 생성하고, 상기 제1 국부발진 신호를 이용하여 상기 제1 전자파 신호의 기준 특성 및 상기 제1 안테나의 제1 테스트 특성을 검출하는 제1 신호 발생기; 그리고
    상기 분석기의 제어에 따라 제2 국부발진 신호를 생성하고, 상기 제2 국부발진 신호를 이용하여 상기 제2 안테나의 제2 테스트 특성을 검출하는 제2 신호 발생기를 포함하고,
    상기 제1 신호 발생기는,
    상기 분석기로부터 전달되는 명령들을 내부 명령들로 변환하는 제어기; 그리고
    상기 내부 명령들에 따라 상기 제1 국부발진 신호를 생성하는 국부발진 신호 발생기를 포함하고,
    상기 제1 신호 발생기는 상기 분석기로부터 기준 신호를 수신하고, 상기 기준 신호에 기반하여 기준 국부발진 신호 및 제1 테스트 국부발진 신호를 생성하고, 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호를 상기 제1 확장 모듈로 전달하고,
    상기 제1 신호 발생기는 상기 분석기로부터 주파수들의 목록을 수신하고, 상기 수신된 목록을 저장하고, 그리고 상기 분석기로부터 전달되는 트리거 신호에 응답하여 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호의 주파수를 상기 목록에 등재된 상기 주파수들 중 다른 하나의 주파수로 변경하는 측정 시스템.
  7. 제6항에 있어서,
    상기 트리거 신호는 별도의 하드웨어 신호선을 통해 전달되는 측정 시스템.
  8. 제6항에 있어서,
    상기 명령들 및 상기 목록은 이더넷(ethernet) 채널을 통해 전달되는 측정 시스템.
  9. 분석기;
    상기 분석기의 제어에 따라 제1 안테나로 제1 전자파 신호를 전송하는 제1 확장 모듈;
    제2 안테나를 통해 제2 전자파 신호를 수신하는 제2 확장 모듈;
    상기 분석기의 제어에 따라 제1 국부발진 신호를 생성하고, 상기 제1 국부발진 신호를 이용하여 상기 제1 전자파 신호의 기준 특성 및 상기 제1 안테나의 제1 테스트 특성을 검출하는 제1 신호 발생기; 그리고
    상기 분석기의 제어에 따라 제2 국부발진 신호를 생성하고, 상기 제2 국부발진 신호를 이용하여 상기 제2 안테나의 제2 테스트 특성을 검출하는 제2 신호 발생기를 포함하고,
    상기 제1 신호 발생기는,
    상기 분석기로부터 전달되는 명령들을 내부 명령들로 변환하는 제어기; 그리고
    상기 내부 명령들에 따라 상기 제1 국부발진 신호를 생성하는 국부발진 신호 발생기를 포함하고,
    상기 제1 신호 발생기는 상기 분석기로부터 기준 신호를 수신하고, 상기 기준 신호에 기반하여 기준 국부발진 신호 및 제1 테스트 국부발진 신호를 생성하고, 상기 기준 국부발진 신호 및 상기 제1 테스트 국부발진 신호를 상기 제1 확장 모듈로 전달하고,
    상기 제2 신호 발생기는 상기 제1 신호 발생기로부터 상기 기준 신호를 수신하고, 상기 기준 신호에 기반하여 제2 테스트 국부발진 신호를 생성하고, 상기 제2 테스트 국부발진 신호를 상기 제2 확장 모듈로 전달하고,
    상기 제2 신호 발생기는 상기 제1 신호 발생기로부터 주파수들의 목록을 수신하고, 상기 수신된 목록을 저장하고, 그리고 상기 제1 신호 발생기로부터 전달되는 트리거 신호에 응답하여 상기 제2 테스트 국부발진 신호의 주파수를 상기 목록에 등재된 상기 주파수들 중 다른 하나의 주파수로 변경하는 측정 시스템.
  10. 제9항에 있어서,
    상기 제2 확장 모듈은 상기 제2 테스트 국부발진 신호를 상기 제2 전자파 신호와 혼합하고, 상기 혼합의 결과를 제2 테스트 중간 주파수 신호로서 상기 제2 신호 발생기로 전달하고,
    상기 제2 신호 발생기는 상기 제2 테스트 중간 주파수 신호를 상기 분석기로 전달하는 측정 시스템.
  11. 제9항에 있어서,
    상기 제2 확장 모듈은 상기 제2 테스트 국부발진 신호의 직류 성분을 테스트 검출 신호로서 상기 제1 신호 발생기로 전달하고,
    상기 제1 신호 발생기는 상기 테스트 검출 신호를 이용하여 상기 제2 테스트 국부발진 신호의 레벨을 조절하는 측정 시스템.
  12. 삭제
  13. 제9항에 있어서,
    상기 주파수의 변경 및 그에 따른 상기 제2 안테나의 특성의 검출이 완료되면, 상기 제2 신호 발생기는 상기 분석기로 상기 트리거 신호를 출력하는 측정 시스템.
  14. 제9항에 있어서,
    상기 제1 신호 발생기는 상기 기준 신호에 기반하여 상기 전자파 신호를 생성하고, 상기 전자파 신호를 상기 제1 확장 모듈을 통해 상기 제1 안테나로 전달하는 측정 시스템.
  15. 제9항에 있어서,
    상기 분석기는 상기 전자파 신호를 상기 제1 확장 모듈을 통해 상기 제2 안테나로 전달하는 측정 시스템.
  16. 제1 채널을 통해 수신되는 제1 타입의 명령들을 제2 타입의 내부 명령들로 변환하는 제어기; 그리고
    상기 내부 명령들에 따라 국부발진 신호를 생성하고, 제2 채널을 통해 수신되는 트리거 신호에 응답하여 상기 국부발진 신호의 주파수를 변경하는 국부발진 신호 발생기를 포함하고,
    상기 국부 발진 신호 발생기는 상기 내부 명령들에 따라 상기 국부 발진 신호의 주파수 목록을 저장하는 신호 발생기.
  17. 제16항에 있어서,
    제3 채널을 통해 전달되는 검출 신호에 응답하여 상기 국부발진 신호의 감쇠율을 조절하는 가변 감쇠기를 더 포함하는 신호 발생기.
  18. 제16항에 있어서,
    상기 국부발진 신호를 제1 국부발진 신호 및 제2 국부발진 신호로 분배하는 신호 분배기를 더 포함하는 신호 발생기.
  19. 제16항에 있어서,
    기준 신호를 수신하고, 기준 신호에 응답하여 진동 신호를 출력하는 전압 제어 발진기를 더 포함하고,
    상기 국부발진 신호 발생기는 상기 진동 신호에 응답하여 상기 국부발진 신호를 출력하는 신호 발생기.
  20. 제19항에 있어서,
    온도 제어 발진기;
    제1 모드에서 상기 기준 신호를 상기 전압 제어 발진기로 전달하고 제2 모드에서 상기 온도 제어 발진기의 출력을 상기 기준 신호로서 상기 전압 제어 발진기로 전달하는 제1 스위치; 그리고
    상기 제1 모드에서 상기 진동 신호를 외부로 출력하고, 상기 제2 모드에서 상기 진동 신호를 주파수 체감기를 통해 상기 외부로 출력하는 스위치들을 더 포함하는 신호 발생기.
KR1020160147201A 2016-11-07 2016-11-07 신호 발생기 및 신호 발생기를 포함하는 측정 시스템 KR101856756B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160147201A KR101856756B1 (ko) 2016-11-07 2016-11-07 신호 발생기 및 신호 발생기를 포함하는 측정 시스템
CN201680090482.1A CN109906386B (zh) 2016-11-07 2016-11-14 信号发生器和包括信号发生器的测量系统
PCT/KR2016/013052 WO2018084353A1 (ko) 2016-11-07 2016-11-14 신호 발생기 및 신호 발생기를 포함하는 측정 시스템
US16/387,449 US11125797B2 (en) 2016-11-07 2019-04-17 Signal generator and a measurement system including signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160147201A KR101856756B1 (ko) 2016-11-07 2016-11-07 신호 발생기 및 신호 발생기를 포함하는 측정 시스템

Publications (1)

Publication Number Publication Date
KR101856756B1 true KR101856756B1 (ko) 2018-05-10

Family

ID=62076541

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160147201A KR101856756B1 (ko) 2016-11-07 2016-11-07 신호 발생기 및 신호 발생기를 포함하는 측정 시스템

Country Status (4)

Country Link
US (1) US11125797B2 (ko)
KR (1) KR101856756B1 (ko)
CN (1) CN109906386B (ko)
WO (1) WO2018084353A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217900B1 (ko) * 2019-09-27 2021-02-19 엘아이지넥스원 주식회사 주파수 변경에 대한 주파수 응답시간 측정 방법 및 그를 위한 장치
KR20230064754A (ko) * 2021-11-04 2023-05-11 한국표준과학연구원 밀리미터파 배열 안테나 특성측정 시스템
WO2023121758A1 (en) * 2021-12-23 2023-06-29 Keysight Technologies, Inc. System for positioning antenna under test (aut) with respect to offset feed antennas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226741B (zh) * 2016-07-12 2018-03-02 华讯方舟科技有限公司 利用tr组件获得中频可控信号的方法和系统
CN112130006A (zh) * 2020-09-24 2020-12-25 北京邮电大学 一种天线测试方法及系统
US11619662B1 (en) * 2021-09-17 2023-04-04 Rohde & Schwarz Gmbh & Co. Kg Measurement system and method for a parallel measurement with multiple tones

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007997A (ja) * 2010-06-24 2012-01-12 Hitachi Maxell Ltd ミリ波アンテナ評価装置及びミリ波アンテナ評価方法
JP2016186443A (ja) 2015-03-27 2016-10-27 アンリツ株式会社 信号測定装置、信号測定システム及び信号測定方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879733A (en) * 1973-10-01 1975-04-22 Us Navy Method and apparatus for determining near-field antenna patterns
US6124804A (en) * 1994-11-10 2000-09-26 Matsushita Electric Industrial Co., Ltd. Remote controller, remote control interface, and remote control system including a remote controller and a remote control interface
JPH11264736A (ja) * 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd 選択レベル計測モジュール及び計測システム
JP2001119767A (ja) * 1999-10-19 2001-04-27 Sony Corp 情報処理装置および方法、情報処理システム並びに記録媒体
KR100628776B1 (ko) * 1999-12-24 2006-09-29 엘지전자 주식회사 무선통신 시스템의 국부발진 증폭기 전압제어를 통한무선신호 송수신 장치
JP5309414B2 (ja) * 2001-01-12 2013-10-09 富士通株式会社 放射電波測定システム及び放射電波測定方法並びに放射電波測定制御プログラムが記録された記録媒体
US6582105B1 (en) * 2001-08-02 2003-06-24 The Will-Burt Company Extendable mast arrangement having a coded remote control system
US7095456B2 (en) * 2001-11-21 2006-08-22 Ui Evolution, Inc. Field extensible controllee sourced universal remote control method and apparatus
JP4112898B2 (ja) * 2002-05-17 2008-07-02 松下電器産業株式会社 電磁放射分布測定方法
DE10246700B4 (de) * 2002-10-07 2009-10-15 Rohde & Schwarz Gmbh & Co. Kg Meßvorrichtung, insbesondere vektorieller Netzwerkanalysator, mit getrennten Oszillatoren
JP3974880B2 (ja) * 2003-07-10 2007-09-12 アンリツ株式会社 ジッタ伝達特性測定装置
JP2006180042A (ja) * 2004-12-21 2006-07-06 General Res Of Electronics Inc データ転送方式
JP5061297B2 (ja) * 2005-09-02 2012-10-31 テクトロニクス・インターナショナル・セールス・ゲーエムベーハー シグナル・アナライザのデータ処理方法
KR100751065B1 (ko) * 2005-12-07 2007-08-22 한국전자통신연구원 Rf 송수신 모듈 및 이를 이용한 밀리미터파 fmcw레이더 센서
CN101008662A (zh) * 2006-01-26 2007-08-01 西安高华科技有限公司 一种便携式低频时码bpc码时间信号源
DE102006006291B4 (de) * 2006-02-10 2011-07-14 Infineon Technologies AG, 81669 Tranceiveranordnung und Verfahren zum Verarbeiten eines Signals
KR200458007Y1 (ko) * 2007-05-29 2012-01-16 주식회사 지에스인스트루먼트 신호발생장치
US8446976B2 (en) * 2007-09-21 2013-05-21 Qualcomm Incorporated Signal generator with adjustable phase
US8385474B2 (en) * 2007-09-21 2013-02-26 Qualcomm Incorporated Signal generator with adjustable frequency
KR101395441B1 (ko) * 2007-10-01 2014-05-14 삼성전자주식회사 국부 발진 장치 및 방법
KR100933662B1 (ko) * 2007-10-10 2009-12-23 한국전자통신연구원 안테나 측정신호 수신장치, 수신방법 및 안테나 측정시스템
EP2423695A4 (en) * 2009-04-23 2014-10-15 Panasonic Ip Corp America DEVICE AND METHOD FOR CHECKING AN ANTENNA
WO2011025027A1 (ja) * 2009-08-31 2011-03-03 ソニー株式会社 信号伝送装置、電子機器、及び、信号伝送方法
CN102109553B (zh) * 2009-12-25 2015-05-20 北京普源精电科技有限公司 一种数字频谱分析仪及其快速定位测量信号的方法
EP2469783B1 (fr) * 2010-12-23 2017-12-13 The Swatch Group Research and Development Ltd. Récepteur de signaux radiofréquences FSK avec un démodulateur à haute sensibilité ainsi que procédé pour sa mise en action
KR101052045B1 (ko) * 2011-02-17 2011-07-26 삼성탈레스 주식회사 능동 위상 배열 안테나의 근접 전계 측정 장치 및 방법
US9031158B2 (en) * 2012-10-08 2015-05-12 Qualcomm Incorporated Transmit diversity architecture with optimized power consumption and area for UMTS and LTE systems
CN103036563A (zh) * 2012-12-24 2013-04-10 中国电子科技集团公司第五十四研究所 测控系统的Ka频段低相噪频率合成器装置
CN103323708B (zh) * 2013-06-05 2015-07-29 江汉大学 一种信号源的测试方法
CN103424634B (zh) * 2013-07-30 2016-05-11 中国联合网络通信集团有限公司 Wifi天线测试系统及方法
CN103701462B (zh) * 2013-12-23 2016-07-13 广西大学 基于fpga的高精度相位自校正的信号发生器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007997A (ja) * 2010-06-24 2012-01-12 Hitachi Maxell Ltd ミリ波アンテナ評価装置及びミリ波アンテナ評価方法
JP2016186443A (ja) 2015-03-27 2016-10-27 アンリツ株式会社 信号測定装置、信号測定システム及び信号測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217900B1 (ko) * 2019-09-27 2021-02-19 엘아이지넥스원 주식회사 주파수 변경에 대한 주파수 응답시간 측정 방법 및 그를 위한 장치
KR20230064754A (ko) * 2021-11-04 2023-05-11 한국표준과학연구원 밀리미터파 배열 안테나 특성측정 시스템
KR102639940B1 (ko) * 2021-11-04 2024-02-23 한국표준과학연구원 밀리미터파 배열 안테나 특성측정 시스템
WO2023121758A1 (en) * 2021-12-23 2023-06-29 Keysight Technologies, Inc. System for positioning antenna under test (aut) with respect to offset feed antennas

Also Published As

Publication number Publication date
US20190310299A1 (en) 2019-10-10
CN109906386B (zh) 2021-06-08
WO2018084353A1 (ko) 2018-05-11
US11125797B2 (en) 2021-09-21
CN109906386A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
KR101856756B1 (ko) 신호 발생기 및 신호 발생기를 포함하는 측정 시스템
US9103873B1 (en) Systems and methods for improved power control in millimeter wave transceivers
KR0158791B1 (ko) 노이즈 측정 시험 시스템
KR101904035B1 (ko) 벡터 네트워크 분석기
US9075144B1 (en) Digital radar altimeter
US8965309B2 (en) Method and system for calibrating a power amplifier
CN110071772B (zh) 无线系统、校准系统和lo信号校准方法
US6952564B2 (en) Method and arrangement relating to transceivers
CN110460358B (zh) Nfc系统中的相位补偿
CN107110955B (zh) 用于校准雷达系统的方法
CN110749869A (zh) 毫米波与太赫兹s参数测试扩频模块端口功率调节系统及方法
CN105119671A (zh) 一种适用于复杂调制与相位相干体制的多通道散射参数测试电路及方法
JP2018088671A (ja) 受信機試験
US20120105049A1 (en) Synthesizer having adjustable, stable and reproducible phase and frequency
CN109000759B (zh) 包括锁相环的雷达料位测量装置及其用途和操作方法
JP3918138B2 (ja) 信号発生器
CN108333469A (zh) 网络分析仪的相位相干的主单元和远程单元
US9917660B2 (en) Wireless communication device and wireless communication system
SE507698C2 (sv) Förfarande och system för avstämning resonansmoduler
KR20180119931A (ko) 도플러신호 구현이 가능한 모의고도 발생장치 및 모의고도 발생방법
Kang et al. Measurement system for millimeter-wave antennas with distributed external local oscillators and mixers
KR20090056772A (ko) 고주파 디바이스의 대전력 테스트 시스템 및 그의 방법
CN107543591B (zh) 具有增强的定时控制的调频连续波雷达物位计
KR101894833B1 (ko) 주파수 합성 장치의 성능 시험 시스템
CN113608106A (zh) 一种快速检测压控振荡器vco调谐灵敏度的电路及方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant