KR101856599B1 - 분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 - Google Patents
분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 Download PDFInfo
- Publication number
- KR101856599B1 KR101856599B1 KR1020150018632A KR20150018632A KR101856599B1 KR 101856599 B1 KR101856599 B1 KR 101856599B1 KR 1020150018632 A KR1020150018632 A KR 1020150018632A KR 20150018632 A KR20150018632 A KR 20150018632A KR 101856599 B1 KR101856599 B1 KR 101856599B1
- Authority
- KR
- South Korea
- Prior art keywords
- acid
- deoxyinosine
- metabolite
- group
- troglitazone
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5067—Liver cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N2030/022—Column chromatography characterised by the kind of separation mechanism
- G01N2030/027—Liquid chromatography
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Cell Biology (AREA)
- High Energy & Nuclear Physics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
본 발명은 간독성 약물 스크리닝 방법에 관한 것으로, 인간 줄기세포 유래 간세포에 대표적 간독성 약물인 트로글리타존 및 로지글리타존을 처리한 후 상기 간세포가 분비하는 대사체의 변화를 분석하여 데이터 베이스를 구축하였고, 상기 데이터 베이스는 향후 약물의 간독성 예측 연구에 유용하게 사용될 수 있으며 간독성 마커로 사용될 수 있다.
Description
본 발명은 분비 대사체(secretome) 분석을 통한 간독성 약물 스크리닝 방법에 관한 것이다.
현재 신약개발에 있어서 독성으로 인한 실패율은 비임상 단계에서 약 20%, 그리고 임상단계에서 약 13%로 높은 비율을 차지하고 있다. 새로운 합성 화학물(new chemical entity; NCE)로 등록된 후, 퇴출된 신약 후보물질의 독성기전 및 표적 장기는 불분명하나 브리스톨-마이어스 스퀴브(Bristol-Myers Squibb)의 1993 ~ 2006 년 자료에서 비임상 단계의 표적 장기는 심장과 간을 합하여 약 42%인 것으로 보고되었다. 1990 년 이후 독성문제로 시판중에 시장에서 철수한 의약품을 임상단계에서의 원인별로 분석해본 결과 13 종(약 40%)은 간독성, 11 건(33%)은 QT 시간(QT interval) 증가에 따른 심장질환(부정맥)으로 이들 두 원인이 전체 사유의 73%를 차지하고 있는 실정이다. 또한, 2004년 이후에 매년 1개 이상의 의약품이 간독성으로 시장에서 퇴출당하고 있으며, 뿐만 아니라 현재 사용중인 의약품에서도 미국 FDA에서 블랙박스 경고(black box warning, 가장 높은 단계의 경고로 의약품의 사용에 제한을 받음)가 표시된 의약품이 전체 515개 품목에 달하며 이 중에서 대부분이 주로 간독성 및 심장 독성의 문제로 경고를 받고 있다.
현재 사용되는 의약품 중 800 종 이상이 간독성을 유발하고, 이는 미국 전체 급성 간부전(Acute liver failure)의 30% 이상을 차지하고 있으며, 황달 입원 환자의 2 내지 20%를 차지하고 있다. 약물 유래 간독성(drug induced liver injury)은 전임상단계에서 신약 개발의 중단, 임상단계에서 임상시험의 중단, 그리고 시판 후 시장에서 철수를 유발하는 가장 큰 원인이다. 간독성을 유발하는 의약품으로는 항생제나 항암제를 비롯하여 고혈압치료제, 항경련제, 고지혈증치료제, 향정신성의약품, 비스테로이드성 항염제, 흡입마취제, 당뇨병치료제, 생약제제 등으로 매우 다양하고, 최근 미국 FDA 및 유럽의약국(European Medicines Agency)에서도 약물 유래 간독성을 최소화하기 위해 노력하고 있다. 간독성 의약품의 간독성 기전을 분석하면 대사활성화가 큰 비중을 차지하며 미국 FDA에서는 2008년 2월 "약물 대사체의 산업상 안전성 검사를 위한 안내"를 발행하여 약물 대사체에 대한 연구가 신약개발에서 중요한 연구분야임을 강조하였다.
인슐린 저항성을 개선시키는 피팔감마(PPAR gamma) 표적약물인 티아졸리딘다이온계 약물로 로지글리타존(rosiglitazone, 상품명: 아반디아(Avandia))과 피오글리타존(pioglitazone, 상품명: 악토스 Actose)이 대표적이다. 근육과 지방조직에서 인슐린의 작용을 도와주며, 혈당조절에 탁월한 효과를 나타낸다. 부작용으로 간독성을 가져올 수 있으므로 약물을 복용하는 동안 간기능 검사를 규칙적으로 받아보아야 한다. 이 계열 중 최초로 개발된 트로글리타존은 심각한 간독성 유발 부작용으로 시판이 중지되었으며 이후 로지글리타존 역시 심장 및 간질환 유발을 사유로 시장에서 퇴출되었으나, 정확한 독성 기전은 완전히 밝혀지지 않았다.
현재 신약개발에 있어서 간독성 평가시스템의 문제점이 다양하게 존재한다. 첫째, 간독성을 예측할 수 있는 특정 표적의 부재를 들 수 있다. 예를 들어, 심장독성의 경우 HERG 채널 분석(channel assay)이 심장 독성의 평가를 기준으로 제시되어 생체 내에서 효과와 연관성에 대한 논문이 보고되고 있으나, 간독성은 특정 표적 단백질로 평가 시스템을 구축하기 어렵다는 문제점이 있다.
둘째, 동물 실험결과의 인간 간독성 예측력이 미약하다. 예를 들어, 국제 생명과학 연구소(international life sciences institute)의 1999년 연구결과 238 종의 신약 후보물질 중에서 31개가 신약 개발과정에서 간독성이 있는 것으로 관찰되었으나, 동물실험에서 간독성이 관찰된 것은 58%로 동물실험에서 간독성의 예측력이 상대적으로 낮다. 또한 롱프랑 로리(Rhone-Roulenc Rorer)의 간독성 평가 결과분석에서 동물 실험결과는 임상 결과의 차이가 큰 것으로 보고되었다.
셋째, 고감수성 개체에서 특이체질성 간독성(idiosyncratic hepatotoxicity)의 발현이 확인되었다. 시장에서 철수한 간독성 약물은 특징적으로 용량 의존성과 기전이 불분명하고, 감수성이 강한 특정 개체에서 매우 심각한 독성을 유발한다(약 만명 또는 10만명 중에서 한명). 따라서, 임상 3상까지의 임상실험과정 또는 NDA(new drug application) 과정에서 발견하지 못하는 문제가 발생할 수 있다.
넷째, 고전적인 동물시험에서 간독성의 예측력은 신약개발에서 산업체의 요구에 부합하지 못한다. 종에 따른 약물 대사체 패턴의 정성 및 정량적인 차이로 종간 간독성에 차이를 발생시키고, 또한 고전적인 간독성 평가의 경우 특이체질성 간장애(idiosyncratic liver injury)에 의해 시장에서 퇴출된 약물의 간독성을 예측하지 못하였다.
다섯째, 세포배양 실험계로 인간 간암세포주인 HepG2 세포, 형질전환 HepG2 세포[시토크롬 450P(cytochrome P450, CYP) 등 약물대사효소 과발현 세포주), 불멸화된 인간 간세포(immortalized human hepatocytes)(SV40 T 항원 유전자 삽입 등)은 임상에서 간독성의 예측에 한계가 있으며 또한 고품질의 일차 인간 간세포(primary human hepatocytes)은 충분한 양으로 공급되기에는 현실적인 한계가 있다.
일반적으로 세포의 독성 여부를 확인하는 실험은 세포 내 물질들이 시약과 반응한 결과물을 관찰하는 것이 대부분인데 이는 세포의 성상학적 관찰, 염색, PCR(Polymerase Chain Reaction), 단백질 분석 등이 모두 이에 속하는 기법이다. 기술된 방법들은 침습적인 방법이기 때문에 세포를 이용한 실험에서 반복 실험을 통한 재현성을 검증하기 위해서는 1회 실험당 많은 간세포가 요구될 뿐 아니라 그에 따른 필요비용도 높아진다. 또한 독성약물 처리 후에 다양한 목적에 따라 간세포를 재사용할 수 없는 단점이 있다.
세계 바이오마커 시장은 바이오마커의 발견, 임상시험 및 분자진단 적용으로 세분화 되며, 시장의 매출규모는 전임상 및 임상 연구의 유전체, 단백질체, 대사체 바이오마커를 포함한다. 현재까지는 유전체에 집중되어 있고, 제품화된 경우도 많지만, 앞으로는 바이오의약품의 성장과 함께 유전체보다는 단백질체를 기반으로 하는 바이오마커 시장의 규모가 크게 증가할 것으로 예상되고 있으며 이에 약물대사와 관련 약물의 독성을 예측할 수 있는 대사체학(metabolomics)을 기반으로 한 바이오마커 시장도 매우 빠르게 성장할 것으로 예상된다. 오믹스(omics) 기술의 급속한 발전을 기반으로 독성 반응 및 독성 평가의 범주는 전통적 독성 시험법 구축의 핵심인 일반독성 병리학적 분석과 함께 약물에 의한 독성 관련 대사체 프로파일링이 가능해졌다. 체계적 독성 평가 시스템의 구축을 통하여 확보된 대사체 기반 데이터베이스는 예측적 독성(predictive toxicology) 분자지표의 발굴에 핵심적인 원천기술로서 평가받으며 향후 국내 신약개발사업의 경쟁력 확보와 기술발전에 필수적인 역할을 담당할 것이다. 특히 생체에서 유래하는 생체 샘플(예: 혈청, 뇨)에서 분자지표를 발굴하는 것은 기술적으로 매우 복잡하고 편차가 심하다는 단점이 있는 반면에, 세포가 분비하는 대사체의 분석(seacretome analysis)은 상대적으로 복잡한 과정을 피하면서도 효과적으로 특이적 대사체 변화를 동정할 수 있다는 장점을 보이고 있다(Karagiannis et al., 2010, Makridakis et al., 2010). 특히 분비 대사체(시크리톰, secretome; 세포, 조직, 기관에서 분비하는 모든 대사 물질군)은 줄기세포 배양액으로부터 직접 추출이 가능하기 때문에 약물 처리에 따른 줄기세포 독성, 약효성 및 약물대사신호와 같은 다양한 생리학적, 독성학적 과정에 반응하는 대사 변화를 모니터할 수 있다(Hathout & Yetrib 2007). 현재 암 분자지표 발굴분야에서 활발한 시크리톰 대사체 분석연구가 진행되어 왔으며 최근 줄기세포에 기반한 약물 독성과 연관한 분자지표 발굴 작업이 일부 제약회사들을 필두로 시작되고 있다.
이에, 본 발명자들은 인간 줄기세포로부터 분화된 간세포에 트로글리타존 및 로지글리타존을 처리한 후, 상기 간세포가 분비하는 특이적 대사체 데이터베이스 구축을 하고자 하였으며, 이는 트로글리타존 및 로지글리타존 처리 후 변화되는 특정 분비 대사체에 대한 동정을 수행하여 독성과 관련된 대사적 변화연구에 유용하게 사용할 수 있으며, 아직 명확하게 밝혀지지 않은 트로글리타존 및 로지글리타존의 독성반응에 대한 최종 표현형을 제시하고 또한 마커로 활용될 수 있음을 밝힘으로써 본 발명을 완성하였다.
본 발명의 목적은 분비 대사체(secretome) 분석을 통한 간독성 약물 스크리닝 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은
1) 세포에 시험 약물을 처리한 후, 세포의 분비 대사체를 분석하는 단계;
2) 정상대조군과 비교하여 간독성과 관련된 대사체의 변화를 분석하는 단계를 포함하는 간독성 약물 스크리닝 방법을 제공한다.
아울러, 본 발명은
1) 인간 줄기세포 유래 간세포에 트로글리타존(troglitazone) 또는 로지글리타존(rosiglitazone)을 처리하는 단계;
2) 상기 단계 1)의 트로글리타존 또는 로지글리타존이 처리된 세포에서 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체의 농도를 측정하는 단계; 및
2) 상기 단계 2)의 측정된 대사체 농도를 정상대조군과 비교하는 단계를 포함하는 간독성의 정보를 제공하기 위한 대사체 분석 방법을 제공한다.
본 발명은 간독성 약물 스크리닝 방법에 관한 것으로, 인간 줄기세포 유래 간세포에 대표적 간독성 약물인 트로글리타존 및 로지글리타존을 처리한 후 상기 간세포가 분비하는 대사체의 변화를 분석하여 데이터 베이스를 구축하였고, 상기 데이터 베이스는 향후 약물의 간독성 예측 연구에 유용하게 사용될 수 있으며 간독성 마커로 사용될 수 있다.
도 1은 인간 배아 줄기세포로부터 분화된 간세포에 트로글리타존(troglitazone) 및 로지글리타존(rosiglitazone) 처리에 따른 세포사멸분석을 나타낸 도이다.
도 2는 페닐피루브산(phenylpyruvate)의 분석결과를 나타낸 도이다.
도 3은 5-메틸치오아데노신(5-methylthioadenosine)의 분석결과를 나타낸 도이다.
도 4는 N-아세틸카노신(N-acetylcarnosine)의 분석결과를 나타낸 도이다.
도 5는 피루브산(pyruvate)의 분석결과를 나타낸 도이다.
도 6은 프레그네놀론(pregnanolone/allopregnanolone sulfate)의 분석결과를 나타낸 도이다.
도 7은 아데닌(adenine) 분석결과를 나타낸 도이다.
도 8은 2-옥시-메틸구아노신(2'-O-methylguanosine) 분석결과를 나타낸 도이다.
도 9는 3-히드록실부틸산(3-hydroxybutyrate)의 분석결과를 나타낸 도이다.
도 10은 아이소발레릭산(isovalerate)의 분석결과를 나타낸 도이다.
도 11은 발린류신(Valylleucine)의 분석결과를 나타낸 도이다.
도 12는 미드산(mead acid)(20:3n9)의 분석결과를 나타낸 도이다.
도 13은 2-디옥시이노신(2'-deoxyinosine) 분석결과를 나타낸 도이다.
도 14는 글리코콜린산(glycocholate)의 분석결과를 나타낸 도이다.
도 15는 타우로콜린산(taurocholate)의 분석결과를 나타낸 도이다.
도 16은 글리코케노디옥시콜린산(glycochenodeoxycholate)의 분석결과를 나타낸 도이다.
도 17은 타우로케노디옥시콜린산(taurochenodeoxycholate)의 분석결과를 나타낸 도이다.
도 2는 페닐피루브산(phenylpyruvate)의 분석결과를 나타낸 도이다.
도 3은 5-메틸치오아데노신(5-methylthioadenosine)의 분석결과를 나타낸 도이다.
도 4는 N-아세틸카노신(N-acetylcarnosine)의 분석결과를 나타낸 도이다.
도 5는 피루브산(pyruvate)의 분석결과를 나타낸 도이다.
도 6은 프레그네놀론(pregnanolone/allopregnanolone sulfate)의 분석결과를 나타낸 도이다.
도 7은 아데닌(adenine) 분석결과를 나타낸 도이다.
도 8은 2-옥시-메틸구아노신(2'-O-methylguanosine) 분석결과를 나타낸 도이다.
도 9는 3-히드록실부틸산(3-hydroxybutyrate)의 분석결과를 나타낸 도이다.
도 10은 아이소발레릭산(isovalerate)의 분석결과를 나타낸 도이다.
도 11은 발린류신(Valylleucine)의 분석결과를 나타낸 도이다.
도 12는 미드산(mead acid)(20:3n9)의 분석결과를 나타낸 도이다.
도 13은 2-디옥시이노신(2'-deoxyinosine) 분석결과를 나타낸 도이다.
도 14는 글리코콜린산(glycocholate)의 분석결과를 나타낸 도이다.
도 15는 타우로콜린산(taurocholate)의 분석결과를 나타낸 도이다.
도 16은 글리코케노디옥시콜린산(glycochenodeoxycholate)의 분석결과를 나타낸 도이다.
도 17은 타우로케노디옥시콜린산(taurochenodeoxycholate)의 분석결과를 나타낸 도이다.
이하, 본 발명을 상세히 설명한다.
본 발명은
1) 세포에 시험 약물을 처리한 후, 세포의 분비 대사체를 분석하는 단계;
2) 정상대조군과 비교하여 간독성과 관련된 대사체의 변화를 분석하는 단계를 포함하는 간독성 약물 스크리닝 방법을 제공한다.
상기 세포는 인간줄기세포(human embryonic stem cell; hESC)에서 분화된 간세포(hepatocytes)인 것이 바람직하나 이에 한정되지 않는다.
상기 간세포에서 분비되는 간독성과 관련된 대사체는 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 그룹으로부터 선택되는 것이 바람직하나 이에 한정되지 않는다.
상기 간독성과 관련된 대사체 중 페닐피루브산, 5-메틸치오아데노신, N-아세틸카노신, 피루브산, 프레그네놀론, 7-알파-히드록실-3-옥소-4-콜레스테노익산, 아데닌, 2-옥시-메틸구아노신 및 3-히드록실부틸산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 증가하는 것이 바람직하며, 아이소발레릭산, 발린류신, 미드산, 2-디옥시이노신, 글리코콜린산, 타우로콜린산, 글리코케노디옥시콜린산 및 타우로케노디옥시콜린산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 감소하는 것이 바람직하다.
상기 대사체 분석을 위해서 액체 크로마토그래피-질량분석기(LC-MS) 또는 핵자기공명(NMR)을 이용하여 분석하는 것이 바람직하나 이에 한정되지 않으며, 세포 대사체 농도를 분석할 수 있는 당업자에게 잘 알려진 방법이면 모두 사용 가능하다.
아울러, 본 발명은
1) 인간 줄기세포 유래 간세포에 트로글리타존(troglitazone) 또는 로지글리타존(rosiglitazone)을 처리하는 단계;
2) 상기 단계 1)의 트로글리타존 또는 로지글리타존이 처리된 세포에서 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체의 농도를 측정하는 단계; 및
3) 상기 단계 2)의 측정된 대사체 농도를 정상대조군과 비교하는 단계를 포함하는 간독성의 정보를 제공하기 위한 대사체 분석 방법을 제공한다.
상기 단계 2)의 대사체 중 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9) 및 2-디옥시이노신(2'-deoxyinosine)으로 구성된 그룹으로부터 선택되는 대사체는 트로글리타존 처리에 의해 농도가 변화하는 것이 바람직하며, 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 그룹으로부터 선택되는 대사체는 로시글리타존 처리에 의해 농도가 변화하는 것이 바람직하다.
상기 단계 2)의 대사체 중 페닐피루브산, 5-메틸치오아데노신, N-아세틸카노신, 피루브산, 프레그네놀론, 7-알파-히드록실-3-옥소-4-콜레스테노익산, 아데닌, 2-옥시-메틸구아노신 및 3-히드록실부틸산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 증가하는 것이 바람직하며, 아이소발레릭산, 발린류신, 미드산, 2-디옥시이노신, 글리코콜린산, 타우로콜린산, 글리코케노디옥시콜린산 및 타우로케노디옥시콜린산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 감소하는 것이 바람직하다.
상기 단계 2)에서 대사체 농도 측정을 위해서 액체 크로마토그래피-질량분석기(LC-MS) 또는 핵자기공명(NMR)을 이용하여 분석하는 것이 바람직하나 이에 한정되지 않으며, 세포 대사체 농도를 분석할 수 있는 당업자에게 잘 알려진 방법이면 모두 사용 가능하다.
본 발명의 구체적인 실시예에서, 본 발명자들은 인간 배아 줄기세포(human embryonic stem cell; hESC)로부터 내배엽과 같은 다른 분화적 계통 세포로의 분화 여부를 확인하기 위하여, 인간 배아 줄기세포로부터 내배엽인 간세포(hepatocytes)로의 분화를 유도하였다(Cai, J. et. al, (2007) Hepatology 45(5): 1229-1239). 인간배아줄기 세포주는 CHA-hESC 세포주로 지지세포가 없는 시스템(feeder-free system)에서 조절된 배지(conditioned medium)에 가득 차(confluent)도록 3일 동안 배양하였으며, 50 ng/㎖ 액티빈 A(Activin A; Peprotech 사, 미국)을 포함하는 RPMI-1640(Hyclone 사, 미국) 배지에서 5 일간 배양하여 분화를 유도하였다. 그런 다음, 상기 분화된 세포는 30 ng/㎖ 섬유아세포 성장인자 4(fibroblast growth factor 4; Peprotech 사) 및 20 ng/㎖ 골형성단백질 2(bone morphogenetic protein 2, BMP2; Peprotech 사)를 포함하는 간세포 배양 배지(hepatocyte culture medium, HCM; Lonza 사, 미국)에서 5 일간 배양한 후, 20 ng/㎖ 간세포 성장 인자(hepatocyte growth factor, HGF; Peprotech 사)를 첨가한 간세포 배양 배지에서 5일 동안 추가로 배양하여 hESC로부터 간세포로 분화를 유도하였다. 상기 분화된 간세포는 10 ng/㎖ 온코스태틴 M(oncostatin M; R&D Systems 사, 미국) 및 0.1 μM 덱사메타손(dexametasone; 시그마-알드리치 사, 미국)을 첨가한 간세포 배양 배지에서 5 일간 배양하면서 간세포의 성숙(Maturation)을 유도하여 성숙된 간세포를 수득하였다.
본 발명자들은 간독성을 유발시키는 약물인 트로글리타존(troglitazone) 및 로지글리타존(rosiglitazone) 처리에 따른 인간 배아 줄기세포 유래 간세포의 세포사멸을 확인하고자 하였으며, 상기 제조한 인간 줄기세포로부터 분화 19일째 간세포를 6-웰 플레이트에 각 웰 당 90% 농도로 세포를 분주하여 1000 mg/L DMEM-낮은 포도당(low glucose) 배양액(Dulbecco's Modified Eagle's Medium, 제조사 Welgene No. 001-11)에 2시간 동안 배양하였다. 여기에, DMSO 처리한 대조군, 트로글리타존 및 로지글리타존 50 μM 처리한 실험군을 24시간 배양한 후 3회 반복 실험으로 세포를 현미경으로 관찰하였으며, 자동세포 생존율 분석기 Countess(Invitrogen)를 이용하여 세포 생존율 결과를 얻었다. 그 결과, 트로글리타존 및 로지글리타존을 처리한 실험군 모두에서 간세포 생존율이 낮았으며, 특히 트로글리타존에 의한 세포독성이 가장 강력함을 확인하였다(도 1 참조).
또한, 본 발명자들은 트로글리타존 및 로지글리타존 처리에 따른 인간줄기세포 유래 간세포의 분비 대사체(secretome)를 분석하기 위해 상기 간세포를 Blank 군 및 무처리군과 함께, DMSO 처리한 대조군, 트로글리타존 및 로지글리타존 50 μM 처리한 실험군을 12시간 동안 추가적으로 배양을 마친 후 100 μL 의 세포배양액을 수거하였으며, 총 6차례의 독립적 샘플링을 실시하여 분비 대사체 분석을 실시하였다.
본 발명자들은 트로글리타존 처리에 따른 세포의 분비 대사체의 변화를 확인하기 위해 상기 수집한 세포배양액의 단백질을 제거하고 단백질에 결합한 대사체들을 해리시켜 UPLC-MS/MS with positive ion mode electrospray ionization, UPLC-MS/MS with negative ion mode electrospray ionization, UPLC-MS/MS polar platform(negative ionization)으로 분석하였다. 통계적으로 유의성을 나타내는 DMSO 대조군 분비대사체 대비 트로글리타존 분비 대사체를 분석하였으며 그 결과, 대조군 대비 트로글리타존 처리에 따라서 총 9종의 대사체, 페닐피루브산(phenylpyruvate)(도 2 참조), 5-메틸치오아데노신(5-methylthioadenosine)(도 3 참조), N-아세틸카노신(N-acetylcarnosine)(도 4 참조), 피루브산(pyruvate)(도 5 참조), 프레그네놀론(pregnanolone/allopregnanolone sulfate)(도 6 참조), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine)(도 7 참조), 2-옥시-메틸구아노신(2'-O-methylguanosine)(도 8 참조) 및 3-히드록실부틸산(3-hydroxybutyrate)(도 9 참조)가 증가하였고 총 4종의 대사체, 아이소발레릭산(isovalerate)(도 10 참조), 발린류신(Valylleucine)(도 11 참조), 미드산(mead acid)(20:3n9)(도 12 참조) 및 2-디옥시이노신(2'-deoxyinosine)(도 13 참조)가 감소하는 것을 확인하였다(표 1 참조).
또한, 본 발명자들은 로지글리타존 처리에 따른 세포의 분비 대사체의 변화를 확인하였으며 로지글리타존에 의하여 양이 감소한 대사체로는 글리코콜린산(glycocholate)(도 14), 타우로콜린산(taurocholate)(도 15), 글리코케노디옥시콜린산(glycochenodeoxycholate)(도 16) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)(도 17)과 같은 담즙 대사체에 국한되는 것을 확인하였다(표 2 참조).
이에, 본 발명의 상기 간독성 관련 대사체 분석을 통해 간독성 약물 스크리닝에 사용될 수 있으며, 대표적 간독성 약물인 트로글리타존 및 로지글리타존을 처리한 후 간세포가 분비하는 대사체의 변화를 분석을 통해 구축된 데이터 베이스를 이용하여 향후 약물의 간독성 예측 연구에 유용하게 사용될 수 있다.
이하, 본 발명을 실시예에 의해서 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해서 한정되는 것은 아니다.
<
실시예
1> 인간 배아 줄기세포 유래 간세포 배양
인간 배아 줄기세포(human embryonic stem cell; hESC)로부터 내배엽과 같은 다른 분화적 계통 세포로의 분화 여부를 확인하기 위하여, 인간 배아 줄기세포로부터 내배엽인 간세포(hepatocytes)로의 분화를 유도하였다(Cai, J. et. al, (2007) Hepatology 45(5): 1229-1239).
구체적으로, 인간배아줄기 세포주는 CHA-hESC 세포주로 지지세포가 없는 시스템(feeder-free system)에서 조절된 배지(conditioned medium)에 가득 차(confluent)도록 3일 동안 배양하였다. 배양 후, 상기 hESC 세포를 50 ng/㎖ 액티빈 A(Activin A; Peprotech 사, 미국)을 포함하는 RPMI-1640(Hyclone 사, 미국) 배지에서 5 일간 배양하여 분화를 유도하였다. 그런 다음, 상기 분화된 세포는 30 ng/㎖ 섬유아세포 성장인자 4(fibroblast growth factor 4; Peprotech 사) 및 20 ng/㎖ 골형성단백질 2(bone morphogenetic protein 2, BMP2; Peprotech 사)를 포함하는 간세포 배양 배지(hepatocyte culture medium, HCM; Lonza 사, 미국)에서 5 일간 배양한 후, 20 ng/㎖ 간세포 성장 인자(hepatocyte growth factor, HGF; Peprotech 사)를 첨가한 간세포 배양 배지에서 5일 동안 추가로 배양하여 hESC로부터 간세포로 분화를 유도하였다. 상기 분화된 간세포는 10 ng/㎖ 온코스태틴 M(oncostatin M; R&D Systems 사, 미국) 및 0.1 μM 덱사메타손(dexametasone; 시그마-알드리치 사, 미국)을 첨가한 간세포 배양 배지에서 5 일간 배양하면서 간세포의 성숙(Maturation)을 유도하여 성숙된 간세포를 수득하였다.
<
실험예
1>
트로글리타존
및
로지글리타존의
처리에 따른 인간 배아 줄기세포 유래 간세포의 세포사멸 확인
간독성을 유발시키는 약물인 트로글리타존(troglitazone) 및 로지글리타존(rosiglitazone) 처리에 따른 인간 배아 줄기세포 유래 간세포의 세포사멸을 확인하고자 하였다.
구체적으로, 상기 <실시예 1>에서 제조한 인간 줄기세포로부터 분화 19일째 간세포를 6-웰 플레이트에 각 웰 당 90% 농도로 세포를 분주하였다. 1000 mg/L DMEM-낮은 포도당(low glucose) 배양액(Dulbecco's Modified Eagle's Medium, 제조사 Welgene No. 001-11)을 사용하여 교체한 후 2시간 동안 배양하였다. 여기에, DMSO 처리한 대조군, 트로글리타존 및 로지글리타존 50 μM 처리한 실험군을 24시간 배양한 후 세포를 현미경으로 관찰하였다. 3회 이상 반복실험을 바탕으로 세포 생존율을 분석하였다. PBS 1 mL로 두 차례에 걸쳐 세포배양액을 제거한 후, Trypsin/EDTA 혼합액(Invitrogen) 1 mL을 1분간 처리한 후, 피펫팅으로 세포를 수거하였다. 트립판 블루 10 uL와 수거한 세포를 함유한 PBS 10 uL를 혼합한 후 자동세포 생존율 분석기 Countess(Invitrogen)를 이용하여 세포 생존율 결과를 얻었다. 본 발명의 통계처리는 모든 실험값의 평균±표준오차(mean ± SD)로 표시했으며, 통계분석은 Student's t-test로 처리하였고, 유의성 최대 한계는 p<0.05로 정하였다.
그 결과, 도 1에 나타낸 바와 같이 트로글리타존 및 로지글리타존을 처리한 실험군 모두에서 간세포 생존율이 낮았으며, 특히 트로글리타존에 의한 세포독성이 가장 강력함을 확인하였다(도 1).
<
실험예
2> 인간줄기세포 유래 간세포의 분비 대사체(
secretome
) 분석
<2-1> 분비
대사체의
수집
트로글리타존 및 로지글리타존 처리에 따른 인간줄기세포 유래 간세포의 분비 대사체를 분석하기 위해 하기와 같은 방법으로 세포를 수집하였다.
구체적으로, 상기 <실시예 1>에서 제조한 인간 줄기세포로부터 분화 19일째 간세포를 6-웰 플레이트에 각 웰 당 90% 농도로 세포를 분주하였다. DMEM-낮은 포도당(low glucose) 배양액(Dulbecco's Modified Eagle's Medium, 제조사 Welgene No. 001-11)을 사용하여 교체한 후 2시간 동안 배양하였다. Blank 군 및 무처리군과 함께, DMSO 처리한 대조군, 트로글리타존 및 로지글리타존 50 μM 처리한 실험군을 12시간 배양한 후 세포 배양액을 완전히 제거하였다. 1 mL DMEM으로 2회 플레이트를 교체하여 세척한 후, 간세포 배양액 2 mL을 처리하였다. 12시간 동안 추가적으로 배양을 마친 후 100 μL 의 세포배양액을 수거하여 상기 줄기세포 유래 간세포 배양액을 수득하였다. 상기 세포들의 부산물을 제거하기 위하여 원심분리를 12000 x g, 20분 및 4℃ 조건으로 실시한 후 상등액을 수득하여 -80℃에 급속동결하였다. 총 6차례의 독립적 샘플링을 실시하여 분비 대사체 분석을 실시하였다.
<2-2>
트로글리타존
처리에 따른 분비
대사체의
변화 확인
트로글리타존 처리에 따른 세포의 분비 대사체의 변화를 확인하기 위해 하기와 같은 실험을 수행하였다.
구체적으로, 상기 실험예 <2-1>에서 수집한 세포배양액의 단백질을 제거하고 단백질에 결합한 대사체들을 해리시키기 위하여 세포배양액을 2분간 메탄올 침전 후, 원심분리를 실시하여 상등액을 수거하였다(Glen Mills GenoGrinder 2000). 상등액은 총 3가지로 분리하여 분석하였다(1. UPLC-MS/MS with positive ion mode electrospray ionization, 2. UPLC-MS/MS with negative ion mode electrospray ionization, 3. UPLC-MS/MS polar platform (negative ionization)). 상기 샘플들은 TurboVap®(Zymark)으로 유기용매를 제거하였다. 액상 크로마토그래피를 거치는 샘플들은 질소용기에서 12시간 동안 추가적으로 반응을 시켰다. 초고해상 액상 크로마토그래피/질량분석 플랫폼(UPLC/MS/MS)은 Waters사의 ACQUITY ultra-performance liquid chromatography(UPLC) 기기와 Thermo Scientific 사의 Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization(HESI-II) source 및 35,000 질량 해상도(mass resolution)에서 작동하는 Orbitrap 질량 분석기를 사용하였다. 분석할 샘플은 먼저 건조된 후 산성 또는 염기성 용액으로 재구성되었다. 컬럼은 Waters 사의 UPLC BEH C18(2.1 x 100 mm, 1.7 μm)을 사용하였다. 산성조건에서 재구성된 샘플은 물, 메탄올 및 0.1% 포름산 용액으로 추출되어 C18 컬럼을 통과하였다. 염기성 용액의 경우는 물, 메탄올 및 6.5 mM Ammonium Bicarbonate으로 사용되었다. 음성분석모드를 위하여 HILIC 컬럼(Waters UPLC BEH Amide 2.1x150 mm, 1.7 μm)을 사용하였으며 물, acetonitrile with 10mM Ammonium Formate 용액이 사용되었다. 질량분석은 80-1000 m/z에서 수행되었다. 샘플분석은 Laboratory Information Management System(메타볼론 사, LIMS)에 의하여 수행되었다. 통계처리는 웰치 2 샘플 t-test를 사용하였다.
상기의 방법을 통해 통계적으로 유의성을 나타내는 DMSO 대조군 분비대사체 대비 트로글리타존 분비 대사체를 분석하였다.
그 결과, 표 1에 나타낸 바와 같이 대조군 대비 트로글리타존 처리에 따른 변화를 중심으로 나타내었으며 총 9종의 대사체가 증가하였고 총 4종의 대사체가 감소하는 것을 확인하였다(표 1). 구체적으로, 페닐피루브산(phenylpyruvate)(도 2), 5-메틸치오아데노신(5-methylthioadenosine)(도 3), N-아세틸카노신(N-acetylcarnosine)(도 4), 피루브산(pyruvate)(도 5), 프레그네놀론(pregnanolone/allopregnanolone sulfate)(도 6), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine)(도 7), 2-옥시-메틸구아노신(2'-O-methylguanosine)(도 8) 및 3-히드록실부틸산(3-hydroxybutyrate)(도 9)은 증가하였으며, 아이소발레릭산(isovalerate)(도 10), 발린류신(Valylleucine)(도 11), 미드산(mead acid)(20:3n9)(도 12) 및 2-디옥시이노신(2'-deoxyinosine)(도 13)은 감소한 것을 확인하였다(도 2 내지 도 13).
피루브산의 증가는 해당과정 및 피루브산 수송의 장애를 나타낸다. 아이소발레릭산의 감소는 류신 분해과정의 감소를 나타내며, N-아세틸카노신의 증가는 산소 스트레스의 증가를 나타낸다. 페닐피루브산의 증가는 페닐알라닌 분해와 관련된 에너지 대사의 증가를 나타내며, 또한 피루브산의 증가와 케톤체 대사의 변화는 아미노산 분해경로 전반의 증가반응을 나타낸다.
대사경로 | 대사체명 | 검출방법 | KEGG ID | 인간대사체 ID(HMDB) | 상대적 수준차이 (트로글리타존/ DMSO 처리군) |
상대적 수준차이 (트로글리타존/로지글리타존) |
페닐알라닌 및 티로신대사 | 페닐피루브산(phenylpyruvate) | LC/MS 음성모드 | C00166 | HMDB00205 | 1.29a | 1.1 |
폴리아민대사 | 5-메틸치오아데노신 (5-methylthioadenosine) | LC/MS 양성모드 | C00170 | HMDB01173 | 1.39a | 1.06 |
다이펩티드 유도체 | N-아세틸카노신 (N-acetylcarnosine) |
LC/MS 양성모드 | HMDB12881 | 1.15a | 1.13b | |
포도당 및 피루브산 대사 | 피루브산 (pyruvate) | LC/MS 음성모드 | C00022 | HMDB00243 | 1.2a | 1.22a |
스테로이드 | 프레그네놀론 (pregnanolone/allopregnanolone sulfate) | LC/MS 음성모드 | 1.36a | 1.16 | ||
콜레스테롤 | 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate) | LC/MS 음성모드 | C17337 | HMDB12458 | 1.38b | 1.4b |
퓨린대사 | 아데닌(adenine) | LC/MS 양성모드 | C00147 | HMDB00034 | 1.29a | 1.25b |
퓨린대사 | 2-옥시-메틸구아노신(2'-O-methylguanosine) | LC/MS 양성모드 | C04545 | 2.39a | 0.95 | |
케톤체 대사 | 3-히드록실부틸산(3-hydroxybutyrate) | LC/MS 극성모드 | C01089 | HMDB00357 | 1.15a | 1.04 |
류신/이소류신/발린대사 | 아이소발레릭산 (isovalerate) | LC/MS 음성모드 | C08262 | HMDB00718 | 0.78c | 0.76 |
다이펩티드 | 발린류신 (Valylleucine) | LC/MS 양성모드 | 0.59c | 0.91 | ||
불포화지방산 | 미드산 (mead acid (20:3n9)) | LC/MS 음성모드 | HMDB10378 | 0.85c | 1.01 | |
퓨린대사 | 2-디옥시이노신 (2'-deoxyinosine) | LC/MS 양성모드 | C05512 | HMDB00071 | 0.74c | 0.72c |
a: 통계 유의성 p < 0.05, 두 그룹간 대사체 수준차이 1.0 이상인 경우,
b: 통계 유의성 0.05 < p < 0.1, 두 그룹간 대사체 수준차이 1.0 이상인 경우, 및
c: 통계 유의성 p < 0.05, 두 그룹간 대사체 수준차이 1.0 이하인 경우이다.
<2-3>
로지글리타존
처리에 따른 분비
대사체
변화 확인
로지글리타존 처리에 따른 세포의 분비 대사체의 변화를 확인하기 위해 상기 실험예 <2-2>과 동일하게 실험을 수행하였다.
그 결과, 표 2에 나타낸 바와 같이 로지글리타존에 의하여 양이 감소한 대사체로는 담즙 대사체에 국한되는 것을 확인하였다(표 2). 구체적으로, 글리코콜린산(glycocholate)(도 14), 타우로콜린산(taurocholate)(도 15), 글리코케노디옥시콜린산(glycochenodeoxycholate)(도 16) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)(도 17)가 감소하는 것을 확인하였다(도 14 내지 도 17).
트로글리타존과 비교하여 로지글리타존에 의한 담즙 대사체 수준의 유의한 감소가 발견되었으며, 로지글리타존 처리에 의해 간세포의 담즙 대사체 수송기능의 장애가 나타남을 확인하였다.
담즙 대사체 | 검출방법 | KEGG ID | 인간대사체 ID(HMDB) | 상대적 수준차이(로지글리타존 / DMSO 처리군) | 상대적 수준차이 (트로글리타존/ DMSO 처리군) |
상대적 수준차이 (트로글리타존/로지글리타존) |
글리코콜린산(glycocholate) | LC/MS 음성모드 | C01921 | HMDB00138 | 0.88c | 0.95 | 1.08b |
타우로콜린산(taurocholate) | LC/MS 음성모드 | C05122 | HMDB00036 | 0.8c | 0.91d | 1.13a |
글리코케노디옥시콜린산(glycochenodeoxycholate) | LC/MS 음성모드 | C05466 | HMDB00637 | 0.85c | 0.95 | 1.11a |
타우로케노디옥시콜린산(taurochenodeoxycholate) | LC/MS 음성모드 | C05465 | HMDB00951 | 0.81c | 0.89d | 1.09 |
a: 통계 유의성 p < 0.05, 두 그룹간 대사체 수준차이 1.0 이상인 경우,
b: 통계 유의성 0.05 < p < 0.1, 두 그룹간 대사체 수준차이 1.0 이상인 경우,
c: 통계 유의성 p < 0.05, 두 그룹간 대사체 수준차이 1.0 이하인 경우, 및
d: 통계 유의성 0.05 < p < 0.1, 두 그룹간 대사체 수준차이 1.0 이하인 경우이다.
Claims (12)
1) 세포에 시험 약물을 처리한 후, 세포의 분비 대사체를 분석하는 단계;
2) 정상대조군과 비교하여 간독성과 관련된 대사체의 변화를 분석하는 단계를 포함하며,
상기 간독성과 관련된 대사체는 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 간독성 약물 스크리닝 방법.
2) 정상대조군과 비교하여 간독성과 관련된 대사체의 변화를 분석하는 단계를 포함하며,
상기 간독성과 관련된 대사체는 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 그룹으로부터 선택되는 것을 특징으로 하는 간독성 약물 스크리닝 방법.
제 1항에 있어서, 상기 세포는 인간줄기세포 유래 간세포인 것을 특징으로 하는 간독성 약물 스크리닝 방법.
삭제
제 1항에 있어서, 상기 페닐피루브산, 5-메틸치오아데노신, N-아세틸카노신, 피루브산, 프레그네놀론, 7-알파-히드록실-3-옥소-4-콜레스테노익산, 아데닌, 2-옥시-메틸구아노신 및 3-히드록실부틸산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 증가하는 것을 특징으로 하는 간독성 약물 스크리닝 방법.
제 1항에 있어서, 상기 아이소발레릭산, 발린류신, 미드산, 2-디옥시이노신, 글리코콜린산, 타우로콜린산, 글리코케노디옥시콜린산 및 타우로케노디옥시콜린산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 감소하는 것을 특징으로 하는 간독성 약물 스크리닝 방법.
제 1항에 있어서, 상기 대사체 분석은 액체 크로마토그래피-질량분석기(LC-MS) 또는 핵자기공명(NMR)로 분석하는 것을 특징으로 하는 간독성 약물 스크리닝 방법.
1) 인간 줄기세포 유래 간세포에 트로글리타존(troglitazone) 또는 로지글리타존(rosiglitazone)을 처리하는 단계;
2) 상기 단계 1)의 트로글리타존 또는 로지글리타존이 처리된 세포에서 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체의 농도를 측정하는 단계; 및
3) 상기 단계 2)의 측정된 대사체 농도를 정상대조군과 비교하는 단계를 포함하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
2) 상기 단계 1)의 트로글리타존 또는 로지글리타존이 처리된 세포에서 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9), 2-디옥시이노신(2'-deoxyinosine), 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 군으로부터 선택되는 어느 하나 이상의 대사체의 농도를 측정하는 단계; 및
3) 상기 단계 2)의 측정된 대사체 농도를 정상대조군과 비교하는 단계를 포함하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
제 7항에 있어서, 상기 단계 2)의 페닐피루브산, 5-메틸치오아데노신, N-아세틸카노신, 피루브산, 프레그네놀론, 7-알파-히드록실-3-옥소-4-콜레스테노익산, 아데닌, 2-옥시-메틸구아노신 및 3-히드록실부틸산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 증가하는 것을 특징으로 하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
제 7항에 있어서, 상기 단계 2)의 아이소발레릭산, 발린류신, 미드산, 2-디옥시이노신, 글리코콜린산, 타우로콜린산, 글리코케노디옥시콜린산 및 타우로케노디옥시콜린산으로 구성된 그룹으로부터 선택되는 대사체는 정상대조군과 비교하여 농도가 감소하는 것을 특징으로 하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
제 7항에 있어서, 상기 단계 2)의 페닐피루브산(phenylpyruvate), 5-메틸치오아데노신(5-methylthioadenosine), N-아세틸카노신(N-acetylcarnosine), 피루브산(pyruvate), 프레그네놀론(pregnanolone/allopregnanolone sulfate), 7-알파-히드록실-3-옥소-4-콜레스테노익산(7-alpha-hydroxy-3-oxo-4-cholestenoate), 아데닌(adenine), 2-옥시-메틸구아노신(2'-O-methylguanosine), 3-히드록실부틸산(3-hydroxybutyrate), 아이소발레릭산(isovalerate), 발린류신(Valylleucine), 미드산(mead acid)(20:3n9) 및 2-디옥시이노신(2'-deoxyinosine)으로 구성된 그룹으로부터 선택되는 대사체는 트로글리타존 처리에 의해 농도가 변화하는 것을 특징으로 하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
제 7항에 있어서, 상기 단계 2)의 글리코콜린산(glycocholate), 타우로콜린산(taurocholate), 글리코케노디옥시콜린산(glycochenodeoxycholate) 및 타우로케노디옥시콜린산(taurochenodeoxycholate)으로 구성된 그룹으로부터 선택되는 대사체는 로시글리타존 처리에 의해 농도가 변화하는 것을 특징으로 하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
제 7항에 있어서, 상기 단계 2)의 측정은 액체 크로마토그래피-질량분석기(LC-MS) 또는 핵자기공명(NMR)로 분석하는 것을 특징으로 하는 간독성의 정보를 제공하기 위한 대사체 분석 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150018632A KR101856599B1 (ko) | 2015-02-06 | 2015-02-06 | 분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150018632A KR101856599B1 (ko) | 2015-02-06 | 2015-02-06 | 분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160096931A KR20160096931A (ko) | 2016-08-17 |
KR101856599B1 true KR101856599B1 (ko) | 2018-05-11 |
Family
ID=56873652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150018632A KR101856599B1 (ko) | 2015-02-06 | 2015-02-06 | 분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101856599B1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190081938A (ko) * | 2017-12-29 | 2019-07-09 | 차의과학대학교 산학협력단 | 줄기세포를 이용한 노화 조절 유효인자 구축 방법, 및 그를 이용하여 노화 조절 물질을 스크리닝 하는 방법, 및 그에 의해 도출된 항노화 물질 |
KR102219112B1 (ko) * | 2018-09-14 | 2021-02-22 | 숭실대학교산학협력단 | 담도암을 진단 방법 |
KR102167739B1 (ko) | 2018-10-31 | 2020-10-19 | 한국과학기술연구원 | Alk 또는 ros-1 인산화 효소 억제제 스크리닝을 위한 방법, 조성물 및 키트 및 방법 |
KR102272947B1 (ko) | 2019-06-24 | 2021-07-05 | 한국과학기술연구원 | 지방산 합성 효소 억제제의 스크리닝을 위한 방법, 조성물 및 키트 |
KR102265445B1 (ko) | 2019-11-22 | 2021-06-15 | 가톨릭대학교 산학협력단 | 간독성 민감성 진단용 바이오마커 조성물 및 이를 이용한 예측 방법 |
CN116165385B (zh) * | 2023-04-25 | 2023-07-18 | 南方医科大学南方医院 | 用于肝癌诊断的血清代谢标志物及其筛选方法和应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130315885A1 (en) * | 2012-05-22 | 2013-11-28 | Niven Rajin Narain | Interogatory cell-based assays for identifying drug-induced toxicity markers |
-
2015
- 2015-02-06 KR KR1020150018632A patent/KR101856599B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130315885A1 (en) * | 2012-05-22 | 2013-11-28 | Niven Rajin Narain | Interogatory cell-based assays for identifying drug-induced toxicity markers |
Also Published As
Publication number | Publication date |
---|---|
KR20160096931A (ko) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101856599B1 (ko) | 분비 대사체 분석을 통한 간독성 약물 스크리닝 방법 | |
Baran et al. | Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS Affiliate) | |
Kishinevsky et al. | HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons | |
Yang et al. | Toward analysis of proteins in single cells: a quantitative approach employing isobaric tags with MALDI mass spectrometry realized with a microfluidic platform | |
US20200041491A1 (en) | Method for measuring bile salt export and/or formation activity | |
US20210130774A1 (en) | Human pluripotent stem cell derived neurodegenerative disease models on a microfluidic chip | |
Neri et al. | Quantitative proteomic analysis of the senescence‐associated secretory phenotype by data‐independent acquisition | |
US20210047617A1 (en) | Systems and methods for culturing epithelial cells | |
JP2020519237A (ja) | ヒトオリゴデンドロサイトを作製しインビトロでの髄鞘形成を研究するための個別化された神経系3d培養系 | |
Novik et al. | Long-enduring primary hepatocyte-based co-cultures improve prediction of hepatotoxicity | |
EP3023489B1 (en) | Componential analyzer, drug efficacy analyzer, and analysis method | |
Xylaki et al. | Extracellular Vesicles for the Diagnosis of Parkinson's Disease: Systematic Review and Meta‐Analysis | |
Ramadan et al. | Pharmacokinetics‐on‐a‐chip: in vitro microphysiological models for emulating of drugs ADME | |
Xing et al. | Development of neurons on micropatterns reveals that growth cone responds to a sharp change of concentration of laminin | |
Ghirotto et al. | MS‐Driven Metabolic Alterations Are Recapitulated in iPSC‐Derived Astrocytes | |
Oliveira et al. | Novel approaches to liver disease diagnosis and modeling | |
Mughal et al. | Organs‐on‐chips: Trends and challenges in advanced systems integration | |
Beller et al. | Spatial stable isotopic labeling by amino acids in cell culture: Pulse-chase labeling of three-dimensional multicellular spheroids for global proteome analysis | |
Cappuccio et al. | Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids | |
Zhuang et al. | Nephrocyte-neurocyte interaction and cellular metabolic analysis on membrane-integrated microfluidic device | |
Göpferich et al. | Single cell 3’UTR analysis identifies changes in alternative polyadenylation throughout neuronal differentiation and in autism | |
Corman et al. | A chemical screen for modulators of mRNA translation identifies a distinct mechanism of toxicity for sphingosine kinase inhibitors | |
KR20150103431A (ko) | 인간 줄기세포 유래 간세포를 이용한 면역 간독성 스크리닝 방법 | |
Han et al. | Omics-based platform for studying chemical toxicity using stem cells | |
Oleaga et al. | A functional long‐term 2D serum‐free human hepatic in vitro system for drug evaluation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |