KR101854779B1 - Optical member and display device having the same - Google Patents

Optical member and display device having the same Download PDF

Info

Publication number
KR101854779B1
KR101854779B1 KR1020110108284A KR20110108284A KR101854779B1 KR 101854779 B1 KR101854779 B1 KR 101854779B1 KR 1020110108284 A KR1020110108284 A KR 1020110108284A KR 20110108284 A KR20110108284 A KR 20110108284A KR 101854779 B1 KR101854779 B1 KR 101854779B1
Authority
KR
South Korea
Prior art keywords
wavelength conversion
particles
wavelength
light
host layer
Prior art date
Application number
KR1020110108284A
Other languages
Korean (ko)
Other versions
KR20130044031A (en
Inventor
박성규
오정택
이유원
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020110108284A priority Critical patent/KR101854779B1/en
Publication of KR20130044031A publication Critical patent/KR20130044031A/en
Application granted granted Critical
Publication of KR101854779B1 publication Critical patent/KR101854779B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour
    • G02F1/25Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour as to hue or predominant wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Abstract

광학 부재 및 이를 포함하는 표시장치가 개시된다. 광학 부재는 호스트층; 상기 호스트층 내에 배치되는 다수 개의 제 1 파장 변환 입자들; 및 상기 호스트층 내에 배치되는 다수 개의 제 2 파장 변환 입자들을 포함하고, 상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하고, 상기 제 2 파장 변환 입자들은 형광체를 포함한다.An optical member and a display device including the same are disclosed. The optical member includes a host layer; A plurality of first wavelength conversion particles disposed in the host layer; And a plurality of second wavelength conversion particles disposed in the host layer, wherein the first wavelength conversion particles include a compound semiconductor, and the second wavelength conversion particles include a phosphor.

Description

광학 부재 및 이를 포함하는 표시장치{OPTICAL MEMBER AND DISPLAY DEVICE HAVING THE SAME}TECHNICAL FIELD [0001] The present invention relates to an optical member and a display device including the optical member.

실시예는 광학 부재 및 이를 포함하는 표시장치에 관한 것이다.An embodiment relates to an optical member and a display device including the optical member.

표시장치들 중에는 영상을 표시하기 위해서, 광을 발생시킬 수 있는 백라이트 유닛을 필요로 하는 장치가 있다. 백라이트 유닛은 액정 등을 포함하는 표시패널에 광을 공급하는 장치로서, 발광장치와 발광장치에서 출력된 광을 액정 측에 효과적으로 전달하기 위한 수단들을 포함한다.Among display devices, there is a device that requires a backlight unit capable of generating light in order to display an image. The backlight unit is a device for supplying light to a display panel including a liquid crystal or the like and includes a light emitting device and means for effectively transmitting the light output from the light emitting device to the liquid crystal side.

이러한 표시장치의 광원으로서, LED(Light Emitted Diode)등이 적용될 수 있다. 또한, 광원으로부터 출력된 광이 표시패널 측에 효과적으로 전달되기 위해, 도광판과 광학시트 등이 적층되어, 사용될 수 있다.As a light source of such a display device, an LED (Light Emitted Diode) or the like can be applied. Further, in order that the light output from the light source is effectively transmitted to the display panel side, a light guide plate and an optical sheet may be laminated and used.

이때, 광원으로부터 발생되는 광의 파장을 변화시켜서, 상기 도광판 또는 상기 표시패널에 백색광을 입사시키는 광학 부재 등이 이러한 표시장치에 적용될 수 있다. 특히, 광의 파장을 변화시키기 위해서, 양자점 등이 사용될 수 있다.At this time, an optical member that changes the wavelength of light generated from the light source and causes white light to enter the light guide plate or the display panel can be applied to such a display device. Particularly, in order to change the wavelength of light, a quantum dot or the like can be used.

양자점은 10nm 이하의 입자 크기를 가지며, 그 크기에 따라 독특한 전기적 광학적 특성을 갖는다. 예컨대, 대략적인 크기가 55 ~ 65Å인 경우 적색계열, 40 ~ 50Å은 녹색계열, 20 ~ 35Å은 청색계열의 색을 발할 수 있으며, 황색은 적색과 녹색을 발하는 양자점의 중간 크기를 갖는다. 빛의 파장에 따른 스펙트럼이 적색에서 청색으로 변하는 추세에 따라 양자점의 크기는 65Å 정도에서 20Å 정도로 순차적으로 변하는 것으로 파악할 수 있으며, 이 수치는 약간의 차이가 있을 수 있다.The quantum dot has a particle size of 10 nm or less and has unique electrical and optical characteristics depending on its size. For example, when the approximate size is 55 to 65 Å, it can emit red, 40 to 50 Å to green, and 20 to 35 Å to blue. Yellow has medium size of red and green quantum dots. As the spectrum of light changes from red to blue, the size of the quantum dots varies from 65 Å to 20 Å, which may be slightly different.

양자점을 포함하는 광학 부재를 형성하기 위해서는, 빛의 삼원색인 RGB 혹은, RYGB를 발하는 양자점을 글래스(glass) 등의 투명 기판에 스핀코팅 하거나 프린팅하여 형성할 수 있다. 여기서, 황색(Y)을 발하는 양자점을 더 포함하는 경우 좀 더 천연광에 가까운 백색광을 얻을 수 있다. 양자점을 분산 담채하는 매트릭스(매질)은 가시광 및 자외선 영역(Far UV 포함)의 빛을 발하거나 또는 가시광 영역의 빛에 관하여 투과성이 뛰어난 무기물이나 고분자를 적용할 수 있다. 예컨대, 무기질 실리카, PMMA(polymethylmethacrylate), PDMS(polydimethylsiloxane), PLA(poly lactic acid), 실리콘 고분자 또는 YAG 등이 될 수 있다.In order to form the optical member including the quantum dots, the quantum dots emitting RGB or RYGB, which are three primary colors of light, can be formed by spin coating or printing on a transparent substrate such as glass. Here, when a quantum dot emitting yellow (Y) is further included, white light closer to natural light can be obtained. The matrix (medium) in which the quantum dots are dispersed can apply an inorganic substance or a polymer having excellent transmittance with respect to light in the visible light region and the ultraviolet region (including Far UV) or in the visible light region. For example, it may be inorganic silica, polymethylmethacrylate (PMMA), polydimethylsiloxane (PDMS), poly lactic acid (PLA), silicon polymer or YAG.

이와 같은 양자점이 적용된 표시장치에 관하여, 한국 특허 공개 공보 10-2011-0012246 등에 개시되어 있다.A display device to which such a quantum dot is applied is disclosed in Korean Patent Laid-Open Publication No. 10-2011-0012246.

실시예는 향상된 휘도 및 색 재현율을 가지는 광학 부재 및 표시장치를 제공하고자 한다.The embodiment intends to provide an optical member and a display device having improved luminance and color reproduction ratio.

실시예에 따른 광학 부재는 호스트층; 상기 호스트층 내에 배치되는 다수 개의 제 1 파장 변환 입자들; 및 상기 호스트층 내에 배치되는 다수 개의 제 2 파장 변환 입자들을 포함하고, 상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하고, 상기 제 2 파장 변환 입자들은 형광체를 포함한다.An optical member according to an embodiment includes a host layer; A plurality of first wavelength conversion particles disposed in the host layer; And a plurality of second wavelength conversion particles disposed in the host layer, wherein the first wavelength conversion particles include a compound semiconductor, and the second wavelength conversion particles include a phosphor.

실시예에 따른 표시장치는 광원; 상기 광원으로부터 출사되는 광이 입사되는 파장 변환 부재; 및 상기 파장 변환 부재로부터 출사되는 광이 입사되는 표시패널을 포함하고, 상기 파장 변환 부재는 호스트층; 상기 호스트층 내에 배치되는 다수 개의 제 1 파장 변환 입자들; 및 상기 호스트층 내에 배치되는 다수 개의 제 2 파장 변환 입자들을 포함하고, 상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하고, 상기 제 2 파장 변환 입자들은 형광체를 포함한다.A display device according to an embodiment includes a light source; A wavelength conversion member into which light emitted from the light source is incident; And a display panel on which light emitted from the wavelength conversion member is incident, wherein the wavelength conversion member comprises: a host layer; A plurality of first wavelength conversion particles disposed in the host layer; And a plurality of second wavelength conversion particles disposed in the host layer, wherein the first wavelength conversion particles include a compound semiconductor, and the second wavelength conversion particles include a phosphor.

실시예에 따른 광학 부재는 상기 제 1 파장 변환 입자들 및 상기 제 2 파장 변환 입자들을 하나의 호스트층에 포함한다. 특히, 상기 제 1 파장 변환 입자들은 양자점이고, 상기 제 2 파장 변환 입자들은 형광체를 포함할 수 있다. 또한, 상기 제 1 파장 변환 입자들은 입사광을 제 1 파장 대의 광으로 변환시키고, 상기 제 2 파장 변환 입자들은 입사광을 제 2 파장 대의 광으로 변환시킬 수 있다.The optical member according to the embodiment includes the first wavelength conversion particles and the second wavelength conversion particles in one host layer. In particular, the first wavelength conversion particles may be a quantum dot, and the second wavelength conversion particles may include a phosphor. The first wavelength-converted particles convert incident light into light of a first wavelength band, and the second wavelength-converted particles convert incident light into light of a second wavelength band.

특히, 상기 제 1 파장 변환 입자들은 입사광을 녹색광으로 변환시키고, 상기 제 2 파장 변환 입자들은 입사광을 적색광으로 변환시킬 수 있다.Particularly, the first wavelength conversion particles convert incident light into green light, and the second wavelength conversion particles convert incident light into red light.

또한, 실시예에 따른 광학 부재를 형성하기 위해서, 형광체가 먼저 첨가되고, 상기 분산성 향상 입자들이 사용될 수 있다. 이에 따라서, 기계적인 충격에 강한 형광체가 먼저 분산되고, 상기 분산성 향상 입자들이 형광체의 응집을 막을 수 있다. 따라서, 실시예에 따른 광학 부재의 제조방법은 형광체 및 양자점 등을 용이하게 분산시킬 수 있다.Further, in order to form the optical member according to the embodiment, the fluorescent substance is added first, and the dispersion improving particles may be used. Accordingly, the phosphor that is resistant to mechanical impact is dispersed first, and the dispersibility improving particles can prevent the phosphor from aggregating. Therefore, the manufacturing method of the optical member according to the embodiment can easily disperse the phosphor, the quantum dot, and the like.

따라서, 실시예에 따른 광학 부재는 향상된 휘도 및 색 재현성을 가질 수 있다.Therefore, the optical member according to the embodiment can have improved luminance and color reproducibility.

또한, 상기 제 1 파장 변환 입자들은 보호막을 포함하거나, 둘 이상의 Ⅱ족 원소들의 화합물을 포함할 수 있다. 이에 따라서, 상기 제 1 파장 변환 입자들은 향상된 신뢰성을 가질 수 있다.In addition, the first wavelength converting particles may include a protective film or may include a compound of two or more Group II elements. Accordingly, the first wavelength conversion particles can have improved reliability.

도 1은 제 1 실시예에 따른 액정표시장치를 도시한 분해사시도이다.
도 2는 제 1 실시예에 따른 파장 변환 부재를 도시한 사시도이다.
도 3은 도 2에서 A-A`를 따라서 절단한 단면을 도시한 단면도이다.
도 4는 제 1 파장 변환 입자를 도시한 단면도이다.
도 5는 다른 형태의 제 1 파장 변환 입자를 도시한 단면도이다.
도 6은 제 1 파장 변환 입자의 카드뮴의 조성을 도시한 도면이다.
도 7 및 도 8은 제 1 실시예에 따른 파장 변환 부재를 제조하는 과정을 도시한 도면들이다.
도 9는 제 2 실시예에 따른 파장 변환 부재를 도시한 단면도이다.
도 10은 제 2 실시예에 따른 파장 변환 부재에 의해서 생성된 백색 광의 파장 대 별 세기를 도시한 도면이다.
도 11은 제 3 실시예에 따른 액정표시장치를 도시한 분해사시도이다.
도 12는 제 3 실시예에 따른 파장 변환 부재를 도시한 사시도이다.
도 13은 도 12에서 B-B`를 따라서 절단한 단면을 도시한 단면도이다.
도 14는 제 3 실시예에 따른 도광판, 발광다이오드 및 파장 변환 부재의 일 단면을 도시한 단면도이다.
도 15 내지 도 17은 제 3 실시예에 따른 파장 변환 부재를 형성하는 과정을 도시한 도면들이다.
도 18은 제 4 실시예에 따른 액정표시장치를 도시한 분해사시도이다.
도 19는 제 4 실시예에 따른 파장 변환 부재를 도시한 사시도이다.
도 20은 도 18에서 C-C`를 따라서 절단한 단면을 도시한 단면도이다.
도 21은 제 4 실시예에 따른 도광판, 발광다이오드 및 파장 변환 부재의 일 단면을 도시한 단면도이다.
1 is an exploded perspective view showing a liquid crystal display device according to a first embodiment.
2 is a perspective view showing the wavelength conversion member according to the first embodiment.
FIG. 3 is a cross-sectional view showing a section cut along AA 'in FIG. 2. FIG.
4 is a cross-sectional view showing the first wavelength conversion particle.
5 is a cross-sectional view showing another type of first wavelength conversion particle.
6 is a graph showing the composition of cadmium in the first wavelength conversion particles.
FIGS. 7 and 8 are views showing a process of manufacturing the wavelength converting member according to the first embodiment.
9 is a cross-sectional view showing the wavelength conversion member according to the second embodiment.
10 is a graph showing the intensity versus intensity of white light generated by the wavelength converting member according to the second embodiment.
11 is an exploded perspective view showing a liquid crystal display device according to a third embodiment.
12 is a perspective view showing the wavelength conversion member according to the third embodiment.
FIG. 13 is a cross-sectional view showing a section cut along BB 'in FIG. 12; FIG.
FIG. 14 is a cross-sectional view showing one end surface of a light guide plate, a light emitting diode, and a wavelength conversion member according to the third embodiment.
15 to 17 are views illustrating a process of forming the wavelength converting member according to the third embodiment.
18 is an exploded perspective view showing a liquid crystal display device according to the fourth embodiment.
19 is a perspective view showing the wavelength conversion member according to the fourth embodiment.
20 is a cross-sectional view showing a cross section cut along CC 'in FIG.
FIG. 21 is a cross-sectional view illustrating one side of a light guide plate, a light emitting diode, and a wavelength conversion member according to the fourth embodiment.

실시 예의 설명에 있어서, 각 기판, 프레임, 시트, 층 또는 패턴 등이 각 기판, 프레임, 시트, 층 또는 패턴 등의 "상(on)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상(on)"과 "아래(under)"는 "직접(directly)" 또는 "다른 구성요소를 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.In the description of the embodiments, it is described that each substrate, frame, sheet, layer or pattern is formed "on" or "under" each substrate, frame, sheet, In this case, "on" and "under " all include being formed either directly or indirectly through another element. In addition, the upper or lower reference of each component is described with reference to the drawings. The size of each component in the drawings may be exaggerated for the sake of explanation and does not mean the size actually applied.

도 1은 제 1 실시예에 따른 액정표시장치를 도시한 분해사시도이다. 도 2는 제 1 실시예에 따른 파장 변환 부재를 도시한 사시도이다. 도 3은 도 2에서 A-A`를 따라서 절단한 단면을 도시한 단면도이다. 도 4는 제 1 파장 변환 입자를 도시한 단면도이다. 도 5는 다른 형태의 제 1 파장 변환 입자를 도시한 단면도이다. 도 6은 제 1 파장 변환 입자의 카드뮴의 조성을 도시한 도면이다. 도 7 및 도 8은 제 1 실시예에 따른 파장 변환 부재를 제조하는 과정을 도시한 도면들이다.1 is an exploded perspective view showing a liquid crystal display device according to a first embodiment. 2 is a perspective view showing the wavelength conversion member according to the first embodiment. 3 is a cross-sectional view showing a section taken along line A-A in Fig. 4 is a cross-sectional view showing the first wavelength conversion particle. 5 is a cross-sectional view showing another type of first wavelength conversion particle. 6 is a graph showing the composition of cadmium in the first wavelength conversion particles. FIGS. 7 and 8 are views showing a process of manufacturing the wavelength converting member according to the first embodiment.

도 1 내지 도 6을 참조하면, 실시예에 따른 액정표시장치는 백라이트 유닛(10) 및 액정패널(20)을 포함한다.1 to 6, a liquid crystal display according to an embodiment includes a backlight unit 10 and a liquid crystal panel 20.

상기 백라이트 유닛(10)은 상기 액정패널(20)에 광을 출사한다. 상기 백라이트 유닛(10)은 면 광원으로 상기 액정패널(20)의 하면에 균일하기 광을 조사할 수 있다.The backlight unit 10 emits light to the liquid crystal panel 20. The backlight unit 10 is a surface light source and can uniformly irradiate the bottom surface of the liquid crystal panel 20 with light.

상기 백라이트 유닛(10)은 상기 액정패널(20) 아래에 배치된다. 상기 백라이트 유닛(10)은 바텀 커버(100), 도광판(200), 반사시트(300), 광원, 예를 들어, 다수 개의 발광다이오드들(400), 인쇄회로기판(401) 및 다수 개의 광학 시트들(500)을 포함한다.The backlight unit 10 is disposed under the liquid crystal panel 20. The backlight unit 10 includes a bottom cover 100, a light guide plate 200, a reflective sheet 300, a light source such as a plurality of light emitting diodes 400, a printed circuit board 401, (500).

상기 바텀 커버(100)는 상부가 개구된 형상을 가진다. 상기 바텀 커버(100)는 상기 도광판(200), 상기 발광다이오드들(400), 상기 인쇄회로기판(401), 상기 반사시트(300) 및 상기 광학 시트들(500)을 수용한다.The bottom cover 100 has a top opened shape. The bottom cover 100 accommodates the light guide plate 200, the light emitting diodes 400, the printed circuit board 401, the reflection sheet 300, and the optical sheets 500.

상기 도광판(200)은 상기 바텀 커버(100) 내에 배치된다. 상기 도광판(200)은 상기 반사시트(300) 상에 배치된다. 상기 도광판(200)은 상기 발광다이오드들(400)로부터 입사되는 광을 전반사, 굴절 및 산란을 통하여 상방으로 출사한다.The light guide plate 200 is disposed in the bottom cover 100. The light guide plate 200 is disposed on the reflective sheet 300. The light guide plate 200 emits light upward from the light emitting diodes 400 through total reflection, refraction and scattering.

상기 반사시트(300)는 상기 도광판(200) 아래에 배치된다. 더 자세하게, 상기 반사시트(300)는 상기 도광판(200) 및 상기 바텀 커버(100)의 바닥면 사이에 배치된다. 상기 반사시트(300)는 상기 도광판(200)의 하부면으로부터 출사되는 광을 상방으로 반사시킨다.The reflective sheet 300 is disposed under the light guide plate 200. More specifically, the reflective sheet 300 is disposed between the light guide plate 200 and the bottom surface of the bottom cover 100. The reflective sheet 300 reflects light emitted from the lower surface of the light guide plate 200 upward.

상기 발광다이오드들(400)은 광을 발생시키는 광원이다. 상기 발광다이오드들(400)은 상기 도광판(200)의 일 측면에 배치된다. 상기 발광다이오드들(400)은 광을 발생시켜서, 상기 도광판(200)의 측면을 통하여, 상기 도광판(200)에 입사시킨다.The light emitting diodes 400 are light sources for generating light. The light emitting diodes 400 are disposed on one side of the light guide plate 200. The light emitting diodes 400 generate light and enter the light guide plate 200 through a side surface of the light guide plate 200.

상기 발광다이오드들(400)은 청색 광을 발생시키는 청색 발광다이오드 또는 자외선을 발생시키는 UV 발광다이오드일 수 있다. 즉, 상기 발광다이오드들(400)은 약 430㎚ 내지 약 470㎚ 사이의 파장대를 가지는 청색광 또는 약 300㎚ 내지 약 400㎚ 사이의 파장대를 가지는 자외선을 발생시킬 수 있다.The light emitting diodes 400 may be a blue light emitting diode for generating blue light or a UV light emitting diode for generating ultraviolet light. That is, the light emitting diodes 400 may emit blue light having a wavelength range of about 430 nm to about 470 nm or ultraviolet light having a wavelength band of about 300 nm to about 400 nm.

상기 발광다이오드들(400)은 상기 인쇄회로기판(401)에 실장된다. 상기 발광다이오드들(400)은 상기 인쇄회로기판(401) 아래에 배치된다. 상기 발광다이오드들(400)은 상기 인쇄회로기판(401)을 통하여 구동신호를 인가받아 구동된다.The light emitting diodes 400 are mounted on the printed circuit board 401. The light emitting diodes 400 are disposed under the printed circuit board 401. The light emitting diodes 400 are driven by receiving a drive signal through the printed circuit board 401.

상기 인쇄회로기판(401)은 상기 발광다이오드들(400)에 전기적으로 연결된다. 상기 인쇄회로기판(401)은 상기 발광다이오드들(400)을 실장할 수 있다. 상기 인쇄회로기판(401)은 상기 바텀 커버(100) 내측에 배치된다.The printed circuit board 401 is electrically connected to the light emitting diodes 400. The printed circuit board 401 may mount the light emitting diodes 400. The printed circuit board (401) is disposed inside the bottom cover (100).

상기 광학 시트들(500)은 상기 도광판(200) 상에 배치된다. 상기 광학 시트들(500)은 상기 도광판(200)의 상면으로부터 출사되는 광의 특성을 변화 또는 향상시켜서, 상기 광을 상기 액정패널(20)에 공급한다.The optical sheets 500 are disposed on the light guide plate 200. The optical sheets 500 change or enhance the characteristics of light emitted from the upper surface of the light guide plate 200 and supply the light to the liquid crystal panel 20. [

상기 광학 시트들(500)은 파장 변환 부재(501), 확산 시트(502), 제 1 프리즘 시트(503) 및 제 2 프리즘 시트(504)일 수 있다.The optical sheets 500 may be a wavelength converting member 501, a diffusion sheet 502, a first prism sheet 503, and a second prism sheet 504. [

상기 파장 변환 부재(501)는 상기 광원(300) 및 상기 액정 패널(20) 사이의 광 경로 상에 배치될 수 있다. 예를 들어, 상기 파장 변환 부재(501)는 상기 도광판(200) 상에 배치될 수 있다. 더 자세하게, 상기 파장 변환 부재(501)는 상기 도광판(200) 및 상기 확산 시트(502) 사이에 개재될 수 있다. 상기 파장 변환 부재(501)는 입사되는 광의 파장을 변환하여 상방으로 출사할 수 있다.The wavelength converting member 501 may be disposed on the optical path between the light source 300 and the liquid crystal panel 20. For example, the wavelength converting member 501 may be disposed on the light guide plate 200. More specifically, the wavelength converting member 501 may be interposed between the light guide plate 200 and the diffusion sheet 502. The wavelength converting member 501 can convert the wavelength of incident light and emit the light upward.

예를 들어, 상기 발광다이오드들(400)이 청색 발광다이오드인 경우, 상기 파장 변환 부재(501)는 상기 도광판(200)으로부터 상방으로 출사되는 청색광을 녹색광 및 적색광으로 변환시킬 수 있다. 즉, 상기 파장 변환 부재(501)는 상기 청색광의 일부를 약 500㎚ 내지 약 600㎚ 사이의 파장대를 가지는 녹색광으로 변환시키고, 상기 청색광의 다른 일부를 약 600㎚ 내지 약 700㎚ 사이의 파장대를 가지는 적색광으로 변환시킬 수 있다.For example, when the light emitting diodes 400 are a blue light emitting diode, the wavelength converting member 501 may convert blue light emitted upward from the light guide plate 200 into green light and red light. That is, the wavelength converting member 501 converts a part of the blue light into green light having a wavelength band of about 500 nm to about 600 nm, and converts the other part of the blue light to a light having a wavelength range of about 600 nm to about 700 nm It can be converted into red light.

이에 따라서, 변환되지 않고 상기 파장 변환 부재(501)를 통과하는 광 및 상기 파장 변환 부재(501)에 의해서 변환된 광들은 백색광을 형성할 수 있다. 즉, 청색광, 녹색광 및 적색광이 조합되어, 상기 액정패널(20)에는 백색광이 입사될 수 있다.Accordingly, light passing through the wavelength conversion member 501 without conversion and light converted by the wavelength conversion member 501 can form white light. That is, the blue light, the green light, and the red light may be combined, and the white light may be incident on the liquid crystal panel 20.

즉, 상기 파장 변환 부재(501)는 입사광의 특성을 변환시키는 광학 부재이다. 상기 파장 변환 부재(501)는 시트 형상을 가진다. 즉, 상기 파장 변환 부재(501)는 광학 시트일 수 있다.That is, the wavelength conversion member 501 is an optical member that converts the characteristics of the incident light. The wavelength conversion member 501 has a sheet shape. That is, the wavelength conversion member 501 may be an optical sheet.

도 2 및 도 3에 도시된 바와 같이, 상기 파장 변환 부재(501)는 하부 기판(510), 상부 기판(520), 파장 변환층(530) 및 실링부(540)를 포함한다.2 and 3, the wavelength conversion member 501 includes a lower substrate 510, an upper substrate 520, a wavelength conversion layer 530, and a sealing portion 540.

상기 하부 기판(510)은 상기 파장 변환층(530) 아래에 배치된다. 상기 하부 기판(510)은 투명하며, 플렉서블 할 수 있다. 상기 하부 기판(510)은 상기 파장 변환층(530)의 하면에 밀착될 수 있다.The lower substrate 510 is disposed under the wavelength conversion layer 530. The lower substrate 510 is transparent and flexible. The lower substrate 510 may be in close contact with the lower surface of the wavelength conversion layer 530.

상기 하부 기판(510)으로 사용되는 물질의 예로서는 폴리에틸렌테레프탈레이트(polyethyleneterephthalate;PET) 등과 같은 투명한 폴리머 등을 들 수 있다.Examples of the material used for the lower substrate 510 include transparent polymers such as polyethylene terephthalate (PET) and the like.

상기 상부 기판(520)은 상기 파장 변환층(530) 상에 배치된다. 상기 상부 기판(520)은 투명하며, 플렉서블 할 수 있다. 상기 상부 기판(520)은 상기 파장 변환층(530)의 상면에 밀착될 수 있다.The upper substrate 520 is disposed on the wavelength conversion layer 530. The upper substrate 520 is transparent and flexible. The upper substrate 520 may be in close contact with the upper surface of the wavelength conversion layer 530.

상기 상부 기판(520)으로 사용되는 물질의 예로서는 폴리에틸렌테레프탈레이트 등과 같은 투명한 폴리머 등을 들 수 있다.Examples of materials used for the upper substrate 520 include transparent polymers such as polyethylene terephthalate.

상기 하부 기판(510) 및 상기 상부 기판(520)은 상기 파장 변환층(530)을 샌드위치한다. 상기 하부 기판(510) 및 상기 상부 기판(520)은 상기 파장 변환층(530)을 지지한다. 상기 하부 기판(510) 및 상기 상부 기판(520)은 외부의 물리적인 충격으로부터 상기 파장 변환층(530)을 보호한다. 상기 하부 기판(510) 및 상기 상부 기판(520)은 상기 파장 변환층(530)에 직접 접촉될 수 있다.The lower substrate 510 and the upper substrate 520 sandwich the wavelength conversion layer 530. The lower substrate 510 and the upper substrate 520 support the wavelength conversion layer 530. The lower substrate 510 and the upper substrate 520 protect the wavelength conversion layer 530 from external physical impacts. The lower substrate 510 and the upper substrate 520 may be in direct contact with the wavelength conversion layer 530.

또한, 상기 하부 기판(510) 및 상기 상부 기판(520)은 낮은 산소 투과도 및 투습성을 가진다. 이에 따라서, 상기 하부 기판(510) 및 상기 상부 기판(520)은 수분 및/또는 산소 등과 같은 외부의 화학적인 충격으로부터 상기 파장 변환층(530)을 보호할 수 있다.In addition, the lower substrate 510 and the upper substrate 520 have low oxygen permeability and moisture permeability. Accordingly, the lower substrate 510 and the upper substrate 520 can protect the wavelength conversion layer 530 from external chemical impacts such as moisture and / or oxygen.

상기 파장 변환층(530)은 상기 하부 기판(510) 및 상기 상부 기판(520) 사이에 개재된다. 상기 파장 변환층(530)은 상기 하부 기판(510)의 상면에 밀착되고, 상기 상부 기판(520)의 하면에 밀착될 수 있다.The wavelength conversion layer 530 is interposed between the lower substrate 510 and the upper substrate 520. The wavelength conversion layer 530 may be in close contact with the upper surface of the lower substrate 510 and may be in close contact with the lower surface of the upper substrate 520.

상기 파장 변환층(530)은 호스트층(531), 다수 개의 제 1 파장 변환 입자들(532), 다수 개의 제 2 파장 변환 입자들(533) 및 다수 개의 분산성 향상 입자들(535)을 포함한다.The wavelength conversion layer 530 includes a host layer 531, a plurality of first wavelength conversion particles 532, a plurality of second wavelength conversion particles 533, and a plurality of dispersion enhancing particles 535 do.

상기 호스트층(531)은 상기 제 1 파장 변환 입자들(532), 상기 제 2 파장 변환 입자들(533) 및 상기 분산성 향상 입자들(535)을 둘러싼다. 즉, 상기 호스트층(531)은 상기 제 1 파장 변환 입자들(532), 상기 제 2 파장 변환 입자들 및 상기 분산성 향상 입자들(535)을 균일하게 내부에 분산시킨다. 상기 호스트층(531)은 실리콘계 수지 등과 같은 폴리머로 구성될 수 있다. 상기 호스트층(531)은 투명하다. 즉, 상기 호스트층(531)은 투명한 폴리머로 형성될 수 있다.The host layer 531 surrounds the first wavelength-converted particles 532, the second wavelength-converted particles 533, and the dispersion enhancing particles 535. That is, the host layer 531 uniformly disperses the first wavelength-converted particles 532, the second wavelength-converted particles, and the dispersion improving particles 535 therein. The host layer 531 may be made of a polymer such as a silicone resin. The host layer 531 is transparent. That is, the host layer 531 may be formed of a transparent polymer.

상기 호스트층(531)은 상기 하부 기판(510) 및 상기 상부 기판(520) 사이에 배치된다. 상기 호스트층(531)은 상기 하부 기판(510)의 상면 및 상기 상부 기판(520)의 하면에 밀착될 수 있다.The host layer 531 is disposed between the lower substrate 510 and the upper substrate 520. The host layer 531 may be in close contact with the upper surface of the lower substrate 510 and the lower surface of the upper substrate 520.

상기 제 1 파장 변환 입자들(532)은 상기 하부 기판(510) 및 상기 상부 기판(520) 사이에 배치된다. 더 자세하게, 상기 제 1 파장 변환 입자들(532)은 상기 호스트층(531)에 균일하게 분산되고, 상기 호스트층(531)은 상기 하부 기판(510) 및 상기 상부 기판(520) 사이에 배치될 수 있다. 상기 제 1 파장 변환 입자들은 상기 호스트에 약 0.5wt% 내지 약 5wt%의 농도로 분산될 수 있다.The first wavelength conversion particles 532 are disposed between the lower substrate 510 and the upper substrate 520. More specifically, the first wavelength-converted particles 532 are uniformly dispersed in the host layer 531, and the host layer 531 is disposed between the lower substrate 510 and the upper substrate 520 . The first wavelength converting particles may be dispersed in the host at a concentration of about 0.5 wt% to about 5 wt%.

상기 제 1 파장 변환 입자들(532)은 상기 발광다이오드들(400)로부터 출사되는 광의 파장을 변환시킨다. 상기 제 1 파장 변환 입자들(532)은 상기 발광다이오드들(400)로부터 출사되는 광을 입사받아, 파장을 변환시킨다. 예를 들어, 상기 제 1 파장 변환 입자들(532)은 상기 발광다이오드들(400)로부터 출사되는 광을 녹색 광으로 변환시킬 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)은 상기 입사광을 약 500㎚ 내지 약 600㎚ 사이의 파장대를 가지는 녹색 광으로 변환시킬 수 있다.The first wavelength converting particles 532 convert the wavelength of the light emitted from the light emitting diodes 400. The first wavelength conversion particles 532 receive light emitted from the light emitting diodes 400 and convert wavelengths. For example, the first wavelength conversion particles 532 may convert light emitted from the light emitting diodes 400 into green light. That is, the first wavelength-converted particles 532 can convert the incident light into green light having a wavelength range of about 500 nm to about 600 nm.

상기 제 1 파장 변환 입자들은 화합물 반도체를 포함한다. 더 자세하게, 상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하는 나노 입자일 수 있다. 더 자세하게, 상기 제 1 파장 변환 입자들(532)은 양자점(QD, Quantum Dot)일 수 있다. 상기 양자점은 코어 나노 결정 및 상기 코어 나노 결정을 둘러싸는 껍질 나노 결정을 포함할 수 있다. 또한, 상기 양자점은 상기 껍질 나노 결정에 결합되는 유기 리간드를 포함할 수 있다. 또한, 상기 양자점은 상기 껍질 나노 결정을 둘러싸는 유기 코팅층을 포함할 수 있다.The first wavelength conversion particles include a compound semiconductor. More specifically, the first wavelength conversion particles may be nanoparticles containing compound semiconductors. More specifically, the first wavelength converting particles 532 may be a quantum dot (QD). The quantum dot may include core nanocrystals and shell nanocrystals surrounding the core nanocrystals. In addition, the quantum dot may include an organic ligand bound to the shell nanocrystal. In addition, the quantum dot may include an organic coating layer surrounding the shell nanocrystals.

상기 껍질 나노 결정은 두 층 이상으로 형성될 수 있다. 상기 껍질 나노 결정은 상기 코어 나노 결정의 표면에 형성된다. 상기 양자점은 상기 코어 나오 결정으로 입광되는 빛의 파장을 껍질층을 형성하는 상기 껍질 나노 결정을 통해서 파장을 길게 변환시키고 빛의 효율을 증가시길 수 있다.The shell nanocrystals may be formed of two or more layers. The shell nanocrystals are formed on the surface of the core nanocrystals. The quantum dot may convert the wavelength of the light incident on the core core crystal into a long wavelength through the shell nanocrystals forming the shell layer and increase the light efficiency.

상기 양자점은 Ⅱ족 화합물 반도체, Ⅲ족 화합물 반도체, Ⅴ족 화합물 반도체 그리고 VI족 화합물 반도체 중에서 적어도 한가지 물질을 포함할 수 있다. 보다 상세하게, 상기 코어 나노 결정은 Cdse, InGaP, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe 또는 HgS를 포함할 수 있다. 또한, 상기 껍질 나노 결정은 CuZnS, CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe 또는 HgS를 포함할 수 있다. 상기 양자점의 직경은 1 nm 내지 50 nm일 수 있다. The quantum dot may include at least one of a group II compound semiconductor, a group III compound semiconductor, a group V compound semiconductor, and a group VI compound semiconductor. More specifically, the core nanocrystals may include Cdse, InGaP, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe or HgS. The shell nanocrystals may include CuZnS, CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe or HgS. The diameter of the quantum dot may be 1 nm to 50 nm.

상기 양자점에서 방출되는 빛의 파장은 상기 양자점의 크기에 따라 조절이 가능하다. 상기 유기 리간드는 피리딘(pyridine), 메르캅토 알콜(mercapto alcohol), 티올(thiol), 포스핀(phosphine) 및 포스핀 산화물(phosphine oxide) 등을 포함할 수 있다. 상기 유기 리간드는 합성 후 불안정한 양자점을 안정화시키는 역할을 한다. 합성 후에 댕글링 본드(dangling bond)가 외곽에 형성되며, 상기 댕글링 본드 때문에, 상기 양자점이 불안정해 질 수도 있다. 그러나, 상기 유기 리간드의 한 쪽 끝은 비결합 상태이고, 상기 비결합된 유기 리간드의 한 쪽 끝이 댕글링 본드와 결합해서, 상기 양자점을 안정화 시킬 수 있다.The wavelength of the light emitted from the quantum dot can be adjusted according to the size of the quantum dot. The organic ligand may include pyridine, mercapto alcohol, thiol, phosphine, phosphine oxide, and the like. The organic ligands serve to stabilize unstable quantum dots after synthesis. After synthesis, a dangling bond is formed on the outer periphery, and the quantum dots may become unstable due to the dangling bonds. However, one end of the organic ligand is in an unbonded state, and one end of the unbound organic ligand bonds with the dangling bond, thereby stabilizing the quantum dot.

특히, 상기 양자점은 그 크기가 빛, 전기 등에 의해 여기되는 전자와 정공이 이루는 엑시톤(exciton)의 보어 반경(Bohr raidus)보다 작게 되면 양자구속효과가 발생하여 띄엄띄엄한 에너지 준위를 가지게 되며 에너지 갭의 크기가 변화하게 된다. 또한, 전하가 양자점 내에 국한되어 높은 발광효율을 가지게 된다. Particularly, when the quantum dot has a size smaller than the Bohr radius of an exciton formed by electrons and holes excited by light, electricity or the like, a quantum confinement effect is generated to have a staggering energy level and an energy gap The size of the image is changed. Further, the charge is confined within the quantum dots, so that it has a high luminous efficiency.

이러한 상기 양자점은 일반적 형광 염료와 달리 입자의 크기에 따라 형광파장이 달라진다. 즉, 입자의 크기가 작아질수록 짧은 파장의 빛을 내며, 입자의 크기를 조절하여 원하는 파장의 가시광선영역의 형광을 낼 수 있다. 또한, 일반적 염료에 비해 흡광계수(extinction coefficient)가 100~1000배 크고 양자효율(quantum yield)도 높으므로 매우 센 형광을 발생한다.Unlike general fluorescent dyes, the quantum dots vary in fluorescence wavelength depending on the particle size. That is, as the size of the particle becomes smaller, it emits light having a shorter wavelength, and the particle size can be adjusted to produce fluorescence in a visible light region of a desired wavelength. In addition, since the extinction coefficient is 100 to 1000 times higher than that of a general dye, and the quantum yield is also high, it produces very high fluorescence.

상기 양자점은 화학적 습식방법에 의해 합성될 수 있다. 여기에서, 화학적 습식방법은 유기용매에 전구체 물질을 넣어 입자를 성장시키는 방법으로서, 화학적 습식방법에 의해서, 상기 양자점이 합성될 수 있다.The quantum dot can be synthesized by a chemical wet process. Here, the chemical wet method is a method of growing particles by adding a precursor material to an organic solvent, and the quantum dots can be synthesized by a chemical wet method.

더 자세하게, 상기 제 1 파장 변환 입자들(532)로 청색 광을 녹색 광으로 변환시키는 양자점이 사용될 수 있다.More specifically, a quantum dot that converts blue light into green light by the first wavelength-converted particles 532 may be used.

더 자세하게, 상기 제 1 파장 변환 입자들(532)은 제 1 금속 원소 및 제 2 금속 원소를 포함하는 화합물 반도체를 포함한다. 이때, 상기 제 1 금속 원소 및 상기 제 2 금속 원소는 Ⅱ족 원소일 수 있다. 즉, 상기 제 1 금속 원소는 제 1 Ⅱ족 원소이고, 상기 제 2 금속 원소는 상기 제 1 Ⅱ족 원소와 다른 제 2 Ⅱ족 원소일 수 있다. 또한, 상기 화합물 반도체는 두 종류 이상의 금속 원소들을 포함한다. 즉, 상기 화합물 반도체는 제 3 금속 원소도 포함할 수 있다. 상기 화합물 반도체는 더 많은 종류의 금속 원소들을 포함할 수 있다.More specifically, the first wavelength conversion particles 532 include a compound semiconductor including a first metal element and a second metal element. At this time, the first metal element and the second metal element may be a group II element. That is, the first metal element may be a first group II element, and the second metal element may be a second group II element different from the first group II element. Further, the compound semiconductor includes two or more kinds of metal elements. That is, the compound semiconductor may also include a third metal element. The compound semiconductor may include more kinds of metal elements.

또한, 상기 화합물 반도체는 Ⅵ족 원소를 포함할 수 있다. 즉, 상기 화합물 반도체는 Ⅱ족-Ⅵ족계 화합물 반도체일 수 있다. 더 자세하게, 상기 화합물 반도체는 제 1 Ⅵ족 원소 및 상기 제 1 Ⅵ족 원소와 다른 제 2 Ⅵ족 원소를 포함할 수 있다.Further, the compound semiconductor may include a group VI element. That is, the compound semiconductor may be a group II-VI compound semiconductor. More specifically, the compound semiconductor may include a first VI group element and a second VI group element different from the first VI group element.

또한, 상기 제 1 금속 원소 및 상기 제 2 금속 원소는 Cd, Zn, Pb 또는 Hg 등의 금속으로부터 선택될 수 있다. 하지만, 이에 한정되지 않는다. 또한, 상기 제 1 Ⅵ족 원소 및 상기 제 2 Ⅵ족 원소는 S, Se 또는 Te 등으로부터 선택될 수 있다.The first metal element and the second metal element may be selected from metals such as Cd, Zn, Pb or Hg. However, it is not limited thereto. In addition, the first VI group element and the second VI group element may be selected from S, Se or Te.

또한, 상기 화합물 반도체는 아래의 화학식 1로 표시될 수 있다.The compound semiconductor may be represented by the following chemical formula (1).

화학식 1Formula 1

AXB1 - XCYD1 -Y A X B 1 - X C Y D 1 - Y

여기서, A는 Ⅱ족 원소이고, B는 A와 다른 Ⅱ족 원소이고, C는 Ⅵ족 원소이고, D는 C와 다른 Ⅵ족 원소이고, 0<X<1이고, 0<Y<1이다. 더 자세하게, A는 카드뮴이고, B는 아연일 수 있다.Where A is a Group II element, B is a Group II element other than A, C is a Group VI element, D is another Group VI element other than C, 0 <X <1 and 0 <Y <1. More specifically, A may be cadmium and B may be zinc.

더 자세하게, 상기 제 1 금속 원소는 카드뮴이고, 상기 제 2 금속 원소는 아연이고, 상기 제 1 Ⅵ족 원소는 셀레늄이고, 상기 제 2 Ⅵ족 원소는 황일 수 있다. 즉, 상기 화합물 반도체는 CdZnSeS계 화합물 반도체일 수 있다.More specifically, the first metal element may be cadmium, the second metal element may be zinc, the first group VI element may be selenium, and the second group VI element may be sulfur. That is, the compound semiconductor may be a CdZnSeS compound semiconductor.

도 4에 도시된 바와 같이, 상기 제 1 파장 변환 입자들(532)은 단일 입자 구조를 가질 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)은 다층 구조가 아닌, 단일 구조의 입자일 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)은 전체적으로 상기 화합물 반도체로 구성될 수 있다.As shown in FIG. 4, the first wavelength converting particles 532 may have a single particle structure. That is, the first wavelength conversion particles 532 may be a single structure particle, not a multi-layer structure. That is, the first wavelength-converted particles 532 may be formed of the compound semiconductor as a whole.

또한, 도 5에 도시된 바와 같이, 상기 제 1 파장 변환 입자들(532)은 나노 입자(532a) 및 상기 나노 입자(532a)의 주위에 보호막(532b)을 포함할 수 있다. 상기 보호막(532b)은 상기 나노 입자(532a)의 주위를 둘러싼다. 상기 보호막(532b)은 상기 나노 입자(532a)의 외부면에 증착된다. 즉, 상기 보호막(532b)은 상기 나노 입자(532a)의 외부 표면에 증착되어 형성될 수 있다. 즉, 상기 보호막(532b)은 상기 나노 입자(532a)의 외부면에 직접 배치된다. 상기 보호막(532b)은 상기 나노 입자(532a)의 외부면에 코팅된다. 상기 보호막(532b)은 상기 나노 입자(532a)의 외부면에 전체적으로 코팅될 수 있다. 5, the first wavelength-converted particles 532 may include nanoparticles 532a and a protective layer 532b around the nanoparticles 532a. The protective film 532b surrounds the nanoparticles 532a. The protective layer 532b is deposited on the outer surface of the nanoparticles 532a. That is, the protective layer 532b may be deposited on the outer surface of the nanoparticles 532a. That is, the protective layer 532b is disposed directly on the outer surface of the nanoparticles 532a. The protective layer 532b is coated on the outer surface of the nanoparticles 532a. The protective layer 532b may be entirely coated on the outer surface of the nanoparticles 532a.

이에 따라서, 상기 나노 입자(532a) 및 상기 보호막(532b)에 의해서, 나노 입자(532a) 복합체가 형성될 수 있다. 즉, 상기 나노 입자(532a) 복합체는 코어/껍질 구조를 가질 수 있다.Accordingly, the nanoparticle 532a complex can be formed by the nanoparticles 532a and the protective film 532b. That is, the nanoparticle (532a) composite may have a core / shell structure.

상기 보호막(532b)은 Ⅱ족-Ⅵ족계 화합물을 포함할 수 있다. 예를 들어, 상기 보호막(532b)은 CuZnS, CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe 또는 HgS를 포함할 수 있다.The protective layer 532b may include a Group II-VI-based compound. For example, the protective layer 532b may include CuZnS, CdSe, CdTe, CdS, ZnSe, ZnTe, ZnS, HgTe, or HgS.

상기 보호막(532b)은 금속 산화물을 포함할 수 있다. 더 자세하게, 상기 보호막(532b)은 금속 산화물로 이루어질 수 있다. 상기 금속 산화물은 상기 제 1 금속 원소 또는 상기 제 2 금속 원소의 산화물일 수 있다. 또한, 상기 금속 산화물은 Ⅱ족 원소의 산화물일 수 있다. 예를 들어, 상기 금속 산화물은 카드뮴 옥사이드 또는 징크 옥사이드일 수 있다.The protective layer 532b may include a metal oxide. More specifically, the protective film 532b may be formed of a metal oxide. The metal oxide may be an oxide of the first metal element or the second metal element. Further, the metal oxide may be an oxide of a Group II element. For example, the metal oxide may be cadmium oxide or zinc oxide.

상기 금속 산화물은 상기 제 1 금속 원소 및 상기 제 2 금속 원소 이외의 금속의 산화물일 수 있다. 예를 들어, 상기 금속 산화물은 틴 옥사이드, 알루미늄 옥사이드 또는 티타늄 옥사이드로부터 선택될 수 있다.The metal oxide may be an oxide of a metal other than the first metal element and the second metal element. For example, the metal oxide may be selected from tin oxide, aluminum oxide or titanium oxide.

상기 보호막(532b)은 증착에 의해서 형성될 수 있다. 상기 보호막(532b)이 형성되기 위해서, 상기 나노 입자(532a)가 용매에 균일하게 분산된다. 상기 용매는 유기 용매일 수 있다. 상기 용매의 예로서는 1-옥타데센(1-octadecene), 톨루엔(toluene) 또는 트리옥틸포스핀옥사이드(trioctylphosphine oxide) 등을 들 수 있다.The protective film 532b may be formed by vapor deposition. In order for the protective film 532b to be formed, the nanoparticles 532a are uniformly dispersed in the solvent. The solvent may be an organic solvent or a solvent. Examples of the solvent include 1-octadecene, toluene, trioctylphosphine oxide, and the like.

이후, 상기 나노 입자(532a)가 분산된 용매에 상기 보호막(532b)을 형성하기 위한 유기 금속 화합물이 첨가된다. 상기 유기 금속 화합물은 상기 보호막(532b)으로 사용되는 금속 산화물의 공급원이다. 첨가되는 유기 금속 화합물의 양은 상기 용매에 혼합된 나노 입자(532a)의 양 및 형성하고자 하는 보호막(532b)의 두께 등에 따라서 다양하게 조절될 수 있다.Then, an organic metal compound for forming the protective film 532b is added to a solvent in which the nanoparticles 532a are dispersed. The organometallic compound is a source of the metal oxide used as the protective film 532b. The amount of the organic metal compound to be added can be variously controlled depending on the amount of nanoparticles 532a mixed in the solvent and the thickness of the protective film 532b to be formed.

상기 유기 금속 화합물은 금속이 산소와 직접 결합된 구조를 가질 수 있다. 더 자세하게, 상기 유기 금속 화합물은 카르복실레이트 또는 알콕사이드일 수 있다. 즉, 상기 유기 금속 화합물은 카르복실산의 금속염 또는 알콜의 금속염일 수 있다.The organometallic compound may have a structure in which a metal is directly bonded to oxygen. More specifically, the organometallic compound may be a carboxylate or an alkoxide. That is, the organometallic compound may be a metal salt of a carboxylic acid or a metal salt of an alcohol.

예를 들어, 상기 유기 금속 화합물은 아세틱산(acetic acid), 올레산(oleic acid), 스테아르산(stearic acid), 미리스트산(myristic acid) 또는 라우르산(lauric acid)의 금속 착화합물일 수 있다. 이때, 상기 유기 금속 화합물에 포함되는 금속은 Ⅱ족 원소일 수 있다. 또한, 상기 유기 금속 화합물에 포함되는 금속의 예로서는 알루미늄, 주석 또는 티타늄 등을 들 수 있다.For example, the organometallic compound may be a metal complex of acetic acid, oleic acid, stearic acid, myristic acid, or lauric acid . At this time, the metal included in the organometallic compound may be a Group II element. Examples of the metal contained in the organic metal compound include aluminum, tin, and titanium.

상기 제 1 파장 변환 입자들(532)의 위치에 따라서, 상기 제 1 금속 원소의 함량 및 상기 제 2 금속 원소의 함량이 달라질 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)의 위치에 따라서, 상기 화합물 반도체의 조성이 달라질 수 있다. 더 자세하게, 상기 나노 입자(532a)는 전체적으로 상기 제 1 금속 원소 및 상기 제 2 금속 원소를 포함하면서도, 상기 나노 입자(532a)의 직경 방향을 기준으로 상기 제 1 금속 원소의 조성 및 상기 제 2 금속 원소의 조성이 달라질 수 있다.The content of the first metal element and the content of the second metal element may vary depending on the position of the first wavelength converting particles 532. [ That is, the composition of the compound semiconductor may be varied depending on the position of the first wavelength-converted particles 532. More specifically, the nanoparticles 532a include the first metal element and the second metal element as a whole, and the composition of the first metal element and the composition of the second metal 532a, The composition of the element may be changed.

예를 들어, 상기 제 1 금속 원소의 함량은 상기 나노 입자(532a)의 중심으로부터 외곽으로 진행될수록 점점 더 작아질 수 있다. 또한, 상기 제 2 금속 원소의 함량은 상기 나노 입자(532a)의 중심으로부터 외곽으로 진행될수록 점점 더 커질 수 있다.For example, the content of the first metal element may become smaller as the nanoparticle 532a moves from the center to the outer periphery thereof. In addition, the content of the second metal element may be gradually increased from the center of the nanoparticle 532a to the outer periphery thereof.

예를 들어, 상기 화학식 1에서, 상기 나노 입자(532a)의 중심으로부터 외곽으로 진행될수록 X는 점점 더 작아질 수 있다.For example, in the above Formula 1, as the nanoparticles 532a move from the center to the outer periphery, X may become smaller and smaller.

더 자세하게, 상기 제 1 금속 원소가 카드뮴인 경우, 도 6에 도시된 바와 같이, 상기 카드뮴의 조성은 중심으로부터 외곽으로 멀어질수록 점점 작아질 수 있다.More specifically, when the first metal element is cadmium, as shown in FIG. 6, the composition of the cadmium can be gradually decreased from the center to the outer periphery.

즉, 상기 화합물 반도체가 CdZnSeS계 화합물 반도체인 경우, 상기 나노 입자(532a)의 중심 부분에서는 카드뮴의 조성이 아연의 조성보다 훨씬 더 높고, 외곽 부분에서는 카드뮴의 조성이 아연의 조성보다 훨씬 낮을 수 있다. 또한, 상기 나노 입자(532a)의 중심으로부터의 거리에 따라서, 상기 카드뮴의 조성은 비선형적으로 감소될 수 있다. 특히, 상기 카드뮴의 조성은 상기 나노 입자(532a)의 중심으로부터 멀어질수록 둘 이상의 변곡점을 가지도록 감소될 수 있다.That is, when the compound semiconductor is a CdZnSeS compound semiconductor, the composition of cadmium is much higher than that of zinc at the central portion of the nanoparticle 532a, and the composition of cadmium at the outer portion is much lower than that of zinc . Further, depending on the distance from the center of the nanoparticles 532a, the composition of the cadmium can be reduced non-linearly. In particular, the composition of cadmium may be reduced to have two or more inflection points as the distance from the center of the nanoparticles 532a increases.

상기 제 1 파장 변환 입자들(532)을 형성하기 위해서, 용매에서 두 종류 이상의 금속 전구체들 및 한 종류 이상의 Ⅵ족 원소 전구체들이 첨가되고 혼합된다.In order to form the first WTR 532, two or more metal precursors and one or more Group VI precursors in a solvent are added and mixed.

상기 용매는 1-옥타데센(1-octadecene), 톨루엔(toluene) 또는 트리옥틸포스핀옥사이드(trioctylphosphine oxide) 등과 같은 유기 용매가 사용될 수 있으나, 이에 한정되는 것은 아니다. The solvent may be an organic solvent such as 1-octadecene, toluene or trioctylphosphine oxide, but is not limited thereto.

상기 금속 전구체들은 제 1 금속 전구체 및 제 2 금속 전구체일 수 있다. 더 자세하게, 상기 금속 전구체들은 Ⅱ족 금속 전구체일 수 있다. 상기 금속 전구체들의 예로서는 알킬카르복실 산 금속 착화합물(alkylcarboxylic acid metal complex)물질일 수 있다. 예를 들어, 금속 전구체들은 올레산(oleic acid), 스테아르산(stearic acid), 미리스트산(myristic acid) 또는 라우르산(lauric acid)의 금속 착화합물 일 수 있다. 특히, 상기 금속 전구체들은 상기 알킬카르복실 산의 카드뮴 (Cd) 착화합물 또는 아연 (Zn) 착화합물일 수 있다. 또한, 상기 금속 전구체들은 금속의 수산화물일 수 있다. 예를 들어, 상기 금속 전구체들의 예로서는 수산화 카드뮴(Cd(OH)2), 산화 카드뮴 (CdO), 수산화 아연(Zn(OH)2) 또는 산화 아연(ZnO) 등을 들 수 있다.The metal precursors may be a first metal precursor and a second metal precursor. More specifically, the metal precursors may be Group II metal precursors. Examples of the metal precursors may be alkylcarboxylic acid metal complex materials. For example, the metal precursors may be metal complexes of oleic acid, stearic acid, myristic acid or lauric acid. In particular, the metal precursors may be cadmium (Cd) or zinc (Zn) complexes of the alkylcarboxylic acid. The metal precursors may also be hydroxides of metals. For example, examples of the metal precursors include Cd (OH) 2 , CdO, Zn (OH) 2 , and ZnO.

상기 제 1 금속 전구체는 카드뮴을 포함하고, 상기 제 2 금속 전구체는 아연을 포함할 수 있다. 예를 들어, 상기 제 1 금속 전구체는 상기 알킬카르복실 산의 카드뮴 (Cd) 착화합물, 수산화 카드뮴(Cd(OH)2) 또는 산화 카드뮴 (CdO)일 수 있다. 또나, 상기 제 2 금속 전구체는 상기 알킬카르복실 산의 아연 착화합물, 수산화 아연(Zn(OH)2) 또는 산화 아연(ZnO) 일 수 있다.The first metal precursor may comprise cadmium and the second metal precursor may comprise zinc. For example, the first metal precursor may be a cadmium (Cd) complex of the alkylcarboxylic acid, cadmium hydroxide (Cd (OH) 2 ) or cadmium oxide (CdO). Alternatively, the second metal precursor may be a zinc complex compound of the alkylcarboxylic acid, zinc hydroxide (Zn (OH) 2 ), or zinc oxide (ZnO).

상기 Ⅵ족 원소 전구체들은 Ⅵ족 원소의 화합물일 수 있다. 더 자세하게, 상기 Ⅵ족 원소 전구체들은 셀레늄(Se), 황(S) 또는 텔레륨(Te)의 화합물 일 수 있다. 더 자세하게, 상기 Ⅵ족 원소 전구체들의 예로서는 트리옥틸포스핀셀레늄(TOPSe), 트리옥틸포스핀황(TOPS), 트리옥틸포스핀텔루륨(TOPTe), 트리부틸포스핀셀레늄(TBPSe), 트리부틸포스핀황(TBPS), 트리부틸포스핀텔레늄(TBPTe), 트리이소프로필포스핀셀레늄(TPPSe), 트리이소프로필포스핀황(TPPS) 또는 트리이소프로필포스핀텔레늄(TPPTe) 등을 들 수 있으나, 이에 한정되는 것은 아니다.The Group VI precursors may be compounds of Group VI elements. More precisely, the Group VI element precursors may be compounds of selenium (Se), sulfur (S) or tellurium (Te). More specifically, examples of the Group VI element precursors include trioctylphosphine selenium (TOPSe), trioctylphosphinic sulfur (TOPS), trioctylphosphine ternary (TOPTe), tributylphosphine selenium (TBPSe), tributylphosphinic (TPPS), triisopropylphosphine (TPPS), triisopropylphosphonium (TPPS), and the like can be mentioned. However, It is not.

또한, 상기 반응 용액에는 계면 활성제가 더 첨가될 수 있다.Further, a surfactant may be further added to the reaction solution.

또한, 상기 반응 용액에는 친핵성 촉매가 더 포함될 수 있다. 상기 친핵성 촉매는 상기 반응 용액에서의 반응 속도를 조절할 수 있다. 상기 친핵성 촉매로 아민 또는 포스핀 등이 사용될 수 있다. 더 자세하게, 상기 친핵성 촉매로 사용되는 물질의 예로서는 알킬 아민(alkylamine) 또는 알킬 포스핀(alkylphosphin) 등을 들 수 있다. 더 자세하게, 상기 친핵성 촉매로 사용되는 물질의 예로서는 헥실아민(hexylamine), 옥틸아민(octylamine), 다이헥실아민(dihexylamine), 다이옥틸아민(dioctylamine), 올레일아민(oleylamine), 다이옥틸포스핀(dioctylphosphine), 트리옥틸포스핀(trioctylphosphine) 또는 물 등을 들 수 있다.Further, the reaction solution may further include a nucleophilic catalyst. The nucleophilic catalyst can control the reaction rate in the reaction solution. As the nucleophilic catalyst, amine or phosphine may be used. More specifically, examples of the substance used as the nucleophilic catalyst include alkylamines or alkylphosphines. More specifically, examples of the substance used as the nucleophilic catalyst include hexylamine, octylamine, dihexylamine, dioctylamine, oleylamine, dioctylphosphine dioctylphosphine, trioctylphosphine or water.

이후, 상기 반응 용액은 가열된다. 상기 반응 용액의 가열 속도는 약 20℃/분 내지 약 30℃/분 일 수 있다. 또한, 상기 반응 용액은 상온에서 약 50℃ 내지 약 400℃의 온도까지 가열될 수 있다. 더 자세하게, 상기 반응 용액은 약 180℃ 내지 약 310℃의 온도까지 가열될 수 있다.Thereafter, the reaction solution is heated. The heating rate of the reaction solution may be about 20 [deg.] C / min to about 30 [deg.] C / min. Further, the reaction solution may be heated at a room temperature to a temperature of about 50 캜 to about 400 캜. More specifically, the reaction solution may be heated to a temperature of about 180 ° C to about 310 ° C.

또한, 상기 반응 용액은 약 190℃ 내지 약 210℃의 온도까지 상승될 수 있다. 또한, 상기 반응 용액은 약 220℃ 내지 약 230℃의 온도까지 상승될 수 있다. 또한, 상기 반응 용액은 약 245℃ 내지 약 255℃의 온도까지 상승될 수 있다. 상기 반응 용액은 약 270℃ 내지 약 280℃의 온도까지 상승될 수 있다. 상기 반응 용액은 약 290℃ 내지 약 310℃의 온도까지 상승될 수 있다.Also, the reaction solution may be elevated to a temperature of about 190 &lt; 0 &gt; C to about 210 &lt; 0 &gt; C. Also, the reaction solution may be raised to a temperature of about 220 &lt; 0 &gt; C to about 230 &lt; 0 &gt; C. Further, the reaction solution may be elevated to a temperature of about 245 ° C to about 255 ° C. The reaction solution may be raised to a temperature of about 270 &lt; 0 &gt; C to about 280 &lt; 0 &gt; C. The reaction solution may be raised to a temperature of about 290 ° C to about 310 ° C.

또한, 상기 반응 용액은 일정 온도까지 상승된 후, 약 1분 내지 약 15분 동안 온도를 유지할 수 있다.Further, the reaction solution may be maintained at a temperature for about 1 minute to about 15 minutes after being raised to a predetermined temperature.

이에 따라서, 본 상기 제 1 파장 변환 입자들(532)이 형성된다. 이때, 상기 제 1 금속 전구체에 포함된 제 1 금속 원소 및 상기 제 2 금속 전구체에 포함된 제 2 금속 원소를 포함하는 화합물 반도체가 형성된다.Accordingly, the first wavelength conversion particles 532 are formed. At this time, a compound semiconductor including a first metal element included in the first metal precursor and a second metal element included in the second metal precursor is formed.

특히, 상기 제 1 금속 전구체가 카드뮴 화합물이고, 상기 제 2 금속 전구체가 아연 화합물인 경우, 카드뮴의 반응 속도 상수가 훨씬 크다. 이에 따라서, 반응 초기에는 카드뮴이 주로 황 및/또는 셀레늄과 반응하기 때문에, 상기 나노 입자(532a)의 중심 부분에는 카드뮴의 함량이 매우 높게 된다. 또한, 카드뮴이 반응함에 따라서, 카드뮴 화합물의 농도가 낮아지고, 카드뮴의 반응속도가 감소될 수 있다. 이에 따라서, 상기 나노 입자(532a)의 외곽으로 갈수록 카드뮴의 조성이 낮아지고, 아연의 함량이 높아지게 된다.Particularly, when the first metal precursor is a cadmium compound and the second metal precursor is a zinc compound, the reaction rate constant of cadmium is much larger. Accordingly, since cadmium mainly reacts with sulfur and / or selenium at the beginning of the reaction, the content of cadmium in the center portion of the nanoparticles 532a becomes very high. Also, as cadmium reacts, the concentration of the cadmium compound may be lowered and the reaction rate of cadmium may be decreased. Accordingly, the composition of the cadmium is lowered toward the periphery of the nanoparticles 532a, and the content of zinc is increased.

이후, 상기 반응 용액은 냉각될 수 있다. 상기 반응 용액은 상온까지 급속하게 냉각될 수 있다. 예를 들어, 상기 반응 용액은 약 100℃/분의 속도로 냉각될 수 있다.Thereafter, the reaction solution can be cooled. The reaction solution can be rapidly cooled to room temperature. For example, the reaction solution may be cooled at a rate of about 100 ° C / minute.

상기 제 1 파장 변환 입자들(532)은 두 종류 이상의 금속 원소들을 포함하는 화합물 반도체를 포함한다. 이에 따라서, 상기 제 1 파장 변환 입자들(532)은 각각의 금속 원소의 조성에 따라서, 밴드갭 에너지를 적절하게 조절할 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)은 직경에 제한되지 않고, 밴드갭 에너지를 자유롭게 조절할 수 있다. 따라서, 상기 제 1 파장 변환 입자들(532)은 큰 직경을 가지면서도 긴 파장대의 광을 발생시킬 수 있다.The first wavelength conversion particles 532 include compound semiconductors including two or more kinds of metal elements. Accordingly, the first wavelength conversion particles 532 can appropriately adjust the band gap energy according to the composition of each metal element. That is, the first wavelength conversion particles 532 are not limited to the diameter, but can freely adjust the band gap energy. Accordingly, the first wavelength-converted particles 532 can generate light having a large diameter and a long wavelength band.

예를 들어, 상기 제 1 파장 변환 입자들(532)는 약 2㎚ 내지 약 8㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 500㎚ 내지 약 600㎚의 파장을 가지는 광으로 변환시킬 수 있다.For example, the first wavelength converting particles 532 may have a diameter of about 2 nm to about 8 nm, and may have a wavelength of about 500 nm to about 600 nm incident light having a wavelength of about 300 nm to about 400 nm Can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 2㎚ 내지 약 3㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 500㎚ 내지 약 510㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength converting particles 532 have a diameter of about 2 nm to about 3 nm, and incident light having a wavelength of about 300 nm to about 400 nm is incident on the first wavelength converting particles 532 having a wavelength of about 500 nm to about 510 nm It can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 3㎚ 내지 약 4㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 520㎚ 내지 약 530㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength converting particles 532 have a diameter of from about 3 nm to about 4 nm, incident light having a wavelength of from about 300 nm to about 400 nm at a wavelength of from about 520 nm to about 530 nm It can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 3.5㎚ 내지 약 4.5㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 540㎚ 내지 약 550㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength converting particles 532 have a diameter of about 3.5 nm to about 4.5 nm, and incident light having a wavelength of about 300 nm to about 400 nm is incident on the first wavelength converting particles 532 having a wavelength of about 540 nm to about 550 nm It can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 4.5㎚ 내지 약 5.5㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 555㎚ 내지 약 565㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength-converted particles 532 have a diameter of about 4.5 nm to about 5.5 nm, and incident light having a wavelength of about 300 nm to about 400 nm is incident on the first wavelength-converted particles 532 having a wavelength of about 555 nm to about 565 nm It can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 5.5㎚ 내지 약 6.5㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 570㎚ 내지 약 580㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength converting particles 532 have a diameter of from about 5.5 nm to about 6.5 nm, and incident light having a wavelength of from about 300 nm to about 400 nm is emitted at a wavelength of about 570 nm to about 580 nm It can be converted into light.

더 자세하게, 상기 제 1 파장 변환 입자들(532)는 약 6.5㎚ 내지 약 7.5㎚의 직경을 가지고, 약 300㎚ 내지 약 400㎚의 파장을 가지는 입사광을 약 580㎚ 내지 약 590㎚의 파장을 가지는 광으로 변환시킬 수 있다.More specifically, the first wavelength converting particles 532 have a diameter of from about 6.5 nm to about 7.5 nm, and incident light having a wavelength of from about 300 nm to about 400 nm is emitted at a wavelength of about 580 nm to about 590 nm It can be converted into light.

또한, 상기 제 1 파장 변환 입자들(532)은 중심에 가까울수록 반응성이 높은 금속 원소의 조성이 높아지고, 외곽에 가까울수록 반응성이 낮은 금속 원소의 조성이 높아질 수 있다. 이에 따라서, 상기 제 1 파장 변환 입자들(532)은 높은 안정성을 가질 수 있다. 즉, 상기 제 1 파장 변환 입자들(532)은 단일 입자 구조를 가지면서도 높은 안정성을 가질 수 있다.In addition, the first wavelength-converted particles 532 have a higher composition of the metal element having higher reactivity as it is closer to the center, and a lower-reactive metal element as the closer to the outer periphery thereof. Accordingly, the first wavelength-converted particles 532 may have high stability. That is, the first wavelength conversion particles 532 may have a single particle structure and a high stability.

상기 제 2 파장 변환 입자들(533)은 상기 호스트층(531) 내에 배치된다. 더 자세하게, 상기 제 2 파장 변환 입자들(533)은 상기 호스트층 내에 균일하게 분산될 수 있다.The second wavelength conversion particles 533 are disposed in the host layer 531. More specifically, the second wavelength conversion particles 533 can be uniformly dispersed in the host layer.

상기 제 2 파장 변환 입자들(533)은 상기 제 1 파장 변환 입자들(532)보다 더 큰 직경을 가질 수 있다. 더 자세하게, 상기 제 2 파장 변환 입자들(533)의 직경은 약 1㎛ 내지 약 50㎛일 수 있다.The second wavelength conversion particles 533 may have a larger diameter than the first wavelength conversion particles 532. More specifically, the diameter of the second wavelength conversion particles 533 may be about 1 [mu] m to about 50 [mu] m.

상기 제 2 파장 변환 입자들(533)은 상기 발광다이오드들(400)로부터 출사되는 광의 파장을 변환시킨다. 상기 제 2 파장 변환 입자들(533)은 상기 발광다이오드들(400)로부터 출사되는 광을 입사받아, 파장을 변환시킨다. 예를 들어, 상기 제 2 파장 변환 입자들(533)은 상기 발광다이오드들(400)로부터 출사되는 광을 적색 광으로 변환시킬 수 있다. 즉, 상기 제 2 파장 변환 입자들(533)은 상기 광을 약 600㎚ 내지 약 700㎚ 사이의 파장대를 가지는 적색 광으로 변환시킬 수 있다.The second wavelength conversion particles 533 convert the wavelength of the light emitted from the light emitting diodes 400. The second wavelength conversion particles 533 receive light emitted from the light emitting diodes 400 and convert wavelengths. For example, the second wavelength conversion particles 533 may convert the light emitted from the light emitting diodes 400 into red light. That is, the second wavelength conversion particles 533 can convert the light into red light having a wavelength range of about 600 nm to about 700 nm.

상기 제 2 파장 변환 입자들(533)은 적색 형광체일 수 있다. 예를 들어, 상기 적색 형광체의 예로서는 프라세오디뮴 또는 알루미늄이 도핑된 스트론튬 티타늄 옥사이드계 형광체(예를 들어, SrTiO3:Pr,Al) 또는 프라세오디뮴이 도핑된 칼슘 티타늄 옥사이드계 형광체(예를 들어, CaTiO3:Pr) 등을 들 수 있다.The second wavelength conversion particles 533 may be a red phosphor. For example, examples of the red phosphors include praseodymium or aluminum-doped strontium titanium oxide phosphors (e.g., SrTiO3: Pr, Al) or praseodymium doped calcium titanate phosphors (e.g., CaTiO3: Pr) And the like.

상기 분산성 향상 입자들(535)은 상기 호스트층(531) 내에 배치된다. 상기 분산성 향상 입자들(535)은 상기 호스트층(531) 내에 균일하게 분산될 수 있다. 상기 분산성 향상 입자들(535)은 상기 제 1 파장 변환 입자들(532) 및 상기 제 2 파장 변환 입자들(533) 사이에 균일하게 분산될 수 있다.The dispersion enhancing particles 535 are disposed in the host layer 531. The dispersion enhancing particles 535 may be uniformly dispersed in the host layer 531. The dispersion enhancing particles 535 may be uniformly dispersed between the first wavelength conversion particles 532 and the second wavelength conversion particles 533. [

상기 분산성 향상 입자들(535)은 투명할 수 있다. 상기 분산성 향상 입자들(535)은 무기 물질을 포함할 수 있다. 더 자세하게, 상기 분산성 향상 입자들(535)로 사용되는 물질의 예로서는 실리콘 옥사이드 등과 같은 산화물을 들 수 있다. 예를 들어, 상기 분산성 향상 입자들(535)로 실리카 입자들이 사용될 수 있다.The dispersibility improving particles 535 may be transparent. The dispersibility improving particles 535 may include an inorganic material. More specifically, examples of the material used as the dispersibility improving particles 535 include oxides such as silicon oxide and the like. For example, silica particles may be used as the dispersion enhancing particles 535.

상기 분산성 향상 입자들(535)의 직경은 약 10㎚ 내지 약 10㎛일 수 있다. 또한, 상기 분산성 향상 입자들(535)은 상기 호스트층(531)에 약 0.5wt% 내지 약 5wt%의 비율로 포함될 수 있다.The diameter of the dispersion enhancing particles 535 may be about 10 nm to about 10 탆. In addition, the dispersion improving particles 535 may be included in the host layer 531 at a ratio of about 0.5 wt% to about 5 wt%.

상기 분산성 향상 입자들(535)은 상기 호스트층(531) 내에서 상기 제 1 파장 변환 입자들(532) 및 상기 제 2 파장 변환 입자들(533)의 분산성을 향상시키는 기능을 수행할 수 있다. 또한, 상기 분산성 향상 입자들(535)은 입사광의 경로를 변경시키는 산란 입자 기능을 수행할 수 있다.The dispersion enhancing particles 535 may function to improve dispersibility of the first wavelength conversion particles 532 and the second wavelength conversion particles 533 in the host layer 531 have. In addition, the dispersibility improving particles 535 may function as a scattering particle to change the path of incident light.

상기 파장 변환 부재(501)는 다음과 같은 공정에 의해서 형성될 수 있다.The wavelength converting member 501 may be formed by the following process.

도 7을 참조하면, 다수 개의 제 2 파장 변환 입자들(533)이 실리콘계 수지, 에폭시계 수지 또는 아크릴계 수지 등에 균일하게 분산된다. 이때, 상기 제 2 파장 변환 입자들(533)는 초음파 분산에 의해서 분산될 수 있다. 즉, 상기 제 2 파장 변환 입자들에 초음파가 인가되어, 상기 제 2 파장 변환 입자들이 작은 직경을 가지도록 분쇄될 수 있다.Referring to FIG. 7, a plurality of second wavelength conversion particles 533 are uniformly dispersed in a silicone resin, an epoxy resin, an acrylic resin, or the like. At this time, the second wavelength conversion particles 533 may be dispersed by ultrasonic dispersion. That is, ultrasonic waves may be applied to the second wavelength conversion particles, and the second wavelength conversion particles may be pulverized to have a small diameter.

이때, 상기 제 2 파장 변환 입자들(533)은 형광체를 포함하기 때문에, 상기 초음파 분산과 같은 격렬하게 분산되더라도 자체적인 성능이 저하되지 않는다. 즉, 상기 제 1 파장 변환 입자들(532)이 포함되지 않는 상황에서, 상기 제 2 파장 변환 입자들(533)이 먼저 격렬한 방법으로 분산될 수 있다.At this time, since the second wavelength conversion particles 533 include phosphors, their performance is not deteriorated even if the second wavelength conversion particles 533 are dispersed violently like the ultrasonic dispersion. That is, in a situation where the first wavelength conversion particles 532 are not included, the second wavelength conversion particles 533 may be dispersed first in a violent manner.

이후, 상기 제 2 파장 변환 입자들(533)이 분산된 수지 조성물에 분산성 향상 입자들(535)이 첨가된다. 상기 분산성 향상 입자들(535)은 상기 수지 조성물의 점도를 증가시킬 수 있다. 이에 따라서, 상기 분산성 향상 입자들(535)은 상기 제 2 파장 변환 입자들(533)이 다시 응집되는 현상을 방지할 수 있다. 즉, 상기 분산성 향상 입자들(535)은 상기 제 2 파장 변환 입자들(533)의 분산성을 유지시키는 기능을 수행할 수 있다.Then, dispersion improving particles 535 are added to the resin composition in which the second wavelength converting particles 533 are dispersed. The dispersibility improving particles 535 may increase the viscosity of the resin composition. Accordingly, the dispersion enhancing particles 535 can prevent the second wavelength conversion particles 533 from coagulating again. That is, the dispersion enhancing particles 535 may function to maintain dispersibility of the second wavelength conversion particles 533.

상기 분산성 향상 입자들(535)은 상기 수지 조성물에 약 0.5wt% 내지 약 5wt%의 비율로 첨가될 수 있다.The dispersion improving particles 535 may be added to the resin composition at a ratio of about 0.5 wt% to about 5 wt%.

이후, 상기 수지 조성물에 상기 제 1 파장 변환 입자들(532)이 첨가된다. 상기 제 1 파장 변환 입자들(532)은 상기 제 2 파장 변환 입자들(532)보다 덜 격렬한 방법에 의해서 상기 수지 조성물에 분산될 수 있다.Then, the first wavelength conversion particles 532 are added to the resin composition. The first wavelength conversion particles 532 may be dispersed in the resin composition by a method less intense than the second wavelength conversion particles 532. [

이후, 도 8을 참조하면, 상기 수지 조성물은 하부 기판(510) 상에 균일하게 코팅된다. 상기 수지 조성물은 슬릿 코팅, 스핀 코팅 또는 스프레이 코팅 등에 의해서 상기 하부 기판(510)의 상면에 코팅될 수 있다.Referring to FIG. 8, the resin composition is uniformly coated on the lower substrate 510. The resin composition may be coated on the upper surface of the lower substrate 510 by slit coating, spin coating, spray coating, or the like.

이후, 상기 제 2 파장 변환 입자들(533)이 침전된 후, 상기 코팅된 수지 조성물은 광 및/또는 열에 의해서 경화되고, 파장 변환층이 형성된다.Thereafter, after the second wavelength conversion particles 533 are precipitated, the coated resin composition is cured by light and / or heat, and a wavelength conversion layer is formed.

이후, 상기 파장 변환층(530) 상에 상부 기판(520)이 라미네이트되고, 실링부가 형성된다. 이에 따라서, 상기 파장 변환 부재(501)가 형성될 수 있다.Then, the upper substrate 520 is laminated on the wavelength conversion layer 530, and a sealing portion is formed. Accordingly, the wavelength converting member 501 can be formed.

상기 실링부(540)는 상기 파장 변환층(530) 측면에 배치된다. 더 자세하게, 상기 실링부(540)는 상기 파장 변환층(530)의 측면을 덮는다. 더 자세하게, 상기 실링부(540)는 상기 하부 기판(510) 및 상기 상부 기판(520)의 측면에도 배치된다. 더 자세하게, 상기 실링부(540)는 상기 하부 기판(510) 및 상기 상부 기판(520)의 측면을 덮는다.The sealing portion 540 is disposed on the side of the wavelength conversion layer 530. More specifically, the sealing portion 540 covers the side surface of the wavelength conversion layer 530. More specifically, the sealing portion 540 is disposed on the side surfaces of the lower substrate 510 and the upper substrate 520. More specifically, the sealing portion 540 covers the side surfaces of the lower substrate 510 and the upper substrate 520.

또한, 상기 실링부(540)는 상기 파장 변환층(530), 상기 하부 기판(510) 및 상기 상부 기판(520)의 측면에 접착될 수 있다. 상기 실링부(540)는 상기 파장 변환층(530), 상기 하부 기판(510) 및 상기 상부 기판(520)의 측면에 밀착된다.The sealing portion 540 may be adhered to the side surfaces of the wavelength conversion layer 530, the lower substrate 510, and the upper substrate 520. The sealing portion 540 is in close contact with the side surfaces of the wavelength conversion layer 530, the lower substrate 510, and the upper substrate 520.

이에 따라서, 상기 실링부(540)는 상기 파장 변환층(530)의 측면을 밀봉할 수 있다. 즉, 상기 실링부(540)는 상기 파장 변환층(530)을 외부의 화학적인 충격으로부터 보호하는 보호부이다.Accordingly, the sealing portion 540 can seal the side surface of the wavelength conversion layer 530. That is, the sealing portion 540 protects the wavelength conversion layer 530 from external chemical impact.

또한, 상기 파장 변환 부재(501)는 제 1 무기 보호막 및 제 2 무기 보호막을 더 포함할 수 있다. 상기 제 1 무기 보호막은 상기 하부 기판(510)의 하면에 코팅되고, 상기 제 2 무기 보호막은 상기 상부 기판(520)의 상면에 코팅될 수 있다. 상기 제 1 무기 보호막 및 상기 제 2 무기 보호막으로 사용되는 물질의 예로서는 실리콘 옥사이드 등을 들 수 있다.In addition, the wavelength conversion member 501 may further include a first inorganic protective film and a second inorganic protective film. The first inorganic protective film may be coated on the lower surface of the lower substrate 510 and the second inorganic protective film may be coated on the upper surface of the upper substrate 520. Examples of the material used as the first inorganic protective film and the second inorganic protective film include silicon oxide and the like.

상기 확산 시트(502)는 상기 파장 변환 부재(501) 상에 배치된다. 상기 확산 시트(502)는 통과되는 광의 균일도를 향상시킨다. 상기 확산 시트(502)는 다수 개의 비드들을 포함할 수 있다.The diffusion sheet 502 is disposed on the wavelength conversion member 501. The diffusion sheet 502 improves the uniformity of light passing therethrough. The diffusion sheet 502 may include a plurality of beads.

상기 제 1 프리즘 시트(503)는 상기 확산 시트(502) 상에 배치된다. 상기 제 2 프리즘 시트(504)는 상기 제 1 프리즘 시트(503) 상에 배치된다. 상기 제 1 프리즘 시트(503) 및 상기 제 2 프리즘 시트(504)는 통과하는 광의 직진성을 증가시킨다.The first prism sheet 503 is disposed on the diffusion sheet 502. The second prism sheet 504 is disposed on the first prism sheet 503. The first prism sheet 503 and the second prism sheet 504 increase the straightness of light passing therethrough.

상기 액정패널(20)은 상기 광학시트들(500)상에 배치된다. 또한, 상기 액정패널(20)은 패널 가이드(23) 상에 배치된다. 상기 액정패널(20)은 상기 패널 가이드(23)에 의해서 가이드될 수 있다.The liquid crystal panel 20 is disposed on the optical sheets 500. Further, the liquid crystal panel 20 is disposed on the panel guide 23. The liquid crystal panel 20 may be guided by the panel guide 23.

상기 액정패널(20)은 통과하는 광의 세기를 조절하여 영상을 표시한다. 즉, 상기 액정패널(20)은 상기 백라이트 유닛(10)으로부터 출사되는 광을 사용하여, 영상을 표시하는 표시패널이다. 상기 액정패널(20)은 TFT기판(21), 컬러필터기판(22), 두 기판들 사이에 개재되는 액정층을 포함한다. 또한, 상기 액정패널(20)은 편광필터들을 포함한다.The liquid crystal panel 20 displays an image by adjusting the intensity of light passing through the liquid crystal panel 20. That is, the liquid crystal panel 20 is a display panel for displaying an image using light emitted from the backlight unit 10. [ The liquid crystal panel 20 includes a TFT substrate 21, a color filter substrate 22, and a liquid crystal layer interposed between the two substrates. In addition, the liquid crystal panel 20 includes polarizing filters.

도면에는 상세히 도시되지 않았지만, 상기 TFT기판(21) 및 컬러필터기판(22)을 상세히 설명하면, 상기 TFT기판(21)은 복수의 게이트 라인 및 데이터 라인이 교차하여 화소를 정의하고, 각각의 교차영역마다 박막 트랜지스터(TFT : thin flim transistor)가 구비되어 각각의 픽셀에 실장된 화소전극과 일대일 대응되어 연결된다. 상기 컬러필터기판(22)은 각 픽셀에 대응되는 R, G, B 컬러의 컬러필터, 이들 각각을 테두리 하며 게이트 라인과 데이터 라인 및 박막 트랜지스터 등을 가리는 블랙 매트릭스와, 이들 모두를 덮는 공통전극을 포함한다.Although not shown in detail in the drawings, the TFT substrate 21 and the color filter substrate 22 will be described in detail. The TFT substrate 21 defines pixels by intersecting a plurality of gate lines and data lines, A thin film transistor (TFT) is provided for each region and is connected in a one-to-one correspondence with the pixel electrodes mounted on the respective pixels. The color filter substrate 22 includes color filters of R, G and B colors corresponding to the respective pixels, a black matrix for covering the gate lines, the data lines, the thin film transistors, etc., .

액정패널(20)의 가장자리에는 게이트 라인 및 데이터 라인으로 구동신호를 공급하는 구동 PCB(25)가 구비된다.A driving PCB 25 for supplying a driving signal to the gate line and the data line is provided at the edge of the liquid crystal panel 20.

상기 구동 PCB(25)는 COF(Chip on film, 24)에 의해 액정패널(20)과 전기적으로 연결된다. 여기서, 상기 COF(24)는 TCP(Tape Carrier Package)로 변경될 수 있다.The drive PCB 25 is electrically connected to the liquid crystal panel 20 by a chip on film (COF) 24. Here, the COF 24 may be changed to a TCP (Tape Carrier Package).

앞서 설명한 바와 같이, 상기 제 1 파장 변환 입자들(532) 및 상기 제 2 파장 변환 입자들(533)은 하나의 호스트층(531)에 포함된다. 특히, 상기 제 1 파장 변환 입자들(532)은 양자점이고, 상기 제 2 파장 변환 입자들(533)은 형광체를 포함할 수 있다. 또한, 상기 제 1 파장 변환 입자들(532)은 입사광을 제 1 파장 대의 광으로 변환시키고, 상기 제 2 파장 변환 입자들(533)은 입사광을 제 2 파장 대의 광으로 변환시킬 수 있다.As described above, the first wavelength-converted particles 532 and the second wavelength-converted particles 533 are included in one host layer 531. In particular, the first wavelength conversion particles 532 may be a quantum dot, and the second wavelength conversion particles 533 may include a phosphor. In addition, the first wavelength conversion particles 532 convert incident light into light of a first wavelength band, and the second wavelength conversion particles 533 convert incident light into light of a second wavelength band.

또한, 상기 파장 변환 부재(501)를 형성하기 위해서, 형광체가 먼저 첨가되고, 상기 분산성 향상 입자들(535)이 사용될 수 있다. 이에 따라서, 기계적인 충격에 강한 형광체가 먼저 분산되고, 상기 분산성 향상 입자들(535)이 형광체의 응집을 막을 수 있다. 따라서, 상기 파장 변환 부재(501)의 제조방법은 형광체 및 양자점 등을 용이하게 분산시킬 수 있다.Further, in order to form the wavelength converting member 501, the fluorescent substance is added first, and the dispersion improving particles 535 may be used. Accordingly, the phosphor that is resistant to mechanical impact is dispersed first, and the dispersibility improving particles 535 can prevent aggregation of the phosphor. Therefore, the method of manufacturing the wavelength converting member 501 can easily disperse the fluorescent material, the quantum dot, and the like.

따라서, 실시예에 따른 액정표시장치는 향상된 휘도 및 색 재현성을 가질 수 있다.
Therefore, the liquid crystal display according to the embodiment can have improved luminance and color reproducibility.

도 9는 제 2 실시예에 따른 파장 변환 부재를 도시한 단면도이다. 본 실시예에 대한 설명에 있어서, 앞선 실시예에 대한 설명 참조한다. 즉, 앞선 액정표시장치에 대한 설명은 변경된 부분을 제외하고, 본 액정표시장치에 대한 설명에 본질적으로 결합될 수 있다.9 is a cross-sectional view showing the wavelength conversion member according to the second embodiment. In the description of this embodiment, the description of the foregoing embodiment will be made. That is, the description of the above-described liquid crystal display device can be essentially combined with the description of the present liquid crystal display device except for the changed portions.

도 9를 참조하면, 본 실시예에 따른 파장 변환 부재는 제 3 파장 변환 입자들(534)을 포함한다. 상기 제 3 파장 변환 입자들(534)은 상기 호스트층(531) 내에 배치된다. 더 자세하게, 상기 제 3 파장 변환 입자들(534)은 상기 호스트층(531) 내에 균일하게 분산될 수 있다.Referring to FIG. 9, the wavelength conversion member according to the present embodiment includes third wavelength conversion particles 534. The third wavelength conversion particles 534 are disposed in the host layer 531. More specifically, the third wavelength conversion particles 534 may be uniformly dispersed in the host layer 531. [

상기 제 3 파장 변환 입자들(534)은 상기 호스트층(531)에 약 0.1wt% 내지 약 0.5wt%의 농도로 포함될 수 있다.The third wavelength conversion particles 534 may be included in the host layer 531 at a concentration of about 0.1 wt% to about 0.5 wt%.

상기 제 3 파장 변환 입자들(534)은 제 1 파장 변환 입자들(532)보다 더 큰 직경을 가질 수 있다. 더 자세하게, 상기 제 3 파장 변환 입자들(534)의 직경은 약 0.5㎛ 내지 약 10㎛일 수 있다.The third wavelength converting particles 534 may have a diameter larger than that of the first wavelength converting particles 532. More specifically, the diameter of the third wavelength conversion particles 534 may be about 0.5 탆 to about 10 탆.

상기 제 3 파장 변환 입자들(534)은 상기 발광다이오드들(400)로부터 출사되는 광의 파장을 변환시킨다. 상기 제 3 파장 변환 입자들(534)은 발광다이오드들(400)로부터 출사되는 광을 입사받아, 파장을 변환시킨다. 예를 들어, 상기 제 3 파장 변환 입자들(534)은 상기 발광다이오드들(400)로부터 출사되는 청색광을 황색광으로 변환시킬 수 있다. 즉, 상기 제 3 파장 변환 입자들(534)은 상기 청색광을 약 540㎚ 내지 약 570㎚ 사이의 파장대를 가지는 황색광으로 변환시킬 수 있다.The third wavelength conversion particles 534 convert the wavelength of the light emitted from the light emitting diodes 400. The third wavelength conversion particles 534 receive the light emitted from the light emitting diodes 400 and convert the wavelength. For example, the third wavelength conversion particles 534 may convert blue light emitted from the light emitting diodes 400 into yellow light. That is, the third wavelength conversion particles 534 may convert the blue light into yellow light having a wavelength range of about 540 nm to about 570 nm.

상기 발광다이오드들(400)이 청색광을 발생시키는 청색 발광다이오드인 경우, 상기 청색광을 황색광으로 변환시키는 상기 제 3 파장 변환 입자들(534)이 사용될 수 있다.When the light emitting diodes 400 are blue light emitting diodes for generating blue light, the third wavelength conversion particles 534 for converting the blue light into yellow light may be used.

상기 제 3 파장 변환 입자들(534)로 형광체가 사용될 수 있다. 상기 제 3 파장 변환 입자들(534)로 황색 형광체가 사용될 수 있다. 더 자세하게, 상기 황색 형광체의 예로서는 이트륨 알루미늄 가넷계(yttrium aluminum garnet;YAG) 형광체 등을 들 수 있다.The third wavelength conversion particles 534 may be a phosphor. As the third wavelength converting particles 534, a yellow phosphor may be used. More specifically, examples of the yellow phosphors include yttrium aluminum garnet (YAG) phosphors.

도 10에 도시된 바와 같이, 상기 제 3 파장 변환 입자들(534)에 의해서, 본 실시예에 따른 파장 변환 부재(501)에 의해서 형성된 백색 광에서, 약 555㎚ 내지 약 560㎚의 파장 대(Y)의 세기가 증가될 수 있다.10, in the white light formed by the wavelength converting member 501 according to the present embodiment, the third wavelength conversion particles 534 are used to convert the wavelength band of about 555 nm to about 560 nm Y) can be increased.

이에 따라서, 본 실시예에 따른 파장 변환 부재(501)는 향상된 휘도를 가지는 백색 광을 생성할 수 있다. 따라서, 본 실시예에 따른 파장 변환 부재(501)를 포함하는 표시장치는 향상된 휘도 및 색 재현성을 가질 수 있다.Accordingly, the wavelength converting member 501 according to the present embodiment can generate white light having an improved luminance. Therefore, the display device including the wavelength converting member 501 according to the present embodiment can have improved luminance and color reproducibility.

또한, 상기 제 3 파장 변환 입자들(534)은 상기 제 2 파장 변환 입자들(533)과 함께 수지 조성물에 분산될 수 있다. 즉, 본 실시예에 따른 파장 변환 부재(501)를 형성하기 위해서, 상기 제 2 파장 변환 입자들(533) 및 상기 제 3 파장 변환 입자들(534)이 먼저 분산된 후, 상기 제 1 파장 변환 입자들(532)이 나중에 분산될 수 있다.
In addition, the third wavelength conversion particles 534 may be dispersed in the resin composition together with the second wavelength conversion particles 533. That is, in order to form the wavelength converting member 501 according to the present embodiment, after the second wavelength converting particles 533 and the third wavelength converting particles 534 are dispersed first, The particles 532 may be dispersed later.

도 11은 제 3 실시예에 따른 액정표시장치를 도시한 분해사시도이다. 도 12는 제 3 실시예에 따른 파장 변환 부재를 도시한 사시도이다. 도 13은 도 12에서 B-B`를 따라서 절단한 단면을 도시한 단면도이다. 도 14는 제 3 실시예에 따른 도광판, 발광다이오드 및 파장 변환 부재의 일 단면을 도시한 단면도이다. 도 15 내지 도 17은 제 3 실시예에 따른 파장 변환 부재를 형성하는 과정을 도시한 도면들이다. 본 실시예에 대한 설명에 있어서, 앞선 실시예에 대한 설명 참조한다. 즉, 앞선 액정표시장치에 대한 설명은 변경된 부분을 제외하고, 본 액정표시장치에 대한 설명에 본질적으로 결합될 수 있다.11 is an exploded perspective view showing a liquid crystal display device according to a third embodiment. 12 is a perspective view showing the wavelength conversion member according to the third embodiment. FIG. 13 is a cross-sectional view showing a section cut along the line B-B 'in FIG. 12; FIG. FIG. 14 is a cross-sectional view showing one end surface of a light guide plate, a light emitting diode, and a wavelength conversion member according to the third embodiment. 15 to 17 are views illustrating a process of forming the wavelength converting member according to the third embodiment. In the description of this embodiment, the description of the foregoing embodiment will be made. That is, the description of the above-described liquid crystal display device can be essentially combined with the description of the present liquid crystal display device except for the changed portions.

도 11 내지 도 14를 참조하면, 파장 변환 부재(600)는 발광다이오드들(400) 및 도광판(200) 사이에 개재된다.11 to 14, the wavelength conversion member 600 is sandwiched between the light emitting diodes 400 and the light guide plate 200.

상기 파장 변환 부재(600)는 일 방향으로 길게 연장되는 형상을 가질 수 있다. 더 자세하게, 상기 파장 변환 부재(600)는 상기 도광판(200)의 일 측면을 따라 연장되는 형상을 가질 수 있다. 더 자세하게, 상기 파장 변환 부재(600)는 상기 도광판(200)의 입사면을 따라서 연장되는 형상을 가질 수 있다.The wavelength conversion member 600 may have a shape elongated in one direction. More specifically, the wavelength conversion member 600 may have a shape extending along one side of the light guide plate 200. More specifically, the wavelength conversion member 600 may have a shape extending along the incident surface of the light guide plate 200.

상기 파장 변환 부재(600)는 상기 발광다이오드들(400)로부터 출사되는 광을 입사받아, 파장을 변환시킨다. 예를 들어, 상기 파장 변환 부재(600)는 상기 발광다이오드들(400)로부터 출사되는 청색광을 녹색광 및 적색광으로 변환시킬 수 있다. 즉, 상기 파장 변환 부재(600)는 상기 청색광의 일부를 약 520㎚ 내지 약 560㎚ 사이의 파장대를 가지는 녹색광으로 변환시키고, 상기 청색광의 다른 일부를 약 630㎚ 내지 약 660㎚ 사이의 파장대를 가지는 적색광으로 변환시킬 수 있다.The wavelength converting member 600 receives the light emitted from the light emitting diodes 400 and converts the wavelength. For example, the wavelength converting member 600 may convert blue light emitted from the light emitting diodes 400 into green light and red light. That is, the wavelength converting member 600 converts part of the blue light into green light having a wavelength range of about 520 nm to about 560 nm, and converts the other part of the blue light to a light having a wavelength range of about 630 nm to about 660 nm It can be converted into red light.

이에 따라서, 상기 파장 변환 부재(600)를 통과하는 광 및 상기 파장 변환 부재(600)에 의해서 변환된 광들은 백색광을 형성할 수 있다. 즉, 청색광, 녹색광 및 적색광이 조합되어, 상기 도광판(200)에는 백색광이 입사될 수 있다.Accordingly, the light passing through the wavelength conversion member 600 and the light converted by the wavelength conversion member 600 can form white light. That is, the blue light, the green light, and the red light may be combined, and the white light may be incident on the light guide plate 200.

도 12 내지 도 14에 도시된 바와 같이, 상기 파장 변환 부재(600)는 하부 기판(610), 상부 기판(620), 파장 변환층(630) 및 실링부(640)를 포함한다.12 to 14, the wavelength conversion member 600 includes a lower substrate 610, an upper substrate 620, a wavelength conversion layer 630, and a sealing portion 640.

도 13에 도시된 바와 같이, 상기 하부 기판(610)은 상기 파장 변환층(630) 아래에 배치된다. 상기 하부 기판(610)은 투명하며, 플렉서블 할 수 있다. 상기 하부 기판(610)은 상기 파장 변환층(630)의 하면에 밀착될 수 있다.As shown in FIG. 13, the lower substrate 610 is disposed under the wavelength conversion layer 630. The lower substrate 610 is transparent and flexible. The lower substrate 610 may be in close contact with the lower surface of the wavelength conversion layer 630.

상기 상부 기판(620)은 상기 파장 변환층(630) 상에 배치된다. 상기 상부 기판(620)은 투명하며, 플렉서블 할 수 있다. 상기 상부 기판(620)은 상기 파장 변환층(630)의 상면에 밀착될 수 있다.The upper substrate 620 is disposed on the wavelength conversion layer 630. The upper substrate 620 is transparent and flexible. The upper substrate 620 may be in close contact with the upper surface of the wavelength conversion layer 630.

또한, 도 14에 도시된 바와 같이, 상기 하부 기판(610)은 상기 발광다이오드들(400)에 대향한다. 즉, 상기 하부 기판(610)은 상기 발광다이오드들(400) 및 상기 파장 변환층(630) 사이에 배치된다. 또한, 상기 상부 기판(620)은 상기 도광판(200)에 대향한다. 즉, 상기 상부 기판(620)은 상기 파장 변환층(630) 및 상기 도광판(200) 사이에 개재된다.Further, as shown in FIG. 14, the lower substrate 610 faces the light emitting diodes 400. That is, the lower substrate 610 is disposed between the light emitting diodes 400 and the wavelength conversion layer 630. Further, the upper substrate 620 faces the light guide plate 200. That is, the upper substrate 620 is interposed between the wavelength conversion layer 630 and the light guide plate 200.

상기 하부 기판(610) 및 상기 상부 기판(620)은 상기 파장 변환층(630)을 샌드위치한다. 또한, 상기 실링부(640)는 상기 파장 변환층(630)의 측면을 덮는다. 상기 하부 기판(610) 및 상기 상부 기판(620)은 상기 파장 변환층(630)을 지지한다. 또한, 상기 하부 기판(610), 상기 상부 기판(620) 및 상기 실링부(640)는 외부의 물리적인 충격 및 화학적인 충격으로부터 상기 파장 변환층(630)을 보호한다.The lower substrate 610 and the upper substrate 620 sandwich the wavelength conversion layer 630. In addition, the sealing portion 640 covers the side surface of the wavelength conversion layer 630. The lower substrate 610 and the upper substrate 620 support the wavelength conversion layer 630. In addition, the lower substrate 610, the upper substrate 620, and the sealing portion 640 protect the wavelength conversion layer 630 from external physical impact and chemical impact.

본 실시예에 따른 파장 변환 부재는 다음과 같은 과정에 의해서 형성될 수 있다.The wavelength converting member according to this embodiment can be formed by the following procedure.

도 15를 참조하면, 제 1 투명 기판(611) 상에 다수 개의 제 1 파장 변환 입자들(632), 다수 개의 제 2 파장 변환 입자들(633) 및 다수 개의 분산성 향상 입자들(535)을 포함하는 수지 조성물이 코팅된다. 이후, 상기 수지 조성물의 광 및/또는 열에 의해서 경화되고, 상기 제 1 투명 기판(611) 상에 예비 파장 변환층(635)이 형성된다.15, a plurality of first wavelength conversion particles 632, a plurality of second wavelength conversion particles 633, and a plurality of dispersion enhancing particles 535 are formed on a first transparent substrate 611, Is coated. Thereafter, the preliminary wavelength converting layer 635 is formed on the first transparent substrate 611 by being cured by light and / or heat of the resin composition.

이후, 상기 예비 파장 변환층(635) 상에 제 2 투명 기판(621)이 라미네이팅된다.Thereafter, the second transparent substrate 621 is laminated on the preliminary wavelength conversion layer 635.

도 16을 참조하면, 상기 제 1 투명 기판(611), 상기 예비 파장 변환층(635) 및 제 2 투명 기판(621)은 한꺼번에 절단된다. 이에 따라서, 다수 개의 예비 파장 변환 부재들(601)이 형성된다. 상기 예비 파장 변환 부재들(601)은 각각 하부 기판(610), 파장 변환층(630) 및 상부 기판(620)을 포함한다. 이때, 상기 하부 기판(610), 상기 파장 변환층(630) 및 상기 상부 기판(620)은 같은 절단 공정에 의해서 형성되므로, 서로 동일한 평면에 배치되는 절단면(605)을 포함한다.Referring to FIG. 16, the first transparent substrate 611, the preliminary wavelength conversion layer 635, and the second transparent substrate 621 are cut at a time. Accordingly, a plurality of preliminary wavelength conversion members 601 are formed. The preliminary wavelength converting members 601 include a lower substrate 610, a wavelength converting layer 630, and an upper substrate 620, respectively. The lower substrate 610, the wavelength conversion layer 630, and the upper substrate 620 are formed by the same cutting process, and thus include a cut surface 605 disposed on the same plane.

도 17을 참조하면, 상기 하부 기판(610) 및 상기 상부 기판(620)이 서로 마주보도록, 상기 예비 파장 변환 부재들(601)이 서로 정렬된다. 이후, 상기 예비 파장 변환 부재들(601)의 측면, 즉, 절단면(605)에 실링부(640)가 형성된다.Referring to FIG. 17, the preliminary wavelength converting members 601 are aligned with each other such that the lower substrate 610 and the upper substrate 620 face each other. Thereafter, a sealing portion 640 is formed on the side surface of the preliminary wavelength converting members 601, that is, the cut surface 605.

이후, 상기 파장 변환 부재들(600)은 서로 떼어내질 수 있다.Thereafter, the wavelength converting members 600 may be detached from each other.

본 실시예에 따른 액정표시장치에서, 상기 파장 변환층(630)은 상대적으로 작은 크기를 가진다. 따라서, 본 실시예에 따른 액정표시장치를 제조하는데 있어서, 적은 양의 제 1 파장 변환 입자들(632) 및 제 2 파장 변환 입자들(633)이 사용될 수 있다.In the liquid crystal display according to the present embodiment, the wavelength conversion layer 630 has a relatively small size. Therefore, in manufacturing the liquid crystal display device according to the present embodiment, a small amount of the first wavelength conversion particles 632 and the second wavelength conversion particles 633 can be used.

따라서, 본 실시예에 따른 액정표시장치는 상기 제 1 파장 변환 입자들(631) 및 제 2 파장 변환 입자들의 사용을 줄이고, 적은 비용으로 용이하게 제조될 수 있다.
Accordingly, the liquid crystal display device according to the present embodiment can reduce the use of the first wavelength conversion particles 631 and the second wavelength conversion particles, and can be easily manufactured at low cost.

도 18은 제 4 실시예에 따른 액정표시장치를 도시한 분해사시도이다. 도 19는 제 4 실시예에 따른 파장 변환 부재를 도시한 사시도이다. 도 20은 도 19에서 C-C`를 따라서 절단한 단면을 도시한 단면도이다. 도 21은 제 4 실시예에 따른 도광판, 발광다이오드 및 파장 변환 부재의 일 단면을 도시한 단면도이다. 본 실시예에 대한 설명에 있어서, 앞선 실시예들에 대한 설명 참조한다. 즉, 앞선 액정표시장치들에 대한 설명은 변경된 부분을 제외하고, 본 액정표시장치에 대한 설명에 본질적으로 결합될 수 있다.18 is an exploded perspective view showing a liquid crystal display device according to the fourth embodiment. 19 is a perspective view showing the wavelength conversion member according to the fourth embodiment. 20 is a cross-sectional view showing a cross section cut along the line C-C 'in FIG. 19; FIG. 21 is a cross-sectional view illustrating one side of a light guide plate, a light emitting diode, and a wavelength conversion member according to the fourth embodiment. In the description of the present embodiment, the description of the preceding embodiments will be made. That is, the description of the preceding liquid crystal display devices can be essentially combined with the description of the present liquid crystal display device except for the changed portions.

도 18 내지 도 21을 참조하면, 본 실시예에 따른 액정표시장치는 다수 개의 파장 변환 부재들(700)을 포함한다. 상기 파장 변환 부재들(700)은 상기 발광다이오드들(400)에 각각 대응된다.Referring to FIGS. 18 to 21, the liquid crystal display according to the present embodiment includes a plurality of wavelength converting members 700. The wavelength converting members 700 correspond to the light emitting diodes 400, respectively.

또한, 상기 파장 변환 부재들(700)은 상기 발광다이오드들(400) 및 상기 도광판(200) 사이에 배치된다. 즉, 각각의 파장 변환 부재(600)는 대응되는 발광다이오드 및 상기 도광판(200) 사이에 배치된다.Further, the wavelength conversion members 700 are disposed between the light emitting diodes 400 and the light guide plate 200. That is, each wavelength converting member 600 is disposed between the corresponding light emitting diode and the light guide plate 200.

상기 파장 변환 부재들(700)은 상기 발광다이오드들(400)보다 더 넓은 평면적을 가질 수 있다. 이에 따라서, 각각의 발광다이오드로부터 출사되는 광은 대응되는 파장 변환 부재(600)에 거의 대부분이 입사될 수 있다.The wavelength conversion members 700 may have a larger planar area than the light emitting diodes 400. Accordingly, most of the light emitted from each of the light emitting diodes can be incident on the corresponding wavelength conversion member 600.

또한, 도 18 내지 도 21에 도시된 바와 같이, 상기 파장 변환 부재들(700)은 하부 기판(710), 상부 기판(720), 파장 변환층(730) 및 실링부(640)를 포함한다.18 to 21, the wavelength converting members 700 include a lower substrate 710, an upper substrate 720, a wavelength converting layer 730, and a sealing portion 640.

상기 하부 기판(710), 상기 상부 기판(720), 상기 파장 변환층(730) 및 상기 실링부(640)의 특징은 앞서 설명한 실시예들에서 설명한 특징과 실질적으로 동일할 수 있다.The features of the lower substrate 710, the upper substrate 720, the wavelength conversion layer 730, and the sealing portion 640 may be substantially the same as those described in the embodiments described above.

본 실시예에 따른 액정표시장치에서, 상기 파장 변환층(730)은 상대적으로 작은 크기를 가진다. 따라서, 본 실시예에 따른 액정표시장치를 제조하는데 있어서, 적은 양의 제 1 파장 변환 입자들(732) 및 제 2 파장 변환 입자들(733)이 사용될 수 있다.In the liquid crystal display device according to the present embodiment, the wavelength conversion layer 730 has a relatively small size. Therefore, in manufacturing the liquid crystal display device according to the present embodiment, a small amount of the first wavelength conversion particles 732 and the second wavelength conversion particles 733 may be used.

따라서, 본 실시예에 따른 액정표시장치는 상기 제 1 파장 변환 입자들(432) 및 제 2 파장 변환 입자들(733)의 사용을 줄이고, 적은 비용으로 용이하게 제조될 수 있다.Therefore, the liquid crystal display according to the present embodiment can reduce the use of the first wavelength conversion particles 432 and the second wavelength conversion particles 733, and can be easily manufactured at a low cost.

또한, 각각 파장 변환 부재(700)의 특성은 대응되는 발광다이오드(400)에 적합하도록 변형될 수 있다. 이에 따라서, 실시예에 따른 액정표시장치는 더 향상된 신뢰성, 휘도 및 균일한 색재현성을 가질 수 있다.Further, the characteristics of the wavelength converting member 700 can be modified to suit the corresponding light emitting diodes 400, respectively. Accordingly, the liquid crystal display device according to the embodiment can have improved reliability, brightness, and uniform color reproducibility.

또한, 이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.In addition, the features, structures, effects and the like described in the embodiments are included in at least one embodiment of the present invention, and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects and the like illustrated in the embodiments can be combined and modified by other persons skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (14)

호스트층;
상기 호스트층 내에 배치되는 무기 물질을 포함하는 복수의 분산성 향상 입자들;
상기 호스트층 내에 배치되는 다수 개의 제 1 파장 변환 입자들; 및
상기 호스트층 내에 배치되는 다수 개의 제 2 파장 변환 입자들을 포함하고,
상기 분산성 향상 입자는 실리콘 옥사이드를 포함하며,
상기 분산성 향상 입자들은 상기 호스트층에 0.5wt% 내지 5wt%의 비율로 포함되고,
상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하고,
상기 제 2 파장 변환 입자들은 형광체를 포함하고,
상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하는 나노 입자와, 상기 나노 입자의 주위를 둘러싸고, 금속 산화물을 포함하는 보호막을 포함하며, 상기 나노 입자는 카드뮴 및 아연을 포함하는 화합물 반도체를 포함하고,
상기 나노 입자의 중심 부분은 상기 카드뮴의 조성이 상기 아연의 조성보다 높고, 상기 나노 입자의 외곽 부분은 상기 카드뮴의 조성이 상기 아연의 조성보다 낮은 광학 부재.
A host layer;
A plurality of dispersion enhancing particles including an inorganic material disposed in the host layer;
A plurality of first wavelength conversion particles disposed in the host layer; And
A plurality of second wavelength conversion particles disposed in the host layer,
Wherein the dispersibility improving particles comprise silicon oxide,
The dispersion improving particles are contained in the host layer in a proportion of 0.5 wt% to 5 wt%
Wherein the first wavelength converting particles comprise a compound semiconductor,
Wherein the second wavelength conversion particles comprise a phosphor,
Wherein the first wavelength conversion particles comprise nanoparticles comprising compound semiconductors and a protective film surrounding the nanoparticles and containing a metal oxide, wherein the nanoparticles comprise compound semiconductors comprising cadmium and zinc,
Wherein the central portion of the nanoparticles has a composition of cadmium higher than that of zinc and an outer portion of the nanoparticles wherein the composition of cadmium is lower than the composition of zinc.
제 1 항에 있어서,
상기 제 1 파장 변환 입자들의 직경은 1㎚ 내지 50㎚이고, 상기 제 2 파장 변환 입자들의 직경은 1㎛ 내지 50㎛이며, 상기 제 1 파장 변환 입자들은 입사광을 녹색 광으로 변환시키고, 상기 제 2 파장 변환 입자들은 입사광을 적색 광으로 변환시키는 광학 부재.
The method according to claim 1,
The diameter of the first wavelength conversion particles is 1 nm to 50 nm and the diameter of the second wavelength conversion particles is 1 탆 to 50 탆, the first wavelength conversion particles convert incident light into green light, The wavelength converting particles are optical members for converting incident light into red light.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 광원;
상기 광원으로부터 출사되는 광이 입사되는 파장 변환 부재; 및
상기 파장 변환 부재로부터 출사되는 광이 입사되는 표시패널을 포함하고,
상기 파장 변환 부재는
호스트층;
상기 호스트층 내에 배치되는 무기 물질을 포함하는 복수의 분산성 향상 입자들;
상기 호스트층 내에 배치되는 다수 개의 제 1 파장 변환 입자들; 및
상기 호스트층 내에 배치되는 다수 개의 제 2 파장 변환 입자들을 포함하고,
상기 분산성 향상 입자는 실리콘 옥사이드를 포함하며,
상기 분산성 향상 입자들은 상기 호스트층에 0.5wt% 내지 5wt%의 비율로 포함되고,
상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하고,
상기 제 2 파장 변환 입자들은 형광체를 포함하고,
상기 제 1 파장 변환 입자들은 화합물 반도체를 포함하는 나노 입자와, 상기 나노 입자의 주위를 둘러싸고, 금속 산화물을 포함하는 보호막을 포함하며, 상기 나노 입자는 카드뮴 및 아연을 포함하는 화합물 반도체를 포함하고,
상기 나노 입자의 중심 부분은 상기 카드뮴의 조성이 상기 아연의 조성보다 높고, 상기 나노 입자의 외곽 부분은 상기 카드뮴의 조성이 상기 아연의 조성보다 낮은 표시장치.
Light source;
A wavelength conversion member into which light emitted from the light source is incident; And
And a display panel on which light emitted from the wavelength converting member is incident,
The wavelength conversion member
A host layer;
A plurality of dispersion enhancing particles including an inorganic material disposed in the host layer;
A plurality of first wavelength conversion particles disposed in the host layer; And
A plurality of second wavelength conversion particles disposed in the host layer,
Wherein the dispersibility improving particles comprise silicon oxide,
The dispersion improving particles are contained in the host layer in a proportion of 0.5 wt% to 5 wt%
Wherein the first wavelength converting particles comprise a compound semiconductor,
Wherein the second wavelength conversion particles comprise a phosphor,
Wherein the first wavelength conversion particles comprise nanoparticles comprising compound semiconductors and a protective film surrounding the nanoparticles and containing a metal oxide, wherein the nanoparticles comprise compound semiconductors comprising cadmium and zinc,
Wherein a center portion of the nanoparticles has a composition of cadmium higher than that of zinc and an outer portion of the nanoparticles wherein the composition of cadmium is lower than the composition of zinc.
제 9 항에 있어서,
상기 파장 변환 부재는 상기 호스트층 내에 배치되고, 무기 물질을 포함하는 복수의 분산성 향상 입자들을 포함하며, 상기 분산성 향상 입자는 실리콘 옥사이드를 포함하며,
상기 분산성 향상 입자들은 상기 호스트층에 0.5wt% 내지 5wt%의 비율로 포함되는 표시장치.
10. The method of claim 9,
Wherein the wavelength converting member is disposed in the host layer and includes a plurality of dispersion improving particles including an inorganic material, the dispersion improving particles including silicon oxide,
Wherein the dispersion improving particles are contained in the host layer in a ratio of 0.5 wt% to 5 wt%.
삭제delete 삭제delete 제 9 항 또는 제 10 항에 있어서,
상기 카드뮴의 조성은 상기 나노 입자의 중심으로부터 외곽으로 갈수록 작아지고, 상기 아연의 조성은 상기 나노 입자의 중심으로부터 외곽으로 갈수록 커지는 표시장치.
11. The method according to claim 9 or 10,
Wherein the composition of cadmium becomes smaller as the distance from the center of the nanoparticle to the outer periphery increases, and the composition of zinc increases as the distance from the center of the nanoparticle to the outer periphery increases.
제 13 항에 있어서,
상기 카드뮴의 조성은 상기 나노 입자의 중심으로부터 외곽으로 갈수록 비선형적으로 감소하며, 상기 카드뮴의 조성은 상기 나노 입자의 중심부로부터 외곽으로 갈수록 둘 이상의 변곡점을 가지도록 감소되는 표시장치.
14. The method of claim 13,
Wherein a composition of the cadmium decreases nonlinearly from a center of the nanoparticle to an outer periphery thereof and the composition of the cadmium is reduced so as to have two or more inflection points from a central portion of the nanoparticle to an outer periphery thereof.
KR1020110108284A 2011-10-21 2011-10-21 Optical member and display device having the same KR101854779B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110108284A KR101854779B1 (en) 2011-10-21 2011-10-21 Optical member and display device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110108284A KR101854779B1 (en) 2011-10-21 2011-10-21 Optical member and display device having the same

Publications (2)

Publication Number Publication Date
KR20130044031A KR20130044031A (en) 2013-05-02
KR101854779B1 true KR101854779B1 (en) 2018-05-04

Family

ID=48656652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110108284A KR101854779B1 (en) 2011-10-21 2011-10-21 Optical member and display device having the same

Country Status (1)

Country Link
KR (1) KR101854779B1 (en)

Also Published As

Publication number Publication date
KR20130044031A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
US9766392B2 (en) Optical member, display device having the same and method of fabricating the same
KR101786097B1 (en) Optical member, display device having the same and method of fabricating the same
US9529138B2 (en) Display device
KR101210180B1 (en) Optical member and method for fabricating the same
KR101870446B1 (en) Optical member and display device having the same
KR101870443B1 (en) Optical member and display device having the same
KR101338695B1 (en) Display device, light conversion member and method of fabricating light conversion member
KR101210173B1 (en) Display device
KR101792882B1 (en) Optical member and method of fabricating the same
KR101956058B1 (en) Display device
TWI485885B (en) Nanoparticle complex, light conversion member and display device having the same, and method for fabricating the same
KR101854779B1 (en) Optical member and display device having the same
KR101382974B1 (en) Light converting complex, light emitting device and display device having the same and method of fabricating the same
KR101862873B1 (en) Optical member, light emitting device and display device
KR101210084B1 (en) Optical member and method of fabricating the same
KR101262502B1 (en) Optical member and display device having the same
KR101877485B1 (en) Light converting member, light emitting device and display device having the same
KR101956055B1 (en) Display device
KR101934419B1 (en) Light converting complex, light emitting device and display device having the same and method of fabricating the same
KR101854817B1 (en) Display device
KR20130121609A (en) Light conversion member and method of fabricating light conversion member
KR101349426B1 (en) Optical member and display device
KR101327027B1 (en) Light converting complex, light emitting device and display device having the same and method of fabricating the same
KR101812338B1 (en) Optical member and display device having the same and method of fabricating the same
KR101393748B1 (en) Light conversion member and method of fabricating light conversion member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right