KR101763796B1 - 흡수식 냉동기 - Google Patents

흡수식 냉동기 Download PDF

Info

Publication number
KR101763796B1
KR101763796B1 KR1020170018625A KR20170018625A KR101763796B1 KR 101763796 B1 KR101763796 B1 KR 101763796B1 KR 1020170018625 A KR1020170018625 A KR 1020170018625A KR 20170018625 A KR20170018625 A KR 20170018625A KR 101763796 B1 KR101763796 B1 KR 101763796B1
Authority
KR
South Korea
Prior art keywords
line
refrigerant
tray
solution
absorber
Prior art date
Application number
KR1020170018625A
Other languages
English (en)
Inventor
김경영
Original Assignee
김경영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김경영 filed Critical 김경영
Priority to KR1020170018625A priority Critical patent/KR101763796B1/ko
Application granted granted Critical
Publication of KR101763796B1 publication Critical patent/KR101763796B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/02Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a liquid, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B37/00Absorbers; Adsorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/026Evaporators specially adapted for sorption type systems
    • F25B41/003
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/003Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/046Operating intermittently
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

본 발명의 일 측면에 따르면, 제1 내지 3쉘을 포함하되, 증발기는 냉매라인을 통해 제공되는 냉매를 하측으로 산포하는 1단 냉매분배기; 및 1단 냉매분배기의 하측에 이격 배치되어 산포된 냉매를 재분배하는 2단 냉매분배기;를 포함하고, 증발기 하부와 흡수기 하부 간에 연결 설치되는 제1바이패스라인; 저온열교환기와 고온열교환기 사이의 희용액라인에서 분지되어, 고온열교환기 후단의 중간액라인에 합류되는 제2바이패스라인; 저온열교환기 전단의 희용액라인에서 분지되어, 고온열교환기 후단의 중간액라인에 합류되는 제3바이패스라인; 및 제1 내지 3바이패스라인을 개폐 제어하는 제어부;를 더 포함하되, 상기 제어부는, 냉각수라인의 입구온도에 따라 제1 내지 3바이패스라인을 선택적으로 개폐 제어하고, 고온열교환기 후단의 희용액라인에 설치되는 부식방지유닛;을 더 포함하는 흡수식 냉동기가 제공될 수 있다.

Description

흡수식 냉동기 {ABSORPTION REFRIGERATOR}
본 발명은 흡수식 냉동기에 관한 것이다.
냉매의 기화열을 이용해 냉수를 발생시키는 장치의 일종으로 흡수식 냉동기가 알려져 있다. 일반적으로 흡수식 냉동기는 진공에 가까운 밀폐 용기(증발기) 내에서 냉매를 기화시키게 되며, 냉매 기화시 밀폐 용기 내부의 전열관과 열교환시켜 냉수를 발생시키도록 구성되고 있다. 냉매로는 통상 물(H2O)이 사용되고 있으며, 냉매를 회수하기 위한 흡수제로는 리튬브로마이드(LiBr) 수용액이 이용될 수 있다. 특히, 이와 같은 흡수식 냉동기는 냉매로 물을 사용하기 때문에 압축식 냉동기 등에 비해 환경 친화적이며, 폐가스 등을 열원으로 재사용할 수 있어 에너지의 효율적 이용 또한 가능한 이점이 있다.
통상적으로 흡수식 냉동기(1중 효용)는 재생기, 응축기, 증발기 및 흡수기로 구성될 수 있으며, 냉매 및 흡수액이 이들 구성들을 순환하는 구조로 이뤄져 있다. 좀 더 구체적으로, 증발기에서는 액상의 냉매가 기화되어 냉매 증기로 상변환되며, 이 과정에서 냉매의 기화열을 통해 냉수를 발생시키게 된다. 증발기에서 생성된 냉매 증기는 흡수기로 이동되어 흡수액(농용액)과 혼합된다. 냉매 증기가 혼합되어 묽어진 흡수액(희용액)은 재생기로 이동되며, 재생기에서 구동 열원을 통해 가열되어 냉매 증기가 분리된다. 분리된 냉매 증기는 응축기로 이동되며, 응축기 내에서 냉각되어 액상의 냉매로 다시 상변환된다. 액상의 냉매는 증발기로 다시 제공되어 전술한 과정을 반복하게 된다.
한편, 최근에는 상기와 같은 흡수식 냉동기의 기본 사이클에 더하여 재생기를 2단으로 구성하여 구동 열원을 2중으로 이용할 수 있는 2중 효용 흡수식 냉동기가 알려진 바 있다. 이와 같은 2중 효용 흡수식 냉동기는 고온(고압) 및 저온(저압)으로 구분된 2개의 재생기를 구비하며, 일반적으로 1중 효용(또는, 단효용) 흡수식 냉동기에 비해 높은 효율을 가지고 있다. 좀 더 구체적으로, 2중 효용 흡수식 냉동기는 흡수기에서 생성된 묽은 흡수액(희용액)이 고온 재생기를 거쳐 중간 농도 정도(중간액)로 진해지게 되며, 이와 같은 중간액이 저온 재생기에서 구동 열원을 통해 다시 가열되어 흡수기로 제공되는 진한 흡수액(농용액)으로 변환되게 된다.
상기와 같은 흡수식 냉동기는 환경 친화적인 측면과 에너지의 효율적 이용 측면에서 그 사용범위가 점차 확대되어 가고 있으며, 이에 대응하여 당해 업계에서는 그 효율을 향상시키고, 에너지 소모를 줄이며, 사용상의 안전성을 확보하기 위한 노력 등이 지속적으로 이뤄지고 있다.
대한민국 등록특허공보 제10-1347582호(2014년 1월 3일) 일본 특허공보 특허 제5785800호(2015년 9월 30일) 일본 공개특허공보 특개평09-152218호(1997년 6월 10일) 대한민국 공개특허공보 제10-2011-0112955호(2011년 10월 14일)
본 발명의 실시예들은 증발기나 흡수기 내에서 냉매나 흡수액이 균일하게 분포됨으로써, 반응 효율을 향상시킬 수 있는 흡수식 냉동기를 제공하고자 한다.
또한, 본 발명의 실시예들은 외부 환경의 변화에 대응하여 장치 내부의 온도를 적절히 유지함으로써, 효율을 개선하고 부식 등에 대한 사용상의 안전성을 확보할 수 있는 흡수식 냉동기를 제공하고자 한다.
또한, 본 발명의 실시예들은 낮은 부하 조건에 적절히 대응하여 장치의 에너지 소모를 줄일 수 있는 흡수식 냉동기를 제공하고자 한다.
본 발명의 일 측면에 따르면, 희용액라인의 희용액이 온수라인과 열교환되어 중간액이 생성되는 고온재생기, 보조희용액라인의 보조희용액이 상기 온수라인과 열교환되어 보조농용액이 생성되는 보조재생기 및, 상기 고온재생기 및 상기 보조재생기에서 발생된 냉매증기가 냉각수라인을 통해 액체상태로 응축되는 응축기가 배치되는 제1쉘; 냉매라인의 냉매가 기화열을 통해 냉수라인을 냉각시키는 증발기 및, 상기 증발기에서 발생된 냉매증기와 농용액라인의 농용액이 혼합되어 희용액이 생성되는 흡수기가 배치되는 제2쉘; 및 상기 고온재생기에서 생성된 중간액이 상기 온수라인과 열교환되어 농용액이 생성되는 저온재생기 및, 상기 저온재생기에서 발생된 냉매증기와 보조농용액라인의 보조농용액이 혼합되어 보조희용액이 생성되는 보조흡수기가 배치되는 제3쉘;을 포함하되, 상기 증발기는, 상기 냉매라인을 통해 제공되는 냉매를 하측으로 산포하는 1단 냉매분배기; 및 상기 1단 냉매분배기의 하측에 이격 배치되어 상기 산포된 냉매를 재분배하는 2단 냉매분배기;를 포함하고, 상기 증발기 하부와 상기 흡수기 하부 간에 연결 설치되는 제1바이패스라인; 저온열교환기와 고온열교환기 사이의 상기 희용액라인에서 분지되어, 상기 고온열교환기 후단의 중간액라인에 합류되는 제2바이패스라인; 상기 저온열교환기 전단의 상기 희용액라인에서 분지되어, 상기 고온열교환기 후단의 상기 중간액라인에 합류되는 제3바이패스라인; 및 상기 제1 내지 3바이패스라인을 개폐 제어하는 제어부;를 더 포함하되, 상기 제어부는, 통상적인 운용상태에서 상기 제1 내지 3바이패스라인을 폐쇄하고, 상기 냉각수라인의 입구온도가 제1온도 이상이면, 상기 제1바이패스라인을 선택적으로 개방하며, 상기 냉각수라인의 입구온도가 상기 제1온도보다 높은 제2온도 이상이면, 상기 제2바이패스라인을 선택적으로 개방하고, 상기 냉각수라인의 입구온도가 상기 제2온도보다 높은 제3온도 이상이면, 상기 제3바이패스라인을 선택적으로 개방하도록 형성되며, 상기 고온열교환기 후단의 상기 희용액라인에 설치되는 부식방지유닛;을 더 포함하되, 상기 부식방지유닛은, 상기 희용액라인에 플랜지 결합되는 외관; 상기 외관의 내부에 배치되어 상기 외관의 내부를 중앙의 메인유로와 상기 메인유로 외측의 보조유로로 구획하며, 상기 메인유로와 상기 보조유로를 연통시키는 유입구 및 유출구를 구비하는 내관; 상기 보조유로에 희용액의 흐름방향을 따라 한 쌍이 전후로 이격 배치되어 저장공간을 형성하는 다공성의 필터; 및 상기 저장공간에 수용되는 고형물의 부식방지제;를 포함하는, 흡수식 냉동기가 제공될 수 있다.
본 발명의 실시예들에 따른 흡수식 냉동기는, 냉각수라인의 입구온도에 대응하여 증발기로부터 흡수기로 냉매를 공급하거나, 희용액을 저온재생기로 바이패스시킴으로써, 희용액 온도 상승에 따른 효율 저하를 최소화할 수 있으며, 고온재생기의 부식 등 사용상 안전성 저하의 문제를 미연에 방지할 수 있다.
희용액라인의 온도 또는 농도에 따라 냉매를 흡수기로 제공할 수 있는 바이패스라인을 구비함으로써, 희용액라인이 설계된 온도 또는 농도에 따라 운용될 수 있도록 하며, 이로 인해 장치의 효율 향상에 기여할 수 있다.
또한, 본 발명의 실시예들에 따른 흡수식 냉동기는, 제2쉘의 증발기 또는 흡수기에 있어 냉매 또는 농용액의 2단 분배구조를 형성함으로써, 증발기 또는 흡수기 내 냉매 또는 농용액의 농도를 보다 균일하게 조성할 수 있다. 따라서 냉매 또는 농용액의 반응성이나 열교환 효율이 향상될 수 있다.
또한, 본 발명의 실시예들에 따른 흡수식 냉동기는, 2단 분배구조를 위한 2단 냉매분배기 또는 2단 흡수액분배기를 구비할 수 있다. 이때, 2단 냉매분배기 또는 2단 흡수액분배기는 종래의 분배기 대비 설계변경을 최소화하여 제작이나 구현이 용이하도록 하면서도, 상측의 경사판을 통해 냉매 또는 농용액의 포집이 원활하게 이뤄질 수 있다. 따라서 비용의 증가나 제작상의 곤란성을 최소화하면서도 장치의 효율이 향상될 수 있는 이점이 있다.
또한, 본 발명의 실시예들에 따른 흡수식 냉동기는, 냉수라인의 온도에 따라 냉매라인, 흡수액라인 및 냉각수라인 중 어느 하나 이상을 가동 중단시킴으로써, 낮은 냉방부하에서 불필요한 에너지 소모를 최소화하고, 에너지이용효율을 개선할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 흡수식 냉동기의 구성도이다.
도 2는 도 1에 도시된 제2쉘의 내부 사시도이다.
도 3은 도 2에 도시된 2단 냉매분배기의 사시도이다.
도 4는 도 3에 도시된 2단 냉매분배기의 평면도, 정면도 및 측면도이다.
도 5는 도 3에 표시된 A부분의 확대도이다.
도 5은 도 1에 도시된 부식방지유닛의 개략도이다.
이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 설명하도록 한다. 다만, 이하의 실시예들은 본 발명의 이해를 돕기 위해 제공되는 것이며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아님을 알려둔다. 또한, 이하의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것으로, 불필요하게 본 발명의 기술적 요지를 흐릴 수 있다고 판단되는 공지의 구성에 대해서는 상세한 기술을 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 흡수식 냉동기(100)의 구성도이다.
도 1을 참조하면, 본 실시예에 따른 흡수식 냉동기(100)는 제1쉘(110)을 포함할 수 있다.
제1쉘(110)에는 고온재생기(111), 보조재생기(112) 및 응축기(113)가 배치될 수 있다. 고온재생기(111)는 제1쉘(110) 하단에 배치될 수 있으며, 보조재생기(112)는 고온재생기(111) 상측에 배치될 수 있다. 응축기(113)는 보조재생기(112) 상측에 배치될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 제2쉘(120)을 포함할 수 있다.
제2쉘(120)을 제1쉘(110)의 일측으로 이격 배치될 수 있다. 제2쉘(120)에는 증발기(121) 및 흡수기(122)가 배치될 수 있다. 증발기(121) 및 흡수기(122)는 제2쉘(120) 내부에서 좌우로 인접하게 배치될 수 있으며, 중앙의 엘리미네이터(123)를 통해 구획될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 제3쉘(130)을 포함할 수 있다.
제3쉘(130)은 제2쉘(120)의 상측으로 이격 배치될 수 있다. 제3쉘(130)에는 저온재생기(131) 및 보조흡수기(132)가 배치될 수 있다. 저온재생기(131) 및 보조흡수기(132)는 제3쉘(130) 내부에서 좌우로 인접하게 배치될 수 있으며, 중앙의 엘리미네이터(133)를 통해 구획될 수 있다.
이때, 보조흡수기(132)는 제2쉘(120)의 흡수기(122) 상측에 위치하도록 제3쉘(130) 내부에 배치될 수 있다. 이는 흡수기(122)에서 보조흡수기(132)로 이어지는 냉각수라인(L5)을 단순화시킬 수 있는 이점이 있다.
상기와 같은 제1 내지 3쉘(110, 120, 130)의 내부구성이나 배치는 구조나 배관라인의 간소화, 압력영역의 구분 등과 관련된다. 제1 내지 3쉘(110, 120, 130)은 각각 고유의 압력영역에서 운용될 수 있으며, 제1 내지 3쉘(110, 120, 130)의 각 내부구성은 동일한 압력영역에서 운용 가능한 구성품들로 조합될 수 있다.
즉, 고온재생기(111), 보조재생기(112) 및 응축기(113)를 같은 압력에서 운전되므로 제1쉘(110) 내에 함께 배치되고 있다. 또한, 증발기(121) 및 흡수기(122)의 경우, 증발기(121)에서 발생된 다량의 냉매 증기가 흡수기(122)로 이동해야 하므로, 제2쉘(120) 내부에 인접하게 배치되고 있다. 저온재생기(131) 및 보조흡수기(132) 또한 냉매 증기의 이동을 위해 제3쉘(130) 내부에 인접하게 배치되고 있다.
또한, 보조흡수기(132)의 경우, 전술한 바와 같이 냉각수라인(L5)의 단순화를 위해 제2쉘(120)의 흡수기(122) 상측에 배치되고 있다. 이는 다른 배관라인에 비해 부피가 큰 냉각수라인(L5)을 단순화시켜, 장치 내부를 간소화하고 설치공간을 확보할 수 있게 한다.
한편, 본 실시예에 따른 흡수식 냉동기(100)는 냉매라인(L1)을 포함할 수 있다.
냉매라인(L1)은 응축기(113)와 증발기(121) 간에 연결되어 냉매의 이동경로를 제공할 수 있다. 즉, 응축기(113)에서 응축된 액체상태의 냉매는 냉매라인(L1)을 통해 증발기(121)로 제공될 수 있으며, 증발기(121) 상단에서 분배기(121a)를 통해 산포될 수 있다. 한편, 냉매는 물(H2O)을 포함할 수 있다.
필요에 따라, 증발기(121) 하부에 모인 냉매가 다시 분배기(121a)를 통해 산포될 수 있도록, 냉매라인(L1)은 증발기(121) 하단에서 분배기(121a)까지 연장된 재순환라인(L1')을 포함할 수 있다. 이 경우, 증발기(121) 하부에 모인 냉매는 기 설정된 냉수라인(L7)의 온도 등에 따라 재순환라인(L1')를 통해 분배기(121a)로 다시 공급될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 흡수액이 이동되는 희용액라인(L2), 중간액라인(L3) 및 농용액라인(L4)을 포함할 수 있다.
흡수액은 냉매 증기와 혼합되어 묽어진 상태(희용액), 냉매 증기가 일부 분리된 중간 농도의 상태(중간액) 또는, 냉매 증기가 분리된 진한 농도의 상태(농용액)로 있을 수 있다. 편의상, 본 명세서에서는 흡수액을 농도 상태에 따라 희용액, 중간액 또는, 농용액으로 구분하여 지칭키로 한다. 한편, 흡수액은 리튬브로마이드(LiBr) 수용액을 포함할 수 있다.
희용액라인(L2)은 흡수기(122)와 고온재생기(111) 간에 연결될 수 있다. 흡수기(122) 하부에 모인 희용액은 희용액라인(L2)을 통해 고온재생기(111)로 제공될 수 있다. 고온재생기(111)로 제공된 희용액은 고온재생기(111) 내부에서 분배기(111a)를 통해 산포될 수 있다.
바람직하게, 희용액라인(L2)은 저온열교환기(140) 및 고온열교환기(150)를 순차적으로 거쳐 고온재생기(111)로 희용액을 제공하도록 형성될 수 있다. 희용액은 저온열교환기(140)에서 농용액과 열교환될 수 있으며, 고온열교환기(150)에서 중간액과 열교환될 수 있다. 이때, 저온열교환기(140)의 농용액은 저온재생기(131)로부터 제공될 수 있으며, 고온열교환기(150)의 중간액은 고온재생기(111)로부터 제공될 수 있다.
필요에 따라, 희용액라인(L2)은 저온열교환기(140) 이전 단계에서 흡수기(122) 상부를 경유하도록 형성될 수 있다. 이 경우, 희용액라인(L2)은 흡수기(122) 내의 농용액 및 냉매 증기와 열교환될 수 있다. 이에 대하여는 후술할 제2쉘(120)과 관련하여 부연키로 한다.
중간액라인(L3)은 고온재생기(111)와 저온재생기(131) 간에 연결될 수 있다. 고온재생기(111)의 하부에 모인 중간액은 중간액라인(L3)을 통해 저온재생기(131)로 제공될 수 있다. 저온재생기(131)로 제공된 중간액은 분배기(131a)를 통해 저온재생기(131) 내에 산포될 수 있다.
바람직하게, 중간액라인(L3)은 고온열교환기(150)를 경유하여 저온재생기(131)로 중간액을 제공할 수 있다. 전술한 바와 같이, 고온열교환기(150)에서 중간액은 희용액과 열교환될 수 있다.
농용액라인(L4)은 저온재생기(131)와 흡수기(122) 간에 연결될 수 있다. 저온재생기(131) 하부에 모인 농용액은 농용액라인(L4)을 통해 흡수기(122)로 제공될 수 있다. 흡수기(122)로 제공된 농용액은 분배기(122a)를 통해 흡수기(122) 내에 산포될 수 있다.
바람직하게, 농용액라인(L4)은 저온열교환기(140)를 경유하여 흡수기(122)로 농용액을 제공할 수 있다. 전술한 바와 같이, 저온열교환기(140)에서 농용액은 희용액과 열교환될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 보조흡수액이 이동되는 보조희용액라인(L9) 및 보조농용액라인(L10)을 포함할 수 있다.
보조희용액라인(L9)은 보조흡수기(132)와 보조재생기(112) 간에 연결될 수 있다. 보조흡수기(132) 하부에 모인 보조희용액은 보조희용액라인(L9)을 통해 보조재생기(112)로 제공될 수 있다. 보조재생기(112)로 제공된 보조희용액은 분배기(112a)를 통해 보조재생기(112) 내에 산포될 수 있다.
바람직하게, 보조희용액라인(L9)은 보조열교환기(160)를 경유하여 보조재생기(112)로 보조희용액을 제공할 수 있다. 이 경우, 보조열교환기(160)에서 보조희용액은 보조농용액과 열교환될 수 있다. 이때, 보조농용액은 보조재생기(112)로부터 제공될 수 있다.
보조농용액라인(L10)은 보조재생기(112)와 보조흡수기(132) 간에 연결될 수 있다. 보조재생기(112) 하부에 모인 보조농용액은 보조농용액라인(L10)을 통해 보조흡수기(132)로 제공될 수 있다. 보조흡수기(132)로 제공된 보조농용액은 분배기(132a)를 통해 보조흡수기(132) 내에 산포될 수 있다.
바람직하게, 보조농용액라인(L10)은 보조열교환기(160)를 경유하여 보조흡수기(132)로 보조농용액을 제공할 수 있다. 전술한 바와 같이, 보조열교환기(160)에서 보조농용액은 보조희용액과 열교환될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 냉각수라인(L5)을 포함할 수 있다.
냉각수라인(L5)은 외부에서 공급되는 냉각수의 이동경로를 제공할 수 있다. 냉각수라인(L5)은 흡수기(122), 보조흡수기(132) 및 응축기(113)를 순차적으로 경유하도록 형성될 수 있다. 즉, 냉각수입구(L5')를 통해 제공되는 냉각수는 냉각수라인(L5)을 따라 흡수기(122), 보조흡수기(132) 및 응축기(113)를 순차적으로 경유하여 냉각수출구(L5")로 배출될 수 있다. 도시되지 않았으나, 냉각수출구(L5")로 배출된 냉각수는 냉각탑 등의 냉각수단을 거쳐 다시 냉각수입구(L5')로 공급될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 온수라인(L6)을 포함할 수 있다.
온수라인(L6)은 외부에서 공급되는 온수의 이동경로를 제공할 수 있다. 온수라인(L6)은 고온재생기(111), 저온재생기(131) 및 보조재생기(112)를 순차적으로 경유하도록 형성될 수 있다. 즉, 온수입구(L6')를 통해 제공되는 온수는 온수라인(L6)을 따라 고온재생기(111), 저온재생기(131) 및 보조재생기(112)를 순차적으로 경유하여 온수출구(L6")로 배출될 수 있다. 도시되지 않았으나, 온수출구(L6")로 배출된 온수는 외부의 가열원을 거쳐 다시 온수입구(L6')로 공급될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 냉수라인(L7)을 포함할 수 있다.
냉수라인(L7)은 외부에서 공급되는 냉수의 이동경로를 제공할 수 있으며, 증발기(121)를 경유하도록 형성될 수 있다. 냉수는 냉수라인(L7)을 따라 이동되면서 증발기(121) 내에서 냉매의 기화열에 의해 냉각될 수 있다. 냉각된 냉수는 수요처로 제공될 수 있다.
이상과 같은 흡수식 냉동기(100)의 작동을 살펴보면, 냉매는 증발기(121) 내에서 산포될 수 있으며, 산포된 냉매가 냉매 증기로 기화되면서 기화열에 의해 냉수라인(L7)의 냉수가 냉각될 수 있다. 증발기(121)에서 발생된 냉매 증기는 엘리미네이터(123)를 거쳐 증발기(121)에 인접한 흡수기(122)로 이동될 수 있다.
흡수액은 주계통과 보조계통의 2가지 순환계통을 가질 수 있다.
주계통을 살펴보면, 흡수기(122) 내에서 산포된 농용액은 증발기(121)에서 발생된 냉매 증기와 혼합되어 희용액으로 변환될 수 있다. 농용액 및 냉매 증기는 흡수기(122) 내에서 냉각수라인(L5) 및 희용액라인(L2)에 의해 냉각될 수 있다. 또한, 생성된 희용액은 흡수기(122) 하부에 포집될 수 있다.
흡수기(122) 하부에 포집된 희용액은 희용액라인(L2)을 통해 저온열교환기(140) 및 고온열교환기(150)를 경유하며 농용액 및 중간액과 열교환될 수 있다. 필요에 따라, 희용액은 저온열교환기(140)의 전단계에서 흡수기(122) 상부를 경유할 수 있다.
고온열교환기(150)를 거친 희용액은 고온재생기(111) 내에서 산포될 수 있다. 산포된 희용액은 온수라인(L6)에 의해 가열되어 냉매 증기가 분리되고 농도가 진해져 중간액이 생성될 수 있다. 생성된 중간액은 고온재생기(111) 하부에 포집될 수 있다.
고온재생기(111) 하부에 포집된 중간액은 고온열교환기(150)를 경유하여 저온재생기(131)로 다시 산포될 수 있다. 산포된 중간액은 온수라인(L6)에 의해 가열되어 남은 냉매 증기가 분리되고 농용액으로 변환될 수 있다. 생성된 농용액은 저온재생기(131) 하부에 포집될 수 있다.
저온재생기(131) 하부에 포집된 농용액은 농용액라인(L4)을 통해 저온열교환기(140)를 경유하며, 다시 흡수기(122) 내에서 산포될 수 있다. 이후 농용액은 전술한 바와 같은 과정을 반복하며 순환될 수 있다.
보조계통을 살펴보면, 보조흡수기(132) 내에서 산포된 보조농용액은 저온재생기(131)에서 발생된 냉매 증기와 혼합되어 보조희용액으로 변환될 수 있다. 저온재생기(131)의 냉매 증기는 엘리미네이터(133)를 거쳐 보조흡수기(132)로 유입될 수 있으며, 냉각수라인(L5)은 보조흡수기(132) 내에서 보조농용액 및 냉매 증기를 냉각시킬 수 있다. 생성된 보조희용액은 보조흡수기(132) 하부에 포집될 수 있다.
보조흡수기(132) 하부에 포집된 보조희용액은 보조열교환기(160)를 거쳐 보조재생기(112)로 다시 산포될 수 있다. 이때, 보조희용액은 보조열교환기(160)에서 보조농용액과 열교환될 수 있다.
보조재생기(112)에서 산포된 보조희용액은 온수라인(L6)에 의해 가열되어 냉매 증기가 분리되고 보조농용액으로 변환될 수 있다. 생성된 보조농용액은 보조재생기(112) 하부에 포집될 수 있다.
보조재생기(112) 하부에 포집된 보조농용액은 보조농용액라인(L10)을 통해 보조열교환기(160)를 경유하며 다시 보조흡수기(132) 내에서 산포될 수 있다. 이후 보조농용액은 전술한 바와 같은 과정을 반복하며 순환될 수 있다.
또한, 고온재생기(111) 및 보조재생기(112)에서 분리된 냉매 증기는 제1쉘(110) 내에서 엘리미네이터(114)를 거쳐 응축기(113)로 유입될 수 있다. 냉매 증기는 응축기(113) 내에서 냉각수라인(L5)을 통해 냉각되어 액체상태의 냉매로 변환될 수 있다. 생성된 액체상태의 냉매는 응축기(113) 하부에 포집될 수 있으며, 냉매라인(L1)을 통해 증발기(121)로 제공되어 전술한 바와 같이 냉수라인(L7)의 냉각에 사용될 수 있다.
상기와 같은 흡수식 냉동기(100)에 있어 장치 내부를 순환하는 냉매, 흡수액 등은 설계된 소정의 온도 범위에 따라 운용되게 된다. 또한, 외부로부터 장치 내로 도입되는 냉수, 냉각수, 온수 등도 적절한 효율을 도출하기 위해 설계된 온도 범위에서 운용되고 있다. 예컨대, 본 실시예의 흡수식 냉동기(100)에 있어서 냉수라인(L7)의 입구 온도는 약 8도, 출구 온도는 약 13도로 설정될 수 있으며, 흡수기(122)에서 배출되는 희용액의 온도는 약 34도, 고온재생기(111)에서 배출되는 중간액의 온도는 약 80도, 저온재생기(131)에서 배출되는 농용액의 온도는 약 65도 등으로 설정될 수 있다. 통상적으로 흡수식 냉동기(100)에 있어 이와 같은 설계 온도는 장치의 효율에 직접적으로 영향을 미칠 수 있다.
다만, 경우에 따라, 적절한 범위의 설계 온도를 벗어나 장치가 운용되는 경우가 있다. 대표적으로, 외기의 온도가 상승되어 냉각수라인(L5)의 냉각수 온도가 상승되는 경우가 있다. 이 경우, 농용액은 흡수기(122) 내에서 냉각수라인(L5)에 의해 충분히 냉각되지 못하고, 이에 따라 희용액라인(L2)의 희용액 온도도 상승되게 된다. 알려진 바와 같이, 흡수액은 온도가 낮을수록 냉매 증기와의 결합력이 강해지기 때문에, 흡수기(122) 내 농용액의 온도 상승은 장치의 효율을 저하시키는 원인이 될 수 있다. 또한, 희용액라인(L2)의 온도 상승은 희용액이 산포되는 고온재생기(111)의 내부 온도를 상승시키게 되는데, 온수라인(L6)을 통해 고온의 온수가 도입되는 고온재생기(111)에서 내부 온도 상승은 고온재생기(111) 내 부식을 촉진하는 원인이 될 수 있다.
본 실시예의 흡수식 냉동기(100)는 제1 내지 3 바이패스라인(B1, B2, B3)을 통해 상기와 같은 문제점을 해결하고 있다.
구체적으로, 본 실시예에 따른 흡수식 냉동기(100)는 제1바이패스라인(B1)을 포함할 수 있다.
제1바이패스라인(B1)은 증발기(121) 하부와 흡수기(122) 하부 간에 연결 설치될 수 있다. 제1바이패스라인(B1)은 증발기(121) 하부에 모인 냉매를 흡수기(122) 하부로 제공할 수 있다. 통상 증발기(121) 하부에 모인 냉매는 흡수기(122) 하부의 희용액에 비해 저온 상태에 있다.
제1바이패스라인(B1)에는 제1개폐밸브(B1')가 구비될 수 있다. 제1개폐밸브(B1')는 통상적인 운용 상태에서 폐쇄될 수 있으며, 후술할 제어부에 의해 선택적으로 개방될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 제2바이패스라인(B2)를 포함할 수 있다.
제2바이패스라인(B2)은 희용액라인(L2)의 저온열교환기(140)과 고온열교환기(150) 사이에서 분지되어, 중간액라인(L3)의 고온열교환기(150) 후단에 합류될 수 있다. 즉, 제2바이패스라인(B2)은 저온열교환기(140)와 고온열교환기(150) 사이에 위치한 희용액라인(L2)의 일측과, 고온열교환기(150) 후단에 위치한 중간액라인(L3)의 일측 간에 연결 설치될 수 있다.
제2바이패스라인(B2)의 분지점에는 제1삼방밸브(B2')가 구비될 수 있으며, 제2바이패스라인(B2)의 합류점에서는 제2삼방밸브(B2")가 구비될 수 있다. 제2바이패스라인(B2)은 제1, 2삼방밸브(B2', B2")에 의해 통상적인 운용 상태에서 폐쇄될 수 있으며, 후술할 제어부에 의해 선택적으로 개방될 수 있다.
또한, 본 실시예에 따른 흡수식 냉동기(100)는 제3바이패스라인(B3)을 포함할 수 있다.
제3바이패스라인(B3)은 희용액라인(L2)의 저온열교환기(140) 전단에서 분지되어, 중간액라인(L3)의 고온열교환기(150) 후단에 합류될 수 있다. 즉, 제3바이패스라인(B3)은 저온열교환기(140) 전단에 위치한 희용액라인(L2)의 일측과, 고온열교환기(150) 후단에 위치한 중간액라인(L3)의 일측 간에 연결 설치될 수 있다.
제3바이패스라인(B3)의 분지점에는 제3삼방밸브(B3')가 구비될 수 있으며, 제3바이패스라인(B3)의 합류점에서는 제4삼방밸브(B4")가 구비될 수 있다. 제3바이패스라인(B3)은 제3, 4삼방밸브(B3', B4")에 의해 통상적인 운용 상태에서 폐쇄될 수 있으며, 후술할 제어부에 의해 선택적으로 개방될 수 있다.
한편, 본 실시예에 따른 흡수식 냉동기(100)는 제어부를 포함할 수 있다.
제어부는 전술한 제1 내지 3바이패스라인(B1, B2, B3)을 개폐 제어할 수 있다. 구체적으로, 제어부는 냉각수라인(L5)의 입구 온도에 따라 제1 내지 3바이패스라인(B1, B2, B3)를 선택적으로 개폐시킬 수 있다. 먼저, 제어부는 냉각수라인(L5)의 입구 온도가 기 설정된 정상범위 내에 있는 경우, 제1 내지 3바이패스(B1. B2, B3)를 폐쇄시킬 수 있다. 이 경우, 흡수식 냉동기(100)는 전술한 작동 상태와 같이 흡수기(122)의 희용액이 저온열교환기(140) 및 고온열교환기(150)를 순차적으로 거쳐 고온재생기(111)로 투입되도록 운행될 수 있다.
한편, 제어부는 냉각수라인(L5)의 입구 온도가 기 설정된 제1온도 이상이 되면, 제1바이패스라인(B1)을 선택적으로 개방할 수 있다. 이 경우, 제2, 3바이패스라인(B2. B3)는 폐쇄된 상태로 유지될 수 있다. 제1바이패스라인(B1)이 개방되면, 증발기(121)의 저온 냉매가 흡수기(122)의 희용액과 일부 혼합되면서, 희용액의 온도를 하강시킬 수 있다. 따라서 냉각수의 온도가 증가됨에도 불구하고, 희용액라인(L2)의 온도는 일정하게 유지될 수 있으며, 이후의 흡수액 순환 계통에 미치는 영향을 최소화한 채 장치가 운행될 수 있다.
냉각수라인(L5)의 입구 온도가 기 설정된 제2온도 이상이 되면, 제어부는 제2바이패스라인(B2)을 선택적으로 개방할 수 있다. 이때, 제2온도는 전술한 제1온도보다 소정정도 높은 온도를 의미할 수 있다. 또한, 이 경우, 제1, 3바이패스라인(B1. B3)은 폐쇄될 수 있다. 제2바이패스라인(B2)은 저온열교환기(140)를 거친 희용액을 고온열교환기(150) 후단의 중간액라인(L3)으로 합류시킬 수 있다. 즉, 이 경우, 희용액라인(L2)의 희용액은 고온열교환기(150) 및 고온재생기(111)를 거치지 않고, 곧장 중간액라인(L3)을 통해 저온재생기(131)로 보내질 수 있다.
상기와 같은 희용액의 바이패스 경로는 냉각수 온도 상승으로 설계 온도보다 높아진 희용액이 고온재생기(111)로 유입되는 것을 방지하게 된다. 즉, 고온의 희용액이 고온재생기(111) 내에서 산포됨으로써, 고온재생기(111) 내부의 온도가 상승되고, 이로 인해 고온재생기(111)에 부식이 발생되는 것을 방지할 수 있다.
또한, 상기의 경우, 상대적으로 중간액라인(L3)의 설계 온도보다 낮은 희용액을 중간액라인(L3) 및 저온재생기(131)로 투입시킴으로써, 저온재생기(131)로부터 흡수기(121)로 공급되는 농용액의 온도를 낮출 수 있는 효과가 있다. 즉, 유입 냉각수의 온도가 제2온도까지 상승되는 경우라도, 통상 희용액라인(L2)의 높아진 온도는 중간액라인(L3)의 설계 온도보다 낮으므로, 상대적으로 저온인 희용액을 투입하여 흡수기(121)에 산포되는 농용액의 온도를 낮춘 것이다. 이와 같이 흡수기(122) 내 농용액 온도를 낮춤으로써, 냉각수의 온도 상승에도 불구하고, 흡수기(122)의 효율 저감을 최소화시킬 수 있다.
한편, 냉각수라인(L5)의 입구 온도가 기 설정된 제3온도 이상이 되면, 제어부는 제3바이패스라인(B3)을 선택적으로 개방할 수 있다. 이때, 제3온도는 전술한 제2온도보다 소정정도 높은 온도를 의미할 수 있다. 바람직하게, 제3온도는 기온 등 환경적 요인에 의해 발생될 수 있는 냉각수 온도의 한계치를 벗어나, 냉각탑의 파손 등으로 인해 냉각수 온도가 비정상적으로 높아진 경우로 가정될 수 있다. 또한, 이 경우, 제1, 2바이패스라인(B1, B2)는 폐쇄될 수 있다.
상기와 같이 냉각수 온도가 비정상적으로 높아진 경우, 제3바이패스라인(B3)은 저온열교환기(140) 전단의 희용액을 바로 저온재생기(130)로 안내하게 된다. 이와 같은 제3바이패스라인(B3)의 동작은 장치의 효율 측면보다는 장치의 안전성 내지 보호 기능에 중점을 둘 수 있다. 즉, 냉각수 온도가 제3온도 이상으로 비정상적 상승되면, 흡수기(122)에서의 농용액과 냉매 증기의 결합력이 급격히 저하될 수 있으며, 발생된 냉매 증기가 적절히 회수되지 않음으로 인해, 흡수기(122)가 배치된 제2쉘(120)의 내부 압력이 증가될 수 있다. 이러한 내부 압력 증가는 장치의 파손을 일으키거나 안전성을 저하시킬 수 있으므로, 제3바이패스라인(B3)을 통해 가급적 빠르게 농용액의 온도를 저하시킨 것이다.
또한, 냉각수의 온도 상승은 희용액의 온도 상승으로 이어질 수 있기 때문에, 전술한 바와 같이 고온재생기(111)에서 부식 유발 등의 문제를 야기할 수 있다. 제3바이패스라인(B3)은 희용액을 바이패스시켜 고온재생기(111)를 거치지 않도록 함으로써, 이를 방지하게 된다.
한편, 제3바이패스라인(B3)이 개방되는 경우, 저온재생기(131)에서는 설계 온도보다 상당히 낮은 흡수액이 산포되게 되므로, 충분한 가열이나 냉매 증기의 분리가 어려울 수 있으며, 이는 결국 증발기(121)로 제공되는 냉매 양이 저감되는 결과로 나타날 수 있다. 즉, 제3바이패스라인(B3)은 효율상의 손실을 감소하더라도, 비정상적 운용 상태로 인한 장치의 파손을 방지하고, 안정적 상태를 유지함을 목적으로 할 수 있다.
한편, 본 실시예에 따른 흡수식 냉동기(100)는 제2쉘(120)의 증발기(121) 또는 흡수기(122)에 있어서 2단 분배구조를 가질 수 있다.
다시 말하면, 증발기(121) 또는 흡수기(122)는 냉매 또는 농용액의 분배를 위해 각각 상하로 배치된 2개의 분배기(121a, 121b 또는 122a, 122b)를 구비할 수 있다. 편의상, 증발기(121)에 상하로 배치된 2개의 분배기(121a, 121b)를 1단 냉매분배기(121a) 및 2단 냉매분배기(121b)로 구분하여 지칭하고, 흡수기(122)에 상하로 배치된 2개의 분배기(122a, 122b)를 1단 흡수액분배기(122a) 및 2단 흡수액분배기(122b)로 지칭하기로 한다.
도 2는 도 1에 도시된 제2쉘(120)의 내부 사시도이다.
도 2를 참조하면, 1단 냉매분배기(121a) 및 1단 흡수액분배기(122a)는 증발기(121) 또는 흡수기(122)의 상측에 배치되어 냉매 또는 농용액(흡수액)을 하방으로 산포하도록 형성될 수 있다. 이와 같은 1단 냉매분배기(121a) 및 1단 흡수액분배기(122a)는 상호 동일 또는 유사하게 형성될 수 있다. 또한, 1단 냉매분배기(121a) 및 1단 흡수액분배기(122a)는 종래의 냉매 또는 농용액을 위한 분배기와 동일 또는 유사하게 형성될 수 있다. 따라서 1단 냉매분배기(121a) 및 1단 흡수액분배기(122a)에 대한 상세한 구성은 설명을 생략하도록 한다.
2단 냉매분배기(121b) 및 2단 흡수액분배기(122b)는 1단 냉매분배기(121a) 또는 1단 흡수액분배기(122a)의 하측에 배치될 수 있다. 즉, 2단 냉매분배기(121b)는 1단 냉매분배기(121a)의 하측에 배치될 수 있으며, 2단 흡수액분배기(122b)는 1단 흡수액분배기(122a)의 하측에 배치될 수 있다. 이와 같은 2단 냉매분배기(121b) 및 2단 흡수액분배기(122b)는 상호 동일 또는 유사하게 형성될 수 있다. 2단 냉매분배기(121b) 또는 2단 흡수액분배기(122b)의 상세한 구성은 도 3을 참조하여 후술하기로 한다.
2단 냉매분배기(121b) 및 2단 흡수액분배기(122b)는 1단 냉매분배기(121a) 또는 1단 흡수액분배기(122a)에서 산포된 냉매 또는 농용액을 일부 포집하여 하부측의 전열관(121c, 122d)으로 다시 산포할 수 있다. 이를 통해, 2단 냉매분배기(121b) 및 2단 흡수액분배기(122b)는 증발기(121) 또는 흡수기(122) 내부에서 냉매 또는 농용액이 2단 분배구조를 구현할 수 있다. 이와 같은 2단 분배구조는 증발기(121) 및 흡수기(122) 내부에서 냉매 또는 농용액이 보다 균일한 농도로 분포되어 전열관(121c, 122d)과 반응할 수 있도록 하여 장치의 효율을 향상시키는데 기여할 수 있다.
부연하면, 종래의 경우, 증발기(121) 및 흡수기(122)의 상단에서만 분배기가 냉매나 농용액을 산포함으로써, 증발기(121) 또는 흡수기(122) 내부에 냉매 또는 농용액이 균일하게 분포되지 않는 문제가 있다. 즉, 냉매 또는 농용액의 농도가 증발기(121) 또는 흡수기(122) 내부에서 불균일하게 조성될 수 있으며, 이와 같은 경우, 냉매 또는 농용액이 전체 전열관(121c, 122c, 122d)과 충분히 반응 또는 열교환되지 못하는 문제가 있다. 따라서 본 실시예의 흡수식 냉동기(100)는 2단 냉매분배기(121b) 및 2단 흡수액분배기(122b)를 통한 2단 분배구조를 도입함으로써, 전열관(121c, 122c, 122d)과의 반응성을 향상시키고, 장치의 효율을 개선한 것이다.
보다 구체적으로, 제2쉘(120) 내부는 엘리미네이터(123)를 통해 좌우의 증발기(121) 및 흡수기(122)로 구획될 수 있으며, 증발기(121) 내부 상단에는 1단 냉매분배기(121a)가, 흡수기(122) 내부 상단에는 1단 흡수액분배기(122a)가 각각 배치될 수 있다. 1단 냉매분배기(121a)로는 냉매라인(L1)을 통해 냉매가 제공될 수 있으며, 1단 냉매분배기(121a)는 제공된 냉매를 하방으로 산포할 수 있다. 1단 흡수액분배기(122a)로는 농용액라인(L4)을 통해 농용액이 제공될 수 있으며, 1단 흡수액분배기(122a)는 제공된 농용액을 하방으로 산포할 수 있다.
또한, 증발기(121) 및 흡수기(122) 내부에는 다수의 전열관(121c, 122c, 122d)이 배치될 수 있다. 증발기(121) 내부의 전열관(121c)에는 냉수라인(L7)을 통해 제공되는 냉수가 유동될 수 있으며, 전열관(121c, 122c, 122d)을 매개로 냉수와 냉매(기화열)의 열교환이 이뤄질 수 있다. 편의상, 증발기(121) 내부에 배치된 전열관(121c)을 냉수전열관(121c)으로 지칭키로 한다.
흡수기(122) 내부의 전열관(122c, 122d)은 희용액이 유동되는 전열관(122c)과, 냉각수가 유동되는 전열관(122d)으로 구분될 수 있다. 편의상, 전자를 희용액전열관(122c)으로, 후자를 냉각수전열관(122d)으로 구분하여 지칭키로 한다. 희용액전열관(122c)에는 희용액라인(L2)을 통해 제공되는 희용액이 유동될 수 있으며, 냉각수전열관(122d)에는 냉각수라인(L5)을 통해 제공되는 냉각수가 유동될 수 있다. 상기의 희용액 및 냉각수는 희용액전열관(122c) 또는 냉각수전열관(122d)을 매개로 산포된 농용액과 열교환될 수 있다.
바람직하게, 희용액전열관(122c)은 1단 흡수액분배기(122a)와 인접한 흡수기(122) 상측의 소정범위에 배치될 수 있으며, 냉각수전열관(122d)은 희용액전열관(122c)의 하측에 소정범위 배치될 수 있다. 따라서 1단 흡수액분배기(122a)로 산포된 농용액은 일차적으로 희용액전열관(122c)을 거쳐 냉각수전열관(122d)에 다다를 수 있다.
이때, 2단 냉매분배기(121b)는 증발기(121) 내부의 냉수전열관(121c) 중간에 배치될 수 있다. 2단 냉매분배기(121b)는 상부측의 냉수전열관(121c)을 거친 냉매를 포집하여 하부측의 냉수전열관(121c)에 다시 산포(재분배)할 수 있다. 따라서 상, 하부측의 전체 냉수전열관(121c)에 걸쳐 냉매 농도가 보다 고르게 분포될 수 있으며, 이는 열교환 효율 등을 향상시킬 수 있다.
또한, 2단 흡수액분배기(122b)는 냉각수전열관(122d)의 중간 부근에 배치될 수 있다. 이와 같은 경우, 흡수기(122) 내부는 상측에서부터 1단 흡수액분배기(122a), 희용액전열관(122c), 상부측의 냉각수전열관(122d), 2단 흡수액분배기(122b) 및 하부측의 냉각수전열관(122d) 순으로 배치될 수 있다. 2단 흡수액분배기(122b)는 1단 흡수액분배기(122a)에서 산포되어 희용액전열관(122c) 및 상부측의 냉각수전열관(122d)을 거친 농용액을 포집하여 하부측의 냉각수전열관(122d)으로 다시 산포(재분배)함으로써, 흡수기(122) 내부의 전체 전열관(122c, 122d)에 농용액 농도가 고르게 분포될 수 있도록 한다.
이하, 도 3 내지 5를 참조하여, 2단 냉매분배기(121b)의 상세 구성에 대해 설명하도록 한다. 단, 전술한 바와 같이, 2단 흡수액분배기(122b) 또한 후술하는 2단 냉매분배기(121b)와 동일 또는 유사하게 형성될 수 있음을 알려둔다.
도 3은 도 2에 도시된 2단 냉매분배기(121b)의 사시도이다. 도 4는 도 3에 도시된 2단 냉매분배기(121b)의 평면도, 정면도 및 측면도이다. 도 5는 도 3에 표시된 A부분의 확대도이다.
도 3 내지 5를 참조하면, 2단 냉매분배기(121b)는 트레이유닛(10)을 포함할 수 있다.
트레이유닛(10)은 바닥판(11a) 및 한 쌍의 측판(11b)을 구비하고 상측이 개구되도록 형성된 트레이(11)를 구비할 수 있다. 트레이(11)는 대략 상측을 향해 개구된 'ㄷ'자 형태의 횡단면을 가지고 좌우로 소정길이 연장 형성될 수 있다. 바닥판(11a)에는 복수개의 분배홀(11c)이 형성될 수 있다. 도 4의 (a)에 도시된 바와 같이, 복수개의 분배홀(11c)은 전후로 한 쌍을 이루며, 트레이(11)의 길이방향을 따라 좌우로 이격 배치될 수 있다.
트레이유닛(10)은 트레이(11)의 각 측판(11b)으로부터 상측으로 경사지게 연장되는 경사판(12)을 구비할 수 있다. 경사판(12)은 측판(11b)으로부터 상측으로 소정길이 연장되되, 트레이(11) 외측을 향해 경사지게 연장될 수 있다. 따라서 좌우 한 쌍의 경사판(12)은 트레이(11) 상측의 개구부로 액성분(농용액 또는 냉매)의 유입을 유도하도록 대략 깔대기 형태를 이루게 된다.
트레이유닛(10)은 트레이(11)의 길이방향 양 단에 마련되는 연결편(13)을 구비할 수 있다. 연결편(13)은 대략 'ㄱ'자 형태로 절곡 형성되어 트레이(11)의 각 단부에 고정 설치될 수 있다.
트레이유닛(10)은 트레이(11) 하부에 장착되는 가이드트레이(14)를 구비할 수 있다. 가이드트레이(14)는 트레이(11) 하부에 장착되어 트레이(11)의 길이방향으로 연장 형성될 수 있다. 횡단면상, 가이드트레이(14)는 트레이(11) 하부에 접합되는 접합부(14a)와, 접합부(14a)를 중심으로 하향 경사지게 연장되는 한 쌍의 경사부(14b)로 구분될 수 있다. 이때, 각 경사부(14b)는 바닥판(11a)에 형성된 분배홀(11c) 하측에 배치될 수 있다.
트레이유닛(10)은 가이드트레이(14)의 각 측면에 장착되는 공급트레이(15)를 구비할 수 있다. 도시되지 않았으나, 공급트레이(15) 하부에는 액성분을 하측으로 산포하기 위한 공급홀이 형성될 수 있다.
한편, 상기와 같은 트레이유닛(10)은 복수개가 구비되어 전후로 인접하게 배치될 수 있다. 즉, 2단 냉매분배기(121b)는 길이방향이 좌우를 향하도록 배치된 각 트레이유닛(10)이 전후로 복수개 배치되어, 도시된 바와 같이 대략 사각 플레이트 형상을 이룰 수 있다.
이때, 복수의 트레이유닛(10)을 연결 설치하기 위해, 2단 냉매분배기(121b)는 트레이(11)의 길이방향 각 단부에서 전후로 연장 형성되는 연결바(20)를 구비할 수 있다. 연결바(20)는 트레이(11)의 각 단부에 마련된 연결편(13)과 결합되어 복수의 트레이유닛(10)을 연결 설치할 수 있다.
상기와 같은 2단 냉매분배기(121b)는 트레이(11) 상측의 개구부로 냉매가 유입되면, 바닥판(11a)의 분배홀(11c)을 통해 냉매가 가이드트레이(14)의 경사부(14b)로 떨어지게 되며, 냉매가 경사부(14b)를 따라 흘러 공급트레이(15)로 유입되어, 공급트레이(15) 하부의 공급홀을 통해 냉매가 하측으로 산포되게 된다. 특히, 본 실시예의 2단 냉매분배기(121b)는 냉매라인(L1) 등을 통해 별도로 냉매가 공급되는 것이 아니라, 1단 냉매분배기(121a)에서 산포된 냉매를 중간에서 다시 포집하여 재분배하는 것으로, 냉매의 포집이 원활히 이뤄질 수 있도록 트레이(11) 상측에 깔대기 형태로 배치된 한 쌍의 경사판(12)을 구비하고 있다. 이와 같은 경사판(12)의 구성은 종래의 분배기 대비 설계변경을 최소화하여 제작을 용이하게 하면서도, 냉매의 포집이 원활히 이루어져 2단 냉매분배기(121b)의 기능을 적절히 구현할 수 있도록 한다.
이상과 같이, 본 실시예의 흡수식 냉동기(100)는 제2쉘(120) 내부의 증발기(121) 또는 흡수기(122)에서 2단 분배구조가 형성됨으로써, 냉매 또는 농용액의 반응성을 개선시킬 수 있으며, 이를 통해 장치의 전체 효율을 향상시킬 수 있다. 또한, 이에 사용되는 2단 냉매분배기(121b), 2단 흡수액분배기(122b) 등은 종래의 분배기에서 최소한의 설계변경만으로 쉽게 구현이 가능하면서도, 경사판(12)을 통해 냉매 또는 농용액의 포집 및 재분배 성능을 적절히 구현할 수 있다. 따라서 장치의 효율 향상에도 불구하고, 이를 위한 추가 비용이나 장치적 복잡성의 증가는 최소화될 수 있다.
한편, 필요에 따라, 본 실시예에 따른 흡수식 냉동기(100)는 부식방지유닛(160)을 더 포함할 수 있다.
흡수액으로 사용되는 리튬브로마이드 수용액은 산소와 혼재시에 금속에 대한 부식성을 가질 수 있다. 따라서 일반적으로 흡수액 중에는 부식억제제가 첨가되고 있으며, 알칼리도도 조정되고 있다. 그러나 흡수액에 첨가되는 부식억제제는 사용기간에 따라 희석될 수 있으며, 정기적인 관리가 요구된다. 다만, 통상 흡수식 냉동기(100)는 자동화된 시스템으로 무인 운행되고 있으며, 상기와 같은 첨가물의 적절한 관리가 어려울 수 있다. 부식억제제가 희석되는 등으로 인해 흡수액이 배관 라인 등에 부식을 발생시키는 경우, 장치에 심각한 손상을 일으킬 수 있음은 물론이다.
따라서 본 실시예에 따른 흡수식 냉동기(100)는 배관 라인에 부식방지유닛(160)이 구비될 수 있다. 보다 바람직하게, 부식방지유닛(160)은 고온열교환기(15) 후단의 희용액라인(L2)에 배치될 수 있다. 고온열교환기(15) 후단의 희용액은 고형물인 부식방지제(164)와 반응될 수 있도록 충분히 승온된 상태이기 때문이다.
도 6은 도 1에 도시된 부식방지유닛(160)의 개략도이다.
도 6을 참조하면, 부식방지유닛(160)은 희용액라인(L2) 상에 플랜지 결합되는 외관(161)을 구비할 수 있다. 외관(161)은 희용액이 유동될 수 있도록 소정의 내부공간을 구비할 수 있으며, 유입단(도면상, 좌측단)과 출구단(도면상, 우측단)이 각각 개구되어 있다. 바람직하게, 외관(161)은 희용액라인(L2)의 내경보다 소정정도 큰 내경을 갖도록 형성될 수 있다. 이는 부식방지유닛(160)의 부가로 인해 희용액의 유동 흐름이 방해받지 않도록 하기 위함이다.
부식방지유닛(160)은 외관(161) 내측에 배치되는 내관(162)을 구비할 수 있다. 내관(162)은 외관(161) 내부를 중앙의 메인유로(162a)와 메인유로(162a) 외측의 보조유로(161a)로 구획할 수 있다. 바람직하게, 내관(162)은 희용액라인(L2)의 내경과 대응되는 내경을 갖도록 형성될 수 있다. 이 경우, 내관(162)이 형성하는 메인유로(162a)는 희용액라인(L2)과 대응되는 내경을 가지기 때문에, 희용액라인(L2)을 통해 메인유로(162a)를 유동하는 희용액의 유동 흐름이 방해되지 않는다.
내관(162)은 메인유로(162a)와 보조유로(161a)를 연통시키는 유입구(162b) 및 유출구(162c)를 구비할 수 있다. 유입구(162b) 및 유출구(162c)는 희용액의 흐름 방향을 따라 전후로 소정간격 이격 배치될 수 있다. 메인유로(162a)의 희용액은 일부 유입구(162b)로 유입되어 보조유로(161a)로 유입될 수 있으며, 유입된 희용액은 유출구(162c)를 통해 다시 메인유로(162a)로 합류될 수 있다.
부식방지유닛(160)은 보조유로(161a)에 배치되는 필터(163)를 구비할 수 있다. 필터(163)는 한 쌍이 보조유로(161a)에 전후로 이격 설치되어 소정의 저장공간(163a)을 형성할 수 있다. 즉, 전후로 이격된 한 쌍의 필터(163), 외관(161)의 내면 및, 내관(162)의 외면에 보조유로(161a) 상에는 소정의 저장공간(163a)이 형성될 수 있다. 필터(163)는 희용액이 유통될 수 있는 금속 또는 수지재의 다공성 필터로 이뤄질 수 있다. 이와 같은 필터(163)는 부식방지제(164)의 부스러기가 저장공간(163a) 외부로 배출되는 것을 방지하게 된다.
부식방지유닛(160)은 저장공간(163a)에 배치되는 부식방지제(164)를 구비할 수 있다. 바람직하게, 부식방지제(164)는 삼산화안티몬(Sb2O3) 또는 염화코발트(CoCl2)를 고형물로 형성한 것을 포함할 수 있다.
이상과 같은 부식방지유닛(160)은 희용액의 유동에 따라 부식방지제(164) 성분이 희용액에 포함될 수 있도록 함으로써, 흡수액(희용액)으로 인한 배관라인의 부식을 장기간 보다 효과적으로 방지할 수 있다. 또한, 본 실시예의 부식방지유닛(160)은 외관(161) 및 내관(162)을 포함하는 구조로, 메인유로(162a)를 통해 희용액라인(L2)의 유동이 그대로 유지될 수 있어, 희용액의 유동 흐름을 저해하지 않는 수준에서 부식방지제(164) 등의 첨가가 가능하게 된다.
한편, 필요에 따라 전술한 제어부는 에너지 절감을 위한 제어기작을 추가로 구비할 수 있다.
구체적으로, 제어부는 냉수라인(L7)의 온도에 따라 냉매라인(L1), 흡수액라인(L2, L3, L4, L9, L10) 및 냉각수라인(L5) 중 어느 하나 이상을 가동 중단시킴으로써, 불필요한 에너지 소모를 최소화시킬 수 있다. 이때, 흡수액라인(L2, L3, L4, L9, L10)은 흡수액이 유동되는 배관으로, 농용액라인(L4), 중간액라인(L3), 희용액라인(L2), 보조농용액라인(L10) 및 보조희용액라인(L9)을 포함하는 의미이다.
보다 바람직하게, 제어부은 냉수라인(L7)의 출구 온도가 기 설정된 설정값보다 낮으면, 일차적으로 냉매라인(L1)의 가동을 중단시킬 수 있다. 또한, 제어수단은 냉수라인(L7)의 출구 온도가 상기의 설정값 이하인 상태로 기 설정된 설정시간 이상 연속 유지되는 경우, 흡수액라인(L2, L3, L4, L9, L10) 및 냉각수라인(L5) 중 어느 하나 이상을 추가로 가동 중단시킬 수 있다.
상기와 같은 일부 배관라인의 가동 중단은, 장치 내 불필요한 에너지 소모를 최소화하여 에너지이용효율을 향상시킬 수 있게 한다. 특히, 이와 같은 효과는 냉방부하가 적은 지역이나 시기에 보다 두드러지게 나타날 수 있다. 즉, 냉방부하가 적은 지역 또는 시기에는 냉수라인(L7)의 냉각에 필요한 최소한의 구성만을 가동하도록 함으로써, 운전조건에 따른 최적의 에너지이용을 가능케 하는 것이다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
100: 흡수식 냉동기 110: 제1쉘
111: 고온재생기 112: 보조재생기
113: 응축기 120: 제2쉘
121: 증발기 122: 흡수기
130: 제3쉘 131: 저온재생기
132: 보조흡수기 140: 저온열교환기
150: 고온열교환기 160: 부식방지유닛
L1: 냉매라인 L2: 희용액라인
L3: 중간액라인 L4: 농용액라인
L5: 냉각수라인 L6: 온수라인
L7: 냉수라인 L8: 바이패스라인
L9: 보조희용액라인 L10: 보조농용액라인

Claims (4)

  1. 희용액라인(L2)의 희용액이 온수라인(L6)과 열교환되어 중간액이 생성되는 고온재생기(111), 보조희용액라인(L9)의 보조희용액이 상기 온수라인(L6)과 열교환되어 보조농용액이 생성되는 보조재생기(112) 및, 상기 고온재생기(111) 및 상기 보조재생기(112)에서 발생된 냉매증기가 냉각수라인(L5)을 통해 액체상태로 응축되는 응축기(113)가 배치되는 제1쉘(110);
    냉매라인(L1)의 냉매가 기화열을 통해 냉수라인(L7)을 냉각시키는 증발기(121) 및, 상기 증발기(121)에서 발생된 냉매증기와 농용액라인(L4)의 농용액이 혼합되어 희용액이 생성되는 흡수기(122)가 배치되는 제2쉘(120); 및
    상기 고온재생기(111)에서 생성된 중간액이 상기 온수라인(L6)과 열교환되어 농용액이 생성되는 저온재생기(131) 및, 상기 저온재생기(131)에서 발생된 냉매증기와 보조농용액라인(L10)의 보조농용액이 혼합되어 보조희용액이 생성되는 보조흡수기(132)가 배치되는 제3쉘(130);을 포함하되,
    상기 증발기(121)는,
    상기 냉매라인(L1)을 통해 제공되는 냉매를 하측으로 산포하는 1단 냉매분배기(121a); 및
    상기 1단 냉매분배기(121a)의 하측에 이격 배치되어 상기 산포된 냉매를 재분배하는 2단 냉매분배기(121b);를 포함하고,
    상기 2단 냉매분배기(121b)는,
    각각 좌우로 연장 형성되어, 전후로 상호 인접하게 연결 설치되는 복수의 트레이유닛(10); 및
    상기 복수의 트레이유닛(10)의 길이방향 각 단부에서 전후로 연장 형성되어, 상기 복수의 트레이유닛(10)을 연결 지지하는 연결바(20);를 포함하며,
    상기 각 트레이유닛(10)은,
    상측으로 개구된 'ㄷ'자 형상의 횡단면을 가지고 좌우로 연장 형성되며, 바닥판(11a)에 복수의 분배홀(11c)이 마련되는 트레이(11);
    상기 트레이(11)의 각 측판(11b)으로부터 상측으로 경사지게 연장 형성되어, 냉매를 상기 트레이(11) 내측으로 유입 안내하는 경사판(12);
    상기 트레이(11) 하부에 체결되는 접합부(14a)와, 상기 접합부(14a)를 중심으로 하향 경사지게 연장 형성된 한 쌍의 경사부(14b)를 구비한 횡단면을 가지고, 좌우로 연장 형성되는 가이드트레이(14); 및
    상기 가이드트레이(14)의 각 측면에 마련되며, 하부의 공급홀을 통해 상기 경사부(14b)를 따라 흘러내린 냉매를 하측으로 산포하는 공급트레이(15);를 포함하고,
    상기 증발기(121) 하부와 상기 흡수기(122) 하부 간에 연결 설치되는 제1바이패스라인(B1);
    저온열교환기(140)와 고온열교환기(150) 사이의 상기 희용액라인(L2)에서 분지되어, 상기 고온열교환기(150) 후단의 중간액라인(L3)에 합류되는 제2바이패스라인(B2);
    상기 저온열교환기(140) 전단의 상기 희용액라인(L2)에서 분지되어, 상기 고온열교환기(150) 후단의 상기 중간액라인(L3)에 합류되는 제3바이패스라인(B3); 및
    상기 제1 내지 3바이패스라인(B1, B2, B3)을 개폐 제어하는 제어부;를 더 포함하되,
    상기 제어부는,
    통상적인 운용상태에서 상기 제1 내지 3바이패스라인(B1, B2, B3)을 폐쇄하고,
    상기 냉각수라인(L5)의 입구온도가 제1온도 이상이면, 상기 제1바이패스라인(B1)을 선택적으로 개방하며,
    상기 냉각수라인(L5)의 입구온도가 상기 제1온도보다 높은 제2온도 이상이면, 상기 제2바이패스라인(B2)을 선택적으로 개방하고,
    상기 냉각수라인(L5)의 입구온도가 상기 제2온도보다 높은 제3온도 이상이면, 상기 제3바이패스라인(B3)을 선택적으로 개방하도록 형성되며,
    상기 냉수라인(L7)의 출구 온도가 기 설정된 설정값 이하이면, 상기 냉매라인(L1)을 가동 중단시키고,
    상기 설정값 이하인 상태가 기 설정된 설정시간 이상 유지되면, 상기 냉각수라인(L5) 및 흡수액라인(L2, L3, L4, L9, L10) 중 어느 하나 이상을 가동 중단시키도록 형성되며,
    상기 고온열교환기(150) 후단의 상기 희용액라인(L2)에 설치되는 부식방지유닛(160);을 더 포함하되,
    상기 부식방지유닛(160)은,
    상기 희용액라인(L2)에 플랜지 결합되는 외관(161);
    상기 외관(161)의 내부에 배치되어 상기 외관(161)의 내부를 중앙의 메인유로(162a)와 상기 메인유로(162a) 외측의 보조유로(161a)로 구획하며, 상기 메인유로(162a)와 상기 보조유로(161a)를 연통시키는 유입구(162b) 및 유출구(162c)를 구비하는 내관(162);
    상기 보조유로(161a)에 희용액의 흐름방향을 따라 한 쌍이 전후로 이격 배치되어 저장공간(163a)을 형성하는 다공성의 필터(163); 및
    상기 저장공간에 수용되는 고형물의 부식방지제(164);를 포함하는, 흡수식 냉동기.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 흡수기(122)는,
    상기 농용액라인(L4)을 통해 제공되는 농용액을 하측으로 산포하는 1단 흡수액분배기(122a); 및
    상기 1단 흡수액분배기(122a)의 하측에 배치되어 상기 산포된 농용액을 중간에서 재분배하는 2단 흡수액분배기(122b);를 포함하고,
    상기 2단 흡수액분배기(122b)는,
    각각 좌우로 연장 형성되어, 전후로 상호 인접하게 연결 설치되는 복수의 트레이유닛(10); 및
    상기 복수의 트레이유닛(10)의 길이방향 각 단부에서 전후로 연장 형성되어, 상기 복수의 트레이유닛(10)을 연결 지지하는 연결바(20);를 포함하며,
    상기 각 트레이유닛(10)은,
    상측으로 개구된 'ㄷ'자 형상의 횡단면을 가지고 좌우로 연장 형성되며, 바닥판(11a)에 복수의 분배홀(11c)이 마련되는 트레이(11);
    상기 트레이(11)의 각 측판(11b)으로부터 상측으로 경사지게 연장 형성되어, 농용액을 상기 트레이(11) 내측으로 유입 안내하는 경사판(12);
    상기 트레이(11) 하부에 체결되는 접합부(14a)와, 상기 접합부(14a)를 중심으로 하향 경사지게 연장 형성된 한 쌍의 경사부(14b)를 구비한 횡단면을 가지고, 좌우로 연장 형성되는 가이드트레이(14); 및
    상기 가이드트레이(14)의 각 측면에 마련되며, 하부의 공급홀을 통해 상기 경사부(14b)를 따라 흘러내린 농용액를 하측으로 산포하는 공급트레이(15);를 포함하되,
    상기 2단 흡수액분배기(122b)는,
    상기 흡수기(122) 내 배치된 냉각수전열관(122d)의 중간에 배치되며, 상기 냉각수전열관(122d)은 상기 흡수기(122) 내 배치된 희용액전열관(122c)의 하측에 배치된 것인, 흡수식 냉동기.
  4. 삭제
KR1020170018625A 2017-02-10 2017-02-10 흡수식 냉동기 KR101763796B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170018625A KR101763796B1 (ko) 2017-02-10 2017-02-10 흡수식 냉동기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170018625A KR101763796B1 (ko) 2017-02-10 2017-02-10 흡수식 냉동기

Publications (1)

Publication Number Publication Date
KR101763796B1 true KR101763796B1 (ko) 2017-08-01

Family

ID=59650321

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170018625A KR101763796B1 (ko) 2017-02-10 2017-02-10 흡수식 냉동기

Country Status (1)

Country Link
KR (1) KR101763796B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020771B1 (ko) * 2018-05-28 2019-11-04 (주)월드이엔씨 고온수 및 냉수를 공급하는 흡수식 히트펌프 시스템
KR102190333B1 (ko) * 2020-07-21 2020-12-14 (주)월드에너지 무정비 흡수 냉동기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642553B2 (ja) 1991-12-20 1997-08-20 株式会社日立製作所 吸収冷温水機
KR101347582B1 (ko) * 2013-11-20 2014-01-03 (주)월드이엔씨 급탕 겸용 저온수 2단 흡수식 냉난방기
JP5785800B2 (ja) * 2011-06-30 2015-09-30 日立アプライアンス株式会社 蒸気吸収式冷凍機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2642553B2 (ja) 1991-12-20 1997-08-20 株式会社日立製作所 吸収冷温水機
JP5785800B2 (ja) * 2011-06-30 2015-09-30 日立アプライアンス株式会社 蒸気吸収式冷凍機
KR101347582B1 (ko) * 2013-11-20 2014-01-03 (주)월드이엔씨 급탕 겸용 저온수 2단 흡수식 냉난방기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020771B1 (ko) * 2018-05-28 2019-11-04 (주)월드이엔씨 고온수 및 냉수를 공급하는 흡수식 히트펌프 시스템
KR102190333B1 (ko) * 2020-07-21 2020-12-14 (주)월드에너지 무정비 흡수 냉동기

Similar Documents

Publication Publication Date Title
KR101763796B1 (ko) 흡수식 냉동기
KR101750649B1 (ko) 흡수식 냉동기
CN110030758A (zh) 一种多级高效大温差吸收式热泵及吸收式换热器
JP2009058181A (ja) 吸収式冷凍装置
CN111780451A (zh) 一种能单效供热的蒸汽双效型溴化锂吸收式冷水机组
JPH0473556A (ja) 吸収ヒートポンプ
CN108139126B (zh) 吸收式冷冻机
KR101690303B1 (ko) 3중 효용 흡수식 냉동기
KR20220125561A (ko) 흡수식 냉동기
CN210267790U (zh) 一种独立式制冷系统
JP2009287805A (ja) 吸収式冷凍機
CN216744978U (zh) 一种吸收式机组及余热回收系统
JP2007333342A (ja) 多重効用吸収冷凍機
CN220303932U (zh) 二段式可变效的溴化锂吸收式热泵机组
CN111076448A (zh) 一种热水利用装置及冷冻水系统
KR20180085363A (ko) 저온수 2단 흡수식 냉동기의 저부하 제어시스템
WO2018150516A1 (ja) 吸収式冷凍機
CN212511916U (zh) 一种能单效供热的蒸汽双效型溴化锂吸收式冷水机组
CN220303933U (zh) 二段式可变效的溶液串联溴化锂吸收式热泵机组
CN1125296C (zh) 吸收式制冷机
CN1118671C (zh) 吸收式制冷装置的双管单元
CN220728563U (zh) 一种溴化锂机组
CN112402995B (zh) 一种应用于切削液浓缩的空气源多效真空式蒸发系统
KR102144934B1 (ko) 비가열식 재생공정을 이용한 흡수식 냉동기
CN210624999U (zh) 吸收式制冷系统

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant