KR101755030B1 - 탄소 기판을 이용한 태양 전지 제조 방법 - Google Patents

탄소 기판을 이용한 태양 전지 제조 방법 Download PDF

Info

Publication number
KR101755030B1
KR101755030B1 KR1020160096062A KR20160096062A KR101755030B1 KR 101755030 B1 KR101755030 B1 KR 101755030B1 KR 1020160096062 A KR1020160096062 A KR 1020160096062A KR 20160096062 A KR20160096062 A KR 20160096062A KR 101755030 B1 KR101755030 B1 KR 101755030B1
Authority
KR
South Korea
Prior art keywords
silicon layer
conductive silicon
via hole
carbon substrate
forming
Prior art date
Application number
KR1020160096062A
Other languages
English (en)
Inventor
장효식
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020160096062A priority Critical patent/KR101755030B1/ko
Application granted granted Critical
Publication of KR101755030B1 publication Critical patent/KR101755030B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 탄소 기판의 상면에서 하면으로 관통하는 복수 개의 제 1 비아홀을 형성하는 제 1 비아홀 형성 단계와, 탄소 기판의 상면과 제 1 비아홀의 내주면에 배리어막을 형성하는 배리어막 형성 단계와, 배리어막의 상면과 제 1 비아홀에 제 1 도전형 실리콘층을 형성하는 제 1 도전형 실리콘층 형성 단계와, 탄소 기판의 하면에서 상기 탄소 기판과 배리어막 및 제 1 도전형 실리콘층의 상면으로 관통하는 복수 개의 제 2 비아홀을 형성하는 제 2 비아홀 형성 단계와, 제 1 도전형 실리콘층의 상면과 제 2 비아홀에 제 2 도전형 실리콘층을 형성하는 제 2 도전형 실리콘층 형성 단계와, 상기 제 2 도전형 실리콘층의 상면에 반사 방지막을 형성하는 반사 방지막 형성 단계와, 상기 탄소 기판의 하면에서 상기 제 1 비아홀을 통하여 노출되는 제 1 도전형 실리콘층과 전기적으로 연결하는 제 1 전극을 형성하는 제 1 전극 형성 단계 및 상기 탄소 기판의 하면에서 상기 제 2 비아홀을 통하여 노출되는 제 2 도전형 실리콘층과 전기적으로 연결하는 제 2 전극을 형성하는 제 2 전극 형성 단계를 포함하는 탄소 기판을 이용한 태양 전지 제조 방법을 개시한다.

Description

탄소 기판을 이용한 태양 전지 제조 방법{Solar Cell Using Carbon Substrate and Method of fabricating The Same}
본 발명은 탄소 기판을 이용한 태양 전지 제조 방법에 관한 것이다.
일반적으로 태양 전지는 p-n 접합면을 갖는다. 상기 p-n 접합면에 빛이 조사되면 전자와 정공이 발생하며, 전자와 정공은 p 영역과 n 영역으로 이동하여 p 영역과 n 영역 사이에 전위차(기전력)가 발생하고, 태양 전지에 부하를 연결하면 전류가 흐르게 된다.
태양 전지는 실리콘 반도체 재료를 이용하는 것과, 화합물 반도체 재료를 이용하는 것으로 크게 분류할 수 있다. 또한, 상기 실리콘 반도체를 이용한 것은 결정계와 비결정계로 분류된다.
현재, 태양광 발전 시스템으로 일반적으로 사용하는 태양 전지는 실리콘 반도체를 이용한 것이 대부분이다. 그러나 상기 결정계 실리콘 반도체는 웨이퍼 제조 과정이 복잡하고 제조 에너지가 큰 문제가 있다. 또한, 상기 실리콘 반도체와 전극 사이의 경계면에서 저항이 비교적 크게 되어 발전 효율이 저하되는 문제가 있다.
한편, 태양 전지는 하면에 제 1 전극이 형성되고, 상면에 제 2 전극이 형성되므로, 제 2 전극에 의한 그림자로 효과로 인하여 상면에서 태양광을 흡수하는 면적이 감소되어 발전 효율이 저하되는 측면이 있다.
본 발명은 태양광에 노출되는 면적을 증가시켜 발전 효율이 증가되는 탄소 기판을 이용한 태양 전지 제조 방법을 제공한다.
또한, 본 발명은 p-n 접합면의 면적을 증가시켜 발전 효율이 증가되는 탄소 기판을 이용한 태양 전지 제조 방법을 제공한다.
본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지 제조 방법은 탄소 기판의 상면에서 하면으로 관통하는 복수 개의 제 1 비아홀을 형성하는 제 1 비아홀 형성 단계와, 상기 탄소 기판의 상면과 상기 제 1 비아홀의 내주면에 배리어막을 형성하는 배리어막 형성 단계와, 상기 배리어막의 상면과 상기 제 1 비아홀에 제 1 도전형 실리콘층을 형성하는 제 1 도전형 실리콘층 형성 단계와, 상기 탄소 기판의 하면에서 상기 탄소 기판과 배리어막 및 제 1 도전형 실리콘층의 상면으로 관통하는 복수 개의 제 2 비아홀을 형성하는 제 2 비아홀 형성 단계와, 상기 제 1 도전형 실리콘층의 상면과 제 2 비아홀에 제 2 도전형 실리콘층을 형성하는 제 2 도전형 실리콘층 형성 단계와, 상기 제 2 도전형 실리콘층의 상면에 반사 방지막을 형성하는 반사 방지막 형성 단계와, 상기 탄소 기판의 하면에서 상기 제 1 비아홀을 통하여 노출되는 제 1 도전형 실리콘층과 전기적으로 연결하는 제 1 전극을 형성하는 제 1 전극 형성 단계 및 상기 탄소 기판의 하면에서 상기 제 2 비아홀을 통하여 노출되는 제 2 도전형 실리콘층과 전기적으로 연결하는 제 2 전극을 형성하는 제 2 전극 형성 단계를 포함하는 것을 특징으로 한다.
또한, 상기 제 1 비아홀과 제 2 비아홀은 직경 또는 폭이 50 ~ 200㎛의 크기로 형성되며, 상기 제 1 비아홀이 상기 제 2 비아홀보다 크게 형성될 수 있다.
또한, 상기 제 1 비아홀은 상기 탄소 기판에서 전측에서 후측으로 소정 간격으로 이격되어 제 1 열을 이루고, 상기 제 1 열이 일측에서 타측으로 소정 간격으로 이격되어 형성되며, 상기 제 2 비아홀은 상기 탄소 기판에서 전측에서 후측으로 소정 간격으로 이격되어 제 2 열을 이루고, 상기 제 2 열이 일측에서 타측으로 소정 간격으로 이격되면서 상기 제 1 열 사이에 위치하여 형성될 수 있다.
또한, 상기 제 1 도전형 실리콘층은 상기 제 1 비아홀의 내부를 채우면서 상기 탄소 기판의 하면까지 연장되어 상기 탄소 기판의 하면으로 노출되는 제 1 노출면을 형성하며, 상기 제 1 전극은 상기 제 1 노출면과 직접 접촉하여 상기 제 1 도전형 실리콘층과 전기적으로 연결될 수 있다.
또한, 상기 제 2 도전형 실리콘층은 상기 제 2 비아홀의 내부를 채우면서 상기 탄소 기판의 하면까지 연장되어 상기 탄소 기판의 하면으로 노출되는 제 2 노출면을 형성하며, 상기 제 2 전극은 상기 제 2 노출면과 직접 접촉하여 상기 제 2 도전형 실리콘층과 전기적으로 연결될 수 있다.
또한, 상기 제 2 도전형 실리콘층은 상기 제 1 도전형 실리콘층과 상기 제 2 비아홀에서 p-n접합을 이루도록 형성될 수 있다.
또한, 본 발명의 탄소 기판을 이용한 태양 전지 제조 방법은 상기 제 2 도전형 실리콘층의 상면에 패시베이션층을 형성하는 단계를 더 포함하여 이루어질 수 있다.
본 발명에 따른 탄소 기판을 이용한 태양 전지 제조 방법은 태양광에 노출되지 않는 하면에 제 1 전극과 제 2 전극이 형성되므로 태양광에 노출되는 면적이 증가되어 발전 효율이 증가되는 효과가 있다.
또한, 본 발명에 따른 탄소 기판을 이용한 태양 전지 제조 방법은 제 2 비아홀에서도 제 1 도전형 실리콘층과 제 2 도전형 실리콘층이 p-n접합면을 이루게 되므로 p-n접합면의 면적이 증가되어 발전 효율이 증가되는 효과가 있다.
또한, 본 발명에 따른 탄소 기판을 이용한 태양 전지 제조 방법은 탄소 기판에 균일하게 관통 홀을 형성하고 이를 통하여 제 1 전극과 제 2 전극이 실리콘층이 균일하게 접촉되도록 함으로써 제 1 전극과 제 2 전극의 저항 손실이 감소되는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 제조 방법을 도시한 순서도이다.
도 2는 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 수직 단면도이다.
도 3은 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 저면도이다.
도 4는 도 3의 A-A에 대한 수직 단면도이다.
이하에서, 첨부된 도면을 참조하여, 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지 제조 방법에 대하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 제조 방법을 도시한 순서도이다. 도 2는 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 수직 단면도이다. 도 3은 본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지의 저면도이다. 도 4는 도 3의 A-A에 대한 수직 단면도이다.
본 발명의 일 실시예에 따른 탄소 기판을 이용한 태양 전지 제조 방법은 제 1 비아홀 형성 단계(S10), 배리어막 형성 단계(S20), 제 1 도전형 실리콘층 형성 단계(S30), 제 2 비아홀 형성 단계(S40), 제 2 도전형 실리콘층 형성 단계(S50), 반사 방지막 형성 단계(S60), 제 1 전극 형성 단계(S70) 및 제 2 전극 형성 단계(S80)를 포함하여 형성된다. 또한, 본 발명의 탄소 기판을 이용한 태양 전지 제조 방법은 패시베이션층 형성 단계(S55)를 더 포함하여 형성될 수 있다.
상기 제 1 비아홀 형성 단계(S10)는 탄소 기판에 상면에서 하면으로 관통하는 복수 개의 제 1 비아홀을 형성하는 단계이다.
상기 탄소 기판(110)은 평판 형상의 카본 쉬트(carbon sheet)로 형성될 수 있다. 상기 탄소 기판(110)은 두께를 얇게 하여 플렉서블한 기판으로 형성할 수 있으며, 두께를 두껍게 하여 단단한 기판으로 형성할 수 있다. 상기 탄소 기판(110)은 제 1 전극(180) 및 제 2 전극(190)보다 상대적으로 높은 전기 저항을 갖도록 형성되며, 제 1 전극(180)과 제 2 전극(190) 사이의 통전을 방지한다. 상기 탄소 기판(110)은 전류가 인가될 경우 발열체로서 동작할 수 있으므로 공정 과정에서 히터로 이용될 수 있다. 따라서, 본 발명에 따른 태양 전지 제조 공정에서는 별도의 히터를 사용하지 않을 수 있다. 또한, 상기 탄소 기판(110)이 히터 위에 안착될 경우에도 우수한 열전도성으로 인하여 실리콘의 증착 공정이 용이하게 수행될 수 있다. 또한, 상기 탄소 기판(110)은 제 1 도전형 실리콘층(140)과 제 2 도전형 실리콘층(160)의 열처리 과정에서 열 또는 레이저에 의하여 손상되지 않으므로 원활한 열처리가 진행될 수 있다.
한편, 상기 탄소 기판(110)은 가열 방식 또는 레이저 조사 방식에 따른 열처리 과정에서 견딜 수 있으며, 전기적 절연 특성을 갖는 다양한 기판이 사용될 수 있다. 예를 들면, 상기 탄소 기판(110)은 세라믹 기판, 유리 기판으로 대체될 수 있다.
상기 제 1 비아홀(120)은 탄소 기판(110)의 상면에서 하면으로 관통되어 형성된다. 상기 제 1 비아홀(120)은 복수 개로 형성된다. 상기 제 1 비아홀(120)은 탄소 기판(110)에서 전측에서 후측으로 소정 간격으로 이격되어 제 1 열(121)을 이루고, 제 1 열(121)이 일측에서 타측으로 소정 간격으로 이격되어 형성된다.
상기 제 1 비아홀(120)은 제 1 도전형 실리콘층(140)이 형성될 때 제 1 도전형 실리콘층(140)이 탄소 기판(110)의 하면으로 연장되어 형성되는 통로를 제공한다. 상기 제 1 비아홀(120)은 제 1 도전형 실리콘층(140)이 제 1 전극(180)과 전기적으로 연결되도록 한다. 특히, 상기 제 1 비아홀(120)은 제 1 전극(180)이 제 1 도전형 실리콘층(140)과 전기적으로 직접 접촉되어 태양 전지의 전기 저항을 감소시킬 수 있다. 또한, 상기 제 1 전극(180)은 제 1 비아홀(120)을 통하여 점 접촉 형태로 제 1 도전형 실리콘층(140)과 접촉하므로 제 1 도전형 실리콘층(140)의 패시베이션 성능을 양호하게 유지할 수 있다. 상기 제 1 비아홀(120)은 원형, 타원형 또는 사각형상으로 형성될 수 있다. 상기 제 1 비아홀(120)은 50 ~ 200㎛의 크기로 형성된다. 즉, 상기 제 1 비아홀(120)은 직경 또는 폭이 50 ~ 200㎛의 크기로 형성될 수 있다. 상기 제 1 비아홀(120)은 레이저 조사 또는 기계적 방법에 의하여 형성될 수 있다. 또한, 상기 제 1 비아홀(120)은 제 1 열(121) 내에서 500 ~ 2,500㎛의 거리를 갖도록 형성된다.
상기 배리어막 형성 단계(S20)는 탄소 기판의 상면과 제 1 비아홀의 내주면에 산화막 또는 질화막으로 소정 두께의 배리어막을 형성하는 단계이다. 상기 배리어막(130)은 제 1 비아홀(120)에 소정 두께로 형성되며, 제 1 비아홀(120)에 전체로 충진되지 않도록 형성된다. 상기 배리어막(130)은 바람직하게는 SiOx, SiNx 또는 SiON막으로 형성된다. 또한, 상기 배리어막(130)은 산화막 또는 질화막이 단일층 또는 적어도 2개의 층으로 형성될 수 있다. 상기 배리어막(130)은 제 1 도전형 실리콘층(140)의 증착 과정에서 탄소 기판(110)의 입자가 제 1 도전형 실리콘층(140)으로 유입되는 것을 차단한다. 또한, 상기 배리어막(130)은 탄소 기판(110)의 상면과 제 1 비아홀(120)의 내주면에 대한 표면 거칠기를 감소시켜 제 1 도전형 실리콘층(140)의 증착을 용이하게 하고, 태양 전지의 특성이 저하되는 것을 방지한다.
상기 배리어막(130)은 500 ∼ 1,000nm 의 두께를 가지도록 형성된다. 상기 배리어막(130)의 두께가 충분하지 않으면 제 1 도전형 실리콘층(140)의 증착 과정에서 탄소 기판(110)의 탄소 입자가 제 1 도전형 실리콘층(140)으로 유입되는 것을 충분히 방지하지 못한다. 다만, 상기 배리어막(130)은 두께가 증가되면 공정 비용이 증가되므로 너무 두꺼운 두께로 형성될 필요는 없다. 상기 배리어막(130)은 바람직하게는 플라즈마 강화 화학기상증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)법에 의하여 형성될 수 있다.
상기 제 1 도전형 실리콘층 형성 단계(S30)는 배리어막의 상면과 제 1 비아홀에 제 1 도전형 실리콘층을 형성하는 단계이다. 상기 제 1 도전형 실리콘층(140)은 비정질 실리콘층이 증착되고 비정질 실리콘층이 다결정 실리콘층으로 결정화되어 형성된다. 상기 비정질 실리콘층은 PECVD(Plasma-Enhanced Chemical Vapor Deposition) 방식에 의하여 배리어막(130)의 표면과 제 1 비아홀(120)의 내부에 증착된다. 이때, 상기 비정질 실리콘층은 제 1 비아홀(120)을 채우면서 탄소 기판(110)의 하면으로 노출되도록 증착된다. 상기 비정질 실리콘층은 가열 열처리 방식 또는 레이저 조사에 의한 LTPS(Low Temperature polycrystalline Silicone) 방식에 의하여 결정화되어 다결정 실리콘층으로 형성된다. 또한, 상기 비정질 실리콘층은 300 ~ 900℃의 온도로 가열되어 증착되면서 결정화될 수 있다. 한편, 상기 제 1 도전형 실리콘층 형성 단계(S30)에서는 증착된 비정질 실리콘층을 바로 다결정 실리콘층으로 결정화시키거나, 이하에서 설명하는 비정질 실리콘층 상태인 제 2 도전형 실리콘층(160)과 함께 다결정 실리콘층으로 결정화시킬 수 있다.
상기 제 1 도전형 실리콘층(140)은 일정 두께의 P형 또는 N형 반도체 실리콘층으로 형성된다. 상기 제 1 도전형 실리콘층(140)은 p형의 도전성 타입을 가질 경우에 증착과정에서 붕소(B), 갈륨, 인듐 등과 같은 3가 원소가 함께 주입되어 형성될 수 있다. 또한, 상기 제 1 도전형 실리콘층(140)은 n형 도전성 타입으로 형성될 수 있다. 상기 제 1 도전형 실리콘층(140)이 n형의 도전성 타입을 가질 경우, 증착 과정에서 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소가 함께 주입되어 형성된다.
상기 제 1 도전형 실리콘층(140)은 배리어막(130)의 상면에 증착되는 부분의 두께를 기준으로 대략 100nm ~ 100㎛의 두께로 형성될 수 있으나, 여기서 제 1 도전형 실리콘층(140)의 두께가 한정하는 것은 아니다. 또한, 상기 제 1 도전형 실리콘층(140)은 제 1 비아홀(120)을 채우면서 탄소 기판(110)의 하면까지 연장되어 형성된다. 상기 제 1 도전형 실리콘층(140)은 탄소 기판(110)의 하면으로 노출되는 제 1 노출면(141)을 구비한다. 상기 제 1 도전형 실리콘층(140)은 상면이 대략 평면을 이루도록 형성된다. 상기 제 1 도전형 실리콘층(140)은 제 1 노출면(141)이 제 1 전극(180)과 직접 접촉하여 전기적으로 연결되며, 태양 전지의 전기 저항을 감소시킬 수 있다.
상기 제 2 비아홀 형성 단계(S40)는 탄소 기판과 배리어막 및 제 1 도전형 실리콘층을 관통하는 제 2 비아홀을 형성하는 단계이다. 상기 제 2 비아홀(150)은 탄소 기판(110)의 하면에서 탄소 기판(110)과 배리어막(130) 및 제 1 도전형 실리콘층(140)을 상하로 관통하여 제 1 도전형 실리콘층(140)의 상면까지 형성된다. 상기 제 2 비아홀(150)은 복수 개로 형성된다. 상기 제 2 비아홀(150)은 탄소 기판(110)을 기준으로 전측에서 후측으로 소정 간격으로 이격되어 제 2 열(151)을 이루고, 제 2 열(151)이 일측에서 타측으로 소정 간격으로 이격되면서 제 1 비아홀(120) 사이에 위치하여 형성된다.
상기 제 2 비아홀(150)은 제 2 도전형 실리콘층(160)이 형성될 때 제 2 도전형 실리콘층(160)이 탄소 기판(110)의 하면으로 연장되어 형성되는 통로를 제공한다. 상기 제 2 비아홀(150)은 제 2 도전형 실리콘층(160)이 제 2 전극(190)과 전기적으로 연결되도록 한다. 특히, 상기 제 2 비아홀(150)은 제 2 전극(190)이 제 2 도전형 실리콘층(160)과 전기적으로 직접 접촉되어 태양 전지의 전기 저항을 감소시키도록 한다.
상기 제 2 비아홀(150)은 원형, 타원형 또는 사각형상으로 형성될 수 있다. 상기 제 2 비아홀(150)은 50 ~ 200㎛의 크기로 형성된다. 즉, 상기 제 2 비아홀(150)은 직경 또는 폭이 50 ~ 200㎛의 크기로 형성될 수 있다. 상기 제 2 비아홀(150)은 내주면에 배리어막(130)이 형성되지 않으므로 제 1 비아홀(120)보다 작은 직경 또는 폭으로 형성될 수 있다. 상기 제 2 비아홀(150)은 내주면에 배리어막(130)이 형성될 수 있으며, 이 경우에 제 1 비아홀(120)과 동일한 직경으로 형성될 수 있다. 상기 제 2 비아홀(150)은 레이저 조사 또는 기계적 방법에 의하여 형성될 수 있다. 상기 제 2 비아홀(150)은 제 2 열(151) 내에서 500 ~ 2,500㎛의 거리를 갖도록 형성된다. 또한, 제 2 비아홀(150)은 제 1 비아홀(120)과 500 ~ 2,500㎛의 거리를 갖도록 형성된다.
상기 제 2 도전형 실리콘층 형성 단계(S50)는 상기 제 1 도전형 실리콘층의 상면과 제 2 비아홀에 제 2 도전형 실리콘층을 형성하는 단계이다. 상기 제 2 도전형 실리콘층(160)은 제 1 도전형 실리콘층(140)과 마찬가지로 비정질 실리콘층이 증착되고 비정질 실리콘층이 다결정 실리콘층으로 결정화되어 형성된다. 상기 제 2 도전형 실리콘층(160)의 비정질 실리콘층은 PECVD(Plasma-Enhanced Chemical Vapor Deposition) 방식에 의하여 증착되며, 가열 열처리 방식 또는 레이저 조사에 의한 LTPS(Low Temperature polycrystalline Silicone) 방식에 의하여 결정화된다. 또한, 상기 제 2 도전형 실리콘층(160) 형성 단계는 대략 200 내지 1000 의 온도 분위기가 제공됨으로써, 제 1 도전형 실리콘층(140)의 상면과 제 2 비아홀(150)에 비정질 실리콘층이 용이하게 증착되도록 한다. 한편, 상기 제 2 도전형 실리콘층 형성 단계(S50)에서는 비정질 실리콘층 상태인 제 1 도전형 실리콘층(140)과 함께 다결정 실리콘층으로 결정화시킬 수 있다.
상기 제 2 도전형 실리콘층(160)은 제 1 도전형 실리콘층(140)과 p-n접합을 이룬다. 따라서, 상기 제 1 도전형 실리콘층(140)이 p형의 도전성 타입으로 형성되는 경우에 제 2 도전형 실리콘층(160)은 n형의 도전성 타입으로 형성된다. 상기 제 2 도전형 실리콘층(160)이 n형의 도전성 타입을 가질 경우, 제 2 도전형 실리콘층(160)은 인(P), 비소(As), 안티몬(Sb) 등과 같이 5가 원소가 주입되어 형성된다. 이와 반대로 제 2 도전형 실리콘층(160)이 p형의 도전성 타입을 가질 경우, 제 2 도전형 실리콘층(160)은 붕소(B), 갈륨(Ga), 인듐(In) 등과 같은 3가 원소가 주입되어 형성될 수 있다.
상기 제 2 도전형 실리콘층(160)은 제 2 비아홀(150)에서 제 1 도전형 실리콘층(140)과 p-n접합을 이룬다. 상기 태양 전지는 기존의 태양 전지에 비하여 p-n접합을 이루는 면적이 증가되어 발전 효율이 증가된다.
상기 제 2 도전형 실리콘층(160)은 제 1 실리콘층의 상면에 증착되는 부분의 두께를 기준으로 대략 100nm ~ 10㎛의 두께로 형성될 수 있으나, 여기서 제 1 도전형 실리콘층(140)의 두께가 한정하는 것은 아니다. 또한, 상기 제 2 도전형 실리콘층(160)은 제 2 비아홀(150)을 채우면서 탄소 기판(110)의 하면까지 연장되어 형성된다. 상기 제 1 도전형 실리콘층(140)은 탄소 기판(110)의 하면으로 노출되는 제 2 노출면(161)을 구비한다. 상기 제 2 도전형 실리콘층(160)은 상면이 대략 평면을 이루도록 형성된다. 상기 제 2 도전형 실리콘층(160)은 제 2 노출면(161)이 제 2 전극(190)과 직접 접촉하여 전기적으로 연결되며, 태양 전지의 전기 저항을 감소시킬 수 있다.
상기 패시베이션층 형성 단계(S55)는 제 2 도전형 실리콘층의 상면에 패시베이션층을 형성하는 단계이다. 상기 패시베이션층(165)은 Al2O3막, SiOx막, SiNx막, SiON막 또는 SiN:H막으로 형성된다. 상기 패시베이션층(165)은 두께가 5 ~ 50nm로 되도록 형성될 수 있다. 상기 패시베이션층(165)은 원자막 증착법(Atomic Layer Deposition) 또는 플라즈마 강화 화학기상증착(Plasma Enhanced CVD)법에 의하여 증착되어 형성될 수 있다. 상기 패시베이션층(165)은 생략될 수 있다.
상기 반사 방지막 형성 단계(S60)는 제 2 도전형 실리콘층 또는 패시베이션층의 상면에 반사 방지막을 형성하는 단계이다. 상기 반사 방지막(170)은 일반적인 태양전지에 형성되는 반사 방지막으로 형성될 수 있다. 예를 들면 상기 반사 방지막(170)은 SiOx막, SiON막, SiN:H막 또는 SiNx와 같은 절연막으로 형성될 수 있다. 상기 반사 방지막(170)은 플라즈마 강화 화학기상증착(Plasma Enhanced Chemical Vapor Deposition; PECVD)법에 의하여 형성될 수 있다.
상기 제 1 전극 형성 단계(S70)는 탄소 기판의 하면에서 제 1 비아홀을 통하여 노출되는 제 1 도전형 실리콘층과 전기적으로 연결되는 제 1 전극을 형성하는 단계이다. 상기 제 1 전극(180)은 탄소 기판(110)의 하면에 위치하여 태양 전지의 어느 하나의 전극으로 작용한다. 상기 제 1 전극(180)은 탄소 기판(110)의 제 1 비아홀(120)을 통하여 노출되는 제 1 도전형 실리콘층(140)의 제 1 노출면(141)과 직접 접촉되어 전기적으로 연결된다. 상기 제 1 전극(180)은 제 1 비아홀(120)의 제 1 열(121)을 연결하는 제 1 전극 바(181)와 제 1 전극 바(181)의 일측단을 서로 연결하는 제 1 전극 연결 바(183)를 포함하여 형성될 수 있다. 상기 제 1 전극 바(181)는 제 1 열(121)의 제 1 비아홀(120)로 노출되는 제 1 도전형 실리콘층(140)의 제 1 노출면(141)과 직접 접촉하여 전기적으로 연결한다. 상기 제 1 전극 연결 바(183)는 제 1 전극 바(181)의 일측단을 서로 전기적으로 연결한다.
상기 제 1 전극(180)은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 주석(Sn), 아연(Zn), 인듐(In), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나의 도전성 물질로 형성될 수 있다. 상기 제 1 전극(180)은 CVD(Chemical Vapor Deposition) 또는 PECVD(Plasma Enhanced CVD)와 같은 화학 기상 증착 공정, 스퍼터링 공정, 도금, 스크린 프린팅과 같은 페이스트 도포 공정에 의하여 형성될 수 있다. 또한, 상기 제 1 전극(180)은 알루미늄으로 형성되는 경우에, 알루미늄을 진공 증발시켜 코팅하는 진공 증착법에 의하여 형성될 수 있다. 특히, 상기 제 1 전극(180)은 진공 증착법 또는 스크린 프린팅법에 의하여 형성될 수 있다.
상기 제 1 전극(180)은 탄소 기판(110)의 후면에 증착되어 제 1 도전형 실리콘층(140)과 직접 전기적으로 연결되므로 태양 전지의 전기 저항을 감소시켜 태양 전지의 효율을 증가시킨다.
상기 제 2 전극 형성 단계(S80)는 탄소 기판의 하면에서 제 2 비아홀을 통하여 노출되는 제 2 도전형 실리콘층과 전기적으로 연결되는 제 2 전극을 형성하는 단계이다. 상기 제 2 전극(190)은 탄소 기판(110)의 하면에 위치하여 태양 전지의 어느 하나의 전극으로 작용한다. 상기 제 2 전극(190)은 탄소 기판(110)의 제 2 비아홀(150)을 통하여 노출되는 제 2 도전형 실리콘층(160)의 제 2 노출면(161)과 직접 접촉되어 전기적으로 연결된다. 상기 제 2 전극(190)은 제 2 비아홀(150)의 제 2 열(151)을 연결하는 제 2 전극 바(191)와 제 2 전극 바(191)의 일측단을 서로 연결하는 제 2 전극 연결 바(193)를 포함하여 형성될 수 있다. 상기 제 2 전극 바(191)는 제 2 열(151)의 제 2 비아홀(150)로 노출되는 제 2 도전형 실리콘층(160)의 제 2 노출면(161)과 직접 접촉하여 전기적으로 연결한다. 상기 제 2 전극 연결 바(193)는 제 2 전극 바(191)의 일측단을 서로 전기적으로 연결한다.
상기 제 2 전극(190)은 알루미늄(Al), 니켈(Ni), 구리(Cu), 은(Ag), 주석(Sn), 아연(Zn), 인듐(In), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어진 군으로부터 선택된 적어도 하나의 도전성 물질로 형성될 수 있다. 상기 제 2 전극(190)은 제 1 전극(180)과 동일한 물질로 형성될 수 있다. 상기 제 2 전극(190)은 CVD(Chemical Vapor Deposition) 또는 PECVD(Plasma Enhanced CVD)와 같은 화학 기상 증착 공정, 스퍼터링 공정, 도금, 스크린 프린팅과 같은 페이스트 도포 공정에 의하여 형성될 수 있다. 또한, 상기 제 2 전극(190)은 알루미늄으로 형성되는 경우에, 알루미늄을 진공 증발시켜 코팅하는 진공 증착법에 의하여 형성될 수 있다. 특히, 상기 제 2 전극(190)은 진공 증착법 또는 스크린 프린팅법에 의하여 형성될 수 있다. 상기 제 2 전극(190)은 제 1 전극(180)과 동일한 공정으로 함께 형성될 수 있다. 본 발명의 태양 전지 제조 방법은 기존의 태양 전지 제조 방법과 달리 제 1 전극(180)과 제 2 전극(190)을 하나의 공정에서 형성하므로 공정 수를 줄일 수 있다. 기존의 태양 전지 제조 방법은 태양 전지의 하면에 형성되는 후면 전극과 상면에 형성되는 전면 전극을 별도의 공정에서 형성한다.
상기 제 2 전극(190)은 탄소 기판(110)의 후면에 증착되어 제 2 도전형 실리콘층과 직접 전기적으로 연결되므로 태양 전지의 전기 저항을 감소시켜 태양 전지의 효율을 증가시킨다.
이상에서 설명한 것은 본 발명에 따른 탄소 기판을 이용한 태양 전지의 제조 방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.
110; 탄소 기판 120: 비아홀
130: 배리어막 140: 제 1 도전형 실리콘층
150: 제 2 비아홀 160: 제 2 도전형 실리콘층
165: 패시베이션층 170: 반사방지막
180: 제 1 전극 190: 제 2 전극

Claims (7)

  1. 탄소 기판의 상면에서 하면으로 관통하는 복수 개의 제 1 비아홀을 형성하는 제 1 비아홀 형성 단계;
    상기 탄소 기판의 상면과 상기 제 1 비아홀의 내주면에 배리어막을 형성하는 배리어막 형성 단계;
    상기 배리어막의 상면과 상기 제 1 비아홀에 제 1 도전형 실리콘층을 형성하는 제 1 도전형 실리콘층 형성 단계;
    상기 탄소 기판의 하면에서 상기 탄소 기판과 배리어막 및 제 1 도전형 실리콘층의 상면으로 관통하는 복수 개의 제 2 비아홀을 형성하는 제 2 비아홀 형성 단계;
    상기 제 1 도전형 실리콘층의 상면과 제 2 비아홀에 제 2 도전형 실리콘층을 형성하는 제 2 도전형 실리콘층 형성 단계;
    상기 제 2 도전형 실리콘층의 상면에 반사 방지막을 형성하는 반사 방지막 형성 단계;
    상기 탄소 기판의 하면에서 상기 제 1 비아홀을 통하여 노출되는 제 1 도전형 실리콘층과 전기적으로 연결하는 제 1 전극을 형성하는 제 1 전극 형성 단계 및
    상기 탄소 기판의 하면에서 상기 제 2 비아홀을 통하여 노출되는 제 2 도전형 실리콘층과 전기적으로 연결하는 제 2 전극을 형성하는 제 2 전극 형성 단계를 포함하는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  2. 제 1 항에 있어서,
    상기 제 1 비아홀과 제 2 비아홀은 직경 또는 폭이 50 ~ 200㎛의 크기로 형성되며, 상기 제 1 비아홀이 상기 제 2 비아홀보다 크게 형성되는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  3. 제 1 항에 있어서,
    상기 제 1 비아홀은 상기 탄소 기판에서 전측에서 후측으로 소정 간격으로 이격되어 제 1 열을 이루고, 상기 제 1 열이 일측에서 타측으로 소정 간격으로 이격되어 형성되며,
    상기 제 2 비아홀은 상기 탄소 기판에서 전측에서 후측으로 소정 간격으로 이격되어 제 2 열을 이루고, 상기 제 2 열이 일측에서 타측으로 소정 간격으로 이격되면서 상기 제 1 열 사이에 위치하여 형성되는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  4. 제 1 항에 있어서,
    상기 제 1 도전형 실리콘층은 상기 제 1 비아홀의 내부를 채우면서 상기 탄소 기판의 하면까지 연장되어 상기 탄소 기판의 하면으로 노출되는 제 1 노출면을 형성하며,
    상기 제 1 전극은 상기 제 1 노출면과 직접 접촉하여 상기 제 1 도전형 실리콘층과 전기적으로 연결되는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  5. 제 4 항에 있어서,
    상기 제 2 도전형 실리콘층은 상기 제 2 비아홀의 내부를 채우면서 상기 탄소 기판의 하면까지 연장되어 상기 탄소 기판의 하면으로 노출되는 제 2 노출면을 형성하며,
    상기 제 2 전극은 상기 제 2 노출면과 직접 접촉하여 상기 제 2 도전형 실리콘층과 전기적으로 연결되는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  6. 제 1 항에 있어서,
    상기 제 2 도전형 실리콘층은 상기 제 1 도전형 실리콘층과 상기 제 2 비아홀에서 p-n접합을 이루도록 형성되는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
  7. 제 1 항에 있어서,
    상기 제 2 도전형 실리콘층의 상면에 패시베이션층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 탄소 기판을 이용한 태양 전지 제조 방법.
KR1020160096062A 2016-07-28 2016-07-28 탄소 기판을 이용한 태양 전지 제조 방법 KR101755030B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160096062A KR101755030B1 (ko) 2016-07-28 2016-07-28 탄소 기판을 이용한 태양 전지 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160096062A KR101755030B1 (ko) 2016-07-28 2016-07-28 탄소 기판을 이용한 태양 전지 제조 방법

Publications (1)

Publication Number Publication Date
KR101755030B1 true KR101755030B1 (ko) 2017-07-07

Family

ID=59353437

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160096062A KR101755030B1 (ko) 2016-07-28 2016-07-28 탄소 기판을 이용한 태양 전지 제조 방법

Country Status (1)

Country Link
KR (1) KR101755030B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125754A (ko) * 2018-04-30 2019-11-07 충남대학교산학협력단 그라파이트 기판 및 그래핀을 이용한 태양 전지 및 이의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125754A (ko) * 2018-04-30 2019-11-07 충남대학교산학협력단 그라파이트 기판 및 그래핀을 이용한 태양 전지 및 이의 제조 방법
KR102118903B1 (ko) * 2018-04-30 2020-06-08 충남대학교산학협력단 그라파이트 기판 및 그래핀을 이용한 태양 전지 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
USRE47484E1 (en) Solar cell
TWI511311B (zh) 具有貫穿通孔接觸的多接面太陽能電池
JP5396444B2 (ja) 集積型薄膜光起電力素子及びその製造方法
KR101768907B1 (ko) 태양 전지 제조 방법
US20160197204A1 (en) Solar cell and method for manufacturing the same
US20150206997A1 (en) Multi-junction solar cells with recessed through-substrate vias
US10964827B2 (en) Solar cell and method for manufacturing the same
US9000291B2 (en) Solar cell and method for manufacturing the same
US20190334041A1 (en) Solar cell and method for manufacturing the same
TWI424582B (zh) 太陽能電池的製造方法
US20140202526A1 (en) Solar cell and method for manufacturing the same
US20100224238A1 (en) Photovoltaic cell comprising an mis-type tunnel diode
KR101755030B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
KR101647976B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
US8697986B2 (en) Photovoltaic device with double-junction
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
US10141467B2 (en) Solar cell and method for manufacturing the same
US11211504B2 (en) Solar cell
JP4693492B2 (ja) 光電変換装置およびそれを用いた光発電装置
KR101643132B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
KR20170019597A (ko) 태양 전지 및 그 제조 방법
US20200006590A1 (en) Solar cell and method of manufacturing solar cell
KR101866384B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
KR102218629B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
KR102118903B1 (ko) 그라파이트 기판 및 그래핀을 이용한 태양 전지 및 이의 제조 방법

Legal Events

Date Code Title Description
GRNT Written decision to grant