KR101747120B1 - 극자외선 광원 - Google Patents

극자외선 광원 Download PDF

Info

Publication number
KR101747120B1
KR101747120B1 KR1020127028410A KR20127028410A KR101747120B1 KR 101747120 B1 KR101747120 B1 KR 101747120B1 KR 1020127028410 A KR1020127028410 A KR 1020127028410A KR 20127028410 A KR20127028410 A KR 20127028410A KR 101747120 B1 KR101747120 B1 KR 101747120B1
Authority
KR
South Korea
Prior art keywords
chamber
target material
light beam
light
subsystem
Prior art date
Application number
KR1020127028410A
Other languages
English (en)
Other versions
KR20130022404A (ko
Inventor
아브히람 고빈다라주
윌리암 엔. 팔트로
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20130022404A publication Critical patent/KR20130022404A/ko
Application granted granted Critical
Publication of KR101747120B1 publication Critical patent/KR101747120B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

장치는 챔버에서 타겟 재료를 조사하고 극 자외선 광을 생성하기 위해 빔 경로를 따라 소스 파장의 증폭된 광 빔을 산출하기 위한 이득 매질을 구비한 광원; 및 상기 챔버의 내부 표면의 적어도 일부 위에 놓이고, 상기 빔 경로를 따라서 되돌아가는 상기 내부표면으로부터의 소스 파장에서의 광의 흐름을 감소시키도록 구성된 서브시스템을 포함한다.

Description

극자외선 광원{EXTREME ULTRAVIOLET LIGHT SOURCE}
개시된 제재는 고 파워 극자외선 광원의 진공 챔버에 관한 것이다.
예를 들면 약 50nm 이하의 파장을 가지고, 약 13nm의 파장의 광을 포함하는 전자기 방사선과 같은 극 자외선 ("EUV") 광(또한, 때때로 소프트 x-선이라고도 함)이 예를 들면, 실리콘 웨이퍼와 같은 기판에 극도로 작은 피처를 산출하도록 포토리소그래피 프로세스에 사용될 수 있다.
EUV 광을 산출하는 방법은, 재료를 EUV 범위에서 방출선을 가지는, 예를 들면, 크세논, 리튬 또는 주석과 같은 원소를 구비한 플라즈마 상태로 변환하는 단계를 포함하지만, 이에 반드시 한정되는 것은 아니다. 이러한 하나의 방법에서, 때때로 레이저 산출 플라즈마("LPP")라고하는, 요구되는 플라즈마가 구동 레이저라고 할 수 있는 증폭된 광 빔을 가지고 재료의 액적, 스트림, 또는 클러스터의 형태로 된 타겟 재료를 조사함으로써 산출될 수 있다. 이러한 프로세스에서, 플라즈마는 일반적으로 예를 들면 진공 챔버와 같은 기밀 베셀에서 산출되고, 다양한 유형의 계측 장비를 이용하여 모니터링된다.
약 10,600nm의 파장에서 증폭된 광 빔을 출력하는 C02 증폭기 및 레이저는 LPP 프로세스에서 타겟 재료를 조사하는 구동 레이저로서 일정한 이점을 제시할 수 있다. 이는 예를 들면, 주석을 함유하는 재료에 대해서와 같이, 특정 타겟 재료에 대해 특히 사실일 수 있다. 예를 들면, 하나의 이점은 구동 레이저 입력 파워와 출력 EUV 파워 사이의 상대적으로 높은 변환 효율을 제공할 수 있다는 것이다. CO2 구동 증폭기 및 레이저의 또다른 이점은 주석 찌꺼기로 코팅된 반사 광학기기와 같은 상대적으로 거친 표면으로부터 반사하는 상대적으로 긴 파장의 광(예를 들면 198nm의 딥 UV에 비교되는)을 가능하게 한다. 10,600nm 방사선의 이러한 속성은 반사 미러로 하여금 예를 들면 스티어링, 포커싱 및/또는 증폭된 광 빔의 포컬 파워의 조정을 위한 플라즈마에 인접하여 채용되도록 할 수 있다.
본 발명에 따르면, 고 파워 극자외선 광원의 진공 챔버를 제공할 수 있다.
일부 일반적인 측면에서, 장치는 챔버에서 타겟 재료를 조사하고 극자외선 광을 생성하기 위해 빔 경로를 따라 소스 파장의 증폭된 광 빔을 산출하기 위한 이득 매질을 가진 광원; 및 상기 챔버의 내부 표면의 적어도 일부 위에 놓이고, 상기 빔 경로를 따라서 뒤쪽으로 상기 내부표면으로부터의 소스 파장에서의 광의 흐름을 감소시키도록 구성된 서브시스템을 포함한다.
구현은 하기의 특징 중 하나 이상을 포함할 수 있다. 광원은 레이저 광원이고 상기 증폭된 광 빔은 레이저 빔이 될 수 있다.
상기 서브시스템은 적어도 하나의 날개(vane)를 포함할 수 있다. 상기 적어도 하나의 날개는 챔버벽으로부터 증폭된 광 빔의 경로로 뻗어있도록 구성될 수 있다. 상기 적어도 하나의 날개는 상기 증폭된 광 빔의 중심의 통로를 위한 중심 개구 영역을 정의하는 원뿔 형상을 가질 수 있다.
서브시스템은 타겟 재료의 화합물을 챔버의 내부로부터 가스 제거를 가능하게 하기 위해 적어도 하나의 가스 및 적어도 하나의 고체로 화학적으로 분해하도록 구성될 수 있다. 타겟 재료 화합물은 주석 수소화물을 포함할 수 있고 적어도 하나의 가스가 수소일 수 있고, 적어도 하나의 고체는 압축된 주석이 될 수 될 수 있다. 압축 주석은 용융 상태가 될 수 있다.
소스 파장은 적외선 범위의 파장에 있을 수 있다.
광원은 하나 이상의 파워 증폭기를 포함할 수 있다. 광원은 하나 이상의 파워 증폭기를 시딩하는 마스터 오실레이터를 포함할 수 있다.
서브시스템은 내부 챔버 표면에 접촉할 수 있다. 상기 서브시스템은 상기 내부 챔버 표면에 코팅을 포함할 수 있다. 코팅은 무반사 코팅일 수 있다. 코팅은 흡수 무반사 코팅일 수 있다. 코팅은 간섭 코팅일 수 있다.
기타 일반적인 측면에서, 극자외선 광은, 진공 챔버의 내부에서의 타겟 위치에서 타겟 재료를 산출하고; 구동 레이저 시스템에서의 적어도 하나의 광학 증폭기의 이득 매질에 펌프 에너지를 공급하여 소스 파장의 증폭된 광을 산출하고; 상기 증폭된 광 빔을 빔 경로를 따라 지향시켜 극 자외선 광을 생성하기 위해 광을 조사하고; 및 상기 진공 챔버의 내부 표면으로부터 빔 경로로의 상기 소스 파장의 광의 흐름을 감소시킴으로써 산출된다.
구현은 하기의 특징 중 하나 이상을 포함할 수 있다. 예를 들면, 증폭된 광 빔이 타겟 위치를 교차하여 타겟 재료에 부딪힐 때 상기 타겟 재료로부터 방출된 생성된 극 자외선 광이 집속될 수 있다.
소스 파장의 광의 흐름은 상기 빔 경로와 상이한 경로를 따라 상기 증폭된 광 빔의 적어도 일부를 지향시킴으로써 감소될 수 있다. 소스 파장의 광의 흐름은 챔버 서브시스템의 2개의 날개 사이에서 증폭된 광 빔의 적어도 일부를 반사시킴으로써 감소될 수 있다.
상기 증폭된 광 빔은 레이저 빔이 될 수 있다.
상기 타겟 재료의 화합물은 챔버의 내부로부터 가스를 제거할 수 있도록 적어도 하나의 가스 및 적어도 하나의 고체로 화학적으로 분해될 수 있다. 타겟 재료 화합물은 주석 수소화물을 수소와 압축된 주석으로 화학적으로 분해함으로써 화학적으로 분해될 수 있다. 압축 주석은 진공 챔버의 내부 표면으로부터 빔 경로로 소스 파장의 광의 흐름을 감소시키는 챔버 서브시스템 내에서 트랩핑될 수 있다.
도 1은 레이저 산출 플라즈마 극 자외선 광원의 블록도이다;
도 2a는 도 1의 광원에 사용될 수 있는 예시적인 구동 레이저 시스템의 블록 도이다;
도 2b는 도 1의 광원에 사용될 수 있는 예시적인 구동 레이저 시스템의 블록 도이다;
도 3은 도 1의 광원에서 사용될 수 있는 진공 챔버의 제 2 챔버의 사시도이다;
도 4는 도 1의 광원에 사용될 수 있는 예시적인 챔버 서브시스템을 포함하는 제 2 챔버의 사시도이다;
도 5는 도 4의 제 2 챔버의 정면도이다;
도 6은 도 4 및 5의 제 2 챔버에 통합될 수 있는 챔버 서브시스템의 사시도이다;
도 7은 도 6의 챔버 서브시스템의 분해 사시도이다;
도 8a는 도 6 및 7의 챔버 서브시스템의 사시도 단면도이다;
도 8b는 8a의 챔버 서브시스템의 상세한 사시도 단면도이다;
도 9a는 도 6-8b의 챔버 서브시스템에서 사용될 수 있는 날개의 정면도이다;
도 9b는 도 9a의 날개의 측면 평면도이다;
도 10은 진공 챔버에서 증폭된 광 빔의 경로를 도시하는 도 6-8b의 챔버 서브시스템의 사시도이다;
도 11은 도 10의 챔버 서브시스템과 증폭된 광 빔의 사시도 단면도이다;
도 12는 도 11의 챔버 서브시스템과 증폭된 광 빔의 상세한 사시도 단면도이다;
도 13은 도 1의 광원에 사용될 수 있는 예시적인 챔버 서브시스템을 포함하는 제 2 챔버의 사시도이다.
도 1을 참조하면, LPP EUV 광원(100)은 타겟 재료(114)를 향해 빔 경로를 따라 이동하는 증폭된 광 빔(110)으로 타겟 위치(105)에서의 타겟 재료(114)를 조사(irradiating)함으로써 형성된다. 증폭된 광 빔(110)이 타겟 재료(114)에 부딪힐 때, 타겟 재료(114)는 EUV 범위에서 방출선을 가지는 원소를 구비하는 플라즈마 상태로 변환된다. 광원(100)은 레이저 시스템(115)의 이득 매질 또는 매질 내에서 분포 반전(population inversion)에 기인하여 증폭된 광 빔(110)을 산출하는 구동 레이저 시스템(115)을 포함한다.
타겟 위치(105)는 진공 챔버 (130)의 내부(107)에 있다. 진공 챔버(130)는 제 1 챔버(132) 및 제 2 챔버(134)를 포함한다. 제 2 챔버(134)는 자신의 내부(192)에 챔버 서브시스템(190)을 하우징한다. 챔버 서브시스템(190)은, 무엇보다도, 증폭된 광 빔(110)이 그것을 때릴 때 챔버의 내벽에서 산출되는 섬광(glint)(반사)을 감소시켜, 빔경로를 따라 다시 반사되는 광의 양을 감소시키고 자가 레이징을 감소시키기 위해, 제 2 챔버 내부(192)에 제공된다. 챔버 서브시스템(190)은 섬광 및 자가 레이징 감소를 가져오는 제 2 챔버 내부(192)에 추가되는 임의의 것이 될 수 있다. 따라서, 챔버 서브시스템(190)은, 예를 들면, 제 2 챔버 내부(192)로 돌출하는 일 세트의 고정 평면과 같은 광을 트랩핑하는 고정된 장치(rigid device)가 될 수 있다. 이러한 고정 평면은 날개(vane) 사이의 공간이 하기에 상세히 기술된 바와 같이, 그것이 들어가는 경로를 따라 광이 거의 빠져나가지 않는 매우 깊은 캐비티를 형성하도록 제 2 챔버(134)로 이동하는 증폭된 광 빔의 경로로 돌출하는 날카로운 에지로 형성된 날개가 될 수 있다.
광원(100)의 다른 특징은 제 2 챔버(134) 및 챔버 서브시스템(190)의 설계 및 동작을 설명하기 전에 하기에 설명된다.
광원 (100)은 레이저 시스템(115)과 타겟 위치(105) 사이의 빔 전달 시스템을 포함하고, 빔 전달 시스템은 빔 전송 시스템(120) 및 초점 어셈블리(122)를 포함한다. 빔 전송 시스템(120)은 레이저 시스템(115)으로부터 증폭된 광 빔(110)을 수신하고, 필요에 따라 증폭된 광 빔(110)을 조정 및 변조하고, 초점 어셈블리(122)로 증폭된 광 빔(110)을 출력한다. 초점 어셈블리(122)는 증폭된 광 빔(110)을 수신하고 빔(110)을 타겟 위치(105)로 포커싱한다.
광원(100)은 예를 들면 액체 액적, 액체 스트림, 고체 입자 또는 클러스터, 액체 액적 내에 함유된 고체 입자 또는 액체 스트림 내에 함유된 고체 입자의 형태로 타겟 재료(114)를 전달하는 타겟 재료 전달 시스템(125)을 포함한다. 타겟 재료(114)는 예를 들면 물, 주석, 리튬, 크세논, 또는 플라즈마 상태로 변환될 때, EUV 범위에서 방출선을 가지는 임의의 재료를 포함할 수 있다. 예를 들면, 원소 주석은 순수 주석;(Sn); 예를 들면 SnBr4, SnBr2; SnH4와 같은 주석 화합물; 예를 들면, 주석-갈륨 합금, 주석-인듐 합금, 주석-인듐-갈륨 합금, 또는 이들 합금의 조합과 같은 주석 합금으로서 사용될 수 있다. 타겟 재료(114)는 주석과 같은 상기 원소 중 하나로 코팅된 와이어를 포함할 수 있다. 타겟 재료가 고체 상태에 있는 경우, 이는 링, 구 또는 큐브와 같은 임의의 적절한 형상을 가질 수 있다. 타겟 재료(114)는 타겟 재료 전달 시스템(125)에 의해 챔버(130)의 내부(107)로 그리고 타겟 위치(105)로 전달될 수 있다. 타겟 위치(105)는 또한 조사 (irradiation) 위치라고도 하며, 이 위치에서 타겟 재료(114)가 플라즈마를 산출하기 위해 증폭된 광 빔(110)에 의해 조사된다.
일부 구현에서, 레이저 시스템(115)은 하나 이상의 메인 펄스, 일부 경우에는 하나 이상의 사전-펄스(pre-pulse)를 제공하기 위해 하나 이상의 광학 증폭기, 레이저 및/또는 램프를 포함할 수 있다. 각 광학 증폭기는 고 이득, 여기 소스, 및 내부 광학기기 내에서 원하는 파장을 광학적으로 증폭할 수 있는 이득 매질을 포함한다. 광학 증폭기는 레이저 미러 또는 레이저 캐비티를 형성하는 기타 피드백 장치를 포함할수도 있고, 포함하지 않을 수도 있다. 따라서, 레이저 시스템(115)은 레이저 캐비티가 없을지라도 레이저 증폭기의 이득 매질에서의 분포 반전에 기인하여 증폭된 광 빔(110)을 산출한다. 또한, 레이저 시스템(115)은 레이저 시스템(115)에 충분한 피드백을 제공하는 레이저 캐비티가 있을 경우 코히어런트 레이저 빔인 증폭된 광 빔(110)을 산출할 수 있다. "증폭된 광 빔"이라는 용어는: 증폭될 뿐만 아니라 필수적으로 코히어런트 레이저 발진은 아닌 레이저 시스템(115)으로부터의 광 및, 증폭되고 또한 코히어런트 레이저 발진인 레이저 시스템(115)으로부터의 광, 중 하나 이상을 포함한다.
레이저 시스템(115)의 광학 증폭기는 이득 매질로서 CO2를 포함하는 충전 가스(filling gas)를 포함할 수 있고, 약 9,100 내지 약 11,000nm 사이의 파장에서의, 특히 약 10,600nm의 파장에서, 1000 이상의 이득에서의 광을 증폭할 수 있다. 레이저 시스템(115)에 사용하는 적절한 증폭기 및 레이저는 예를 들면 50kHz 이상의 더 높은 또는 고 펄스 반복률의, 예를 들면 10kW의 상대적으로 높은 파워에서 동작하는 DC 또는 RF 여기를 하는 약 9,300nm 또는 약 10,600nm에서 방사선을 산출하는 예를 들면 펄싱된 가스-방전 CO2 레이저 장치와 같은 펄싱된 레이저 장치를 포함할 수 있다. 레이저 시스템(115)에서의 광학 증폭기는 또한 더 높은 파워에서 레이저 시스템(115)을 동작시킬 때 사용될 수 있는 물과 같은 냉각 시스템을 포함할 수 있다.
도 2a를 참조하면, 특정한 하나의 구현에서, 레이저 시스템(115)은 다중 증폭 스테이지를 가지고, 예를 들면 100kHz 동작을 할 수 있는, 저 에너지 및 고 반복률을 가진 Q-스위칭된 마스터 오실레이터(MO)(200)에 의해 시작되는 시드 펄스를 가지는 마스터 오실레이터/파워 증폭기(MOPA) 구성을 가진다. MO(200)로부터, 레이저 펄스는 예를 들면 빔 경로(212)를 따라 이동하는 증폭된 광 빔(210)을 산출하기 위해 RF 펌핑된 고속 축 흐름, CO2 증폭기(202, 204, 206)를 이용하여 증폭될 수 있다.
3개의 광학 증폭기(202, 204, 및 206)가 표시되지만, 하나의 증폭기 만큼 적은 증폭기 및 3개 이상의 증폭기가 본 구현에 사용될 수 있다. 일부 구현에서, CO2 증폭기(202, 204, 206) 각각은 내부 미러에 의해 접혀지는 10 미터 증폭기 길이를 가진 RF 펌핑된 축 흐름 CO2 레이저 큐브가 될 수 있다.
대안으로, 그리고 도 2b를 참조하여, 구동 레이저 시스템(115)은 타겟 재료 (114)가 광학 캐비티의 하나의 미러로서 기능하는 소위 "자기 타겟팅" 레이저 시스템으로서 구성될 수 있다. 일부 "자기 타겟팅" 배치에서, 마스터 오실레이터가 필요하지 않을 수 있다. 레이저 시스템(115)은 빔 경로(262)를 따라 직렬로 배치된, 각각의 챔버가 예를 들면 펌핑 전극과 같은 자신의 이득 매질 및 여기 소스를 가지는, 증폭기 챔버(250, 252, 254)의 체인을 포함한다. 각 증폭기 챔버(250, 252, 254)는 예를 들면, 10,600nm의 파장 λ의 광을 증폭하기 위해 예를 들면, 1,000-10,000의 조합된 하나의 패스 이득을 가지는 RF 펌핑된 고속 축 흐름, CO2 증폭기 챔버가 될 수 있다. 증폭기 챔버(250, 252, 254) 각각은 단독으로 설계될 때 그것들이 한 번 이상 증폭된 광 빔을 이득 매질을 통과시키기 위해 필요한 광학 컴포넌트를 포함하지 않도록 레이저 캐비티(공진기) 미러없이 설계될 수 있다. 그럼에도 불구하고, 상술한 바와 같이, 레이저 캐비티는 하기와 같이 형성될 수있다.
본 구현에서, 레이저 캐비티는 레이저 시스템(115)에 후방 부분 반사 광학기기(264)를 추가하고 타겟 재료(114)를 타겟 위치(105)에 배치시킴으로써 형성될 수 있다. 광학기기(264)는 예를 들면 평면 미러, 곡선 미러, 위상 공액 미러, 또는 약 10,600nm의 파장(CO2 증폭기 챔버가 사용된다면 증폭된 광 빔(110)의 파장)에 대한 약 95%의 반사도를 가지는 코너 반사기가 될 수 있다.
타겟 재료(114)와 후방 부분 반사 광학기기(264)는 레이저 캐비티를 형성하도록 레이저 시스템(115)으로 다시 증폭된 광 빔(110)의 일부를 반사하도록 동작한다. 따라서, 타겟 위치(105)에 타겟 재료(114)를 놓는 것은 레이저 시스템(115)으로 하여금 코히어런트 레이저 발진을 산출하도록 하기에 충분한 피드백을 제공하고, 이 경우 증폭된 광 빔(110)은 레이저 빔으로 간주될 수 있다. 타겟 재료(114)가 타겟 위치(105)에 없을 때, 레이저 시스템(115)은 여전히 증폭된 광 빔(110)을 산출하도록 펌핑될 수 있지만, 소스(100) 내의 일부 기타 컴포넌트가 충분한 피드백을 제공하지 않는다면 그것은 코히어런트 레이저 발진을 산출하지 않을 것이다. 특히, 증폭된 광 빔(110)을 타겟 재료(114)와 인터섹션하는 동안, 타겟 재료(114)는 증폭기 챔버(250, 252, 254)를 통과하는 광학 캐비티를 구축하기 위해 광학 기기(264)와 함께 작용하여, 빔 경로(262)를 따라 광을 반사할 수 있다. 배치가 구성되어, 타겟 재료(114)의 반사도는, 각각의 챔버(250, 252, 및 254) 내의 이득 매질이 타겟 재료(114)를 조사하는 레이저 빔을 생성하고, 플라즈마를 생성하고, 챔버(130) 내에서 EUV 광 방출을 산출하면서, 여기될 때, 캐비티에서의 광학 손실(광학 기기(264) 및 액적으로부터 형성된)을 광학 이득이 초과하도록 하기에 충분하다. 이러한 배치로, 광학 기기(264), 증폭기(250, 252, 254), 및 타겟 재료(114)는 타겟 재료(114)가 광학 캐비티의 하나의 미러(소위 플라즈마 미러 또는 기계적 q-스위치)로서 기능하는 "자기 타겟팅" 레이저 시스템을 형성하도록 조합한다. 자기 타겟팅 레이저 시스템은 그 전체 내용이 참조에 의해 본문에 통합된 2006년 10월 13일 출원된, "EUV 광원용 구동 레이저 전달 시스템"이라는 제하의, 미국특허출원 번호 제11/580,414, Attorney Docket 번호 2006-0025-01에 개시된다.
애플리케이션에 따라, 예를 들면, 고 파워 및 고 펄스 반복률에서 동작하는 엑시머 또는 분자 플루오르 레이저와 같은 기타 유형의 증폭기 또는 레이저가 또한 적합할 수 있다. 예를 들면, 미국특허번호 제6,625,191; 6,549,551; 및 6,567,450에 도시된 바와 같은 파이버 또는 디스크 형상의 이득 매질, MOPA 구성 엑시머 레이저 시스템을 구비한 솔리드 스테이트 레이저; 예를 들면, 오실레이터 챔버 및 하나 이상의 증폭 챔버(병렬 또는 직렬로된 증폭 챔버를 가진)와 같은 하나 이상의 챔버를 가진 엑시머 레이저; 마스터 오실레이터/파워 오실레이터(MOPO) 배치, 파워 오실레이터/파워 증폭기(POPA) 배치;를 포함하고, 또는 하나 이상의 엑시머 또는 분자 플루오르 증폭기 또는 오실레이터 챔버를 시딩하는 솔리드 스테이트 레이저가 적합할 수 있다. 다른 설계가 가능하다.
조사 위치에서, 포커스 어셈블리(122)에 의해 적절하게 포커싱된 증폭된 광빔(110)이 타겟 재료(114)의 조성에 따른 특정한 특징을 가지는 플라즈마를 생성하는데에 사용된다. 이들 특징은 플라즈마와 플라즈마로부터 나오는 찌꺼기의 유형과 크기에 의해 산출된 EUV 광의 파장을 포함할 수 있다.
광원 (100)은 증폭된 광 빔(110)이 그를 통과하여 타겟 위치(105)에 도달할 수 있도록 하는 개구(140)를 가진 컬렉터 미러(135)를 포함한다. 컬렉터 미러(135)는 예를 들면, EUV 광이 광원으로부터 출력될 수 있고, 예를 들면 집적회로 리소그래피 툴(도시되지 않음)로 입력될 수 있는 중간 위치(145)에서의 2차 초점(또한 중간 초점이라고도 함)과 타겟 위치(105)에서의 1차 초점을 가지는 타원 미러가 될 수 있다. 광원(100)은 또한 증폭된 광 빔(110)이 타겟 위치(105)에 도달하도록 하면서, 포커스 어셈블리(122) 및/또는 빔 전송 시스템(120)으로 들어가는 플라즈마-산출 찌꺼기의 양을 감소시키기 위해 컬렉터 미러(135)로부터 타겟 위치(105)를 향해 테이퍼된 개방형 단부의 중공 원뿔형 슈라우드(150)(예를 들면, 가스 콘)을 포함할 수 있다. 이러한 목적을 위해, 가스 흐름이 타겟 위치(105)를 향해 지향된 슈라우드에 제공될 수 있다.
광원(100)은 또한 액적 위치 검출 피드백 시스템(156), 레이저 제어 시스템(157), 및 빔 제어 시스템(158)에 접속된 마스터 컨트롤러(155)를 포함할 수 있다. 광원(100)은 예를 들면 타겟 위치(105)에 대한 액적의 위치를 표시하는 출력을 제공하고, 이러한 출력을, 예를 들면 그로부터 액적 위치 오차가 액적 기반에 의해 또는 평균으로 액적에 대해 연산될 수 있는 액적 위치 및 궤적을 연산할 수 있는 액적 위치 검출 피드백 시스템(156)으로 제공한다. 액적 위치 검출 피드백 시스템(156)은 따라서 입력으로서 액적 위치 오차를 마스터 컨트롤러(155)로 제공한다. 마스터 컨트롤러(155)는 따라서, 예를 들면 레이저 타이밍 회로를 제어하기 위해 사용될 수 있는 레이저 제어 시스템(157) 및/또는 챔버(130) 내의 빔 초점의 위치 및/또는 포컬 파워를 변화하도록 빔 전송 시스템(120)의 증폭된 광 빔 위치 및 형성을 제어하기 위한 빔 제어 시스템(158)으로 레이저 위치, 방향 및 타이밍 보정 신호를 제공할 수 있다.
타겟 재료 전달 시스템(125)은 예를 들면 원하는 타겟 위치(105)에 도달한 액적에서의 오차를 보정하기 위해 전달 메커니즘(127)에 의해 발사될 때의 액적의 발사 포인트를 변조하도록, 마스터 컨트롤러(155)로부터의 신호에 응답하여 동작가능한 타겟 재료 전달 제어 시스템(126)을 포함한다.
추가로, 광원(100)은 펄스 에너지, 파장의 함수로서의 에너지 분포, 특정 대역 내의 파장에서의 에너지, 특정 대역 파장 외부의 에너지, 및 EUV 강도 및/또는 평균 파워의 각도 분포를 포함하는(그러나 그에 한정되지 않음) 하나 이상의 EUV 광 파라미터를 측정하는 광원 검출기(165)를 포함할 수 있다. 광원 검출기(165)는 마스터 컨트롤러(155)에 의해 사용하기 위한 피드백 신호를 생성한다. 피드백 신호는 예를 들면, 유효하고 효율적인 EUV 광 산출을 위해 적절한 위치 및 시간에 액적을 적절하게 가로채기 위한 레이저 펄스의 타이밍 및 초점과 같은 파라미터에서의 오차를 표시할 수 있다.
광원(100)은 또한 광원(100)의 다양한 섹션을 정렬하거나 또는 증폭된 광 빔(110)을 타겟 위치(105)로 조정하도록 보조하기 위해 사용될 수 있는 가이드 레이저(175)를 포함할 수 있다. 가이드 레이저(175)와 연결하여, 광원(100)은 가이드 레이저(175)와 증폭된 광 빔(110)으로부터의 광의 일부를 샘플링하기 위해 포커스 어셈블리(122) 내에 배치된 계측 시스템(124)을 포함한다. 다른 구현에서, 계측 시스템(124)은 빔 전송 시스템(120) 내에 배치된다. 계측 시스템(124)은 가이드 레이저 빔과 증폭된 광 빔(110)의 파워를 견딜 수 있는 임의의 재료로 만들어진 광학 엘리먼트와 같은, 광의 서브셋을 샘플링하거나 방향을 새로 돌리게하는(redirect) 광학 엘리먼트를 포함할 수 있다. 마스터 컨트롤러(155)가 가이드 레이저(175)로부터의 샘플링된 광을 분석하고 빔 제어 시스템(158)을 통해 초점 어셈블리(122)내에서의 컴포넌트를 조정하기 위해 이러한 정보를 이용하기 때문에, 빔 분석 시스템이 계측 시스템(124)과 마스터 컨트롤러(155)로부터 형성된다.
따라서, 요약하면, 광원(100)은 EUV 범위에서 광을 방출하는 플라즈마로 타겟 재료를 변환시키기 위해 타겟 위치(105)에서 타겟 재료(114)를 조사하도록 빔 경로를 따라 지향되는 증폭된 광 빔(110)을 산출한다. 증폭된 광 빔(110)은 레이저 시스템(115)의 설계 및 속성에 기초하여 판정되는 특정 파장(또한 소스 파장이라고도 하는)에서 동작한다. 추가로, 증폭된 광 빔(110)은 타겟 재료가 코히어런트 레이저 광을 산출하기 위해 레이저 시스템(115)으로 충분한 피드백을 제공할 때 또는 구동 레이저 시스템(115)이 레이저 캐비티를 형성하기 위해 적절한 광학 피드백을 포함하는 경우 레이저 빔이 될 수 있다.
다시 도 1을 참조하면, 제 1 챔버(132)는 컬렉터 미러(135), 전달 메커니즘(127), 타겟 이미저(160), 타겟 재료(114), 및 타겟 위치(105)를 하우징한다. 제 2 챔버(134)는 챔버 서브시스템(190) 및 중간 위치(145)를 하우징한다. 제 1 및 제 2 챔버(132, 134)의 원통형 벽은 예를 들면 챔버(132, 134) 내에서의 과열을 방지하기 위해, 특히 컬렉터 미러(135)의 과열을 방지하기 위해 수냉식으로 냉각된다.
도 3을 참조하면, 제 2 챔버(334)는 챔버 내부(192)를 형성하는 원통형 벽(300)을 포함한다. 제 2 챔버(334)는 제 1 챔버(132)와 유체가 연통되어있는 제 1 베셀(305) 및 제 1 베셀(305)과 유체가 연통되어있는 제 2 베셀(310)을 포함한다. 제 1 및 제 2 챔버(132, 134)는 대기로부터 밀폐하여 기밀된다. 제 2 베셀(310)의 전면 환상형 벽(315)은 제 1 베셀(305)과 제 2 베셀(310)을 분리시킨다. 제 1 베셀(305)은 진공 펌핑을 위한 개구(320)와 컬렉터 미러(135)의 이미징 및 분석을 허용하는 개구(325)를 포함한다.
특정한 설계에서, 제 2 챔버(334)는 챔버 서브시스템(190)이 없다. 이 때문에, 다수의 문제점이 제 2 챔버(334)를 포함하는 광원(100)의 동작동안 발생할 수 있다. 동작동안, 증폭된 광 빔(110)이 타겟 위치(105)로 포커싱되고, 그런후 광 빔은 제 2 챔버(334)로 그리고 제 2 베셀(310)의 전면 환상형 벽(315)을 향해 분기한다. 전면 환상형 벽(315)과 상호작용하는 분기한 광 빔(110) 부분은 전면 환상형 벽(315)에 의해(잠재적으로 제 2 챔버(334) 내의 기타 피처에 의해) 반사되고 광 빔(110)이 이동했던 빔경로를 따라 다시 구동 레이저 시스템(115)을 향해 지향될 수 있다. 이러한 피드백 광은 구동 레이저 시스템(115) 내에서 자가 레이징을 일으키고, 이러한 자가 레이징은 레이저 시스템(115) 내부의 광 빔(110)(그리고 그에 따라 레이저 파워)의 증폭을 감소시켜, 따라서 파워를 타겟 재료(114)로 덜 전달한다.
추가로, 상술한 바와 같이, 타겟 재료(114)는, 예를 들면 순수 주석(Sn), 또는 예를 들면 SnBr4, SnBr2, SnH4와 같은 주석 화합물, 예를 들면, 주석-갈륨 합금, 주석-인듐 합금, 주석-인듐-갈륨 합금, 또는 이들 합금의 조합과 같은 주석 합금이 될 수 있다.
빔 광(110)이 주석 액적에 부딪힐 때 형성되는 플라즈마를 주석 액적(타겟 재료(114))이 통과할 때 주석 증기가 산출될 수 있다. 이러한 주석 증기는 진공 챔버(130) 내에서의 광학 표면(컬렉터 미러(135)와 같은) 상에서 압축하고 이들 광학 표면에서 비효율을 야기할 수 있다. 이들 광학 표면으로부터 압축된 주석을 제거하기 위해, 버퍼 가스(H2)의 부식액이 광학 표면을 클리닝 하기 위해 광학 표면에 도포될 수 있다. SnHx 화합물은 컬렉터 미러(135)가 항상 영하의 온도에서 유지되기 때문에 H2가 에칭에 사용될 때, 그리고 H2 래디컬이 주석과 반응할 때 형성될 수 있고, SnHx가 산출된다(여기서 x는 1, 2, 4, 등이 될 수 있다). SnH4는 이들 산출된 화합물 중에 가장 안정적인 것이다.
또한, 주석 화합물이 타겟 재료로 사용되는 경우, 주석 화합물(찌꺼기 또는 마이크로액적 형태로)은 개구(320)를 통해 진공 펌프로 챔버(130)로부터 펌핑되고, 이는 진공 펌프의 오작동 및 파괴를 일으킬 수 있다.
SnH4는 압축된 Sn 및 수소로 약 50 C의 온도에서 화학적으로 분해하기 시작한다. 또한, 압축된 Sn은 약 250 C의 자신의 용융점 이상으로 용융 상태로 전이한다. 따라서, SnH4가 250 C의 온도에 있는 표면에 부딪히면, 용융된 Sn 및 수소가 형성된다. 압축된(그리고 용융된) Sn은 그것이 개구(320)를 통해 진공 펌프로 배출되지 않도록 챔버(130)의 표면에 축적할 수 있다. 그러나, 챔버 벽이 화합물의 분해 온도 미만으로 유지되기 때문에, SnH4는 화학적으로 분해되지 못하여 SnH4는 개구(320)를 통과해 진공 펌프로 챔버로부터 배출되는 진공상태에서 고체로 유지된다.
따라서, 도 4 및 5를 참조하면, 제 2 챔버(134)는 챔버 내부(192)를 형성하는 원통형 벽(400) 내부에 하우징된 챔버 서브시스템(190)을 가지고 설계된다. 챔버 서브시스템(190)은 자가 레이징을 감소시키고, 타겟 재료의 고체 형태를 챔버 내부(192) 내에서 트랩핑되어 유지되는 용융 형태 및 개구(420)를 통해 진공 펌프로 제 2 챔버(134)로부터 배출될 수 있는 안전한 증기(예를 들면, H2)로 분해하도록 구성된다. 제 2 챔버(334)와 유사하게, 제 2 챔버(134)는 진공 펌핑을 위한 개구(420)와 컬렉터 미러(135)의 이미징을 허용하는 개구(425)를 포함한다. 제 2 챔버(134)의 벽(400)은 스테인레스 강과 같은 임의의 적절한 강성 재료로 만들어질 수 있다.
제 1 및 제 2 베셀을 분리하기 위한 전면 환상형 벽(315) 대신에, 제 2 챔버(134)는 챔버 서브시스템(190)을 포함한다. 챔버 서브시스템(190)은 챔버 서브시스템(190)의 외부 표면과 내부(192)의 표면을 연결하는 브래킷(430, 432, 434)과 같은 적절한 부착 장치로 내부(192)에 견고하게 매달려 있다. 본문에 도시된 바와 같이, 챔버 서브시스템(190)은 개구(420)의 다운스트림에 배치된다. 그러나, 챔버 서브시스템(190)이 진공 챔버(130)의 내부 표면의 적어도 일부의 위에 놓이고 빔경로를 따라서 다시 내부 표면으로부터 소스 파장에서 증폭된 광 빔(110)(레이저 빔이 될 수 있다)의 흐름을 감소시키도록 구성되는 한, 챔버 시스템(190)이 제 2 챔버(134) 내, 제 1 챔버(132) 내, 또는 또다른 새로운 챔버 내의 또다른 위치에 배치되도록 설계하는 것이 가능하다.
도 6-9b를 참조하면, 챔버 서브시스템(190)은 하나 이상의 지지물 또는 브래킷(610, 612, 614, 616, 618, 620)과 상호배치된(interleaved) 하나 이상의 고정 환상형 원뿔 날개(600, 602, 604, 606, 608)를 포함한다. 고정 날개(600-608)와 브래킷(610-620) 각각은 스테인레스 강 또는 몰리브덴과 같은 강성 재료로 만들어질 수 있다. 각각의 날개(600-608)는 원뿔 형상이고, 중심의 개방 영역을 포함하고, 인접한 브래킷 사이에 개재되어있는 자신의 각각의 에지(701, 703, 705, 707, 709)(도 7 참조)에 적절하게 유지된다. 따라서, 에지(701)는 브래킷(610 및 612) 사이에 개재되고, 에지(703)는 브래킷(612 및 614) 사이에 개재되고, 에지(705)는 브래킷(614 및 616) 사이에 개재되고, 에지(707)는 브래킷(616 및 618) 사이에 개재되고, 및 에지(709)는 브래킷(618 및 620) 사이에 개재된다.
각각의 날개(600-608)는 타겟 재료(114)로부터 방출된 극 자외선 광의 통로를 제공하는 각각의 중심 개방 영역(711, 713, 715, 717)을 포함한다. 일부 구현에서, 각각의 날개(600-608)는 다른 날개의 원뿔 각도와 상이한 원뿔 각도(즉, 외부 원뿔 표면과 빔경로에 직교하는 평면 사이의 각도)를 가지고 구성된다. 따라서, 도 9b에 도시된 바와 같이, 날개(608)는 다른 날개(600, 602, 604, 606)의 원뿔 각도와는 상이한 원뿔 각도(900)를 가진다.
또한, 일부 구현에서, 각각의 날개(600-608)는 다른 날개의 내외면 폭(annular width)과 상이한 내외면 폭(즉, 빔경로에 직교하는 평면을 따라 연장하는 직경을 따라 취해진 원뿔 표면의 폭)을 가지고 구성된다. 또는, 달리 말하면, 각각의 날개(600-608)는 다른 개방 영역의 직경과 상이한 직경(빔 경로에 직교하는 평면을 따라 취해진)을 가지는 개방 영역을 가지고 구성된다. 따라서, 도 9b에 도시된 바와 같이, 날개(608)는 다른 날개(600, 602, 604, 606)의 개방 영역(711, 713, 715, 717)의 직경과 상이한 자신의 개방 영역(719)의 직경(905)을 가진다.
개방 영역 직경은 예를 들면 날개(600)의 개방 영역 직경이 날개(602)의 개방 영역 직경보다 더 크고, 날개(602)의 개방 영역 직경이 날개(604)의 개방 영역 직경보다 더 크는 등이 되도록 그래이딩될 수 있다. 원뿔 각도는 또한 예를 들면 날개(600)로부터 날개(608)로 점차적으로 각도가 더 작아지도록 그래이딩될 수 있다. 날개의 이들 2개의 기하학적 피처(원뿔 각도 및 개방 영역 직경)가 그래이딩 되는 이유는 인입 증폭된 광 빔이 챔버 서브시스템(190)을 통과할 때 인입 증폭된 광 빔이 분기하고, 하기에 보다 상술한 바와 같이, 가능한 많은 분기 빔을 집속하도록 그래이딩된 기하학적 피처가 구성되기 때문이다.
임의의 경우에, 개방 영역 직경, 원뿔 각도, 및 이들 파라미터의 그래이딩의 레벨(그런것이 존재한다면)은 광원(100)에 사용된 증폭된 광 빔(110)의 유형(예를 들면 구동 레이저 시스템(115)의 유형) 및 지오메트리(예를 들면, 빔의 개구수)에 따라 선택될 수 있다. 따라서, 예를 들면, 본문에 도시된 챔버 서브시스템(190)의 설계는 CO2 증폭기를 포함하고 약 0.21의 개구수를 가진 증폭된 광 빔(110)을 산출하는 구동 레이저 시스템(115)을 위해 구성된다.
다시 도 8a 및 8b를 참조하면, 각각의 브래킷(612, 614, 616, 618)은 각각의 각도를 가진 내부 환상형 표면(812, 814, 816, 818)을 포함할 수 있다. 이들 각도를 가진 표면은 하기에 보다 상세히 기술된 바와 같이, 인입 빔을 상이한 각도에서 각각의 브래킷의 표면(812, 814, 816, 818)으로부터 반사된 2개의 방출 빔으로 분리함으로써 분기 증폭된 광 빔의 추가적인 전환을 제공한다.
도 10-12를 참조하면, 광원의 동작시, 증폭된 광 빔(110)은 그것이 타겟 위치(105)에서 포커싱되어 타겟 재료(114)를 조사하도록(도 10에 도시되지 않음) 빔 경로(1000)를 따라 이동한다. 타겟 재료(114)는 EUV 영역에서 방출선을 가지는 원소를 구비하여, EUV 광(1005)이 타겟 재료(114)로부터 방출되고 컬렉터 미러(135)에 의해 집속되는 플라즈마 상태로 변환된다. 반면, 분기 증폭된 광 빔(1010)은 타겟 위치(105)로부터 벗어나는 방향으로 제 2 챔버(134)(도 10에 도시되지 않음)를 향해, 그리고 챔버 서브시스템(190)을 향해 이동한다. 타겟 재료(114) 체적은 1차 초점에서의 증폭된 광 빔(110)의 초점 영역(즉, 허리부분)보다 더 작다. 따라서, 증폭된 광 빔(110)의 중심부가 타겟 재료(114)와 상호작용하는 동안, 상호작용하지 않은 증폭된 광 빔(110)이 이런 초점 영역을 지나 분기하기 시작하여, 분기 증폭된 광 빔(1010)이 된다. 증폭된 광 빔(110)의 상호작용하는 부분의 빔은 타겟 재료(114)로부터 반사하여 증폭을 위해 다시 레이저 시스템으로 지향될 수 있다.
증폭된 광 빔(1010)이 서브시스템(190)의 개방 영역을 지나 이동할 때, 그것은 연속한 날개(600, 602, 604, 606, 608)에 의해 굴절(반사)된다. 도 12를 특정하게 참조하면, 광 빔(1010)의 예시적인 인입 광선(1200)은 날개(600)를 통과하지만 날개(602)의 측면 표면에 부딪혀, 여기서 광선은 날개(602)와 날개(600) 사이에서 수차례 바운스된다. 인입 광선(1200)은 브래킷(612)의 각도가 있는 내부 각도 표면(812)으로부터 반사되어 아웃고잉 광선(1205)을 형성한다. 아웃고잉 광선(1205)의 경로는 날개(600 및 602)의 원뿔 표면의 각각의 상이한 각도때문에 인입 광선(1200)의 경로와 부합하지 않고 따라서 아웃고잉 광선(1205)은 다시 빔 경로를 따라 컬렉터 미러(135)의 1차 초점을 향해 이동하지 않으며(타겟 위치(105) 내부에 있는), 따라서 아웃고잉 광선(1205)은 구동 레이저 시스템(115)으로 다시 이동하지 않는다.
추가로, 광선(1200, 1205)은 날개(600 또는 602)로부터의 각각의 바운스에서 자신의 파워의 작은 비율(예를 들면, 약 10%)을 손실한다. 이 때문에, 일부 에너지가 날개에 부여되어, 날개(600, 602, 604, 606, 608)가 가열되도록 한다. 또한, 날개(600, 602, 604, 606, 608)가 타겟 재료 화합물의 분해 온도(예를 들면, Sn에 대해서는 250C 이상) 이상까지(및 보다 구체적으로는 화합물이 용융되는 온도 이상) 가열되어, 날개에 부딪히는 임의의 화합물(SnH4와 같은)이 용융 원소(Sn과 같은) 및 수소로 분해될 것이다. 그리고, 용융 원소는 수소가 개구(420)를 통해 진공 펌프로 배출되는 동안 브래킷(610, 612, 614, 616, 618, 620)의 더 낮은 내부 표면(1210)에서 축적하도록 남는다.
도 13을 참조하면, 다른 구현에서, 챔버 서브시스템(190)은 챔부 내벽의 적어도 일부에 도포되고 타겟 위치(105)를 통과하고 그렇지 않으면 챔버 내벽에 부딪히는 레이저 광을 방향조정(redirect)하는 하나 이상의 코팅(1300)이 될 수 있다. 예를 들면, 코팅은 유전체 스택과 같은 대비되는 굴절률의 층을 교차하는 투명 박막 구조로 구성된 무반사 코팅이 될 수 있다. 층 두께는 인터페이스로부터 반사된 빔에서 상쇄 간섭, 대응하는 전송된 빔에서 보강간섭을 산출하도록 선택된다. 이는 컬러 효과가 대개 45°각도로(oblique) 나타나도록 파장 및 입사각을 가지고 구조의 성능 변화를 일으킨다. 코팅(1300)은 효과적으로 내벽을 코팅할 수 있어야 하고, 따라서, 코팅의 유형은 내벽에 사용되는 재료에 따라 선택될 수 있다.
또다른 예시로서, 코팅은 티타늄 질화물 및 니오븀 질화물과 같은 스퍼터링 증착에 의해 산출된 화합물 박막을 이용하는 흡수 무반사 코팅이 될 수 있다. 또다른 예시로서, 코팅은 간섭 코팅이 될 수 있다.
챔버 서브시스템(190)은 백반사(back-reflection), 과열, 또는 초과 노이즈를 방지하는 임의의 적절하게 설계된 더 높은-파워 빔 덤프를 이용하여 설계될 수 있다. 예를 들면, 챔버 서브시스템(190)은 빔을 덤핑하기 위해 흡수 재료를 가지고 라인이 그어진 깊은 다크 캐비티가 될 수 있다. 또다른 예시로서, 챔버 서브시스템(190)은 광을 굴절 및 반사하도록 구성될 수 있다.
검출기(165)는 도 1에 타겟 위치(105)로부터 직접 광을 수신하도록 배치되는 것으로 도시되지만, 검출기(165)는 대안으로 중간 초점(145) 또는 기타 위치에 또는 그의 다운스트림에서 광을 샘플링하도록 위치될 수 있다.
일반적으로, 타겟 재료(114)의 조사는 또한 타겟 위치(105)에서 찌꺼기를 산출할 수 있고, 이러한 찌꺼기는 컬렉터 미러(135)를 포함하는(그러나 그에 한정되지는 않음) 광학 엘리먼트의 표면을 오염시킬 수 있다. 따라서, 타겟 재료(114)의 구성요소와 반응할 수 있는 가스 부식액의 소스가, 그 전체가 참조에 의해 본문에 통합된 미국특허 제 7,491,954에 개시된 바와 같이, 광학 엘리먼트의 표면에 증착된 오염물을 클리닝하기 위해 챔버(130)에 도입될 수 있다. 예를 들면, 하나의 애플리케이션에서, 타겟 재료는 Sn을 포함하고, 부식액은 HBr, Br2, Cl2, HCl, H2, HCF3, 또는 이들 화합물의 조합이 될 수 있다.
광원(100)은 또한 증착된 타겟 재료와 광학 엘리먼트 표면 상의 부식액 사이의 화학반응을 시작하고 및/또는 그의 속도를 증가시키는 하나 이상의 히터(170)를 포함할 수 있다. Li를 포함하는 플라즈마 타겟 재료에 대해, 히터(170)는 표면으로부터 Li를 기화시키기 위해, 즉, 필수적으로 부식액을 사용하지 않고서, 액 400~550℃의 범위에서의 온도로 하나 이상의 광학 엘리먼트의 표면을 가열하도록 설계될 수 있다. 적절할 수 있는 히터의 유형은 복사 히터, 마이크로웨이브 히터, RF 히터, 저항 히터, 또는 이들 히터의 조합을 포함한다. 히터는 특정한 광학 엘리먼트 표면으로 지향되어, 따라서 방향성을 가질 수 있거나, 또는 그것은 무방향성이고 전체 챔버(130) 또는 챔버(130)의 실질적인 일부를 가열할 수 있다.
다른 구현에서, 타겟 재료(114)는 리튬, 리튬 화합물, 크세논 또는 크세논 화합물을 포함한다.
분기 증폭된 광 빔(1010)은 타겟 재료(114)로부터 방출된 EUV 광(1005)에 한정하지 않고 다른 장치를 이용하여 한정될 수 있다. 이는 수렴 EUV 광(1005)과 제 2 챔버(134)를 지나는 분기 증폭된 광 빔(1010) 사이에 환상형 갭이 있는 단속적인(intermittent) 체적을 판정하고 제 2 챔버(134)에 트랩핑될 수 없는 분기 증폭된 광 빔(1010)을 트랩핑함으로써 수행될 수 있다. 추가적인 트랩 및/또는 한정을 가지고도, 중간 초점(145)을 통과하는 현저한 양의 광 빔(예를 들면, 1.5kW의 레이저 파워)이 있을 수 있고, 이러한 광 빔은 중간 초점(145)을 통과하여 트랩핑될 수 있다.
다시 도 11을 참조하면, 챔버 서브시스템(190)은 분기 증폭된 광 빔(1010)의 음영에서의 제 2 챔버의 게이트 밸브(도시되지 않음)를 유지시키기 위해 서브시스템(190)의 중심으로 돌출한 추가적인 핀(1150)을 포함할 수 있다. 추가적인 핀(1150)은 각각 증폭된 광 빔(1010)의 바운스를 가지고 파워의 약 90%를 반사하도록 스테인레스 강으로 만들어질 수 있다.
다른 구현은 하기의 청구범위의 범위 내에 있다.

Claims (24)

  1. 내부 표면을 형성하고 컬렉터 미러를 하우징하는 챔버로서, 상기 컬렉터 미러는 타겟 위치에 1차 초점이 형성되고 중간 위치에 2차 초점이 형성되는 형상을 가지는, 챔버;
    상기 타겟 위치에서 상기 챔버 내의 타겟 재료를 조사하고(irradiate) 극 자외선 광을 생성하기 위해 상기 컬렉터 미러의 개구를 통해 빔 경로를 따라 증폭된 광 빔을 산출하도록 구성된 광원으로서, 소스 파장의 광을 증폭하기 위한 이득 매질을 포함하는, 광원; 및
    상기 챔버의 내부 표면의 적어도 일부 위에 놓이고 복수의 환상형 피처를 포함하는 서브시스템으로서, 각각의 환상형 피처는 생성된 극 자외선 광이 상기 중간 위치의 초점에 이르기까지 통과하도록 하는 중심 개방 영역을 가지고, 각각의 환상형 피처는 챔버 벽으로부터 상기 증폭된 광 빔의 경로 내로 연장되는, 서브시스템을 포함하고,
    상기 서브시스템은 상기 내부 표면으로부터 상기 빔 경로를 따라서 상기 광원을 향해 되돌아가는 소스 파장에서의 상기 증폭된 광 빔의 흐름을 감소시키도록 구성되는, 장치.
  2. 제 1 항에 있어서, 상기 광원은 레이저 소스이고, 상기 증폭된 광 빔은 레이저 빔인, 장치.
  3. 제 1 항에 있어서, 상기 서브시스템의 각각의 환상형 피처는 적어도 하나의 원뿔형 날개(vane)를 포함하는, 장치.
  4. 삭제
  5. 제 1 항에 있어서, 상기 중심 개방 영역은 상기 증폭된 광 빔의 중심 부분의 통과를 허용하는, 장치.
  6. 제 1 항에 있어서, 상기 서브시스템은 상기 챔버의 내부로부터의 가스 제거를 가능하게 하기 위해 상기 타겟 재료의 화합물을 적어도 하나의 가스 및 적어도 하나의 고체로 화학적으로 분해하도록 구성되는, 장치.
  7. 제 6 항에 있어서, 상기 타겟 재료의 화합물은 주석 수소화물을 포함하고 상기 적어도 하나의 가스는 수소이고, 상기 적어도 하나의 고체는 압축된 주석인, 장치.
  8. 제 7 항에 있어서, 상기 압축된 주석은 용융 상태인, 장치.
  9. 제 1 항에 있어서, 상기 소스 파장은 적외선 범위의 파장에 있는, 장치.
  10. 제 1 항에 있어서, 상기 광원은 하나 이상의 파워 증폭기를 포함하는, 장치.
  11. 제 1 항에 있어서, 상기 광원은 하나 이상의 파워 증폭기를 시딩하는 마스터 오실레이터를 포함하는, 장치.
  12. 제 1 항에 있어서, 상기 서브시스템은 내부 챔버 표면에 접촉하는, 장치.
  13. 제 1 항에 있어서,
    상기 내부 표면으로부터 상기 빔 경로를 따라서 상기 광원을 향해 되돌아가는 소스 파장에서의 상기 증폭된 광 빔의 흐름을 감소시키도록 구성되는 코팅을 더 포함하는, 장치.
  14. 제 13 항에 있어서, 상기 코팅은 무반사 코팅인, 장치.
  15. 제 13 항에 있어서, 상기 코팅은 흡수 무반사 코팅인, 장치.
  16. 제 13 항에 있어서, 상기 코팅은 간섭 코팅인, 장치.
  17. 극 자외선 광을 산출하는 방법으로서,
    진공 챔버의 내부의 타겟 위치에서 타겟 재료를 산출하는 단계;
    구동 레이저 시스템에서의 적어도 하나의 광학 증폭기의 이득 매질에 펌프 에너지를 공급하여 소스 파장의 증폭된 광 빔을 산출하는, 펌프 에너지 공급 단계;
    상기 증폭된 광 빔을 빔 경로를 따라 지향시켜 극 자외선 광을 생성하기 위해 타겟 재료를 조사하는, 광 빔을 지향시키는 단계;
    생성된 극 자외선 광이, 상기 진공 챔버의 내부 표면의 적어도 일부 위에 놓이는 챔버 서브시스템의 복수의 환상형 피처의 중심 개방 영역을 통과하도록 하는 단계로서, 각각의 환상형 피처는 챔버 벽으로부터 상기 증폭된 광 빔의 경로 내로 연장되는, 단계; 및
    상기 챔버 서브시스템의 2개의 날개 사이에서 상기 증폭된 광 빔의 적어도 일부를 반사시킴으로써 상기 진공 챔버의 내부 표면으로부터 상기 빔 경로로 상기 소스 파장의 광의 흐름을 감소시키는 단계
    를 포함하는 극 자외선광 산출 방법.
  18. 제 17 항에 있어서, 상기 증폭된 광 빔이 상기 타겟 위치를 교차하여 상기 타겟 재료에 부딪힐 때 상기 타겟 재료로부터 방출된 생성된 극 자외선 광을 집속하는 단계를 더 포함하는, 극 자외선광 산출 방법.
  19. 제 17 항에 있어서, 상기 소스 파장의 광의 흐름을 감소시키는 단계는 상기 빔 경로과 상이한 경로를 따라 상기 증폭된 광 빔의 적어도 일부를 지향시키는 단계를 포함하는, 극 자외선 광 산출 방법.
  20. 삭제
  21. 제 17 항에 있어서, 상기 적어도 하나의 광학 증폭기의 상기 이득 매질에 펌프 에너지를 공급하는 단계는 소스 파장의 레이저 빔을 산출하는, 극 자외선 광 산출 방법.
  22. 제 17 항에 있어서, 상기 챔버의 내부로부터 가스를 제거할 수 있도록 상기 타겟 재료의 화합물을 적어도 하나의 가스 및 적어도 하나의 고체로 화학적으로 분해하는 단계를 더 포함하는, 극 자외선 광 산출 방법.
  23. 제 22 항에 있어서, 상기 화합물을 화학적으로 분해하는 단계는 주석 수소화물을 수소와 압축된 주석으로 화학적으로 분해하는 단계를 포함하는, 극 자외선 광 산출 방법.
  24. 제 23 항에 있어서, 상기 진공 챔버의 내부 표면으로부터 상기 빔 경로로 소스 파장의 광의 흐름을 감소시키는 챔버 서브시스템 내에 상기 압축된 주석을 트랩핑하는 단계를 더 포함하는, 극 자외선 광 산출 방법.
KR1020127028410A 2010-04-05 2011-04-01 극자외선 광원 KR101747120B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/753,938 2010-04-05
US12/753,938 US8368039B2 (en) 2010-04-05 2010-04-05 EUV light source glint reduction system
PCT/US2011/030974 WO2011126947A1 (en) 2010-04-05 2011-04-01 Extreme ultraviolet light source

Publications (2)

Publication Number Publication Date
KR20130022404A KR20130022404A (ko) 2013-03-06
KR101747120B1 true KR101747120B1 (ko) 2017-06-27

Family

ID=44708533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127028410A KR101747120B1 (ko) 2010-04-05 2011-04-01 극자외선 광원

Country Status (5)

Country Link
US (1) US8368039B2 (ko)
JP (1) JP5593554B2 (ko)
KR (1) KR101747120B1 (ko)
TW (1) TWI469692B (ko)
WO (1) WO2011126947A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017137A (ko) * 2018-08-08 2020-02-18 삼성전자주식회사 극자외선 생성 장치

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304752B2 (en) * 2009-04-10 2012-11-06 Cymer, Inc. EUV light producing system and method utilizing an alignment laser
JP5670174B2 (ja) * 2010-03-18 2015-02-18 ギガフォトン株式会社 チャンバ装置および極端紫外光生成装置
US8575576B2 (en) * 2011-02-14 2013-11-05 Kla-Tencor Corporation Optical imaging system with laser droplet plasma illuminator
US9516730B2 (en) * 2011-06-08 2016-12-06 Asml Netherlands B.V. Systems and methods for buffer gas flow stabilization in a laser produced plasma light source
EP2533078B1 (en) * 2011-06-09 2014-02-12 ASML Netherlands BV Radiation source and lithographic apparatus
DE102012205308B4 (de) * 2012-03-30 2018-05-30 Trumpf Lasersystems For Semiconductor Manufacturing Gmbh Vorrichtung zur Verstärkung eines Laserstrahls
US9396902B2 (en) * 2012-05-22 2016-07-19 Varian Semiconductor Equipment Associates, Inc. Gallium ION source and materials therefore
US8598552B1 (en) * 2012-05-31 2013-12-03 Cymer, Inc. System and method to optimize extreme ultraviolet light generation
WO2013189827A2 (en) * 2012-06-22 2013-12-27 Asml Netherlands B.V. Radiation source and lithographic apparatus.
US8872123B2 (en) * 2013-01-10 2014-10-28 Asml Netherlands B.V. Method of timing laser beam pulses to regulate extreme ultraviolet light dosing
US8872122B2 (en) * 2013-01-10 2014-10-28 Asml Netherlands B.V. Method of timing laser beam pulses to regulate extreme ultraviolet light dosing
US8901523B1 (en) * 2013-09-04 2014-12-02 Asml Netherlands B.V. Apparatus for protecting EUV optical elements
KR102197066B1 (ko) * 2014-07-01 2020-12-30 삼성전자 주식회사 플라즈마 광원, 그 광원을 구비한 검사 장치 및 플라즈마 광 생성 방법
US9357625B2 (en) * 2014-07-07 2016-05-31 Asml Netherlands B.V. Extreme ultraviolet light source
DE102016213830B3 (de) 2016-07-27 2017-12-07 Carl Zeiss Smt Gmbh Quell-Hohlkörper sowie EUV-Plasma-Lichtquelle mit einem derartigen Quell-Hohlkörper
EP3291650B1 (en) * 2016-09-02 2019-06-05 ETH Zürich Device and method for generating uv or x-ray radiation by means of a plasma
US10310380B2 (en) * 2016-12-07 2019-06-04 Taiwan Semiconductor Manufacturing Co., Ltd. High-brightness light source
US10524345B2 (en) * 2017-04-28 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Residual gain monitoring and reduction for EUV drive laser
US11333621B2 (en) 2017-07-11 2022-05-17 Kla-Tencor Corporation Methods and systems for semiconductor metrology based on polychromatic soft X-Ray diffraction
US10149374B1 (en) * 2017-08-25 2018-12-04 Asml Netherlands B.V. Receptacle for capturing material that travels on a material path
US11317500B2 (en) 2017-08-30 2022-04-26 Kla-Tencor Corporation Bright and clean x-ray source for x-ray based metrology
NL2022007A (en) * 2017-12-15 2019-06-21 Asml Netherlands Bv Regeneration of a debris flux measurement system in a vacuum vessel
US10959318B2 (en) 2018-01-10 2021-03-23 Kla-Tencor Corporation X-ray metrology system with broadband laser produced plasma illuminator
NL2024077A (en) * 2018-10-25 2020-05-13 Asml Netherlands Bv Target material supply apparatus and method
US11272607B2 (en) 2019-11-01 2022-03-08 Kla Corporation Laser produced plasma illuminator with low atomic number cryogenic target
US11259394B2 (en) 2019-11-01 2022-02-22 Kla Corporation Laser produced plasma illuminator with liquid sheet jet target
US11143604B1 (en) 2020-04-06 2021-10-12 Kla Corporation Soft x-ray optics with improved filtering
US20220350266A1 (en) * 2021-04-30 2022-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for mitigating tin debris
CN113747644B (zh) * 2021-07-20 2024-05-28 中国工程物理研究院激光聚变研究中心 利用离子分离抑制黑腔辐射源腔壁等离子体膨胀的方法
JP2023148403A (ja) * 2022-03-30 2023-10-13 ウシオ電機株式会社 光源装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置
US20090057567A1 (en) * 2007-08-31 2009-03-05 Cymer, Inc. Gas management system for a laser-produced-plasma EUV light source
JP2010021543A (ja) * 2008-06-12 2010-01-28 Komatsu Ltd 極端紫外光源装置
US20100025600A1 (en) * 2008-07-31 2010-02-04 Cymer, Inc. Systems and methods for heating an EUV collector mirror

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590131A (ja) * 1991-09-26 1993-04-09 Canon Inc X線露光装置
US6567450B2 (en) 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6549551B2 (en) 1999-09-27 2003-04-15 Cymer, Inc. Injection seeded laser with precise timing control
US6625191B2 (en) 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
TWI222248B (en) * 2000-10-16 2004-10-11 Cymer Inc Extreme ultraviolet light source
US7491954B2 (en) 2006-10-13 2009-02-17 Cymer, Inc. Drive laser delivery systems for EUV light source
US7671349B2 (en) * 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
JP4320999B2 (ja) 2002-02-04 2009-08-26 株式会社ニコン X線発生装置及び露光装置
JP4262032B2 (ja) * 2003-08-25 2009-05-13 キヤノン株式会社 Euv光源スペクトル計測装置
US7109503B1 (en) 2005-02-25 2006-09-19 Cymer, Inc. Systems for protecting internal components of an EUV light source from plasma-generated debris
JP2006202671A (ja) * 2005-01-24 2006-08-03 Ushio Inc 極端紫外光光源装置及び極端紫外光光源装置で発生するデブリの除去方法
US7449703B2 (en) 2005-02-25 2008-11-11 Cymer, Inc. Method and apparatus for EUV plasma source target delivery target material handling
US7365349B2 (en) 2005-06-27 2008-04-29 Cymer, Inc. EUV light source collector lifetime improvements
US7402825B2 (en) 2005-06-28 2008-07-22 Cymer, Inc. LPP EUV drive laser input system
JP4710463B2 (ja) * 2005-07-21 2011-06-29 ウシオ電機株式会社 極端紫外光発生装置
US7372058B2 (en) * 2005-09-27 2008-05-13 Asml Netherlands B.V. Ex-situ removal of deposition on an optical element
US7468521B2 (en) * 2005-12-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5156192B2 (ja) * 2006-01-24 2013-03-06 ギガフォトン株式会社 極端紫外光源装置
JP2008041742A (ja) * 2006-08-02 2008-02-21 Ushio Inc 極端紫外光光源装置
US20080237498A1 (en) * 2007-01-29 2008-10-02 Macfarlane Joseph J High-efficiency, low-debris short-wavelength light sources
WO2008143556A1 (en) * 2007-05-22 2008-11-27 Volvo Aero Corporation A masking arrangement for a gas turbine engine
US7908117B2 (en) * 2007-08-03 2011-03-15 Ecofactor, Inc. System and method for using a network of thermostats as tool to verify peak demand reduction
JP2009099390A (ja) * 2007-10-17 2009-05-07 Tokyo Institute Of Technology 極端紫外光光源装置および極端紫外光発生方法
US8519366B2 (en) 2008-08-06 2013-08-27 Cymer, Inc. Debris protection system having a magnetic field for an EUV light source
JP5553833B2 (ja) * 2008-09-11 2014-07-16 エーエスエムエル ネザーランズ ビー.ブイ. 放射源およびリソグラフィ装置
EP2170021B1 (en) * 2008-09-25 2015-11-04 ASML Netherlands B.V. Source module, radiation source and lithographic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置
US20090057567A1 (en) * 2007-08-31 2009-03-05 Cymer, Inc. Gas management system for a laser-produced-plasma EUV light source
JP2010021543A (ja) * 2008-06-12 2010-01-28 Komatsu Ltd 極端紫外光源装置
US20100025600A1 (en) * 2008-07-31 2010-02-04 Cymer, Inc. Systems and methods for heating an EUV collector mirror

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017137A (ko) * 2018-08-08 2020-02-18 삼성전자주식회사 극자외선 생성 장치
KR102555241B1 (ko) 2018-08-08 2023-07-13 삼성전자주식회사 극자외선 생성 장치

Also Published As

Publication number Publication date
TW201143539A (en) 2011-12-01
TWI469692B (zh) 2015-01-11
WO2011126947A1 (en) 2011-10-13
KR20130022404A (ko) 2013-03-06
JP2013524531A (ja) 2013-06-17
US8368039B2 (en) 2013-02-05
US20110240890A1 (en) 2011-10-06
JP5593554B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
KR101747120B1 (ko) 극자외선 광원
JP5468143B2 (ja) 極紫外光源のための計測法
US8304752B2 (en) EUV light producing system and method utilizing an alignment laser
US8173985B2 (en) Beam transport system for extreme ultraviolet light source
US8017924B2 (en) Drive laser delivery systems for EUV light source
US7598509B2 (en) Laser produced plasma EUV light source
KR101726281B1 (ko) 레이저 산출 플라즈마 euv 광원에서의 타겟 재료 전달 보호를 위한 시스템 및 방법
JP5301165B2 (ja) レーザ生成プラズマeuv光源
KR20120005501A (ko) 뜨거운 벽과 차가운 콜렉터 미러를 가진 레이저 산출 플라즈마 극 자외선 챔버용 시스템, 방법 및 장치
JP7153753B2 (ja) 極端紫外光源用搬送システム

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant