KR101744137B1 - 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법 - Google Patents

경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법 Download PDF

Info

Publication number
KR101744137B1
KR101744137B1 KR1020170033142A KR20170033142A KR101744137B1 KR 101744137 B1 KR101744137 B1 KR 101744137B1 KR 1020170033142 A KR1020170033142 A KR 1020170033142A KR 20170033142 A KR20170033142 A KR 20170033142A KR 101744137 B1 KR101744137 B1 KR 101744137B1
Authority
KR
South Korea
Prior art keywords
microemulsion
angelica
omega
extract
weight
Prior art date
Application number
KR1020170033142A
Other languages
English (en)
Other versions
KR20170034361A (ko
Inventor
조현종
이정준
정재영
이송이
김대덕
이재영
박주환
강위수
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020170033142A priority Critical patent/KR101744137B1/ko
Publication of KR20170034361A publication Critical patent/KR20170034361A/ko
Application granted granted Critical
Publication of KR101744137B1 publication Critical patent/KR101744137B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/23Apiaceae or Umbelliferae (Carrot family), e.g. dill, chervil, coriander or cumin
    • A61K36/232Angelica
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • A61K36/488Pueraria (kudzu)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물 및 이의 제조방법을 제공한다.
본 발명의 생약 추출물 및 오메가-3 불포화 지방산을 포함하는 마이크로에멀젼 조성물은 난용성 유효성분을 함유하는 생약 추출물의 경구 흡수를 효과적으로 개선하는 효과를 달성하여 경구 투여 전달 시스템으로 유용하게 사용될 수 있다.

Description

경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법{Microemulsion composition of natural product extract with enhanced oral absorption and process for the preparation thereof}
본 발명은 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물 및 이의 제조방법에 관한 것이다.
당귀(Angelica gigas)는 중국, 일본 및 한국 등 동북 아시아에서 재배되는 2년생 또는 다년생 식물이다. 참당귀(Angelica gigas Nakai, AGN)는 한국에서 재배되어 왔으며, 참당귀의 건조된 뿌리는 한약재로 사용되고 있다. 참당귀의 뿌리, 줄기 및 잎에 함유된 화합물로는 피라노쿠마린(pyranocoumarin), 단순 쿠마린(simple coumarin), 퓨로쿠마린(furocoumarin), 프탈라이드(phthalide), 휘발성 화합물(volatile compounds), 폴리아세틸렌(polyacetylene), 플라보노이드(flavonoid), 유기산(organic acid), 폴리사카라이드(polysaccharide) 및 페놀성분(phenolics) 등이 있다(Zhang et al., 2012). 이들 중, 피라노쿠마린은 당귀의 알코올 추출물의 주요 성분이고, 데커신(decursin, D), 데커시놀 안젤레이트(decursinol angelate, DA), 및 데커시놀(decursinol, DOH)은 당귀 추출물에 풍부한 쿠마린 성분이다. 이러한 주요 성분은 진통, 항암, 항염증, 항-비만, 항-당뇨 및 인지능 강화 효과와 같은 다양한 약물학적 효능이 있음이 알려진 바 있다(Hwang et al., 2012; Kang et al., 2003; Seo et al., 2009; Shin et al., 2009; Yim et al., 2005; Zhang et al., 2012). 그러나, 이러한 주요 성분은 물에 대한 용해도가 매우 낮아, 식이적으로 또는 의약으로 사용에 한계가 있었다(Mahat et al., 2012; Piao et al., 2015).
한편, 천연물에 함유되어 있는 약학적 활성 성분의 용해도 및 생체이용률을 증가시키기 위한 다양한 제형 연구가 이루어지고 있다(Jeetha et al., 2014; Lee et al., 2014; Piao et al., 2015; Yoon et al., 2015). 이러한 천연물을 제형화하는 방법으로서, 나노-수준의 입자 크기를 갖는 콜로이드 분산 시스템이 응용될 수 있다. 그 중, 오일, 계면활성제 및 물에 기반한 가용화 시스템으로서, 투명하고, 열역학적으로 안정한 등방성 액체 혼합물인 마이크로에멀젼(microemulsion, ME)이 약물의 용해도 및 점막 흡수 개선을 위하여 사용되고 있다(Cho et al., 2012; Doh et al., 2013). 또한, 다수 약물의 전달을 위하여 오메가-3 불포화 지방산을 포함하는 에멀젼 시스템이 보고된 바 있다(Deshpande et al., 2013; Gulotta et al., 2014).
그러나, 현재까지 난용성 유효성분을 함유하는 생약 추출물에 대하여 경구 흡수를 효과적으로 개선시킨 마이크로에멀젼 시스템이 개발되지 않았으며, 경구 흡수율 개선과 동시에 장기간 동안 액적 상태의 형태를 유지하는 향상된 안정성을 갖는 마이크로에멀젼 시스템의 개발이 요구된다.
대한민국 공개특허공보 제2006-0120175호(2006.11.24.) 대한민국 공개특허공보 제2014-0043253호(2014.04.09.)
Bauer, I., Hughes, M., Rowsell, R., Cockerell, R., Pipingas, A., Crewther, S., Crewther, D., 2014. Omega-3 supplementation improves cognition and modifies brain activation in young adults. Hum. Psychopharmacol. 29, 133-144. Cederholm, T., Salem, N. Jr., Palmblad, J., 2013. ω-3 fatty acids in the prevention of cognitive decline in humans. Adv. Nutr. 4, 672-676. Cho, H.J., Ku, W.S., Termsarasab, U., Yoon, I., Chung, C.W., Moon, H.T., Kim, D.D., 2012. Development of udenafil-loaded microemulsions for intranasal delivery: In vitro and in vivo evaluations. Int. J. Pharm. 423, 153-160. Cho, J.Y., Chi, S.G., Chun, H.S., 2011. Oral administration of docosahexaenoic acid attenuates colitis induced by dextran sulfate sodium in mice. Mol. Nutr. Food Res. 55, 239-246. Deshpande, D., Janero, D.R., Amiji, M., 2013. Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17β-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. Nanomedicine 9, 885-894. Doh, H.J., Jung, Y., Balakrishnan, P., Cho, H.J., Kim, D.D., 2013. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids Surf. B Biointerfaces 101, 475-480. Gatri, N., Clement, V., Fanun, M., Leser, M.E., 2000. Some characteristics of sugar ester nonionic microemulsions in view of possible food applications. J. Agric. Food Chem. 48, 3945-3956. Gulotta, A., Saberi, A.H., Nicoli, M.C., McClements, D.J., 2014. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J. Agri. Food Chem. 62, 1720-1725. Guo, Y., Luo, J., Tan, S., Otieno, B.O., Zhang, Z., 2013. The applications of vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 49, 175-186. Hashimoto, M., Maekawa, M., Katakura, M., Hamazaki, K., Matsuoka, Y., 2014. Possibility of polyunsaturated fatty acids for the prevention and treatment of neuropsychiatric illnesses. J. Pharmacol. Sci. 124, 294-300. Hathout, R.M., Woodman, T.J., Mansour, S., Mortada, N.D., Geneidi, A.S., Guy, R.H., 2010. Microemulsion formulations for the transdermal delivery of testosterone. Eur. J. Pharm. Sci. 40, 188-196. Hwang, J.T., Kim, S.H., Hur, H.J., Kim, H.J., Park, J.H., Sung, M.J., Yang, H.J., Ryu, S.Y., Kim, Y.S., Cha, M.R., Kim, M.S., Kwon, D.Y., 2012. Decursin, an active compound isolated from Angelica gigas, inhibits fat accumulation, reduces adipocytokine secretion and improves glucose tolerance in mice fed a high-fat diet. Phytother. Res. 26, 633-638. Jeetah, R., Bhaw-Luximon, A., Jhurry, D., 2014. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. J. Biomed. Nanotechnol. 10, 1810-1840. Jiang, Y., Piao, J., Cho, H.J., Kang, W.S., Kim, H.Y., 2015. Improvement of antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells. Biosci. Biotechnol. Biochem. DOI: 10. 1080/09168451.2015.1046363. Jing, K., Wu, T., Lim, K., 2013. Omega-3 polyunsaturated fatty acids and cancer. Anticancer Agents Med. Chem. 13, 1162-1177. Jung, J.S., Yan, J.J., Song, D.K., 2008. Protective effect of decursinol on mouse models of sepsis: enhancement of interleukin-10. Korean J. Physiol. Pharmacol. 12, 79-81. Jung, M.H., Lee, S.H., Ahn, E.M., Lee, Y.M., 2009. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway. Carcinogenesis 30, 655-661. Kang, S.Y., Kim, Y.C., 2007. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity. J. Pharm. Pharmacol. 59, 863-870. Kang, S.Y., Lee, K.Y., Park, M.J., Kim, Y.C., Markelonis, G.J., Oh, T.H., Kim, Y.C., 2003. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiol. Learn. Mem. 79, 11-18. Klemens, C.M., Berman, D.R., Mozurkewich, E.L., 2011. The effect of perinatal omega-3 fatty acid supplementation on inflammatory markers and allergic diseases: a systematic review. BJOG 118, 916-925. Lawrence, M.J., Rees, G.D., 2000. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 45, 89-121. Lee, J.Y., Kang, W.S., Piao, J., Yoon, I.S., Kim, D.D., Cho, H.J., 2015. Soluplus®/TPGS -based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan. Drug Des. Devel. Ther. 9, 2745-2756. Lee, J.Y., Yang, H., Yoon, I.S., Kim, S.B., Ko, S.H., Shim, J.S., Sung, S.H., Cho, H.J., Kim, D.D., 2014. Nanocomplexes based on amphiphilic hyaluronic acid derivative and polyethylene glycol-lipid for ginsenoside rg3 delivery. J. Pharm. Sci. 103, 3254-3262. Li, L., Zhang, J., Xing, C., Kim, S.H., Lu, J., 2013. Single oral dose pharmacokinetics of decursin, decursinol angelate, and decursinol in rats. Planta Med. 79, 275-280. Mahat, B., Chae, J.W., Baek, I.H., Song, G.Y., Song, J.S., Cho, S.K., Kwon, K.I., 2012. Physicochemical characterization and toxicity of decursin and their derivatives from Angelica gigas. Biol. Pharm. Bull. 35, 1084-1090. Mori, T.A., 2014. Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors. Food Funct. 5, 2004-2019. Mozaffarian, D., Wu, J.H.Y., 2011. Omega-3 fatty acids and cardiovascular disease effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047-2067. Park, H.S., Kim, B., Oh, J.H., Kim, Y.C., Lee, Y.J., 2012. First-pass metabolism of decursin, a bioactive compound of Angelica gigas, in rats. Planta Med. 78, 909-913. Piao, J., Lee, J.Y., Weon, J.B., Ma, C.J., Ko, H.J., Kim, D.D., Kang, W.S., Cho, H.J., 2015. Angelica gigas Nakai and Soluplus-Based Solid Formulations Prepared by Hot-Melting Extrusion: Oral Absorption Enhancing and Memory Ameliorating Effects. PLoS One 10, e0124447. Seo, Y.J., Kwon, M.S., Park, S.H., Sim, Y.B., Choi, S.M., Huh, G.H., Lee, J.K., Suh, H.W., 2009. The analgesic effect of decursinol. Arch. Pharm. Res. 32, 937-943. Shah, L., Kulkarni, P., Ferris, C., Amiji, M.M., 2014. Analgesic efficacy and safety of DALDA peptide analog delivery to the brain using oil-in-water nanoemulsion formulation. Pharm. Res. 31, 2724-2734. Shin, S., Jeon, J.H., Park, D., Jang, J.Y., Joo, S.S., Hwang, B.Y., Choe, S.Y., Kim, Y.B., 2009. Anti-inflammatory effects of an ethanol extract of Angelica gigas in a Carrageenan-air pouch inflammation model. Exp. Anim. 58, 431-436. Song, J.S., Chae, J.W., Lee, K.R., Lee, B.H., Choi, E.J., Ahn, S.H., Kwon, K.I., Bae, M.A., 2011. Pharmacokinetic characterization of decursinol derived from Angelica gigas Nakai in rats. Xenobiotica 41, 895-902. Varma, M.V., Panchagnula, R., 2005. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur. J. Pharm. Sci. 25, 445-453. Walker, R., Decker, E.A., McClements, D.J., 2015. Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct. 6, 42-55. Yan, J.J., Kim, D.H., Moon, Y.S., Jung, J.S., Ahn, E.M., Baek, N.I., Song, D.K., 2004. Protection against beta-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 25-30. Yates, C.M., Calder, P.C., Ed Rainger, G., 2014. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol. Ther. 141, 272-282. Yim, D., Singh, R.P., Agarwal, C., Lee, S., Chi, H., Agarwal, R., 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65, 1035-1044. Yoon, I.S., Park, J.H., Kang, H.J., Choe, J.H., Goh, M.S., Kim, D.D., Cho, H.J., 2015. Poly(d,l-lactic acid)-glycerol-based nanoparticles for curcumin delivery. Int. J. Pharm. 488, 70-77. Zhang, J., Li, L., Jiang, C., Xing, C., Kim, S.H., Lu, J., 2012. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem. 12, 1239-1254.
본 발명자들은 경구 흡수율 개선과 동시에 향상된 안정성을 갖는 마이크로에멀젼 시스템에 대하여 연구하던 중, 오메가-3 불포화 지방산 피쉬 오일-기반의 콜로이드 시스템, 즉, 오메가-3 불포화 지방산을 포함하는 마이크로에멀젼 시스템이 실온에서 10일 동안 안정성을 유지하며, 위장관액 유사 환경에서 생약 추출물에 포함된 유효성분의 방출을 증가시키며, 난용성 유효성분의 위장관 흡수를 효과적으로 개선시키는 효과를 나타낸다는 것을 발견하였다.
따라서, 본 발명은 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물을 제공하는 것을 목적으로 한다.
본 발명의 일 태양에 따라, 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물이 제공된다.
일 구현예에서, 상기 마이크로에멀젼 조성물에 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트(D-α-Tocopherol polyethylene glycol 1000 succinate, TPGS)가 추가로 포함될 수 있으며, 마이크로에멀젼 조성물 총량에 대하여 0.005 ∼ 2 %(w/v)로 포함될 수 있다.
일 구현예에서, 상기 생약은 참당귀, 일당귀 및 중국당귀로 이루어진 군으로부터 선택되는 1종 이상의 당귀; 갈근; 강황; 대황; 오미자; 인삼; 진피; 및 황금으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 또한, 상기 생약 추출물은 열수; 메탄올, 에탄올, 이소프로판올 및 부탄올로 이루어진 알코올; 에테르; 에틸아세테이트; 아세톤; 및 메틸렌 클로라이드 군으로부터 선택되는 1종 이상의 용매로 추출되거나, 고주파추출법, 압출용융법, 및 초임계추출법으로 이루어진 군으로부터 선택되는 1종 이상의 추출법으로 추출될 수 있으며, 마이크로에멀젼 조성물 총량에 대하여 0.01 ∼ 5 %(w/v)로 포함될 수 있다.
일 구현예에서, 상기 오메가-3 불포화 지방산은 α-리놀렌산, 에이코사펜타엔산 및 도코사헥사엔산으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 상기 계면활성제는 카프릴로카프로일 마크로골-8 글리세리드, 카프릴로카프로일 폴리옥실-8 글리세리드 및 이들의 조합물로 이루어진 군으로부터 선택되는 1종일 수 있다.
일 구현예에서, 상기 마이크로에멀젼은 마이크로에멀젼 총 중량에 대하여 오메가-3 불포화 지방산 1 ∼ 25 중량%, 계면활성제 25 ∼ 80 중량% 및 물 5 ∼ 70 중량%를 포함할 수 있다.
또한, 본 발명의 일 태양에 따라, (a) 오메가-3 불포화 지방산 및 계면활성제를 혼합하여 혼합물을 제조하는 단계; (b) 단계(a)에서 제조된 혼합물에 물을 첨가하여 마이크로에멀젼을 제조하는 단계; 및 (c) 단계(b)에서 제조된 마이크로에멀젼에 생약 추출물을 용해시키는 단계를 포함하는 마이크로에멀젼 조성물의 제조방법이 제공된다.
일 구현예에서, 단계(c)에서 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트가 추가로 혼합될 수 있다.
본 발명에 의해, 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물이, 액적 크기 205-277 nm의 구상 형태이며, 실온에서 10일 동안 액적의 평균 지름의 변화가 없어 안정성을 유지하는 것으로 확인되었으며, pH 1.2 및 6.8 조건 모두에서 마이크로에멀젼 제형으로부터 당귀의 주요 성분인 데커신(D) 및 데커시놀 안젤레이트(DA)의 방출을 당귀 추출물 현탁액 군보다 현저히 상승시키는 것이 밝혀졌다. 또한, 본 발명의 마이크로에멀젼 조성물, 특히, TPGS-포함 마이크로에멀젼 조성물이 난용성 유효성분을 함유하는 생약 추출물의 위장관 흡수를 효과적으로 개선시킴으로써, 난용성 유효성분을 함유하는 생약 추출물의 경구 투여를 위한 유용한 전달 시스템이 될 수 있다는 것이 밝혀졌다.
따라서, 본 발명의 생약 추출물; 및 오메가-3 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물은 난용성 유효성분을 함유하는 생약 추출물의 경구 흡수를 효과적으로 개선하는 효과를 달성하여 경구 투여 전달 시스템으로 유용하게 사용될 수 있다.
도 1은 오일(오메가-3 불포화 지방산), S(계면활성제, 라브라솔) 및 DW(물)에 기반한 마이크로에멀젼 시스템의 유사 3상 다이어그램으로서, 균일하고 투명한 영역을 나타내는 마이크로에멀젼 영역(ME Region)이 표시되어 있다.
도 2는 약물 비함유 마이크로에멀젼(Blank F1 및 Blank F2), 당귀 추출물-함유 마이크로에멀젼(F1 및 F2), 및 DW 중 당귀 추출물 현탁액(AGN suspension)의 현미경 사진(A); 및 당귀 추출물-함유 마이크로에멀젼(F1 및 F2)의 TEM 사진(B)이다(기준자의 길이는 0.5 μm임).
도 3은 배양 시간에 따른 당귀 추출물-함유 마이크로에멀젼 시스템(F1 및 F2)의 시험관내 안정성을 나타내는 그래프이다(마이크로에멀젼 제형의 평균 지름은 배양 5일 및 10일 후에 측정하였고, 데이터는 평균 ± SD(n = 3)로 나타냄).
도 4는 pH 1.2 조건에서 당귀 에탄올 추출물의 현탁액(AGN 에탄올 추출물) 및 당귀 추출물-함유 마이크로에멀젼(F1 및 F2)로부터 방출되는 D(A) 및 DA(B); 및 pH 6.8 조건에서 방출되는 D(C) 및 DA(D)를 나타낸 그래프이다(데이터는 평균 ± SD(n = 3)로 나타냄, 당귀 에탄올 추출물 군에 비하여 *P < 0.05).
도 5는 당귀 에탄올 추출물의 현탁액(AGN 에탄올 추출물) 및 당귀 추출물-함유 마이크로에멀젼(F1 및 F2)을 랫트에 경구 투여한 후에 혈장 중 DOH 농도의 양상을 측정한 생체내 약물동태 평가 결과이다(데이터는 평균 ± SD(n = 4)로 나타냄).
본 발명은 생약 추출물; 및 오메가-3 불포화 지방산, 계면활성제 및 물을 포함하는 마이크로에멀젼을 포함하는 마이크로에멀젼 조성물을 제공한다.
본 발명의 마이크로에멀젼 조성물에 있어서, 투과촉진제로서 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트가 추가로 포함될 수 있다.
D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트(D-α-Tocopherol polyethylene glycol 1000 succinate, TPGS)는 α-[4-[[(2R)-3,4-디히드로-2,5,7,8-테트라메틸-2-[(4R,8R)-4,8,12-트리메틸트리데실]-2H-1-벤조피란-6-일]옥시]-1,4-디옥소부틸]-ω-히드록시-폴리(옥시-1,2-에탄디일)(α-[4-[[(2R)-3,4-dihydro-2,5,7,8-tetramethyl-2-[(4R,8R)-4,8,12-trimethyltridecyl]-2H-1-benzopyran-6-yl]oxy]-1,4-dioxobutyl]-ω-hydroxy-poly(oxy-1,2-ethanediyl), C33O5H54(CH2CH2O)n)로서, 효소 분해를 거쳐 친유성 항산화제인 α-토코페롤(비타민 E)을 세포막에 전달하는 합성 양친매성 물질이며, 수용성 비타민 E 영양 보충제 및 약물 전달 매체로서 FDA 승인된 물질이다. 본 발명의 마이크로에멀젼 조성물은 D 및 DA의 장관 흡수 개선을 목적으로 마이크로에멀젼 시스템에 TPGS를 추가로 포함하여 제조될 수 있다.
본 발명의 마이크로에멀젼 조성물에 있어서, 상기 TPGS는 마이크로에멀젼 조성물 총량에 대하여 0.005 ∼ 2 %(w/v)로 포함될 수 있으며, 바람직하게는 0.05 ∼ 1 %(w/v), 더욱 바람직하게는 0.1 ∼ 0.5 %(w/v), 가장 바람직하게는 0.3 ∼ 0.5 %(w/v)로 포함될 수 있다.
본 발명의 마이크로에멀젼 조성물은 수-난용성 성분을 주요 성분으로 함유하는 생약의 추출물을 가용화시켜, 생약 추출물에 포함되어 있는 유효성분의 위장관 흡수율을 증가시키고자 개발된 것으로서, 상기 생약은 참당귀, 일당귀 및 중국당귀로 이루어진 군으로부터 선택되는 1종 이상의 당귀; 갈근; 강황; 대황; 오미자; 인삼; 진피; 및 황금으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 포함되는 생약 추출물의 제조에 사용되는 유기 용매는 통상적으로 생약에 포함되어 있는 수-난용성 성분을 추출하는 유기 용매라면 특별히 제한되는 것은 아니나, 바람직하게는 메탄올, 에탄올, 이소프로판올 및 부탄올로 이루어진 알코올; 에테르; 에틸아세테이트; 아세톤; 및 메틸렌 클로라이드 군으로부터 선택되는 1종 이상의 유기 용매이다. 또한, 열수에 의하여 추출하거나, 고주파추출법, 압출용융법, 및 초임계추출법으로 이루어진 군으로부터 선택되는 1종 이상의 추출법으로 추출할 수 있다.
구체적으로, 생약(예를 들어, 당귀)을 오븐 등에서 건조시킨 후 상온에서 냉각시켜, 유기 용매(예를 들어, 에탄올)에 침지하고 특정 조건(예를 들어, 80 ℃에서 2시간 동안)에서 가열하여 생약으로부터 활성 성분을 추출한 다음, 건조시켜 생약 추출물을 얻을 수 있다.
상기 생약 추출물은 마이크로에멀젼 조성물 총량에 대하여 0.01 ∼ 5 %(w/v)로 포함될 수 있으며, 바람직하게는 0.1 ∼ 2.5 %(w/v), 더욱 바람직하게는 0.2 ∼ 2 %(w/v), 가장 바람직하게는 0.5 ∼ 1.5 %(w/v)로 포함될 수 있다.
본 발명에 포함되는 오메가-3 불포화 지방산은 α-리놀렌산, 에이코사펜타엔산 및 도코사헥사엔산으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
오메가-3 불포화 지방산(ω-3 unsaturated fatty acid)은 탄소 사슬의 말단으로부터 3번째 위치에 이중 결합을 갖는 다중불포화지방산(polyunsaturated fatty acids, PUFAs)을 의미한다. 인체 생리와 관련된 오메가-3 불포화 지방산 유형은 α-리놀렌산(α-linolenic acid, ALA, 식물유에서 검출, 18:3), 에이코사펜타엔산(eicosapentaenoic acid, EPA, 피쉬 오일에서 검출, 20:5), 및 도코사헥사엔산(docosahexaenoic acid, DHA, 피쉬 오일에서 검출, 22:6)이 있다. 오메가-3 불포화 지방산 피쉬 오일에 포함되는 EPA 및 DHA는 아토피 질환, 암, 심혈관계 질환, 인지능력 저하, 우울증 및 염증에 효과가 있는 것으로 알려져 있다(Cederholm et al., 2013; Hashimoto et al., 2014; Jing et al., 2013; Klemens et al., 2011; Mori, 2014; Yates et al., 2014). 본 발명에 포함되는 당귀 에탄올 추출물 및 오메가-3 불포화 지방산 모두 공통적으로 인지능 강화 효과가 있는 것으로 보고되어(Cederholm et al., 2013; Kang et al., 2003), 생약 추출물로서 당귀 에탄올 추출물을 포함하고, 마이크로에멀젼 시스템의 구성 성분으로서 오메가-3 불포화 지방산을 포함하는 본 발명의 마이크로에멀젼 조성물은 인지능 강화를 목적으로 하는 식이 보충 성분 및 의약품으로 유용하게 사용될 수 있다.
본 발명에 포함되는 계면활성제는 카프릴로카프로일 마크로골-8 글리세리드(caprylocaproyl macrogol-8 glyceride) 및/또는 카프릴로카프로일 폴리옥실-8 글리세리드(caprylocaproyl polyoxyl-8 glyceride)일 수 있으며, 상업적으로 판매되는 카프릴로카프로일 마크로골-8 글리세리드 및/또는 카프릴로카프로일 폴리옥실-8 글리세리드 계면활성제인 라브라솔(Labrasol)을 사용할 수도 있다. 본 발명의 실시예에서 사용한 라브라솔은 모노-, 디- 및 트리-글리세리드 및 폴리에틸렌 글리콜의 모노 및 디-지방산 에스테르의 혼합물로서, 양친매성 성질을 가지며 물에서 분산가능한 비-이온성 계면활성제 및 유성 액체이며, 가용화제, 난용성 약물의 흡수 강화제 및 계면활성제로 사용된다. 폴리에틸렌 글리콜(PEG) 에스테르, 소규모 글리세리드 부분, 및 비결합 PEG로 구성되어 있으며, HLB 값 12-14이다.
본 발명의 마이크로에멀젼 조성물에 있어서, 마이크로에멀젼은 마이크로에멀젼 총 중량에 대하여 오메가-3 불포화 지방산 1 ∼ 25 중량%, 계면활성제 25 ∼ 80 중량% 및 물 5 ∼ 70 중량%를 포함할 수 있으며; 바람직하게는 오메가-3 불포화 지방산 3 ∼ 15 중량%, 계면활성제 35 ∼ 65 중량% 및 물 20 ∼ 60 중량%; 더욱 바람직하게는 오메가-3 불포화 지방산 5 ∼ 12 중량%, 계면활성제 45 ∼ 55 중량% 및 물 35 ∼ 45 중량%; 가장 바람직하게는 오메가-3 불포화 지방산 8 ∼ 9 중량%, 계면활성제 52 ∼ 53 중량% 및 물 39 ∼ 40 중량%로 포함될 수 있다.
상기 마이크로에멀젼의 조성은 마이크로에멀젼 시스템의 조성을 결정하는 통상의 방법(예를 들어, 수적정법(water titration method))에 따라 작성된 유사 3상 다이어그램에 의해 결정될 수 있다. 구체적으로, 오일 상(예를 들어, 오메가-3 불포화 지방산) 및 계면활성제(예를 들어, 라브라솔)를 특정 비율(예를 들어, 1:9 내지 9:1) 범위의 상이한 중량 비율로 완전히 혼합한 후, 물을 각 비율의 오일 및 계면활성제 혼합물에 첨가하면서 투명함 및 불투명함 간의 색 변화를 관측하여 투명함 및 불투명함의 영역에 해당하는 점을 표시함으로써 유사 3상 다이어그램을 작성할 수 있다. 작성된 유사 3상 다이어그램에서 마이크로에멀젼 영역(단일상 영역)을 결정하여 이 영역에 포함되는 조성 중 특정 조성을 선택하여 생약 추출물을 용해시키는 마이크로에멀젼 시스템의 조성으로 결정할 수 있다.
또한, 본 발명은 (a) 오메가-3 불포화 지방산 및 계면활성제를 혼합하여 혼합물을 제조하는 단계; (b) 단계(a)에서 제조된 혼합물에 물을 첨가하여 마이크로에멀젼을 제조하는 단계; 및 (c) 단계(b)에서 제조된 마이크로에멀젼에 생약 추출물을 용해시키는 단계를 포함하는 마이크로에멀젼 조성물의 제조방법을 제공한다.
일 구현예에서, 단계(c)에서 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트가 추가로 혼합될 수 있다.
단계(a)는 오일상인 오메가-3 불포화 지방산과 계면활성제를 혼합하여 투명한 용액을 형성하는 단계이다.
단계(b)는 단계(a)에서 제조된 투명한 용액에 상기 유사 3상 다이어그램의 마이크로에멀젼 영역으로부터 결정된 양의 물을 첨가하여, 생약 추출물이 포함되지 않은 마이크로에멀젼 시스템을 제조하는 단계이다.
단계(c)는 단계(b)에서 제조된 마이크로에멀젼 시스템에 생약 추출물을 용해시켜, 생약 추출물이 포함된 최종적인 마이크로에멀젼 조성물을 제조하는 단계이다.
본 발명의 마이크로에멀젼 조성물과 생약 추출물 현탁액에 대하여 현미경 사진을 찍어 비교한 결과, 생약 추출물 현탁액은 당귀 에탄올 추출물이 물에 완전히 용해되지 않아서 침전물을 형성한 반면에, 본 발명의 마이크로에멀젼 조성물은 완전히 용해되어 투명한 용액 상태의 마이크로에멀젼 제형(F1 및 F2)을 형성하였다(도 2(A) 참조). 또한, 본 발명의 마이크로에멀젼 조성물을 투과전자현미경으로 관측한 결과, 액적이 구상 형태임을 확인하였으며(도 2(B) 참조), 약물 비함유시의 마이크로에멀젼의 평균 지름은 112-132 nm, 생약 추출물이 용해된 마이크로에멀젼 조성물의 평균 지름은 205-277 nm로 측정되어 나노-크기의 액적을 형성하였으며, 다분산성 지수를 측정한 결과, 좁은 범위의 크기 분포를 나타낸다는 것을 확인하였다(표 2 참조).
또한, 본 발명의 마이크로에멀젼 조성물은 실온에서 10일 동안 액적의 평균 지름의 변화가 없어 안정성을 유지하는 것으로 확인되었으며(도 3 참조), 위장관 유사 시험액(pH 1.2 및 6.8 완충액)에서 마이크로에멀젼 제형(F1 및 F2)으로부터 방출된 D 및 DA의 방출량이 당귀 에탄올 추출물(현탁액) 군에서보다 현저히 높게 나타났다(도 4 참조).
또한, 본 발명의 마이크로에멀젼 조성물의 제형을 경구 투여한 후 DOH(당귀의 유효 성분인 D 및 DA의 주요 대사체)의 약물동태 특성을 평가한 결과, 본 발명의 마이크로에멀젼 조성물(F1), 특히, TPGS-포함 마이크로에멀젼 조성물(F2) 군이 당귀 에탄올 추출물(현탁액) 군보다 AUC 값 및 Cmax 값이 증가되어 난용성 유효성분인 D 및 DA를 함유하는 당귀 추출물의 위장관 흡수를 효과적으로 개선시킨다는 것을 확인하였다(도 5 및 표 3 참조).
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<실시예>
1. 재료 및 통계처리
참당귀(Angelica gigas Nakai, AGN)는 평창(대한민국)의 지역 시장에서 구입하였다. 어류-유래 도코사헥사엔산(DHA) 및 에이코사펜타엔산(EPA) 오메가-3 불포화 지방산은 ONC사(Ocean Nutrition Canada Ltd., Dartmouth, Nova Scotia, Canada)로부터 구입하였다. 폴리에틸렌 글리콜(PEG)-8 카프릴릭/카프릭 글리세리드(polyethylene glycol(PEG)-8 caprylic/capric glyceride, Labrasol®)는 가테포세사(Gattefosse, Cedex, France)로부터 제공받았다. D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트(D-α-Tocopherol polyethylene glycol 1000 succinate, TPGS)는 시그마-알드리치사(Sigma-Aldrich Co., St. Louis, MO, USA)로부터 구입하였다. 데커신(D), 데커시놀 안젤레이트(DA), 및 데커시놀(DOH)의 표준품은 한국한방산업진흥원(Korea Promotion Institute for Traditional Medicine Industry, Gyeongsan, Korea)으로부터 제공받았다. 사용된 모든 용매는 HPLC 등급이었고, 그외 다른 화합물은 분석 등급으로서 정제없이 사용하였다.
모든 실험은 최소 3회 수행하였고, 데이터는 평균±표준편차(SD) 값으로 나타냈다. 통계학적 분석은 양측 검정(two-tailed t-test) 및 분산 분석(analysis of variance, ANOVA)으로 수행하였다.
2. 당귀 에탄올 추출물의 제조
당귀(AGN)를 55 ℃ 오븐에서 24시간 건조시킨 후 상온에서 냉각시켰다. 건조된 당귀를 에탄올(EtOH)에 침지하고 80 ℃에서 2시간 동안 가열하여 당귀로부터 활성 성분을 추출한 다음, 건조시켜 EtOH를 완전히 제거하여 건조된 당귀 에탄올 추출물을 얻었다.
당귀 에탄올 추출물의 주요 성분(D, DA, 및 DOH) 함량을 측정한 결과, 각각 61.00 ± 12.63 mg/g, 49.30 ± 12.13 mg/g, 및 2.19 ± 0.04 mg/g로 측정되어 선행문헌(Piao et al., 2015)과 유사하였다. D 및 DA의 증류수에서의 용해도는 각각 1.68 ± 0.23 mg/g 및 1.50 ± 0.20 mg/g(당귀 에탄올 추출물의 중량 당 각 성분의 양)으로 선행문헌(Piao et al., 2015)과 유사하였다. 당귀 에탄올 추출물 유래 D 및 DA의 오메가-3 불포화 지방산에서의 용해도는 각각 55.74 ± 2.08 mg/g 및 42.34 ± 1.65 mg/g로서, DW에서와 비교하여 33.18배 및 28.23배 높았다.
당귀 에탄올 추출물 유래 D 및 DA의 라브라솔에서의 용해도는 각각 49.13 ± 4.50 mg/g 및 37.49 ± 3.56 mg/g으로서, DW에서와 비교하여 29.24배 및 24.99배 높았다. 이러한 라브라솔에서의 D 및 DA의 용해도 상승 효과는 당귀의 유효성분 전달을 위한 o/w 마이크로에멀젼 시스템에 유용하게 사용되었다.
3. 유사 3상 다이어그램의 작성
하기와 같이 수적정법(water titration method)을 이용하여 유사 3상 다이어그램을 작성하고, 이에 따라 오메가-3 불포화 지방산(오일), 라브라솔(계면활성제) 및 물에 기반한 수-중-유(o/w) 마이크로에멀젼 시스템의 조성을 결정하였다.
우선, 오일 상(오메가-3 불포화 지방산) 및 계면활성제(라브라솔)를 1:9 내지 9:1 범위의 상이한 중량 비율로 완전히 혼합하였다. 증류수(DW)를 각 비율의 오일 및 계면활성제 혼합물에 서서히 첨가하면서 투명함 및 불투명함 간의 색 변화를 관측하였다. 선행문헌에 기재된 바에 따라(Gatri et al., 2000; Hathout et al., 2010), 투명함 및 불투명함의 영역에 해당하는 점을 표시함으로써 유사 3상 다이어그램을 작성하였다. 작성된 유사 3상 다이어그램에서 마이크로에멀젼 영역(단일상 영역)을 결정하였고, 그 결과를 도 1에 나타내었다(오메가-3 불포화 지방산 및 라브라솔을 각각 오일 및 S로 표시함).
도 1의 유사 3상 다이어그램에 표시된 마이크로에멀젼 영역 중에서, 1개 조성(오일: 8.7%; S: 52.2%; DW: 39.1%, w/w)을 선택하여, 생약 추출물을 가용화할 마이크로에멀젼 시스템의 조성으로 결정하였다. 마이크로에멀젼 제형의 제조시에 오메가-3 불포화 지방산의 약리학적 효능(인지능 강화)을 개선하기 위하여 오메가-3 불포화 지방산을 높은 비율로 사용하고, 라브라솔의 독성을 감소시키기 위하여 라브라솔 비율을 감소시켰다.
4. 당귀 추출물-함유 마이크로에멀젼의 제조
제조된 당귀 에탄올 추출물을 포함하는 경구용 마이크로에멀젼 제형을 하기와 같이 제조하였다.
상기에서 선택된 조성의 오메가-3 불포화 지방산, 라브라솔 및 물에 기반한 마이크로에멀젼 시스템을 약물이 포함되지 않은 약물 비함유 마이크로에멀젼(Blank F1 및 Blank F2)으로 하였다. 이 시스템에 당귀 에탄올 추출물을 10 mg/ml 농도로 완전히 가용화시킨 제형을 F1 제형으로 하고, F1 제형에 TPGS를 5 mg/ml 농도로 용해시킨 제형을 F2 제형으로 하였다. F1 제형 및 F2 제형의 조성을 하기 표 1에 나타내었다.
조성(%) F1 F2
라브라솔(w/w) 52.2 52.2
DW(w/w) 39.1 39.1
오메가-3 불포화 지방산(w/w) 8.7 8.7
TPGS(mg/ml) - 5
당귀 에탄올 추출물(mg/ml) 10 10
5. 제조된 당귀 추출물-함유 마이크로에멀젼의 물리화학적 특성 규명
제조된 마이크로에멀젼 시스템의 특성을 평가하기 위하여, 약물 비함유 마이크로에멀젼(Blank F1 및 Blank F2), 약물 함유 F1 제형 및 F2 제형, 및 DW 중 당귀 추출물 현탁액에 대하여 하기의 시험을 수행하였다.
약물 비함유 마이크로에멀젼(Blank F1 및 Blank F2), 약물 함유 F1 제형 및 F2 제형, 및 DW 중 당귀 추출물 현탁액의 현미경 사진을 도 2(A)에 나타내었다. 도 2(A)에 나타난 바와 같이, 당귀 에탄올 추출물은 10 mg/ml 농도에서 DW에 완전히 용해되지 않아서, 당귀 추출물 현탁액 군 사진(AGN suspension)에 나타난 바와 같이 시험용기 아랫부분에 침전을 형성하는 것이 관찰되었다. 반면에, 마이크로에멀젼 시스템에서는 당귀 에탄올 추출물이 완전히 용해되어 제형 전체적으로 투명한 용액의 마이크로에멀젼 제형(F1 및 F2)을 형성하였다.
또한, 하기와 같이 투과전자현미경(transmission electron microscope, TEM)을 이용하여 당귀 에탄올 추출물을 포함하는 마이크로에멀젼(F1 및 F2)의 형태를 관찰하였다. 즉, 마이크로에멀젼 제형의 일정량을 필름 구리 그리드(copper grid)에 올려 놓고, 2%(w/v) 포스포텅스텐산(phosphotungstic acid) 용액으로 염색한 후, 증류수로 세척하고, 공기 흐름에서 20분간 건조시켰다. TEM(JEM 1010; JEOL, Tokyo, Japan)을 이용하여 건조된 시료를 관찰하여, 그 결과를 도 2(B)에 나타내었다. 도 2B에 나타난 바와 같이, 마이크로에멀젼 액적은 구상 형태임을 확인하였다.
또한, 약물 비함유 마이크로에멀젼 및 당귀 추출물-함유 마이크로에멀젼(F1 및 F2) 제형의 입자 크기, 다분산성 지수 및 제타 전위를 제조사(ELS; ELS-Z1000; Otsuka Electronics, Tokyo, Japan)의 프로토콜에 따라 전기영동 광산란법(electrophoretic light scattering method, ELS)에 따라 측정하여, 그 결과를 하기 표 2에 나타내었다.
제형
평균 지름
(nm)
다분산성 지수 제타 전위
(mV)
F1
약물 비함유
마이크로에멀젼
131.5 ± 14.4 0.22 ± 0.01 -0.41 ± 0.13
당귀 추출물-함유 마이크로에멀젼 205.1 ± 50.2 0.17 ± 0.05 0.33 ± 0.11
F2
약물 비함유
마이크로에멀젼
112.1 ± 24.5 0.25 ± 0.09 -0.13 ± 0.10
당귀 추출물-함유 마이크로에멀젼 276.7 ± 26.5 0.22 ± 0.02 0.04 ± 0.25
데이터는 평균±표준편차(SD)로나타냄(n≥3).
표 2에 나타난 바와 같이, 약물 비함유 F1 및 F2 시스템의 평균 지름은 112-132 nm였다. 약물 비함유 마이크로에멀젼 제형에 당귀 에탄올 추출물을 가용화시킨 후(10 mg/ml)에는 평균 지름이 205-277 nm로 증가하였다. 결론적으로, F1 및 F2 제형은 나노-크기의 액적 및 좁은 범위의 크기 분포를 나타낸다는 것을 확인하였다.
6. 배양 기간-의존적 안정성의 평가
제조된 마이크로에멀젼 시스템을 실온에서 5일 및 10일 동안 배양한 후 액적의 평균 지름을 측정함으로써, 제조된 마이크로에멀젼 시스템의 안정성에 미치는 배양 기간의 영향을 평가하여, 그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, F1 및 F2 제형은 2개 제형 간에 유의성 있는 차이는 없었고(P > 0.05), 10일까지 실온에서 안정성을 유지하는 것을 확인하였다.
7. 시험관내 방출 시험
0.1%(w/v) 트윈 80을 포함하는 pH 1.2 및 6.8 완충액에서 마이크로에멀젼 제형으로부터의 D 및 DA의 방출 양상을 하기와 같이 평가하였다.
먼저, DW(0.1 ml)에 현탁된 당귀 에탄올 추출물(1 mg), 또는 당귀 추출물-함유 마이크로에멀젼 제형(0.1 ml)을 투석 튜브(mini GeBA-flex dialysis tube, 14 kDa molecular weight cut-off; Gene Bio-Application Ltd., Kfar Hanagide, Israel)에 로딩하였다. 시료가 포함된 투석 튜브를 0.1%(w/v) 트윈 80 포함 pH 1.2 및 pH 6.8 완충액(30 ml)에 넣고 교반 속도 100 rpm으로 37 ℃ 진탕조에서 배양하였다. 정해진 시간(30, 120, 및 240 분)에 일정량(0.5 ml)의 방출 시험액을 채취하고, 동일한 부피의 새로운 시험액을 보충하였다.
방출된 D 및 DA를 공지된 방법(Jiang et al., 2015; Piao et al., 2015)을 변형하여 액체 크로마토그래피-탠덤 질량 분석 시스템(liquid chromatography-tandem mass system, LC-MS/MS)으로 정량분석하였다. 당귀 에탄올 추출물의 D 및 DA 함량을 측정하기 위하여, 메탄올(2.5 μg/ml)에 용해된 당귀 에탄올 추출물의 일정량(2 μl) 또는 채취된 일정량(2 μl)의 방출 시험액을, HPLC 시스템(Agilent Technologies 1260 Infinity HPLC system, Agilent Technologies, Wilmington, DE, USA) 및 LC/MS 시스템(Agilent Technologies 6430 Triple Quad LC/MS system)이 장착된 LC-MS/MS 시스템에 주입하였다. 컬럼(Kinetex 2.6 μ C18 100A column, 100 × 4.6 mm; Phenomenex, Torrance, CA, USA) 및 전컬럼(C18 guard column, 4 × 2.0 mm; Phenomenex)을 사용하여 D 및 DA의 피크 분리를 수행하였다. 이동상은 아세토니트릴(A) 및 0.2% 포름산 수용액(B)을 혼합하여 제조하였고, 유속 0.5 ml/분으로 유지하였다. 용리 구배 프로그램은 (1) 0-1분 A:B = 20:80(v/v), (2) 1-45 분 A:B = 20:80 에서 70:30, (3) 45-50 분 A:B = 70:30, (4) 50-51 분 A:B = 70:30 에서 20:80, 및 (5) 51-60 분 A:B = 20:80로 수행하였다. ESI 소스(source)는 각각 300 ℃ 가스 온도, 11 L/분 가스 유속, 15 psi 네뷸라이져 압력, 및 4000 V 캐필러리 전압으로 최적화 설정하였다. D 및 DA의 단편화 전이는 m/z 329.2 에서 229.1로서 일치하였다. 단편화 전압 및 충돌 에너지는 각각 130 V 및 18 eV로 설정하였다. 상기 분석 조건에서 D 및 DA의 머무름 시간은 34.3분 및 34.7분이었다. 데이터 처리는 해당 프로그램(MassHunter Workstation Software Quantitative Analysis, Version B.05.00; Agilent Technologies)으로 수행하였다. D 및 DA 농도 범위 5-1,000 ng/ml에서 직선성이 나타났고, D 및 DA의 정밀성(Precision) 및 정확성(accuracy)이 허용 범위 내였다.
각각 위액 및 장액을 모사한 pH 1.2 및 6.8 완충액에서의 각 제형으로부터의 D 및 DA 방출량을 평가한 결과를 도 4에 나타내었으며, 각 제형으로부터 방출되는 2개 주요 성분인 D 및 DA를 배양 후 4시간까지 측정하였다. pH 1.2 및 6.8 완충액에서 당귀 에탄올 추출물로부터 D 및 DA의 용해도 값은 1.5 mg/g(당귀 에탄올 추출물의 중량 당 각 성분의 양)보다 낮았다. 2시간 배양 후의 pH 1.2 및 pH 6.8 완충액에서의 D 및 DA의 추출 효율(< 5%)(배지 및 당귀 에탄올 추출물에 포함된 함량에서의 용해도 간의 비율)을 고려하면, 경구 투여 제형의 제조시에 D 및 DA의 방출 개선이 필요한 것으로 확인되었다.
또한, 도 4에 나타난 바와 같이, pH 1.2 및 6.8 완충액 모두에서 당귀 에탄올 추출물로부터의 D 및 DA의 방출량은 4시간 후에서조차 12%보다 낮게 나타났다. 이에 반하여, 마이크로에멀젼 제형(F1 및 F2)으로부터 방출된 D 및 DA의 방출량은 당귀 에탄올 추출물 군에서보다 현저히 높게 나타났다(P < 0.05). 또한, 두 조건(pH 1.2 및 6.8 완충액) 모두에서 배양 시간(30, 120, 및 240분)이 지날수록 D 및 DA의 방출량이 증가하였다. 활성성분, 즉 D 및 DA의 방출량은 F1 및 F2 제형에 있어서 유의성있는 차이는 없었으며, 이로써 마이크로에멀젼 시스템에서의 TPGS 포함 여부에 따른 영향은 없음을 알 수 있다. 마이크로에멀젼 시스템에서의 D 및 DA의 용해도 증가가 방출량 증가에 영향을 미친 것으로 추정되며, 위장관액 유사시험액에서의 방출량 증가는 위장관 점막에서의 흡수 증가에 기여할 것으로 예상된다.
8. 생체내 약물동태 평가
당귀 에탄올 추출물 현탁액(AGN 에탄올 추출물) 및 당귀 추출물-함유 마이크로에멀젼(F1 및 F2)를 경구 투여한 후에 DOH의 약물동태를 비교하였다. 경구 흡수된 D 및 DA는 주로 간에서 DOH로 대사되는 것으로 보고된 바 있으므로(Li et al., 2013; Park et al., 2012; Piao et al., 2015), 혈장 중 DOH 농도를 측정함으로써 당귀 추출물을 포함하는 각 제형으로부터 D 및 DA의 경구 흡수를 평가하였다. DOH는 항-신생혈관 생성(anti-angiogenesis), 항염(anti-inflammation), 기억력 개선(memory enhancement), 및 항-패혈증(anti-sepsis)과 같은 다양한 약물학적 효능을 가지는 것으로 알려져 있다(Jung et al., 2008; Jung et al., 2009; Kang 및 Kim, 2007; Song et al., 2011). 투여 용량은 D 및 DA 함량의 합에 기반하여 결정하였다(Piao et al., 2015).
각 제형을 수컷 SD 랫트(Sprague-Dawley rat, 무게 250 ± 5 g, 오리엔트 바이오사, 성남, 대한민국)에 경구 투여한 후, D 및 DA의 주요 대사체인 DOH의 생체내 약물동태 특성을 평가하였다.
졸레틸(Zoletil, 50 mg/kg 용량, Virbac, Carros, France) 근육주사 마취 하에서 랫트의 좌측 대퇴부 동맥에 폴리에틸렌 튜브(Intramedic™ polyethylene tube, PE-50; Becton Dickinson Diagnostics, MD, USA)를 삽관하였다. DW에 현탁된 당귀 에탄올 추출물 또는 당귀 추출물-함유 마이크로에멀젼를 50 mg/kg 당귀 에탄올 추출물에 해당하는 용량으로 경구 투여하였다. 당귀 에탄올 추출물에 포함된 D 및 DA 함량을 상기 LC-MS/MS 방법으로 분석하여 투여 용량을 계산하였다. 정해진 시간((5, 15, 30, 60, 120, 240, 480, 및 720 분)에 일정량의 혈액(200 μl)을 대퇴부 동맥으로부터 채혈하였고, 동일한 부피의 생리식염수(20 U/ml 헤파린 포함)를 주입하였다. 채혈한 혈액 시료를 4 ℃, 16,000 rpm에서 3분간 원심분리하고, 일정 부분(70 μL)의 상층액을 정량 분석시까지 -70 ℃에 보관하였다.
혈장 중 DOH 농도를 상기 LC-MS/MS 시스템 및 공지된 방법(Piao et al., 2015)으로 측정하였다. 혈장 시료 50 μL에 5 μL의 로잘탄 용액(Losartan, LST, 내부 표준 물질, 10 μg/mL) 및 아세토니트릴(95 μl) 을 첨가한 후, 5분 동안 교반하였다. 16,000 rpm에서 5분간 원심분리한 후, 상층액의 일정량(5 μL)을 HPLC 시스템(Agilent Technologies 1260 Infinity HPLC, Agilent Technologies) 및 LC/MS 시스템(Agilent Technologies 6430 Triple Quad LC/MS system)이 장착된 LC-MS/MS 시스템에 주입하였다. DOH 분석의 LC 및 MS 부분의 설정 조건은 상기 기재한 바와 같다. LST(IS) 분석의 단편화 전이, 단편화 전압, 및 충돌 에너지는 각각 m/z 423.4 에서 207.3, 115 V, 및 20 eV였다. 상기 조건에서의 LST의 머무름 시간은 0.47분이었다. LST 정량 분석에 대한 데이터 처리는 해당 프로그램(MassHunter Workstation Software Quantitative Analysis, Version B.05.00; Agilent Technologies)으로 수행하였다. DOH 농도 범위 2-10,000 ng/ml에서 직선성이 나타났고, D 및 DA의 정밀성(Precision) 및 정확성(accuracy)이 허용 범위 내였다.
DOH의 약물동태 파라미터, 즉, 시작점부터 무한대까지의 혈장 중 DOH 농도-시간 곡선 하 총 면적(total area under plasma DOH concentration-time curve from time zero to infinity, AUC), 최고 농도(maximum concentration, Cmax), 및 최고 농도 도달 시간(the time of maximum concentration observed, Tmax)은 윈넌린 프로그램(WinNonlin, Version 3.1, Pharsight, Mountain View, CA, USA)으로 산출하였다.
상기와 같이 혈장 중 DOH 농도를 측정함으로써 랫트에서의 당귀 추출물-함유 제형의 경구 흡수를 평가한 결과를 도 5 및 하기 표 3에 나타내었다.
파라미터 당귀 에탄올 추출 F1 F2
Cmax(ng/ml) 188.80 ± 89.67 * 389.30 ± 166.04 * 793.55 ± 108.11 *
Tmax(min) 60(15-120) 120(60-120) 120(120-240)
AUC(μg·min/ml) 47.44 ± 10.73 * 84.35 ± 16.31 * 185.75 ± 36.56 *
Frel(%) 100 178 392
*P < 0.05, 각 수치는 모두 서로 상이함.
용량 50 mg/kg(당귀 에탄올 추출물의 양에 상응함).
데이터는 평균 ± SD 로 나타냄(n = 4).
표 3에 나타난 바와 같이, F1 및 F2 군의 DOH의 평균 AUC 값은 당귀 에탄올 추출물 군보다 1.78배 및 3.92배 높은 것으로 나타났다(P < 0.05)(Frel 값으로도 표시됨). 또한, F1 및 F2 군의 Cmax 값은 당귀 에탄올 추출물 군보다 유의성 있게 높게 나타났다(P < 0.05). 당귀 에탄올 추출물에 비하여 마이크로에멀젼 제형에서 D 및 DA의 용해도 및 방출량의 증가가 경구 흡수의 증가로 이어진 것으로 보인다. 특히, F2 군의 Frel 값이 F1 군보다 2.20배 높았으며, F2 군의 Cmax 값이 F1 군보다 유의성 있게 높게 측정되었다(P < 0.05). 이로써, F2 군에 포함된 TPGS는 D 및 DA의 방출에는 영향이 없었으나, 장관 점막에서의 약물 흡수는 현저히 증가시키는 것을 알 수 있다. D 및 DA의 장관 수송에 있어서의 TPGS의 역할에 대하여는 추가적인 연구가 필요할 것으로 보이나, TPGS의 흡수 증진 효과는 당귀의 경구 마이크로에멀젼 제형 개발에 유용하게 사용될 것이다.

Claims (4)

  1. 당귀 에탄올 추출물, 마이크로에멀젼, 및 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트를 포함하는 당귀 마이크로에멀젼 조성물로서;
    상기 당귀 에탄올 추출물이 당귀 마이크로에멀젼 조성물 총량에 대하여 0.2 ∼ 2 %(g/ml, w/v)로 포함되고;
    상기 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트가 당귀 마이크로에멀젼 조성물 총량에 대하여 0.05 ∼ 1 %(g/ml, w/v)로 포함되고;
    상기 마이크로에멀젼이 당귀 마이크로에멀젼 조성물의 나머지 부분이고;
    상기 마이크로에멀젼이 마이크로에멀젼 총 중량에 대하여 오메가-3 불포화 지방산 8 ∼ 9 중량%, 계면활성제 52 ∼ 53 중량% 및 물 39 ∼ 40 중량%를 포함하는 당귀 마이크로에멀젼 조성물.
  2. 제1항에 있어서, 상기 오메가-3 불포화 지방산이 α-리놀렌산, 에이코사펜타엔산 및 도코사헥사엔산으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 당귀 마이크로에멀젼 조성물.
  3. 제1항에 있어서, 상기 계면활성제가 카프릴로카프로일 마크로골-8 글리세리드, 카프릴로카프로일 폴리옥실-8 글리세리드 및 이들의 조합물로 이루어진 군으로부터 선택되는 1종인 것을 특징으로 하는 당귀 마이크로에멀젼 조성물.
  4. (a) 마이크로에멀젼 총 중량에 대하여 오메가-3 불포화 지방산 8 ∼ 9 중량% 및 계면활성제 52 ∼ 53 중량%를 혼합하여 혼합물을 제조하는 단계;
    (b) 단계(a)에서 제조된 혼합물에 마이크로에멀젼 총 중량에 대하여 물 39 ∼ 40 중량%를 첨가하여 마이크로에멀젼을 제조하는 단계; 및
    (c) 단계(b)에서 제조된 마이크로에멀젼에, 당귀 마이크로에멀젼 조성물 총량에 대하여 0.2 ∼ 2 %(g/ml, w/v)의 당귀 에탄올 추출물, 및 당귀 마이크로에멀젼 조성물 총량에 대하여 0.05 ∼ 1 %(g/ml, w/v)의 D-α-토코페롤 폴리에틸렌 글리콜 1000 숙시네이트를 용해시키는 단계
    를 포함하는 당귀 마이크로에멀젼 조성물의 제조방법.
KR1020170033142A 2017-03-16 2017-03-16 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법 KR101744137B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170033142A KR101744137B1 (ko) 2017-03-16 2017-03-16 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170033142A KR101744137B1 (ko) 2017-03-16 2017-03-16 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150106520A Division KR20170013620A (ko) 2015-07-28 2015-07-28 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20170034361A KR20170034361A (ko) 2017-03-28
KR101744137B1 true KR101744137B1 (ko) 2017-06-07

Family

ID=58495617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170033142A KR101744137B1 (ko) 2017-03-16 2017-03-16 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101744137B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389671B1 (ko) 2000-11-24 2003-06-27 한미약품 주식회사 염산 테르비나핀을 함유하는 항진균제 외용 약제 조성물
KR100723313B1 (ko) 2005-08-08 2007-05-31 우석대학교 산학협력단 황금 및 그 복합생약 엑스의 항산화 가수분해물을 함유하는나노셀 콜로이드 외용겔제의 제조방법
JP2011020963A (ja) 2009-07-16 2011-02-03 Miyazakiken Sangyo Shien Zaidan 油性外用製剤及びその製造方法
KR101327595B1 (ko) 2011-10-05 2013-11-13 서울대학교산학협력단 가공인삼을 유효성분으로 함유하는 마이크로이멀젼계 하이드로겔

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065630A1 (ja) 2004-01-06 2005-07-21 Shiseido Co., Ltd. 一相マイクロエマルション組成物、o/w超微細エマルション外用剤、及びその製造方法
KR20140043253A (ko) 2012-09-24 2014-04-09 한국콜마주식회사 무복계면 데커신 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389671B1 (ko) 2000-11-24 2003-06-27 한미약품 주식회사 염산 테르비나핀을 함유하는 항진균제 외용 약제 조성물
KR100723313B1 (ko) 2005-08-08 2007-05-31 우석대학교 산학협력단 황금 및 그 복합생약 엑스의 항산화 가수분해물을 함유하는나노셀 콜로이드 외용겔제의 제조방법
JP2011020963A (ja) 2009-07-16 2011-02-03 Miyazakiken Sangyo Shien Zaidan 油性外用製剤及びその製造方法
KR101327595B1 (ko) 2011-10-05 2013-11-13 서울대학교산학협력단 가공인삼을 유효성분으로 함유하는 마이크로이멀젼계 하이드로겔

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
International Journal of Pharmaceutics 250 (2003) 181-190

Also Published As

Publication number Publication date
KR20170034361A (ko) 2017-03-28

Similar Documents

Publication Publication Date Title
US9861611B2 (en) Formulations of water-soluble derivatives of vitamin E and soft gel compositions, concentrates and powders containing same
Ragelle et al. Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice
WO2020044118A1 (en) Improved cannabinoid bioavailability
JP2010534555A (ja) 複合型乳化剤及びそれを用いて調製された乳剤並びにその調製方法
US20210299081A1 (en) Solid cannabinoid formulation for oral administration
Man et al. Improved oral bioavailability of myricitrin by liquid self-microemulsifying drug delivery systems
Granata et al. Hydroxycinnamic acids loaded in lipid-core nanocapsules
Omari-Siaw et al. Hypolipidemic potential of perillaldehyde-loaded self-nanoemulsifying delivery system in high-fat diet induced hyperlipidemic mice: formulation, in vitro and in vivo evaluation
US20210113554A1 (en) Nutraceuticals Having Sustained Release for Improved Bioavailability and Method of Production
WO2007123044A1 (ja) 甘草ポリフェノール製剤
Lee et al. Omega-3 fatty acids incorporated colloidal systems for the delivery of Angelica gigas Nakai extract
US20220288014A1 (en) Oral formulations of cannabis extracts and methods of making same
WO2007097412A1 (ja) 甘草ポリフェノール含有水中油型乳化組成物
US10064888B2 (en) Pectin based nanoparticles
CN113473965A (zh) 通过纳米乳化配制的大麻油粉末、其产生方法和用途
FI3820529T3 (en) CELL BILISAATE CONTAINING CURCUMIN AND AT LEAST THE CANNABINOID THC AS ANOTHER ACTIVE SUBSTANCE
CA3087842A1 (en) Compositions comprising berberine
CA3128653A1 (en) Nanoemulsion compositions comprising saponins for increasing bioavailability
El-Massry et al. Chemical characteristics and targeted encapsulated Cordia myxa fruits extracts nanoparticles for antioxidant and cytotoxicity potentials
WO2020146478A1 (en) Cannabinoid formulations for treating alcohol hangover
Singh et al. Nanotechnology for enhanced bioactivity of bioactive phytomolecules
US20220193008A1 (en) Bioaccessibile compositions of lipophilic compounds and process thereof
Falcão et al. Nanotechnology in phytotherapy: Current challenges of lipid-based nanocarriers for the delivery of natural products
KR101744137B1 (ko) 경구 흡수율이 증진된 생약 추출물의 마이크로에멀젼 조성물 및 이의 제조방법
Wasim et al. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right