KR101737716B1 - 가스 터빈 및 외측 슈라우드 - Google Patents

가스 터빈 및 외측 슈라우드 Download PDF

Info

Publication number
KR101737716B1
KR101737716B1 KR1020157012472A KR20157012472A KR101737716B1 KR 101737716 B1 KR101737716 B1 KR 101737716B1 KR 1020157012472 A KR1020157012472 A KR 1020157012472A KR 20157012472 A KR20157012472 A KR 20157012472A KR 101737716 B1 KR101737716 B1 KR 101737716B1
Authority
KR
South Korea
Prior art keywords
turbine
outer shroud
combustion gas
split ring
guide surface
Prior art date
Application number
KR1020157012472A
Other languages
English (en)
Other versions
KR20150058561A (ko
Inventor
야스로 사카모토
에이사쿠 이토
Original Assignee
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬고교 가부시키가이샤 filed Critical 미츠비시 쥬고교 가부시키가이샤
Publication of KR20150058561A publication Critical patent/KR20150058561A/ko
Application granted granted Critical
Publication of KR101737716B1 publication Critical patent/KR101737716B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/045Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector for radial flow machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals

Abstract

본 발명에 의하면, 터빈 가동익(33)과, 터빈 고정익(32)과, 터빈 가동익(33)을 주방향으로 둘러싸는 분할 환(52)과, 터빈 고정익(32)을 주방향으로 둘러싸는 외측 슈라우드(51)와, 분할 환(52) 및 외측 슈라우드(51)의 내부에 형성되고, 연소 가스가 유통하는 연소 가스 유로(R1)를 구비하고, 외측 슈라우드(51)(51a)는 연소 가스의 가스 흐름 방향에 있어서, 분할 환(52)(52a)의 상류측에 위치하고, 분할 환(52a)과 외측 슈라우드(51a) 사이로부터는, 연소 가스보다도 온도가 낮은 시일 가스가 연소 가스 유로(R1)을 향하여 공급되고 있으며, 외측 슈라우드(51a)는 가스 흐름 방향의 하류측의 내주에 설치되고, 내부에 유통하는 연소 가스를 분할 환(52a)의 내주면을 향하여 안내하는 안내면(61)을 갖고, 안내면(61)은 연소 가스 유로(R1)의 유로 면적이 넓어지도록 형성되어 있다.

Description

가스 터빈 및 외측 슈라우드{GAS TURBINE AND THE OUTER SHROUD}
본 발명은 연소 가스에 의해 회전하는 가스 터빈 및 외측 슈라우드에 관한 것이다.
종래, 회전축과, 회전축에 대하여 직경 방향 외측으로 연장되는 터빈 블레이드와, 터빈 블레이드로부터 직경 방향 외측으로 이격하여 설치된 시일 세그먼트와, 시일 세그먼트에 인접하는 스테이터 어셈블리를 구비한 가스 터빈이 알려져 있다(예를 들어, 특허문헌 1 참조). 스테이터 어셈블리 및 시일 세그먼트는, 이격하여 배치되어 있고, 스테이터 어셈블리와 시일 세그먼트 사이에는, 주방향으로 연장되는 캐비티가 형성되어 있다. 이 캐비티는, 냉각 공기 유로를 형성하고 있다.
일본 특허 공개 평7-233735호 공보
그런데, 종래의 가스 터빈의 구조에 있어서, 작동 유체의 흐름 방향의 상류측에 위치하는(도 1의 좌측의) 스테이터 어셈블리의 작동 유체의 유로를 형성하는 외측 슈라우드의 내주면과, 하류측에 위치하는(도 1의 중앙의) 시일 세그먼트의 시일면은, 그 직경 방향에 있어서의 높이가 편평해지도록 형성되는 것이 바람직하다. 그러나, 작동 유체의 흐름 방향에 있어서의 압력 손실, 시일 세그먼트의 열 신장이나 치수 공차 등을 고려하면, 시일 세그먼트의 시일면은, 외측 슈라우드의 내주면에 대하여 약간 직경 방향 외측에 위치하는 경우가 있다. 바꾸어 말하면, 시일 세그먼트의 내경은, 스테이터 어셈블리의 외측 슈라우드의 내경에 비해 커지는 경우가 있다.
이 경우, 외측 슈라우드의 내주면과 시일 세그먼트의 시일면 사이에는 단차가 발생한다. 그러나, 단차가 발생하면, 외측 슈라우드 및 시일 세그먼트 내를 흐르는 작동 유체는, 단차의 하류측에서 소용돌이를 형성하여, 캐비티로부터 공급되는 시일 가스와 혼합되기 쉬워진다. 작동 유체와 시일 가스가 혼합되면, 시일 가스의 온도가 상승하여, 시일 세그먼트의 열부하가 증대될 우려가 있다.
따라서, 본 발명은 분할 환(시일 세그먼트)의 열부하의 증대를 억제 가능한 가스 터빈 및 외측 슈라우드를 제공하는 것을 과제로 한다.
본 발명의 가스 터빈은, 회전 가능한 터빈 축에 설치된 터빈 가동익과, 터빈 가동익에 대하여 축 방향에 대향하도록 고정된 터빈 고정익과, 터빈 가동익을 주방향으로 둘러싸는 분할 환과, 터빈 고정익을 주방향으로 둘러싸고, 분할 환에 대하여 축 방향에 대향하도록 설치된 외측 슈라우드와, 분할 환 및 외측 슈라우드의 내부에 형성되고, 연소 가스가 유통하는 연소 가스 유로를 구비하고, 외측 슈라우드는, 연소 가스의 가스 흐름 방향에 있어서, 분할 환의 상류측에 위치하며, 분할 환과 외측 슈라우드 사이로부터는, 연소 가스보다도 온도가 낮은 시일 가스가 연소 가스 유로를 향하여 공급되고 있고, 외측 슈라우드는, 가스 흐름 방향의 하류측의 내주에 형성되고, 내부에 유통하는 연소 가스를 분할 환의 내주면을 향하여 안내하는 안내면을 가지며, 안내면은, 연소 가스 유로의 유로 면적이 넓어지도록 형성되어 있는 것을 특징으로 한다.
또한, 본 발명의 외측 슈라우드는, 회전 가능한 터빈 축의 축 방향에 있어서 터빈 가동익과 대향하도록 고정되는 터빈 고정익을 주방향으로 둘러싸고, 터빈 가동익을 주방향으로 둘러싸는 분할 환에 대하여 축 방향에 대향하도록 설치된 외측 슈라우드에 있어서, 분할 환 및 외측 슈라우드의 내부에는, 연소 가스가 유통하는 연소 가스 유로가 형성되고, 분할 환과 분할 환의 상류측에 위치하는 외측 슈라우드 사이로부터는, 연소 가스보다도 온도가 낮은 시일 가스가 연소 가스 유로를 향하여 공급되고 있으며, 가스 흐름 방향의 하류측의 내주에 형성되고, 내부에 유통하는 연소 가스를 분할 환의 내주면을 향하여 안내하는 안내면을 가지며, 안내면은 연소 가스 유로의 유로 면적이 넓어지도록 형성되어 있는 것을 특징으로 한다.
이 구성에 의하면, 외측 슈라우드에 있어서 연소 가스 유로를 흐르는 연소 가스를, 안내면에 의해, 분할 환의 내주면을 향하여 안내할 수 있다. 이때, 연소 가스 유로의 유로 면적이 넓어지도록 형성되어 있기 때문에, 연소 가스는, 분할 환과 외측 슈라우드 사이로부터 공급되는 시일 가스와의 혼합을 억제할 수 있고, 시일 가스를 분할 환의 내주면을 따르게 하여 안내할 수 있다. 이것에 의해, 시일 가스에 의해 분할 환을 냉각할 수 있기 때문에, 분할 환의 열부하의 증대를 억제하는 것이 가능하게 된다.
이 경우, 안내면의 하류측 단부는, 안내면의 상류측에 있어서의 외측 슈라우드의 내주면에 대하여 직경 방향 외측에 위치하고 있는 것이 바람직하다.
또한, 마찬가지로, 안내면의 상류측에 형성되는 내주면을 더 갖고, 안내면의 하류측 단부는, 내주면에 대하여 직경 방향 외측에 위치하고 있는 것이 바람직하다.
이 구성에 의하면, 안내면은, 하류측을 향함에 따라 직경 방향 외측으로 넓어지고 있기 때문에, 연소 가스를, 하류측을 향하여 직경 방향 외측으로 퍼지게 하면서, 분할 환의 내주면을 향하도록 안내할 수 있다. 이것에 의해, 외측 슈라우드로부터 분할 환에 유입하는 연소 가스의 압력 손실을 억제할 수 있다.
이 경우, 분할 환의 내주면의 상류측 단부는, 안내면의 하류측 단부에 있어서의 접선에 대하여 직경 방향 외측에 위치하고 있는 것이 바람직하다.
또한, 마찬가지로, 안내면의 하류측 단부에 있어서의 접선은, 분할 환의 내주면의 상류측 단부에 대하여 직경 방향 내측에 위치하고 있는 것이 바람직하다.
이 구성에 의하면, 안내면에 의해 안내된 연소 가스를, 분할 환의 내주면을 향하여 적절하게 안내할 수 있다.
이 경우, 안내면은, 외측 슈라우드의 하류측의 내주를 절결하여 형성되어 있는 것이 바람직하다.
또한, 마찬가지로, 안내면은, 하류측의 내주를 절결하여 형성되어 있는 것이 바람직하다.
이 구성에 의하면, 외측 슈라우드의 내주를 절결함으로써 안내면을 간단하게 형성할 수 있다.
이 경우, 안내면은, 외측 슈라우드의 하류측의 내주에 대하여 돌출하여 형성된 돌기부에 형성되어 있는 것이 바람직하다.
또한, 마찬가지로, 안내면은, 하류측의 내주에 대하여 돌출하여 형성된 돌기부에 형성되어 있는 것이 바람직하다.
이 구성에 의하면, 외측 슈라우드의 내주에 돌기부를 형성함으로써 안내면을 형성할 수 있다.
이 경우, 안내면은, 곡면으로 형성되어 있는 것이 바람직하다.
이 구성에 의하면, 곡면으로 되는 안내면을 따라, 연소 가스를 안내할 수 있기 때문에, 연소 가스의 유통을 원활하게 행할 수 있고, 안내면에 대한 열부하를 경감할 수 있다.
이 경우, 터빈 축의 축 방향에 대한 안내면의 하류측 단부에 있어서의 접선의 각도는, 10° 이상 30° 이하인 것이 바람직하다.
이 구성에 의하면, 안내면을 따라 흐르는 연소 가스를, 분할 환의 내주면을 향하여 적절하게 안내할 수 있다.
본 발명의 가스 터빈 및 외측 슈라우드에 의하면, 외측 슈라우드의 가스 흐름 방향의 하류측의 내주에 안내면을 형성함으로써, 연소 가스와 시일 가스의 혼합이 억제되기 때문에, 분할 환에의 열부하의 증대를 억제할 수 있다.
도 1은, 실시예 1에 따른 가스 터빈의 개략 구성도이다.
도 2는, 실시예 1에 따른 가스 터빈의 터빈 주위에 있어서의 부분 단면도이다.
도 3은, 실시예 1에 따른 가스 터빈의 제1 터빈 가동익 주위에 있어서의 모식도이다.
도 4는, 실시예 1에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량과, 종래에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량을 비교한 그래프이다.
도 5는, 실시예 2에 따른 가스 터빈의 제1 터빈 가동익 주위에 있어서의 모식도이다.
이하, 첨부한 도면을 참조하여, 본 발명에 따른 가스 터빈에 대하여 설명한다. 또한, 이하의 실시예에 의해 본 발명이 한정되는 것은 아니다. 또한, 하기 실시예에 있어서의 구성 요소에는, 당업자가 치환 가능하고도 용이한 것, 또는 실질적으로 동일한 것이 포함된다.
실시예 1
도 1에 도시한 바와 같이, 실시예 1의 가스 터빈(1)은 압축기(5)와, 연소기(6)와, 터빈(7)에 의해 구성되어 있다. 또한, 압축기(5), 연소기(6) 및 터빈(7)의 중심부에는, 터빈 축(8)이 관통하여 배치되어 있다. 압축기(5), 연소기(6) 및 터빈(7)은 터빈 축(8)의 축심(R)을 따라, 공기 또는 연소 가스의 가스 흐름 방향의 상류측으로부터 하류측을 향하여 순서대로 병설되어 있다.
압축기(5)는 공기를 압축하여 압축 공기로 하는 것이다. 압축기(5)는 공기를 도입하는 공기 취입구(11)를 가진 압축기 케이싱(12) 내에, 복수 단의 압축기 고정익(13) 및 복수 단의 압축기 가동익(14)이 설치되어 있다. 각 단의 압축기 고정익(13)은 압축기 케이싱(12)에 설치되어 주방향으로 복수 병설되고, 각 단의 압축기 가동익(14)은 터빈 축(8)에 설치되어 주방향으로 복수 병설되어 있다. 이들 복수 단의 압축기 고정익(13)과 복수 단의 압축기 가동익(14)은, 축 방향을 따라 교대로 설치되어 있다.
연소기(6)는 압축기(5)에서 압축된 압축 공기에 대하여 연료를 공급함으로써, 고온·고압의 연소 가스를 생성하는 것이다. 연소기(6)는 연소통으로서, 압축 공기와 연료를 혼합하여 연소시키는 내통(21)과, 내통(21)으로부터 연소 가스를 터빈(7)으로 유도하는 꼬리통(22)과, 내통(21)의 외주를 덮어, 압축기(5)로부터의 압축 공기를 내통(21)으로 유도하는 외통(23)을 갖고 있다. 이 연소기(6)는 연소기 케이싱(24)에 대하여 주방향으로 복수 병설되어 있다.
터빈(7)은 연소기(6)에서 연소된 연소 가스에 의해 회전 이동력을 발생시키는 것이다. 터빈(7)에는, 외각으로 되는 터빈 케이싱(31) 내에, 복수 단의 터빈 고정익(32) 및 복수 단의 터빈 가동익(33)이 설치되어 있다. 각 단의 터빈 고정익(32)은 터빈 케이싱(31)에 설치되어 주방향으로 복수 병설되고, 각 단의 터빈 가동익(33)은 터빈 축(8)의 축심(R)을 중심으로 한 원반 형상의 디스크의 외주에 고정되어 주방향으로 복수 병설되어 있다. 이들 복수 단의 터빈 고정익(32)과 복수 단의 터빈 가동익(33)은, 축 방향을 따라 복수 교대로 설치되어 있다. 이하, 도 2를 참조하여, 터빈(7)에 대하여 구체적으로 설명한다.
도 2에 도시한 바와 같이, 터빈 케이싱(31)은 외부 케이싱(41)과, 내부 케이싱(42)을 갖고 있다. 또한, 터빈 케이싱(31)의 하류측에는, 터빈(7)에 연속하는 디퓨저부(54)를 내부에 가진 배기실(34)이 형성되어 있다(도 1 참조). 내부 케이싱(42)은 축 방향으로 병설된 복수의 날개 환(45)을 갖고 있다. 복수의 날개 환(45)은 가스 흐름 방향(축 방향)의 상류측으로부터 순서대로 제1 날개 환(45a)과, 제2 날개 환(45b)과, 제3 날개 환(45c)과, 제4 날개 환(45d)을 포함하여 구성되어 있다. 이 복수의 날개 환(45)은 외부 케이싱(41)의 직경 방향 내측에 배치되어 있다.
내부 케이싱(42)에는, 복수의 외측 슈라우드(51)과, 복수의 분할 환(52)이 설치되어 있다. 복수의 외측 슈라우드(51)는 가스 흐름 방향의 상류측으로부터 순서대로 제1 외측 슈라우드(51a)와, 제2 외측 슈라우드(51b)와, 제3 외측 슈라우드(51c)와, 제4 외측 슈라우드(51d)를 포함하여 구성되어 있다. 또한, 복수의 분할 환(52)은 가스 흐름 방향의 상류측으로부터 순서대로 제1 분할 환(52a)과, 제2 분할 환(52b)과, 제3 분할 환(52c)과, 제4 분할 환(52d)을 포함하여 구성되어 있다.
그리고, 복수의 외측 슈라우드(51) 및 복수의 분할 환(52)은 가스 흐름 방향의 상류측으로부터 순서대로 제1 외측 슈라우드(51a), 제1 분할 환(52a), 제2 외측 슈라우드(51b), 제2 분할 환(52b), 제3 외측 슈라우드(51c), 제3 분할 환(52c), 제4 외측 슈라우드(51d), 제4 분할 환(52d)으로 되도록 배치되고, 각각 축 방향에 대향하도록 설치되어 있다.
또한, 제1 외측 슈라우드(51a) 및 제1 분할 환(52a)은 제1 날개 환(45a)의 직경 방향 내측에 설치되어 있다. 마찬가지로, 제2 외측 슈라우드(51b) 및 제2 분할 환(52b)은 제2 날개 환(45b)의 직경 방향 내측에 설치되고, 제3 외측 슈라우드(51c) 및 제3 분할 환(52c)은 제3 날개 환(45c)의 직경 방향 내측에 설치되며, 제4 외측 슈라우드(51d) 및 제4 분할 환(52d)은 제4 날개 환(45d)의 직경 방향 내측에 설치되어 있다.
그리고, 복수의 외측 슈라우드(51) 및 복수의 분할 환(52)의 내주측과, 터빈 축(8)의 외주측 사이에 형성된 환상의 유로가, 연소 가스 유로(R1)로 되고, 연소 가스는, 연소 가스 유로(R1)를 따라 흐른다.
복수 단의 터빈 고정익(32)은 복수의 외측 슈라우드(51)에 따라 각각 배치되고, 복수의 외측 슈라우드(51)의 직경 방향 내측에 설치되어 있다. 각 단의 터빈 고정익(32)은 각 외측 슈라우드(51)와 일체로 설치되어 있고, 고정측으로 되어 있다. 복수 단의 터빈 고정익(32)은 가스 흐름 방향의 상류측으로부터 순서대로 제1 터빈 고정익(32a)과, 제2 터빈 고정익(32b)과, 제3 터빈 고정익(32c)과, 제4 터빈 고정익(32d)을 포함하여 구성되어 있다. 제1 터빈 고정익(32a)은 제1 외측 슈라우드(51a)의 직경 방향 내측에 설치되어 있다. 마찬가지로, 제2 터빈 고정익(32b), 제3 터빈 고정익(32c) 및 제4 터빈 고정익(32d)은 제2 외측 슈라우드(51b), 제3 외측 슈라우드(51c) 및 제4 외측 슈라우드(51d)의 직경 방향 내측에 설치되어 있다.
복수 단의 터빈 가동익(33)은 복수의 분할 환(52)에 따라 각각 배치되고, 복수의 분할 환(52)의 직경 방향 내측에 설치되어 있다. 각 단의 터빈 가동익(33)은 각 분할 환(52)에 대하여 이격하여 설치되어 있고, 가동측으로 되어 있다. 복수 단의 터빈 가동익(33)은 가스 흐름 방향의 상류측으로부터 순서대로 제1 터빈 가동익(33a)과, 제2 터빈 가동익(33b)과, 제3 터빈 가동익(33c)과, 제4 터빈 가동익(33d)을 포함하여 구성되어 있다. 그리고, 제1 터빈 가동익(33a)은 제1 분할 환(52a)의 직경 방향 내측에 설치되어 있다. 마찬가지로, 제2 터빈 가동익(33b), 제3 터빈 가동익(33c) 및 제4 터빈 가동익(33d)은 제2 분할 환(52b), 제3 분할 환(52c) 및 제4 분할 환(52d)의 직경 방향 내측에 설치되어 있다.
이로 인해, 복수 단의 터빈 고정익(32) 및 복수 단의 터빈 가동익(33)은 가스 흐름 방향의 상류측으로부터 순서대로 제1 터빈 고정익(32a), 제1 터빈 가동익(33a), 제2 터빈 고정익(32b), 제2 터빈 가동익(33b), 제3 터빈 고정익(32c), 제3 터빈 가동익(33c), 제4 터빈 고정익(32d), 제4 터빈 가동익(33d)으로 되도록 배치되고, 각각 축 방향에 대향하도록 설치되어 있다.
터빈 축(8)은 압축기(5)측의 단부가 베어링부(37)에 의해 지지되고, 배기실(34)측의 단부가 베어링부(38)에 의해 지지되며, 축심(R)을 중심으로 하여 회전 가능하게 설치되어 있다. 그리고, 터빈 축(8)의 배기실(34)측의 단부에는, 발전기(도시하지 않음)의 구동 축이 연결되어 있다.
상기와 같은 가스 터빈(1)에 있어서, 터빈 축(8)을 회전시키면, 압축기(5)의 공기 취입구(11)로부터 공기가 도입된다. 그리고, 도입된 공기는, 복수 단의 압축기 고정익(13)과 복수 단의 압축기 가동익(14)을 통과함으로써 압축됨으로써, 고온·고압의 압축 공기로 된다. 이 압축 공기에 대하여 연소기(6)로부터 연료가 공급됨으로써 고온·고압의 연소 가스가 생성되고, 이 연소 가스가 터빈(7)의 복수 단의 터빈 고정익(32)과 복수 단의 터빈 가동익(33)을 통과함으로써 터빈 축(8)이 회전 구동한다. 이것에 의해, 터빈 축(8)에 연결된 발전기는, 회전 이동력이 부여됨으로써 발전을 행한다. 이후, 터빈 축(8)을 회전 구동한 후의 연소 가스는, 배기실(34) 내의 디퓨저부(54)에서 정압으로 변환되고 나서 대기에 방출된다.
이어서, 도 3을 참조하여, 터빈(7)의 제1 터빈 가동익(33a) 주위의 구성에 대하여 설명한다. 도 3은 실시예 1에 따른 가스 터빈의 제1 터빈 가동익 주위에 있어서의 모식도이다. 각 외측 슈라우드(51)와 각 분할 환(52) 사이에는, 캐비티(R2)가 각각 설치되어 있다. 캐비티(R2)는, 주방향에 걸쳐 설치되고, 캐비티(R2)로부터는, 연소 가스 유로(R1)를 향하여, 연소 가스보다도 온도가 낮은 공기 등의 시일 가스가 공급된다.
도 3에 도시한 바와 같이, 제1 분할 환(52a)의 내경은, 연소 가스의 가스 흐름 방향에 있어서의 압력 손실, 분할 환(52)의 열 신장이나 치수 공차 등을 고려하여, 제1 외측 슈라우드(51a)의 내경에 비해 약간 대직경으로 되어 있다. 여기서, 제1 외측 슈라우드(51a)와 제1 분할 환(52a) 사이의 캐비티(R2) 주위의 구성에 대하여 설명한다.
제1 외측 슈라우드(51a)는 하류측의 내주면에 형성된 안내면(61)을 갖고 있다. 안내면(61)은 제1 외측 슈라우드(51a)의 하류측에 있어서의 내주면을 절결하여 형성되어 있고, 안내면(61)을 따라 흐르는 연소 가스가 제1 분할 환(52a)의 내주면을 향하도록 형성되어 있다. 이로 인해, 제1 외측 슈라우드(51a)의 안내면(61)에 있어서의 연소 가스 유로(R1)는, 그 유로 면적이 넓어지도록 형성된다.
안내면(61)은 가스 흐름 방향의 상류측으로부터 하류측을 향하여 직경 방향 외측으로 경사지는 단면에서 보아 직선 형상의 경사면으로 되어 있다. 안내면(61)의 하류측 단부(P1)는, 안내면(61)의 상류측에 있어서의 제1 외측 슈라우드(51a)의 내주면의 연장선(L1)에 대하여 직경 방향 외측에 위치하고 있다. 이 연장선(L1)의 연장 방향은, 터빈 축(8)의 축 방향과 동일한 방향으로 되어 있다. 또한, 터빈 축의 축 방향과 동일한 방향으로 되는 연장선(L1)과, 안내면(61)의 하류측 단부(P1)에 있어서의 접선(L2)이 이루는 각도(θ)는, 10° 이상 30° 이하로 되어 있다. 또한, 제1 분할 환(52a)의 내주면의 상류측 단부(P2)는, 접선(L2)에 대하여 직경 방향 외측에 위치하고 있다. 바꾸어 말하면, 접선(L2)은, 제1 분할 환(52a)의 내주면의 상류측 단부(P2)에 대하여 직경 방향측에 위치하고 있다.
따라서, 제1 외측 슈라우드(51a)의 내주면을 따라 흐르는 연소 가스는, 안내면(61)에 도달하면, 안내면(61)을 따라 흐른다. 이것에 의해, 연소 가스의 일부는, 직경 방향 외측으로 퍼져 흐르는 동시에, 제1 분할 환(52a)의 내주면을 향하여 흐른다. 한편, 제1 외측 슈라우드(51a)와 제1 분할 환(52a) 사이의 캐비티(R2)로부터 공급되는 시일 가스는, 연소 가스 유로(R1)를 향하여 흐른다. 연소 가스 유로(R1)에 유입한 시일 가스는, 연소 가스의 흐름에 유도됨으로써, 제1 분할 환(52a)의 내주면을 향하여 흐른다. 이것에 의해, 시일 가스는, 연소 가스와 혼합되지 않고, 제1 분할 환(52a)의 내주면을 따라 흐르며, 연소 가스는, 제1 분할 환(52a)의 내주면을 따라 흐르는 시일 가스를 따라 흐른다. 즉, 제1 분할 환(52a)의 내주면을 따라 흐르는 시일 가스와, 시일 가스를 따라 흐르는 연소 가스는, 층상으로 되어 흐른다.
이어서, 도 4를 참조하여, 실시예 1에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량과, 종래에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량에 대하여 비교한다. 도 4는 실시예 1에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량과, 종래에 따른 가스 터빈의 제1 분할 환 주위에 있어서의 입열량을 비교한 그래프이다. 도 4에 도시하는 그래프는, 그 종축이 입열량으로 되어 있고, 입열량은, 복수의 영역에서 해석된 해석 결과로 되어 있다.
도 3에 도시한 바와 같이, 복수의 영역은, 가스 흐름 방향의 상류측으로부터 순서대로 제1 영역(E1)과, 제2 영역(E2)과, 제3 영역(E3)과, 제4 영역(E4)이 있다. 제1 영역(E1)은, 제1 터빈 고정익(32a)의 하류측에 있어서의 제1 외측 슈라우드(51a)의 내주면의 영역이다. 제2 영역(E2)은, 제1 터빈 가동익(33a)의 상류측에 있어서의 제1 분할 환(52a)의 내주면의 영역이다. 제3 영역(E3)은, 제1 터빈 가동익(33a)이 있는 제1 분할 환(52a)의 내주면의 영역이다. 제4 영역(E4)은, 제1 터빈 가동익(33a)의 하류측에 있어서의 제1 분할 환(52a)의 내주면의 영역이다.
또한, 비교 대상으로 되는 종래의 구성은, 절결하여 형성된 안내면(61)을 형성하지 않는 구성이다. 즉, 종래의 제1 외측 슈라우드(51a)는 그 내주면이, 가스 흐름 방향의 상류측으로부터 하류측에 걸쳐 편평하게 되어 있다.
여기서, 제1 영역(E1)에 있어서의 입열량은, 안내면(61)을 형성한 만큼, 종래의 구성에 비해 약간 감소하고 있다. 제2 영역(E2)에 있어서의 입열량은, 안내면(61)을 형성한 것에 의해, 캐비티(R2)로부터 공급되는 시일 가스와 연소 가스의 혼합이 억제되기 때문에, 종래의 구성에 비해 제열의 효과를 향상시킬 수 있다. 제3 영역(E3)에 있어서의 입열량은, 시일 가스와 연소 가스의 혼합이 억제됨으로써, 시일 가스와 연소 가스가 층상으로 흐르기 때문에, 종래의 구성에 비해 대폭 감소하고 있다. 제4 영역(E4)에 있어서의 입열량은, 실시예 1의 구성과 종래의 구성이, 크게 다르지 않다. 그리고, 실시예 1의 구성에 있어서의, 제1 영역(E1)으로부터 제4 영역(E4)에 있어서의 전 입열량은, 종래의 구성에 비해 감소시킬 수 있어, 제1 분할 환(52a)의 열부하를 억제할 수 있는 것이 확인되었다.
이상과 같이, 실시예 1의 구성에 의하면, 제1 외측 슈라우드(51a)에 있어서 연소 가스 유로(R1)를 흐르는 연소 가스를, 안내면(61)에 의해, 제1 분할 환(52a)의 내주면을 향해 안내할 수 있다. 이때, 안내면(61)은 연소 가스 유로(R1)의 유로 면적이 넓어지도록 형성되어 있기 때문에, 연소 가스는, 캐비티(R2)로부터 공급되는 시일 가스와의 혼합이 억제되고, 시일 가스를 제1 분할 환(52a)의 내주면을 따르게 하여 안내할 수 있다. 이것에 의해, 연소 가스 및 시일 가스의 혼합을 억제하고, 연소 가스보다도 온도가 낮은 시일 가스에 의해 제1 분할 환(52a)을 냉각할 수 있기 때문에, 제1 분할 환(52a)의 열부하의 증대를 억제하는 것이 가능하게 된다.
또한, 실시예 1의 구성에 의하면, 연장선(L1)에 대한 접선(L2)의 각도(θ)를, 10° 이상 30° 이하로 할 수 있기 때문에, 안내면(61)을 따라 흐르는 연소 가스를, 제1 분할 환(52a)의 내주면을 향하여 적절하게 안내할 수 있다.
또한, 실시예 1에서는, 제1 외측 슈라우드(51a)의 내주면에 안내면(61)을 형성했지만, 이에 한하지 않고, 다른 외측 슈라우드(51)의 내주면에 안내면(61)을 형성해도 된다.
또한, 실시예 1에서는, 안내면(61)을 단면에서 보아 직선 형상의 경사면으로 했지만, 이에 한하지 않고, 안내면(61)을 단면에서 보아 곡선 형상의 곡면으로 해도 된다. 이 구성에 의하면, 곡면으로 되는 안내면을 따라, 연소 가스를 안내할 수 있기 때문에, 연소 가스의 유통을 원활하게 행할 수 있어, 안내면(61)에 대한 열부하를 경감할 수 있다.
실시예 2
이어서, 도 5를 참조하여, 실시예 2에 따른 가스 터빈에 대하여 설명한다. 도 5는 실시예 2에 따른 가스 터빈의 제1 터빈 가동익 주위에 있어서의 모식도이다. 실시예 2에서는, 중복되는 기재를 피하고자, 상이한 부분에 대하여 설명한다. 실시예 1의 가스 터빈(1)에서는, 제1 외측 슈라우드(51a)의 내주면을 절결하여 안내면(61)을 형성했지만, 실시예 2의 가스 터빈(101)에서는, 제1 외측 슈라우드(51a)의 내주면에 돌기부(102)를 형성하여 안내면(103)을 형성하고 있다. 이하, 도 5를 참조하여, 제1 외측 슈라우드(51a)의 내주면에 형성된 돌기부(102)에 대하여 설명한다.
돌기부(102)는 제1 외측 슈라우드(51a)의 제1 터빈 고정익(32a)의 하류측에 있어서의 내주면에 형성되어 있다. 돌기부(102)는 직경 방향 내측으로 볼록해지는 곡면에 형성되어 있고, 그 상류측에 있어서의 부위에 직경 방향 내측을 향하여 경사지는 단면에서 보아 직선 형상 또는 단면에서 보아 곡선 형상의 경사면이 형성되는 동시에, 그 하류측에 있어서의 부위에 직경 방향 외측을 향하여 경사지는 단면에서 보아 직선 형상 또는 단면에서 보아 곡선 형상의 안내면(103)이 형성되어 있다.
따라서, 제1 외측 슈라우드(51a)의 내주면을 따라 흐르는 연소 가스는, 돌기부(102)의 안내면(103)에 도달하면, 안내면(103)을 따라 흐른다. 이것에 의해, 연소 가스의 일부는, 직경 방향 외측으로 퍼져 흐르는 동시에, 제1 분할 환(52a)의 내주면을 향하여 흐른다. 한편, 제1 외측 슈라우드(51a)와 제1 분할 환(52a) 사이의 캐비티(R2)로부터 공급되는 시일 가스는, 연소 가스 유로(R1)를 향하여 흐른다. 연소 가스 유로(R1)에 유입한 시일 가스는, 연소 가스의 흐름에 유도됨으로써, 제1 분할 환(52a)의 내주면을 향하여 흐른다. 이것에 의해, 시일 가스는, 연소 가스와의 혼합이 억제되고, 제1 분할 환(52a)의 내주면을 따라 흐르며, 연소 가스는, 제1 분할 환(52a)의 내주면을 따라 흐르는 시일 가스를 따라 흐른다. 즉, 제1 분할 환(52a)의 내주면을 따라 흐르는 시일 가스와, 시일 가스를 따라 흐르는 연소 가스는, 층상으로 되어 흐른다.
이상과 같이, 실시예 2의 구성에 있어서도, 제1 외측 슈라우드(51a)에 있어서 연소 가스 유로(R1)를 흐르는 연소 가스를, 안내면(103)에 의해, 제1 분할 환(52a)의 내주면을 향하여 안내할 수 있다. 이때, 안내면(103)은 연소 가스 유로(R1)의 유로 면적이 넓어지도록 형성되어 있기 때문에, 연소 가스는, 캐비티(R2)로부터 공급되는 시일 가스와의 혼합이 억제되고, 시일 가스를 제1 분할 환(52a)의 내주면을 따르게 하여 안내할 수 있다. 이것에 의해, 연소 가스 및 시일 가스의 혼합을 억제하고, 연소 가스보다도 온도가 낮은 시일 가스에 의해 제1 분할 환(52a)을 냉각할 수 있기 때문에, 제1 분할 환(52a)의 열부하의 증대를 억제하는 것이 가능하게 된다.
1: 가스 터빈
5: 압축기
6: 연소기
7: 터빈
8: 터빈 축
11: 공기 취입구
12: 압축기 케이싱
13: 압축기 고정익
14: 압축기 가동익
21: 내통
22: 꼬리통
23: 외통
24: 연소기 케이싱
31: 터빈 케이싱
32: 터빈 고정익
33: 터빈 가동익
41: 외부 케이싱
42: 내부 케이싱
45: 날개 환
51: 외측 슈라우드
52: 분할 환
61: 안내면
101: 가스 터빈(실시예 2)
102: 돌기부
103: 안내면(실시예 2)
R1: 연소 가스 유로
R2: 캐비티

Claims (14)

  1. 터빈 축과,
    상기 터빈 축의 주방향에 설치된 복수의 터빈 가동익으로 이루어진 적어도 일 단의 터빈 가동익열과,
    상기 터빈 가동익열을 주방향으로 둘러싸는 분할 환과,
    상기 터빈 축의 주방향에 배치된 복수의 터빈 고정익으로 이루어진 적어도 일 단의 터빈 고정익열과,
    상기 터빈 고정익열을 주방향으로 둘러싸도록 설치되고, 상기 복수의 터빈 고정익이 설치된 외측 슈라우드와,
    상기 분할 환 및 상기 외측 슈라우드의 내부에 설치되고, 연소 가스가 유통하는 연소 가스 유로를 구비하고,
    상기 외측 슈라우드는, 상기 연소 가스의 가스 흐름 방향에 있어서, 상기 분할 환의 상류측에 위치하며,
    상기 외측 슈라우드는, 상기 가스 흐름 방향의 하류측의 내주에 설치된 안내면을 갖고, 상기 안내면은 상기 연소 가스 유로의 유로 면적이 넓어지도록 형성되며,
    상기 연소 가스보다도 온도가 낮은 시일 가스를 상기 연소 가스 유로를 향하여 공급하기 위해 상기 외측 슈라우드와 상기 분할 환의 사이에 설치되고, 상기 안내면을 따라 흐르는 상기 연소 가스가 상기 분할 환의 내주면을 향해 안내되도록 상기 외측 슈라우드와 상기 분할 환의 터빈 축방향에서의 이격 폭을 조정한 캐비티를 설치한 것을 특징으로 하는, 가스 터빈.
  2. 제1항에 있어서,
    상기 안내면의 하류측 단부는, 상기 안내면의 상류측에 있어서의 상기 외측 슈라우드의 내주면에 대하여 직경 방향 외측에 위치하고 있는 것을 특징으로 하는, 가스 터빈.
  3. 제1항 또는 제2항에 있어서,
    상기 분할 환의 내주면의 상류측 단부는, 상기 안내면의 하류측 단부에 있어서의 접선에 대하여 직경 방향 외측에 위치하고 있는 것을 특징으로 하는, 가스 터빈.
  4. 제1항 또는 제2항에 있어서,
    상기 안내면은, 상기 외측 슈라우드의 하류측의 내주를 절결하여 형성되어 있는 것을 특징으로 하는, 가스 터빈.
  5. 제1항 또는 제2항에 있어서,
    상기 안내면은, 상기 외측 슈라우드의 하류측의 내주에 대하여 돌출하여 형성된 돌기부에 형성되어 있는 것을 특징으로 하는, 가스 터빈.
  6. 제1항 또는 제2항에 있어서,
    상기 터빈 축의 축 방향에 대한 상기 안내면의 하류측 단부에 있어서의 접선의 각도는, 10° 이상 30° 이하인 것을 특징으로 하는, 가스 터빈.
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
KR1020157012472A 2011-03-30 2012-03-06 가스 터빈 및 외측 슈라우드 KR101737716B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011076830A JP2012211527A (ja) 2011-03-30 2011-03-30 ガスタービン
JPJP-P-2011-076830 2011-03-30
PCT/JP2012/055677 WO2012132787A1 (ja) 2011-03-30 2012-03-06 ガスタービン

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020137025504A Division KR101714829B1 (ko) 2011-03-30 2012-03-06 가스 터빈 및 외측 슈라우드

Publications (2)

Publication Number Publication Date
KR20150058561A KR20150058561A (ko) 2015-05-28
KR101737716B1 true KR101737716B1 (ko) 2017-05-18

Family

ID=46930533

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137025504A KR101714829B1 (ko) 2011-03-30 2012-03-06 가스 터빈 및 외측 슈라우드
KR1020157012472A KR101737716B1 (ko) 2011-03-30 2012-03-06 가스 터빈 및 외측 슈라우드

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020137025504A KR101714829B1 (ko) 2011-03-30 2012-03-06 가스 터빈 및 외측 슈라우드

Country Status (6)

Country Link
US (1) US9689272B2 (ko)
EP (1) EP2692993B1 (ko)
JP (1) JP2012211527A (ko)
KR (2) KR101714829B1 (ko)
CN (1) CN103477032B (ko)
WO (1) WO2012132787A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536162B1 (ko) 2022-11-18 2023-05-26 터보파워텍(주) 3d프린팅에 의한 가스터빈 슈라우드 블록 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072843A1 (ja) * 2015-10-27 2017-05-04 三菱重工業株式会社 回転機械
FR3045715B1 (fr) * 2015-12-18 2018-01-26 Safran Aircraft Engines Ensemble d'anneau de turbine avec maintien a froid et a chaud
JP7145774B2 (ja) * 2019-01-31 2022-10-03 三菱重工業株式会社 回転機械
EP4130439A4 (en) 2020-03-30 2024-05-01 Ihi Corp SECONDARY FLOW SUPPRESSION STRUCTURE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735612A (en) 1956-02-21 hausmann
US7604453B2 (en) 2006-11-30 2009-10-20 General Electric Company Methods and system for recuperated circumferential cooling of integral turbine nozzle and shroud assemblies

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047354B (en) * 1979-04-26 1983-03-30 Rolls Royce Gas turbine engines
FR2540939A1 (fr) 1983-02-10 1984-08-17 Snecma Anneau d'etancheite pour un rotor de turbine d'une turbomachine et installation de turbomachine munie de tels anneaux
US4650394A (en) 1984-11-13 1987-03-17 United Technologies Corporation Coolable seal assembly for a gas turbine engine
CA2070511C (en) 1991-07-22 2001-08-21 Steven Milo Toborg Turbine nozzle support
US5374161A (en) 1993-12-13 1994-12-20 United Technologies Corporation Blade outer air seal cooling enhanced with inter-segment film slot
DE59609405D1 (de) * 1996-04-01 2002-08-08 Alstom Wandkontur für eine axiale Strömungsmaschine
US5791837A (en) 1996-08-16 1998-08-11 Johnson; Samuel Annular tool for cutting holes in metal
JPH10184304A (ja) * 1996-12-27 1998-07-14 Toshiba Corp 軸流タービンのタービンノズルおよびタービン動翼
JP3883245B2 (ja) 1997-02-26 2007-02-21 株式会社東芝 軸流タービン
JP2001221065A (ja) 2000-02-10 2001-08-17 General Electric Co <Ge> ガスタービンシュラウドのインピンジメント冷却
DE10333165A1 (de) 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
US7063509B2 (en) * 2003-09-05 2006-06-20 General Electric Company Conical tip shroud fillet for a turbine bucket
JP2006138259A (ja) * 2004-11-12 2006-06-01 Mitsubishi Heavy Ind Ltd 軸流タービン
US7179049B2 (en) * 2004-12-10 2007-02-20 Pratt & Whitney Canada Corp. Gas turbine gas path contour
US7785067B2 (en) 2006-11-30 2010-08-31 General Electric Company Method and system to facilitate cooling turbine engines
US7722315B2 (en) 2006-11-30 2010-05-25 General Electric Company Method and system to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly
DE102007027427A1 (de) 2007-06-14 2008-12-18 Rolls-Royce Deutschland Ltd & Co Kg Schaufeldeckband mit Überstand

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2735612A (en) 1956-02-21 hausmann
US7604453B2 (en) 2006-11-30 2009-10-20 General Electric Company Methods and system for recuperated circumferential cooling of integral turbine nozzle and shroud assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536162B1 (ko) 2022-11-18 2023-05-26 터보파워텍(주) 3d프린팅에 의한 가스터빈 슈라우드 블록 제조방법

Also Published As

Publication number Publication date
WO2012132787A1 (ja) 2012-10-04
KR20130131452A (ko) 2013-12-03
US20140056690A1 (en) 2014-02-27
KR20150058561A (ko) 2015-05-28
CN103477032A (zh) 2013-12-25
KR101714829B1 (ko) 2017-03-09
US9689272B2 (en) 2017-06-27
EP2692993A4 (en) 2014-08-27
EP2692993B1 (en) 2019-07-10
JP2012211527A (ja) 2012-11-01
EP2692993A1 (en) 2014-02-05
CN103477032B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
US8075256B2 (en) Ingestion resistant seal assembly
US8616832B2 (en) Turbine assemblies with impingement cooling
US20120057967A1 (en) Gas turbine engine
JP5879084B2 (ja) ターボ機械シール組立体
US9249678B2 (en) Transition duct for a gas turbine
US10443422B2 (en) Gas turbine engine with a rim seal between the rotor and stator
KR101737716B1 (ko) 가스 터빈 및 외측 슈라우드
US8561997B2 (en) Adverse pressure gradient seal mechanism
EP3441564A1 (en) Tubine component comprising a platform with a depression
US11339676B2 (en) Aircraft gas turbine, and rotor blade of aircraft gas turbine
US9957829B2 (en) Rotor tip clearance
CN110662885B (zh) 轴流旋转机械
JP6782671B2 (ja) ターボ機械
JP5404187B2 (ja) 端壁部材及びガスタービン
US10738638B2 (en) Rotor blade with wheel space swirlers and method for forming a rotor blade with wheel space swirlers
EP3816402B1 (en) Stator assembly for a gas turbine and gas turbine comprising said stator assembly
US11834953B2 (en) Seal assembly in a gas turbine engine
US20140054863A1 (en) Seal assembly for a turbine system
US20140050558A1 (en) Temperature gradient management arrangement for a turbine system and method of managing a temperature gradient of a turbine system
US20140154060A1 (en) Turbomachine seal assembly and method of sealing a rotor region of a turbomachine

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right