KR101712549B1 - 스페이서층을 가지는 발광 다이오드 - Google Patents

스페이서층을 가지는 발광 다이오드 Download PDF

Info

Publication number
KR101712549B1
KR101712549B1 KR1020100113666A KR20100113666A KR101712549B1 KR 101712549 B1 KR101712549 B1 KR 101712549B1 KR 1020100113666 A KR1020100113666 A KR 1020100113666A KR 20100113666 A KR20100113666 A KR 20100113666A KR 101712549 B1 KR101712549 B1 KR 101712549B1
Authority
KR
South Korea
Prior art keywords
layer
type
active region
algan
type contact
Prior art date
Application number
KR1020100113666A
Other languages
English (en)
Other versions
KR20110081033A (ko
Inventor
예경희
최승규
한창석
김광중
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to US12/983,499 priority Critical patent/US8357924B2/en
Priority to JP2012547950A priority patent/JP5709899B2/ja
Priority to EP11731878.2A priority patent/EP2523228B1/en
Priority to PCT/KR2011/000002 priority patent/WO2011083940A2/ko
Priority to CN201180012486.5A priority patent/CN102782883B/zh
Publication of KR20110081033A publication Critical patent/KR20110081033A/ko
Priority to US13/713,400 priority patent/US9136427B2/en
Priority to US14/690,036 priority patent/US9716210B2/en
Application granted granted Critical
Publication of KR101712549B1 publication Critical patent/KR101712549B1/ko
Priority to US15/643,403 priority patent/US10418514B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

n형 콘택층; 상기 n형 콘택층 상부에 형성된 p형 콘택층; 상기 n형 콘택층과 상기 p형 콘택층 사이에 개재되는 다중양자우물 구조의 활성영역; 및 상기 n형 콘택층과 상기 활성영역 사이에 개재된 스페이서층을 포함하되, 상기 스페이서층은 n형 불순물이 도핑되어 있고, 상기 n형 불순물의 도핑 농도는 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높으며, 상기 활성영역은 n형 불순물이 언도핑된 발광 다이오드가 제공된다.

Description

스페이서층을 가지는 발광 다이오드{LIGHT EMITTING DIODE HAVING SPACER LAYER}
본 발명은 발광 다이오드에 관한 것으로, 더욱 상세하게는 활성영역과 n형 콘택층 사이에 스페이서층을 가지는 발광 다이오드에 관한 것이다.
일반적으로, 질화물계 반도체는 풀컬러 디스플레이, 교통 신호등, 일반조명 및 광통신 기기의 광원으로 자외선, 청/녹색 발광 다이오드(light emitting diode) 또는 레이저 다이오드(laser diode)에 널리 이용되고 있다. 이러한 질화물계 발광 다이오드는 n형 및 p형 질화물반도체층 사이에 위치한 InGaN 계열의 다중양자우물 구조의 활성영역을 포함하며, 상기 활성영역 내의 양자우물층에서 전자와 정공이 재결합하는 원리로 빛을 생성시켜 방출시킨다.
이러한 종래의 질화물계 화합물 반도체는 GaN와 InN 사이에 11%의 격자부정합이 존재하기 때문에 InGaN 계열 다중양자우물구조에서는 양자우물과 양자장벽 계면에 강력한 스트레인이 발생하게 된다. 이러한 스트레인은 양자우물 내의 압전필드를 유발하여 내부양자효율(internal quantum efficiency)의 저하를 초래한다. 특히, 녹색 발광 다이오드의 경우, 양자우물에 함유되는 In의 양이 증가하기 때문에 압전필드에 의해 내부양자효율이 더욱 감소된다.
InGaN 발광 다이오드에 있어서, 다중양자 우물 구조의 활성 영역은 일반적으로 InGaN 우물층과 InGaN 장벽층이 교대로 적층되어 형성된다. 상기 우물층은 n형 및 p형 반도체층들 및 장벽층에 비해 밴드갭이 작은 반도체층으로 형성되어 전자와 정공이 재결합되는 양자 우물을 제공한다. 또한, 구동전압(Vf)을 낮추기 위해 장벽층들에 Si이 도핑될 수 있다. 그러나, Si가 도핑됨에 따라 활성영역의 결정질(crystal quality)이 낮아지는 문제점이 있다. 아울러, EPI 기술이 발전이 되지 않아 활성영역의 두께가 상대적으로 두꺼워지는 문제점이 있다.
또한, Si을 활성영역에 도핑할 경우 구동전압(Vf)는 감소하나 In이 포함된 활성층에 도핑할 경우 성장 표면 및 내부에 결점(defect)이 많이 발생할 수 있으며, 도핑을 함에 따라 전극분극 현상까지 발생되어 파장변환이 쉽게 일어날 수 있다.
한편, 저출력 발광 다이오드에서는 주입전류를 증가시킴에 따라 발광 효율이 높아지지만, 고출력 발광 다이오드에서는 주입 전류를 증가시킴에 따라 오히려 발광 다이오드의 발광효율이 떨어지는 현상이 발견된다. 이러한 현상은 효율 저하(efficiency droop) 현상이라고 불리며, 고출력 발광 다이오드의 고효율화를 위해서 해결할 기술적 사항이다.
효율 저하(efficiency droop)는 여러가지 요인들로 인해 주입 전류가 증가함에도 불구하고 발광 효율이 떨어지는 것으로 생각되고 있다. 효율 저하(efficiency droop)를 유발하는 요인들에는 여러 가지가 있을 수 있겠지만 그 중에서 열진동(thermal vibration), 오거 재결합(Auger recombination), 다중양자우물구조내에서의 내부 전기장, 결정구조에 의한 비-재결합율(non-recombination rate)의 증가가 있다.
열진동(thermal vibration)과 같은 열 또는 줄 가열 효과(thrermal or Joule heating effect)에 의해 전자와 정공이 활성층 영역에 오래 머물지 못하여 효율 저하(efficiency droop)가 유발될 수 있고, 고전류 주입시 캐리어 농도 증가로 인한 오거 재결합(Auger recombination)율의 증가에 의해 효율 저하(efficiency droop)이 유발될 수 있다. 또한, 순방향 전류 인가시에 다중양자우물구조내에서 내부 전기장이 형성됨으로 인해 전자들이 활성층의 밖으로 빠져나가는 전자 오버플로우(electron overflow)와, 반도체 결정내의 결함으로 인한 비-재결합율(non-recombination rate) 증가에 의해 효율 저하(efficiency droop)가 유발될 수 있다.
한편, 전자들이 활성층의 밖으로 빠져나가는 것을 막기 위해 활성층상에 AlGaN 전자 블록킹층(EBL)이 형성될 수 있다. 그러나, 활성층과 전자 블록킹층내에서는 n형 불순물이 도핑되어 있음으로 인해 자발 분극 및 피에조 분극 전하에 의한 내부 전기장이 발생될 수 있다. 활성층 및 전자 블록킹층내에서의 내부 전기장으로 인해 전자가 다중양자우물구조의 활성층을 통과하기 위해서는 높은 인가 전압이 필요하다. 그러나, 350mA의 고출력 다이오드에서는 인가전압이 빌트인 전압(built-in voltage)보다 커지게 되면, 활성층을 중심으로 n측에서의 전도대(conduction band)가 p측에서의 전도대보다 높은 에너지 준위를 갖게 되고, 전자블록킹층의 에너지 준위가 낮아져 누설전류(leakage current)를 증가시키는 결과를 초래한다전자 블록킹층의 에너지 준위를 높이기 위해서는 전자 블록킹층내에서 Al 조성을 증가시킬 수 있으나, 이와 같은 방법은 결정성의 문제를 유발할 수 있는 문제점이 있다.
본 발명이 해결하려는 과제는 활성영역내에 n형 불순물을 도핑하지 않아 활성층내에서 자발 분극 및 피에조 분극 전하에 의한 내부 전기장의 발생을 완화시켜 구동 전압을 낮출 수 있는 발광 다이오드를 제공하는 것이다.
본 발명이 해결하려는 또 다른 과제는 활성층 내부의 에너지 준위를 n층과 p층의 에너지 준위보다 낮게 형성할 수 있게 하고, 전자 블록킹층의 역할을 증가시킬 수 있는 발광 다이오드를 제공하는 것이다.
본 발명의 일측면에 의하면, n형 콘택층; 상기 n형 콘택층 상부에 형성된 p형 콘택층; 상기 n형 콘택층과 상기 p형 콘택층 사이에 개재되는 다중양자우물 구조의 활성영역; 및 상기 n형 콘택층과 상기 활성영역 사이에 개재된 스페이서층을 포함하되, 상기 스페이서층은 n형 불순물이 도핑되어 있고, 상기 n형 불순물의 도핑 농도는 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높으며, 상기 활성영역은 n형 불순물이 언도핑된 발광 다이오드가 제공된다.
상기 스페이서층은 In을 포함하되, 상기 In의 함량은 상기 활성영역의 장벽층에서의 In 함량보다는 높고 상기 우물층에서의 In 함량보다는 낮을 수 있다.
상기 활성영역은 InGaN층을 포함하는 다중양자우물 구조일 수 있다.
상기 스페이서층은 InGaN층을 포함할 수 있으며, InxGa11 -xN(0≤x<1)과 InyGa1 -yN(0≤y<1)이 교대로 적층된 것일 수 있다. 상기 스페이서층은 서로 교대로 적층된 초격자층을 포함할 수 있다.
상기 스페이서층은 복수의 층으로 이루어지되, 상기 활성영역과 인접하는 적어도 하나의 층에는 n형 불순물이 도핑되어 있고, 그 나머지 층들은 n형 불순물이 언도핑되어 있되, 상기 n형 불순물의 도핑 농도는 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높을 수 있다.
상기 발광 다이오드는 상기 스페이서층과 상기 n형 콘택층사이에 형성된 중간층을 더 포함하되, 상기 중간층은 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높고, 상기 스페이서층에서의 상기 n형 불순물 농도보다는 상대적으로 낮게 n형 불순물이 도핑된 층을 포함할 수 있다.
상기 중간층은 n형 AlGaN층을 포함할 수 있다. 상기 n형 AlGaN층은 상기 활성영역에 가까울수록 Al의 조성이 점차로 또는 단계적으로 낮아질 수 있다. 상기 n형 AlGaN층은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막 구조로 형성될 수 있다. 상기 중간층은 상기 스페이서층과 n형 AlGaN층사이에 n-GaN층을 더 포함할 수 있다. 상기 중간층은 상기 n형 AlGaN층과 상기 n형 콘택층 사이에 언도핑된 GaN층, 로우 도핑된 n-GaN층 중 적어도 하나를 더 포함할 수 있다.
상기 발광 다이오드는 상기 활성영역과 상기 p형 콘택층 사이에 형성된 p형 클래드층을 더 포함할 수 있다. 상기 p형 클래드층은 p형 AlGaN층을 포함할 수 있다. 상기 p형 AlGaN층은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막 구조로 형성될 수 있다. 상기 p형 AlGaN층은 상기 활성영역에 인접한 층은 AlGaN으로 형성될 수 있다. 상기 p형 AlGaN층은 상기 활성영역에 인접한 상기 AlGaN층이 상기 p형 클래드층내의 다른 층들에 비하여 얇을 수 있다. 상기 p형 AlGaN층은 상기 p형 콘택층으로 가면서 Al의 조성이 점차로 또는 단계적으로 낮아질 수 있다.
상기 발광 다이오드는 상기 활성영역과 상기 p형 클래드층 사이에 InAlN층을 더 포함할 수 있다. 상기 InAlN층은 InN/AlN의 초격자 구조로 형성될 수 있다. 상기 InAlN층은 InN/AlN의 초격자 구조에서 InN층에 p형 불순물이 도핑될 수 있다.
본 발명의 실시예들에 따르면, 활성영역에 불순물이 도핑되지 않음에 따라 활성영역의 결정질을 개선할 수 있으며, 복수의 층으로 이루어진 스페이서층을 콘택층과 활성영역 사이에 형성함으로써 활성영역에 발생되는 스트레인을 완화시킬 수 있으며, 양자우물의 결정성을 개선하여 캐리어의 재결합율을 높일 수 있으며, 활성영역과 인접한 층에만 선택적으로 n형 불순물이 도핑된 스페이서층을 통해 활성영역에서의 구동전압을 낮추어 발광 효율이 향상된 발광 다이오드를 제공할 수 있다.
본 발명의 실시예들에 따르면, 활성층 내부의 에너지 밴드갭을 n층과 p층의 밴드갭 보다 낮게 형성할 수 있게 하고, 전자 블록킹층의 역할을 증가시켜서 활성영역에서의 구동전압을 낮추어 발광 효율이 향상된 발광 다이오드를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 실리콘 도핑 프로파일을 설명하기 위한 개략도이다.
도 3은 본 발명의 일실시예에 따른 발광 다이오드의 스페이서층 구조를 설명하기 위한 단면도이다.
도 4는 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 발광 다이오드의 실리콘 도핑 프로파일을 설명하기 위한 개략도이다.
도 6은 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.
도 7은 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.
도 8은 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 다음에 소개되는 실시예는 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수 있다. 그리고, 도면에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이고, 도 2는 상기 발광 다이오드의 개략적인 실리콘 도핑 프로파일을 나타내고, 도 3은 상기 발광 다이오드의 스페이서층 구조를 보여준다.
도 1 내지 도 3을 참조하면, 상기 발광 다이오드는 기판(21), n형 콘택층(26), 스페이서층(28), 다중양자우물 구조의 활성영역(29), p형 콘택층(33)을 포함한다. 또한, 핵층(23) 및 언도프 GaN층(u-GaN, 25)이 상기 기판(21)과 n형 콘택층(26) 사이에 개재될 수 있다.
상기 기판(21)은 질화갈륨계 반도체층을 성장시키기 위한 기판으로, 사파이어, SiC, 스피넬 등 특별히 제한되지 않으며, 패터닝된 사파이어 기판(PSS)일 수 있다.
상기 핵층(23)은 기판(21) 상에 u-GaN(25)을 성장시키기 위해 400~600℃의 저온에서 (Al, Ga)N로 형성될 수 있으며, 바람직하게는 AlN로 형성된다. 상기 핵층은 약 25nm의 두께로 형성될 수 있다.
u-GaN층(25)은 기판(21)과 n형 콘택층(26) 사이에서 전위와 같은 결함의 발생을 완화하기 위한 층으로, 상대적으로 고온, 예컨대 900 ~ 1200℃에서 성장된다.
상기 n형 콘택층(26)은 n-전극(39)이 형성되는 층으로, Si 또는 Ge과 같은 n형 불순물이 도핑될 수 있다. 예컨대, 상기 n형 콘택층(26)의 불순물 농도는 예컨대 5×1018atm/㎤ 일 수 있으며, 상대적으로 고온, 제1 온도(T1), 예컨대 900 ~ 1200℃에서 예컨대 2㎛이하로 성장되는 n-GaN일 수 있다.
스페이서층(28)은 활성영역(29)의 장벽층에 비해 밴드갭이 작고 우물층에 비해 밴드갭이 큰 (Al, In, Ga)N 계열의 III족 질화물 반도체층으로 이루어질 수 있다. 예컨대, 스페이서층(28)은 InxGa11 -xN(0≤x<1)을 포함할 수 있다.
스페이서층(28)은 n형 불순물이 고농도로 도핑되어 발광 다이오드의 순방향 전압을 낮춘다. 도 2에 도시된 바와 같이, 스페이서층(28)에 도핑되는 n형 불순물의 도핑농도는 n형 콘택층(26)의 n형 불순물 도핑 농도보다 높다.
스페이서층(28)의 In 조성비는 InGaN 양자우물층 내의 In 조성비보다 적은 것이 바람직한데, 이 경우, 전하를 활성영역 내에 잘 가둘 수 있어 발광효율을 향상시킬 수 있다.
이때, 상기 스페이서층(28)의 성장 방향을 기준으로 할 때 활성영역(29)과 인접하는 일부 두께의 영역에 n형 불순물을 도핑하도록 한다. 그리고, n형 불순물이 도핑된 두께의 영역들을 제외한 나머지 두께의 영역들은 n형 불순물을 언도핑하도록 한다. 스페이서층(28)의 전체 두께의 영역 중에서 활성영역(29)에 인접하는 일부 두께의 영역에만 n형 불순물이 도핑되어 있음에 따라, 스페이서층(28)으로부터 활성영역(29) 내로 전자를 원활하게 주입할 수 있다. 또한, 상기 n형 불순물이 도핑된 영역에서의 도핑농도는 상기 n형 콘택층(26)의 불순물 도핑농도보다 상대적으로 높은 예컨대, 9×1019atm/㎤일 수 있다. 이에 따라, 스페이서층(28)의 저항 증가를 방지할 수 있으며, 그 내부에서 생성된 전자들에 의해 활성영역(29)내로의 전자 주입 효율을 높일 수 있다. 한편, 스페이서층(28)은 도 3에 도시된 바와 같이, 스페이서층(28)은 활성영역(29)의 장벽층에 비해 밴드갭이 작고 우물층에 비해 밴드갭이 큰 (Al, In, Ga)N 계열의 III족 질화물 반도체층들(28a, 28b)이 교대로 적층된 구조를 가질 수 있다. 예컨대, 스페이서층(28)은 서로 다른 조성의 InxGa11 -xN(0≤x<1)(28a)와 InyGa1 -yN(0≤y<1)(28b)가 교대로 적층될 수 있다. InxGa11 -xN(0≤x<1)(28a)는 예컨대 30 ~ 40Å의 두께로, InyGa1 -yN(0≤y<1)(28b)는 15 ~ 20Å의 두께로 형성될 수 있다.
InxGa11 -xN(0≤x<1)(28a)와 InyGa1 -yN(0≤y<1)(28b)의 적층 구조를 가지는 스페이서층(28)은 스페이서층(28) 상에 형성되는 활성영역(29)의 결정성을 향상시킬 수 있으며, 스트레인을 감소시킬 수 있다. 스페이서층(28)은 7~15 주기로 형성될 수 있는데, 7주기 미만의 경우, 스페이서층(28)이 활성영역에 유발되는 스트레인을 완화시키는 효과가 미약하고, 15주기를 초과하면 공정시간이 증가되어 바람직하지 않다.
이때, 상기 스페이서층(28)에서 활성영역(29)에 인접하는 적어도 하나의 층(28a, 28b)에는 n형 불순물을 도핑하도록 한다. 그리고, n형 불순물이 도핑된 층들을 제외한 나머지 층들은 n형 불순물을 언도핑하도록 한다. 스페이서층(28)중에서 활성영역(29)에 인접하는 InGaN층(28a) 및/또는 InGaN층(28b)만 n형 불순물이 도핑되어 있음에 따라, 스페이서층(28)으로부터 활성영역(29) 내로 전자를 원활하게 주입할 수 있다. 또한, 상기 n형 불순물 도핑된 InGaN층(28a)의 도핑농도는 상기 n형 콘택층(26)의 불순물 도핑농도보다 상대적으로 높은 예컨대, 9×1019atm/㎤일 수 있다. 이에 따라, 스페이서층(28)의 저항 증가를 방지할 수 있으며, 그 내부에서 생성된 전자들에 의해 활성영역 내로의 전자 주입 효율을 높일 수 있다.
스페이서층(28)의 대부분의 층들이 언도프트 층으로 형성되기 때문에 발광 다이오드의 누설전류를 감소시킬 수 있다. 또한, 활성 영역(29)과 인접하는 적어도 하나의 층(28a, 28b)에만 n형 불순물을 고농도로 도핑함으로써 스페이서층(28)과 활성 영역(29) 사이의 접합(junction) 특성을 향상시킬 수 있다.
한편, 활성영역(29)에 인접하는 스페이서층(28c)은 스페이서층(28)을 구성하는 다른 반도체층보다 In을 더 포함하는 InGaN층으로 할 수 있다. 이때, 상기 활성영역(29)에 인접하는 스페이서층(28c)에 포함된 In의 양은 활성영역(29)의 양자 우물층보다 높을 수 있은데, 이 경우 n형 불순물의 도핑은 n형 콘택층(26)의 도핑 농도 정도로 도핑을 하며, 상기 스페이서층(28c)내에서 n형 콘택층(26)쪽에 도핑을 하는 것이 바람직하다.
활성영역(29)은 양자장벽층과 양자우물층이 교대로 적층된 다중양자우물 구조를 가지며, 양자우물층은 InGaN층을 포함한다. 상기 장벽층은 양자우물층에 비해 밴드갭이 넓은 질화갈륨계 반도체층, 예컨대, GaN, InGaN, AlGaN 또는 AlInGaN로 형성될 수 있다. InGaN 양자우물층 내의 In 조성비는 원하는 광 파장에 의해 결정된다. 활성영역(29)은 n형 불순물들, 예컨대 Si 이나 Ge이 도핑되어 있지 않다.
상기 활성 영역(29) 상에 p형 콘택층(33)이 위치한다. p형 콘택층(33)은 활성영역(29)위에 예컨대 GaN로 형성될 수 있다
또한, 상기 p형 콘택층(33) 상에 Ni/Au 또는 인디움 틴 산화막(ITO)과 같은 투명 전극(미도시됨)이 형성되고, 그 위에 p-전극(34)이 예컨대 리프트오프 공정으로 형성될 수 있다. 또한, 상기 n형 콘택층(26) 상에 Ti/Al 등의 n-전극(35)이 리프오프 공정으로 형성될 수 있다.
상술한 바와 같은 실시예에서는 활성영역(29)은 양자장벽층과 양자우물층에 n형 불순물이 도핑되어 있지 않음과 아울러, 대부분 n형 불순물이 포함되어 있지 않은 InxGa1 -xN(0≤x<1)(28a)와 InyGa1 -yN(0≤y<1)(28b)의 적층 구조를 가지는 스페이서층(28)위에서 성장됨에 따라 활성영역(29)의 결정성이 향상될 수 있으며, 스트레인이 감소될 수 있다. 또한, 스페이서층(28)중에서 활성영역(29)에 인접하는 InGaN층(28a) 및/또는 InGaN층(28b)에만 n형 불순물이 도핑되어 있음에 따라, 스페이서층(28)으로부터 활성영역(29) 내로 전자를 원활하게 주입할 수 있어 활성영역(29)에서 캐리어의 재결합율을 높일 수 있다. 그 결과, 발광 다이오드에서 발광 효율이 향상될 수 있다.
도 4는 본 발명의 다른 실시예에 따른 발광 다이오드를 설명하기 위한 단면도이고, 도 5는 본 발명의 다른 실시예에 따른 발광 다이오드의 실리콘 도핑 프로파일을 나타낸다.
도 4 및 도 5를 참조하면, 본 발명의 다른 실시예에 따른 발광 다이오드는 도 1 내지 도 3에 도시되어 설명된 발광 다이오드의 적층 구조와 대부분 같으며, 다만, 스페이서층(28)과 n형 콘텍층(26) 사이에 n형 불순물이 도핑된 중간층(27)을 더 포함하고 있으며, 활성영역(29)과 p형 콘택층(33)사이에 p형 클래드층(31)이 개재되어 있다.
상기 중간층(27)은 도 5에 도시된 바와 같이 상기 n형 콘택층(26)의 불순물 도핑 농도보다 상대적으로 높고, 상기 스페이서층(28)에서의 상기 n형 불순물 농도보다는 상대적으로 낮은 예컨대, 2.5×1019 atm/㎤의 농도로 n형 불순물이 도핑되며, 예컨대 n-AlGaN층을 포함할 수 있다.
n-AlGaN층은 활성영역(29)에 가까울수록 Al의 조성이 점차 낮아지도록 하거나, Al의 조성이 단계별로 낮아지도록 할 수 있다. 이때, Al의 조성 범위는 10 ~ 15%가 되며, 10 ~ 100nm의 두께로 적층되며, 바람직하게는 30 ~ 60nm의 두께로 할 수 있다. n-AlGaN층내에서 Al의 조성이 점점 또는 단계별로 낮아지게 설정됨에 따라, 중간층(27)의 에너지 준위는 활성영역(29)에 가까울수록 점점 낮아져서 중간층(27)과 스페이서층(28)의 경계면에서 가장 낮은 값을 가질 수 있다.
또한, n-AlGaN층은 다층막 구조로 형성될 수 있다. 예컨대, n-AlGaN층은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막으로 형성될 수 있다. n-AlGaN층이 다층막으로 형성되는 경우 AlGaN층의 결정성을 좋게 하기 위한 목적을 가진다. 예컨대, n-AlGaN층은 활성영역(29)으로 가면서 Al의 조성이 점차로 또는 단계적으로 낮아질 수 있다.
한편, 중간층(27)은 도 6에 도시된 바와 같이 n-AlGaN층(27b)과 스페이서층(28) 사이에 200 ~ 300Å의 두께로 적층된 n-GaN(27a)을 포함할 수 도 있다.
또한, 중간층(27)은 도 7에 도시된 바와 같이 언도핑된 GaN층(27c), 로우 도핑된 n-GaN층(27d)을 포함할 수 있으며, n-AlGaN층(27b)과 n형 콘택층(26) 사이에 예컨대, 1000 ~ 2000Å의 두께로 적층될 수 있다. 도면에서는 로우 도핑된 n-GaN층(27d)상에 언도핑된 GaN층(27c)이 형성된 것으로 도시되어 있으나, 본 발명은 이에 한정되지 않고 필요에 따라 언도핑된 GaN층(27c)위에 n-GaN층(27d)이 형성될 수 도 있다. 또한, 언도핑된 GaN층(27c) 또는 로우 도핑된 n-GaN층(27d) 중 어느 하나의 층만 형성될 수 도 있다.
또한, 중간층(27)은 도 8에 도시된 바와 같이 스페이서층(28)과 n형 콘택층(26) 사이에 n-GaN(27a), n-AlGaN층(27b), 언도핑된 GaN층(27c), 로우 도핑된 n-GaN층(27d)을 포함할 수 도 있다. 언도핑된 GaN층(27c)은 의도적으로 불순물이 도핑되지 않은 GaN로 100~5000Å의 두께로 형성될 수 있다. 언도핑된 GaN층(27c)은 불순물이 도핑되지 않기 때문에, n형 콘택층(26)에 비해 상대적으로 비저항이 높다. 따라서, n형 콘택층(26)에서 활성층(29)으로 유입되는 전자가 언도핑된 GaN층(27c)을 통과하기 전에 n형 콘택층(26) 내에서 고르게 분산될 수 있다.
로우 도핑된 n-GaN층(27d)은 n형 콘택층(26)에 비해 불순물이 낮은 농도로 도핑되기 때문에, n형 콘택층(26)에 비해 상대적으로 비저항이 높다. 따라서, n형 콘택층(26)에서 활성층(29)으로 유입되는 전자가 로우 도핑된 n-GaN층(27c)을 통과하기 전에 n형 콘택층(26) 내에서 고르게 분산될 수 있다.
한편, 상기 p형 클래드층(31)은 전자 블록킹층(electron blocking layer)로 동작하며, AlGaN으로 형성될 수 있으며, 다층막 구조로 형성될 수 있다. 예컨대, p형 클래드층(31)은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막으로 형성될 수 있다. p형 클래드층(31)이 다층막으로 형성되는 경우 AlGaN층의 결정성을 좋게 하기 위한 목적을 가진다. 예컨대, 상기 p형 클래드층(31)은 활성영역(29)에 인접한 층은 AlGaN으로 형성되며, 상기 AlGaN층은 p형 콘택층(33)으로 가면서 Al의 조성이 점차 낮아질 수 있다. 이는 p형 클래드층(31)과 p형 콘택층(33)과의 계면에 의한 분극화(polarization) 현상을 줄이기 위한 것이다. 또한, 활성영역(29)에 인접한 첫번째 AlGaN층은 p형 클래드층(31)내의 다른 층들에 비하여 얇은 것이 좋다. p형 클래드층(31)의 첫번째 AlGaN층이 활성영역(29)과의 계면에서 발생하는 분극화 현상이 전자 블록킹을 강화하지만, AlGaN의 성장 온도(약 930℃ 20%)를 고려하면, In을 포함하는 활성영역(29)에 영향을 주지 않게 하는 것이 바람직하다. 한편, 상기 p형 클래드층(31)의 AlGaN층은 상기 n-AlGaN층(27b)보다 에너지 준위가 높은 것이 바람직하다. 즉, Al의 조성에 있어 상기 p형 클래드층(31)의 AlGaN층이 상기 n-AlGaN층(27b)에 비하여 높게 설정되어야 한다. 상기 p형 클래드층(31)의 AlGaN층이 상기 n-AlGaN층(27b)에 비하여 Al의 조성이 높게 설정되어야 하는 것은 순방향 전원 인가시 활성층을 중심으로 n측에서의 전도대가 p측에서의 전도대보다 높아질 수 있기 때문에 이를 완화하기 위한 것이다.
또한, 활성영역(29)과 p형 클래드층(31)사이에 InAlN층을 더 포함할 수 있다. 이 경우 InAlN층에서 In의 조성은 약 0.10 ∼ 0.20 사이 정도가 될 수 있으며, 바람직하게는 In의 조성은 약 0.17 ∼ 0.18일 수 있다. 이때 InAlN층의 성장 온도는 예컨대 845℃일 수 있으며, InN/AlN의 초격자 구조로 형성될 수 있다. 또한, InAlN층의 두께는 약 10 ∼ 30nm정도이며, 바람직하게는 약 18 ∼ 22nm 정도로 형성될 수 있다. p형 클래드층(31)을 형성하는 AlGaN층의 두께보다 얇게 형성될 수 있다. 예컨대, InAlN층의 두께는 p형 클래드층(31)을 형성하는 AlGaN층에 비하여 3:2 정도의 두께로 얇게 형성할 수 있다. InAlN층에서 p형 불순물의 도핑농도는 약 8 ×1017atm/㎤정도이며, 도핑시에는 InN/AlN의 초격자 구조에서 InN에 도핑하는 것이 바람직하다. 이 경우, InAlN층은 홀농도를 증가시키는 역할을 할 수 있다. 활성영역(29)과 p형 클래드층(31)사이에 형성되는 InAlN층은 전자 블록킹층으로 동작하는 p형 클래드층(31)을 성장시킬 때 활성영역(29)에 대한 온도의 영향을 줄일 수 있다.
이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 정의되는 본 발명의 취지와 범위에 포함된다.
예컨대, 상술된 본 발명의 실시예들에서 스페이서층(28)중에서 n형 불순물이 도핑되는 층의 개수 및 n형 불순물의 도핑 농도, 적층 두께, 적층 횟수와, 상기 중간층(27), 언도핑된 층, n형 클래드층의 두께는 서로 연관될 수 있으며 필요에 따라 조절이 가능할 수 있다.
21 : 기판 23 : 핵층
25 : u-GaN층 26: n형 콘텍층
27 : 중간층 27a : n-GaN
27b : n-AlGaN층 27c: 언도핑된 GaN층
27d: 로우 도핑된 n-GaN층 28: 스페이서층
29 : 활성영역 31: p형 클래드층
33: p형 콘택층

Claims (22)

  1. n형 콘택층;
    상기 n형 콘택층 상부에 형성된 p형 콘택층;
    상기 n형 콘택층과 상기 p형 콘택층 사이에 개재된 다중양자우물 구조의 활성영역; 및
    상기 n형 콘택층과 상기 활성영역 사이에 개재되고 상기 활성 영역에 접하는 스페이서층을 포함하되,
    상기 스페이서층은 서로 교대로 적층된 초격자층을 포함하고,
    상기 스페이서층은 상기 n형 콘택층측으로부터 두께 방향으로 n형 불순물이 언도핑된 두께 영역 및 상기 n형 불순물이 언도핑된 두께 영역 상에 위치하는 n형 불순물이 도핑된 두께 영역을 포함하고, 상기 활성 영역은 상기 스페이서층 중 상기 n형 불순물이 도핑된 두께 영역에 접하며, 상기 n형 불순물이 도핑된 두께 영역 내의 상기 n형 불순물의 도핑 농도는 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높으며,
    상기 활성영역은 n형 불순물이 언도핑된 것을 특징으로 하는 발광 다이오드.
  2. 청구항 1에 있어서, 상기 스페이서층은 In을 포함하되, 상기 In의 함량은 상기 활성영역의 장벽층에서의 In 함량보다는 높고 우물층에서의 In 함량보다는 낮은 것을 특징으로 하는 발광 다이오드.
  3. 청구항 1에 있어서,
    상기 활성영역은 InGaN층을 포함하는 다중양자우물 구조인 것을 특징으로 하는 발광 다이오드.
  4. 청구항 1에 있어서, 상기 스페이서층은 InGaN층을 포함하는 것을 특징으로 하는 발광 다이오드.
  5. 청구항 4에 있어서,
    상기 스페이서층은 InxGa11 -xN(0≤x<1)과 InyGa1 -yN(0≤y<1)이 교대로 적층된 것을 특징으로 하는 발광 다이오드.
  6. 삭제
  7. 삭제
  8. 청구항 1에 있어서,
    상기 스페이서층과 상기 n형 콘택층사이에 형성된 중간층을 더 포함하되,
    상기 중간층은 상기 n형 콘택층의 불순물 도핑 농도보다 상대적으로 높고, 상기 스페이서층에서의 상기 n형 불순물 도핑 농도보다는 상대적으로 낮게 n형 불순물이 도핑된 층을 포함하는 것을 특징으로 하는 발광 다이오드.
  9. 청구항 8에 있어서,
    상기 중간층은 n형 AlGaN층을 포함하는 것을 특징으로 하는 발광 다이오드.
  10. 청구항 9에 있어서,
    상기 n형 AlGaN층은 상기 활성영역에 가까울수록 Al의 조성이 점차로 또는 단계적으로 낮아지는 것을 특징으로 하는 발광 다이오드.
  11. 청구항 9에 있어서,
    상기 n형 AlGaN층은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막 구조로 형성된 것을 특징으로 하는 발광 다이오드.
  12. 청구항 9에 있어서,
    상기 중간층은 상기 스페이서층과 n형 AlGaN층사이에 n-GaN층을 더 포함하는 것을 특징으로 하는 발광 다이오드.
  13. 청구항 9에 있어서,
    상기 중간층은 상기 n형 AlGaN층과 상기 n형 콘택층 사이에 언도핑된 GaN층, 로우 도핑된 n-GaN층 중 적어도 하나를 더 포함하는 것을 특징으로 하는 발광 다이오드.
  14. 청구항 1에 있어서,
    상기 활성영역과 상기 p형 콘택층 사이에 형성된 p형 클래드층을 더 포함하는 것을 특징으로 하는 발광 다이오드.
  15. 청구항 14에 있어서,
    상기 p형 클래드층은 p형 AlGaN층을 포함하는 것을 특징으로 하는 발광 다이오드.
  16. 청구항 15에 있어서, 상기 p형 AlGaN층은 AlGaN/GaN 또는 AlGaN/InGaN의 다층막 구조로 형성된 것을 특징으로 하는 발광 다이오드.
  17. 청구항 16에 있어서,
    상기 p형 AlGaN층은 상기 활성영역에 인접한 층은 AlGaN으로 형성된 것을 특징으로 하는 발광 다이오드,
  18. 청구항 16에 있어서,
    상기 p형 AlGaN층은 상기 활성영역에 인접한 상기 AlGaN층이 상기 p형 클래드층내의 다른 층들에 비하여 얇은 것을 특징으로 하는 발광 다이오드.
  19. 청구항 15에 있어서, 상기 p형 AlGaN층은 상기 p형 콘택층으로 가면서 Al의 조성이 점차로 또는 단계적으로 낮아지는 것을 특징으로 하는 발광 다이오드.
  20. 청구항 14에 있어서,
    상기 활성영역과 상기 p형 클래드층 사이에 InAlN층을 더 포함하는 것을 특징으로 하는 발광 다이오드.
  21. 청구항 20에 있어서,
    상기 InAlN층은 InN/AlN의 초격자 구조로 형성된 것을 특징으로 하는 발광 다이오드.
  22. 청구항 21에 있어서,
    InAlN층은 InN/AlN의 초격자 구조에서 InN층에 p형 불순물이 도핑된 것을 특징으로 하는 발광 다이오드.
KR1020100113666A 2010-01-05 2010-11-16 스페이서층을 가지는 발광 다이오드 KR101712549B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/983,499 US8357924B2 (en) 2010-01-05 2011-01-03 Light emitting diode and method of fabricating the same
JP2012547950A JP5709899B2 (ja) 2010-01-05 2011-01-03 発光ダイオード及びその製造方法
EP11731878.2A EP2523228B1 (en) 2010-01-05 2011-01-03 Light emitting diode
PCT/KR2011/000002 WO2011083940A2 (ko) 2010-01-05 2011-01-03 발광 다이오드 및 그것을 제조하는 방법
CN201180012486.5A CN102782883B (zh) 2010-01-05 2011-01-03 发光二极管及其制造方法
US13/713,400 US9136427B2 (en) 2010-01-05 2012-12-13 Light emitting diode and method of fabricating the same
US14/690,036 US9716210B2 (en) 2010-01-05 2015-04-17 Light emitting diode and method of fabricating the same
US15/643,403 US10418514B2 (en) 2010-01-05 2017-07-06 Light emitting diode and method of fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100000559 2010-01-05
KR1020100000559 2010-01-05

Publications (2)

Publication Number Publication Date
KR20110081033A KR20110081033A (ko) 2011-07-13
KR101712549B1 true KR101712549B1 (ko) 2017-03-22

Family

ID=44919827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100113666A KR101712549B1 (ko) 2010-01-05 2010-11-16 스페이서층을 가지는 발광 다이오드

Country Status (1)

Country Link
KR (1) KR101712549B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102035292B1 (ko) * 2013-04-11 2019-10-22 서울바이오시스 주식회사 개선된 정전 방전 특성을 갖는 발광 다이오드
US9660133B2 (en) 2013-09-23 2017-05-23 Sensor Electronic Technology, Inc. Group III nitride heterostructure for optoelectronic device
KR102376672B1 (ko) * 2015-09-01 2022-03-21 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 및 발광소자 패키지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204078A (ja) * 1998-12-08 2003-07-18 Nichia Chem Ind Ltd 窒化物半導体素子
KR100456063B1 (ko) * 2004-02-13 2004-11-10 에피밸리 주식회사 Ⅲ-질화물 반도체 발광소자
JP2007115887A (ja) * 2005-10-20 2007-05-10 Rohm Co Ltd 窒化物半導体素子およびその製法
JP2008511154A (ja) * 2004-08-26 2008-04-10 エルジー イノテック カンパニー リミテッド 窒化物半導体発光素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003204078A (ja) * 1998-12-08 2003-07-18 Nichia Chem Ind Ltd 窒化物半導体素子
KR100456063B1 (ko) * 2004-02-13 2004-11-10 에피밸리 주식회사 Ⅲ-질화물 반도체 발광소자
JP2008511154A (ja) * 2004-08-26 2008-04-10 エルジー イノテック カンパニー リミテッド 窒化物半導体発光素子及びその製造方法
JP2007115887A (ja) * 2005-10-20 2007-05-10 Rohm Co Ltd 窒化物半導体素子およびその製法

Also Published As

Publication number Publication date
KR20110081033A (ko) 2011-07-13

Similar Documents

Publication Publication Date Title
US10418514B2 (en) Light emitting diode and method of fabricating the same
KR101017396B1 (ko) 변조도핑층을 갖는 발광 다이오드
JP5242039B2 (ja) 窒化物半導体発光素子
KR20080010136A (ko) 질화물계 발광 소자
KR101923670B1 (ko) 전자 차단층을 갖는 발광 소자
KR101997020B1 (ko) 근자외선 발광 소자
KR101497082B1 (ko) 전자 저장 및 퍼짐층을 이용한 질화물 반도체 발광소자
KR20130129683A (ko) 그레이드 초격자 구조의 전자 차단층을 갖는 반도체 발광 소자
KR102160070B1 (ko) 근자외선 발광 소자
KR20110048240A (ko) 질화물 반도체 소자
KR101423720B1 (ko) 다중양자웰 구조의 활성 영역을 갖는 발광 소자 및 그제조방법
KR100818269B1 (ko) 질화물 반도체 발광소자
KR100979701B1 (ko) 변조도핑층을 갖는 발광 다이오드
KR101712549B1 (ko) 스페이서층을 가지는 발광 다이오드
KR100495824B1 (ko) 반도체 엘이디 소자
KR101507130B1 (ko) 초격자층을 갖는 발광 다이오드
KR20140094807A (ko) 발광소자
KR20130063378A (ko) 질화물 반도체 소자 및 그 제조 방법
KR20100024154A (ko) 발광 다이오드
KR20120013577A (ko) 다중양자우물 구조의 활성 영역을 갖는 발광 소자
KR101393356B1 (ko) 발광 다이오드
KR20110100569A (ko) 질화물 반도체 소자
KR20150085950A (ko) 다중양자우물 구조 활성층을 포함하는 발광다이오드 및 이의 제조방법
KR101955309B1 (ko) 전자 차단층을 갖는 반도체 발광 소자
KR20130104822A (ko) 반도체 발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 4