KR101708397B1 - 기판상에 유전체 층을 형성하기 위한 방법 그리고 장치 - Google Patents

기판상에 유전체 층을 형성하기 위한 방법 그리고 장치 Download PDF

Info

Publication number
KR101708397B1
KR101708397B1 KR1020127019514A KR20127019514A KR101708397B1 KR 101708397 B1 KR101708397 B1 KR 101708397B1 KR 1020127019514 A KR1020127019514 A KR 1020127019514A KR 20127019514 A KR20127019514 A KR 20127019514A KR 101708397 B1 KR101708397 B1 KR 101708397B1
Authority
KR
South Korea
Prior art keywords
substrate
plasma
dielectric layer
plasma electrode
forming
Prior art date
Application number
KR1020127019514A
Other languages
English (en)
Other versions
KR20120132476A (ko
Inventor
빌헬름 베크만
Original Assignee
빌헬름 베크만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 빌헬름 베크만 filed Critical 빌헬름 베크만
Publication of KR20120132476A publication Critical patent/KR20120132476A/ko
Application granted granted Critical
Publication of KR101708397B1 publication Critical patent/KR101708397B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 기판상에 유전체 층을 형성하기 위한 방법 및 장치와 관련이 있으며, 이 경우에는 플라즈마 전극과 기판 사이에서 공정 가스로부터 플라즈마가 발생 됨으로써, 기판상에 유전체 층을 형성하기 위하여 기판 및 공정 가스의 화학적인 반응이 적어도 부분적으로 나타나게 되고 그리고/또는 공정 가스 성분들의 증착이 적어도 부분적으로 나타나게 된다. 본 발명에서 '플라즈마 전극'이라는 용어는 두 개의 전극으로 이루어진, 바람직하게는 상기 두 개 전극의 간격이 정해져 있는 하나의 유닛을 지시한다. 본 발명에 따른 방법에서는 플라즈마 전극과 기판의 간격이 공정 가스 성분들의 화학 반응 중에 그리고/또는 증착 중에 변경된다. 상기 방법을 실시하기 위한 본 발명에 따른 장치도 또한 기술된다.

Description

기판상에 유전체 층을 형성하기 위한 방법 그리고 장치 {METHOD AND APPARATUS FOR FORMING A DIELECTRIC LAYER ON A SUBSTRATE}
본 발명은 기판상에, 특히 반도체 기판상에 유전체 층을 형성하기 위한 방법 및 장치에 관한 것이다.
예를 들어 메모리 칩, 마이크로 프로세서와 같은 전자 소자를 제조하는 경우에, 그리고 또한 태양 광 전지 또는 평면 모니터 분야에서도 최종 제품을 제조하기 위해서는 상이한 제조 단계들이 반드시 필요하다. 이와 같은 제조 단계에서는 제품 제조 중에 전자 소자를 구성하기 위하여 상이한 층들이 제공된다. 상기 층들 중에 중요한 부류는 상이한 층들을 절연시키는 유전체 층이다. 다른 모든 층 구조에서도 마찬가지로, 소자의 기능을 보증하기 위해서는 반드시 유전체 층들이 에러 없이 그리고 신뢰할만하게 구성되어야만 한다.
기판 또는 다른 층상에 유전체 층을 형성하기 위한 상이한 방법들이 공지되어 있다. 이와 같은 방법의 한 가지 예는 소위 오븐 또는 신속 가열 장치(RTP-장치) 내부에서 반도체 기판상에 열적인 산화물 층을 형성하는 것이다. 이곳에서는 높은 균일성 및 우수한 전기적 특성들을 갖는 유전체 층들이 조절된 상태로 발생 될 수 있다.
하지만, 상기와 같은 열적인 산화 방법의 한 가지 단점은 다른 무엇보다도 산화 공정을 실시하기 위해서 사용되는 온도에 있다고 말할 수 있는데, 그 이유는 상기 산화 작용이 그 아래에 있는 구조물들을 손상시킬 수 있기 때문이다. 그렇기 때문에 상기와 같은 시스템들은 항상 처리 과정에서 발생하는 열적인 비용을 줄이려는 노력을 하고 있지만, 이와 같은 노력은 단지 제한적으로만 성공을 거두고 있다.
더 나아가서는 유전체 층을 형성하기 위하여 기판을 플라즈마 처리하는 것도 공지되어 있다. 따라서, 예컨대 US 특허 7,381,595 B2호는 고밀도 플라즈마를 사용한 규소 반도체의 저온-플라즈마 산화를 기술하고 있다. 본 특허에서 플라즈마 소스는 이하에서 전체적으로 플라즈마 전극으로 표기되고, 서로 마주 놓인 두 개의 플레이트 모양 전극에 의해서 형성된다. 기판들은 서로 마주 놓인 상기 두 개의 플레이트 모양 전극들 사이에 수용되어 자체적으로 상기 두 개 전극 중에 하나의 전극의 한 부분을 형성한다. 플라즈마 산화에서 사용되는 온도는 열적인 산화에 대하여 열적인 비용을 현저히 감소시키고, 그럼으로써 상기 열적인 산화와 관련된 단점들을 개선할 수 있다.
하지만, 상기 특허에 기술된 플라즈마 산화는 불균일한 산화 층을 야기할 수 있으며, 그리고 특히 상기와 같이 형성된 층들의 전기적인 특성들은 불충분할 수 있다.
서로 마주 놓인 두 개의 플레이트 모양 전극으로부터 형성되는 유사한 플라즈마 전극 - 이 경우에는 처리할 기판이 전극들 사이에 배치되어 있음 - 은 US 6,037,017 A호에서 기술된다. 상기 플라즈마 전극에서는 전극들의 간격이 상이한 프로세스 파라미터들에 따라서 조절될 수 있다. 이와 같은 유형의 추가의 플라즈마 전극들은 US 2007/0026540 A1호, US 5,492,735호 그리고 US 5,281,557호에 공지되어 있다.
WO 2010/015385 A호에는 대안적인 막대 모양의 마이크로파 플라즈마 전극이 기재되어 있으며, 이 경우 내부 도체는 제 1 부분 영역에서 외부 도체에 의하여 완전히 둘러싸여 있다. 상기 부분 영역에 이웃하여 하나의 추가 부분 영역이 연결되는데, 상기 추가 부분 영역 내에서는 외부 도체가 자유 단부 쪽으로 확장되는 개구를 제공해준다. 상기 확장 개구의 영역에서는 플라즈마를 발생하기 위하여 마이크로파 파워가 디커플링(decoupling) 된다. 내부 도체, 외부 도체 및 디커플링 구조물을 구비하는 추가의 막대 모양 플라즈마 전극은 예컨대 DE 197 22 272호에 공지되어 있다. 이와 같은 막대 모양의 플라즈마 전극은 가공할 기판에 마주 놓이도록 배치될 수 있으며, 그리고 기판은 플라즈마를 발생하는 전극들 사이에 배치되어 있지 않다. 이와 같은 플라즈마 전극에 의해서는 가공의 결과가 개선될 수는 있겠지만, 그 개선의 수준은 항상 충분히 우수할 수 없다. 특히 상기 플라즈마 전극을 사용해서 형성되는 층들의 전기적인 특성들은 여전히 불충분할 수 있다.
또한, US 2006/003603 A1호에는 기판상에 절연 층을 형성하기 위한 방법 및 장치가 공지되어 있다. 이 방법에서는 마이크로파 플라즈마가 코팅될 기판 상부에서 형성되고, 플라즈마와 기판의 간격이 코팅 중에 변경됨으로써, 처음에는 큰 간격이 그리고 그 이후에는 작은 간격이 형성된다. 그럼으로써, 상기 층의 형성은 처음에는 플라즈마 내에 있는 이온들에 의해서 그리고 그 이후에는 라디칼에 의해서 기판의 표면에 영향을 미치게 된다.
전술된 선행 기술로부터 출발하는 본 발명의 과제는, 상기와 같은 단점들 중에 적어도 한 가지의 단점을 극복할 수 있는, 기판상에 유전체 층을 형성하기 위한 방법 및 장치를 제시하는 것이다.
상기 과제를 해결하기 위하여, 본 발명에 따라 청구항 1 또는 2에 기재된 유전체 층을 형성하기 위한 방법 그리고 청구항 10 또는 11에 기재된 유전체 층을 형성하기 위한 장치가 제공되었다. 본 발명의 추가의 실시 예들은 종속 청구항들에서 드러난다.
특히 기판상에 유전체 층을 형성하기 위한 방법에서는, 기판과 상기 기판에 마주 놓인 플라즈마 전극 사이에서 공정 가스로부터 플라즈마가 발생 됨으로써, 기판상에 유전체 층을 형성하기 위하여 기판 및 공정 가스의 화학적인 반응이 적어도 부분적으로 나타나게 되고 그리고/또는 공정 가스 성분들의 증착이 적어도 부분적으로 나타나게 된다. 공정 가스 성분들의 화학 반응 중에 그리고/또는 증착 중에는 플라즈마 전극과 기판의 간격이 축소됨으로써, 균질의 유전체 층의 형성이 촉진될 수 있다. 이때 유의해야만 할 점은, 본 발명에 사용된 바와 같은 '플라즈마 전극'이라는 용어는 두 개의 전극으로 이루어진 하나의 유닛이며, 개별 전극을 지시하지는 않는다는 것이다. 유전체 층의 형성 도중에 나타나는 간격 축소는 상기 유전체 층의 전기적인 파라미터들의 개선을 가능케 한다. 간격이 축소됨으로써 기본이 되는 성장 메커니즘이 영향을 받게 되고, 그로 인해 유전체 층의 형성 그리고 상기 유전체 층의 전기적인 특성들이 개선될 수 있다.
따라서, 성장 메커니즘은 예를 들어 전극 간격이 예컨대 10 cm로 큰 경우에는 플라즈마 가스의 라디칼 성분들의 효과를 토대로 한다. 전극 간격이 크면 이온 밀도와 전극 밀도의 재조합이 이루어지고, 오로지 라디칼만 그대로 유지되어 단지 제한된 두께로만 표면을 산화시킨다. 전극 간격이 예를 들어 2 cm로 작은 경우에는 큰 전극 농도로 인하여 기판 표면에서 직접적으로 양극 효과(anode effect)가 나타나게 된다. 하지만, 이와 같은 성장 메커니즘의 변경은 성장하는 유전체 층의 전기적인 파라미터들에 영향을 미치며, 그리고 특히 그 아래에 놓인 기판에 대한 인터페이스-특성에도 영향을 미친다.
본 발명에서 플라즈마는 바람직하게 상호 고정된 간격을 갖는 내부 도체 및 외부 도체를 구비하는 막대 모양의 마이크로파-플라즈마 전극에 의해서 적어도 부분적으로 발생 된다. 특히 플라즈마 전극의 구조와 관련해서 본 발명의 대상이 되는, WO 2010 015385 A호에 기술된 바와 같은 플라즈마 전극이 사용될 수 있다. 이와 같은 플라즈마 전극에서는 내부 전극 및 외부 전극이 서로 임의의, 하지만 고정된 간격을 가지며, 그리고 디커플링 구조물은 마이크로파가 방출되어 플라즈마가 점화될 수 있도록 영향을 미친다. 특히 상기와 같은 플라즈마 전극에서는 처리될 기판이 상기 플라즈마 전극의 전극들 사이에 놓여 있지 않다. 상기 전극들 사이에서는, 전극들 사이에서 플라즈마를 형성하는 플레이트 모양 전극의 경우에서와 같이 저압이 주도할 필요가 없다. 따라서, 막대 모양의 플라즈마 전극들은 원래의 공정 영역 외부에도 놓일 수 있으며, 예컨대 마이크로파 방사선에 대하여 실제로 투과적인 피복 튜브(cladding tube)를 통하여 이전에 발생된 플라즈마로부터 분리될 수 있다. 이와 같은 구조에서 막대 모양의 플라즈마 전극은 작동 중에 전극 터널에 의해서 둘러싸일 수 있으며, 상기 전극 터널 내부에는 다양한 전하 상태를 갖는 다양한 종류들이 존재한다. 상기 전극 터널이 기판상에서의 반응 및/또는 증착을 위한 다양한 종류들을 제시해주고, 마이크로파 방사선에 대해서도 기판을 차폐해줌으로써, 결과적으로 상기 마이크로파 방사선은 기판에 도달할 수 없게 된다.
대안적으로는 기판의 산화 및/또는 질화 또는 증착을 이용해서 유전체 층을 형성하기 위한 방법이 제공되었으며, 이 방법에서는 기판에 이웃하는 적어도 하나의 플라즈마 전극에 의해서 공정 가스로부터 플라즈마가 발생 되며, 이 경우 기판은 영-전위(zero-potential)이고, 적어도 하나의 플라즈마 전극의 전극들 사이에 놓여 있지 않으며, 그리고 이 경우에는 기판과 플라즈마 간의 상관 관계가 층 형성 도중에 변경됨으로써, 결과적으로 층의 형성이 시작될 때에는 라디칼성 반응이 주도하게 되고, 추후의 시점에서는 양극 반응이 주도하게 된다. 그럼으로써, 뛰어난 특성들을 갖는 유전체 층들이 제조될 수 있다.
상기와 같은 상관 관계의 변경은 바람직하게 플라즈마 전극과 기판의 간격 변경을 통해서 이루어질 수 있다. 대안적으로는 도전성 재료로 이루어진 격자가 적어도 하나의 플라즈마 전극과 기판 사이에 제공될 수도 있으며, 상기 격자의 전기적인 초기 응력(prestress)은 변경된다. 간격을 변경하는 방식 또는 격자를 사용하는 방식의 대안으로서 또는 이와 같은 방식들에 추가하여, 상관 관계는 또한 플라즈마 전극에 공급되는 에너지, 압력 및/또는 공정 가스의 조성 그리고/또는 플라즈마와 무관한 적어도 하나의 열원(heat source)을 통해 사전에 결정된 온도로 가열되는 기판의 온도를 통해서도 조절될 수 있다. 그럼으로써, 한 편으로는 플라즈마가 제어되어 성장 메커니즘에 적응될 수 있으며, 그리고 다른 한 편으로는 기판의 온도를 통해서 층의 형성이 영향을 받을 수 있게 된다.
본 발명의 한 가지 바람직한 실시 예에 따르면, 플라즈마 전극과 기판의 간격은 이전에 이미 성장된 그리고/또는 증착된 층의 두께에 따라서 조절되고, 특히 층의 두께가 증가함에 따라 축소된다. 그럼으로써, 예컨대 처음에는 강력한 전기장 없이도 그리고 임의의 방식으로 방향 설정된 반응 성분들의 확산에 의하여 플라즈마 가스의 라디칼 성분들에 의해 작동되는 층 구조물이 달성될 수 있다. 그 후에 간격이 축소됨으로써 주도적인 효과는 양극 효과 쪽으로 이동하게 되며, 이와 같은 양극 효과에서는 전기장이 바람직하게 기판 표면에 대하여 수직으로 작용을 한다. 그럼으로써, 유전체 층의 성장 중에 자기 회복(self healing) 효과가 나타나게 되며, 층의 두께가 점점 더 균일해지거나 또는 원자 인터페이스가 점점 더 평탄해진다. 그로 인해 유전체 층의 전기적인 파라미터들은 긍정적인 영향을 받게 된다.
바람직하게는 플라즈마 전극과 기판의 간격에 따라서 상기 플라즈마 전극에 공급되는 에너지, 압력 및/또는 공정 가스의 조성 그리고/또는 플라즈마와 무관한 적어도 하나의 열원을 통해 사전에 결정된 온도로 가열되는 기판의 온도가 조절된다. 그럼으로써, 한 편으로는 플라즈마가 제어되어 성장 메커니즘에 적응될 수 있으며, 그리고 다른 한 편으로는 기판의 온도를 통해서 층의 형성이 영향을 받을 수 있게 된다.
본 발명의 한 가지 바람직한 실시 예에서 기판은 반도체 기판, 특히 규소 기판이며, 상기 기판은 비교적 낮은 비용으로 인해 반도체 기술에서 자주 사용된다. 그러나 상기 기판은 예컨대 태양 전지 산업용의 대형 패널, 코팅된 유리 플레이트 또는 임의의 다른 기판일 수도 있다.
성장된 그리고/또는 증착된 층으로서는 바람직하게 산화물, 옥시나이트라이드, 질화물 또는 k ≥ 3.9의 높은 유전 상수를 갖는 기타의 재료가 사용된다. 그러나 다른 유전체 층도 형성될 수 있다. 한 가지 바람직한 형태에 따르면, 플라즈마는 마이크로파 방사선에 의해서 발생 된다. 한 가지 대안적인 실시 예에서는 플라즈마가 HF-방사선에 의해서 발생 된다. 우수한 층 구조를 위해서는 플라즈마가 펄스 방식으로 작동되는 것이 바람직하다.
유전체 층 및 상기 유전체 층으로부터 산출되는 전기적인 파라미터를 우수하게 형성하기 위해서 바람직하게는 성장 속도 및/또는 증착 속도가 제어됨으로써, 0.5 nm/s 미만의, 특히 0.1 nm/s 미만의 그리고 바람직하게는 0.01 내지 0.05 nm/s의 대체로 일정한 속도로 층 구조물이 발생 된다. 이때 '대체로 일정한 속도'로서는 평균값에 대해서 ±10%의 최대 편차를 갖는 속도가 간주 된다.
기판상에 유전체 층을 형성하기 위한 본 발명에 따른 장치에서는 적어도 하나의 공정 가스 유입구를 갖춘 프로세스 챔버가 제공되었다. 상기 장치는 또한 운송 경로를 따라 상기 프로세스 챔버를 관통해서 기판을 운송하기 위하여 적어도 하나의 컨베이어 유닛도 구비하며, 이때 상기 컨베이어 유닛은 기판을 수용하기 위한 수용 영역을 규정하고 그리고 기판을 위한 운송 경로에 대하여 적어도 부분적으로 상이한 간격을 두고서 배치된 다수의 플라즈마 전극을 구비하며, 이 경우 기판 운송 방향으로 전방에 놓인 적어도 하나의 플라즈마 전극은 기판 운송 방향으로 그 뒤에 놓인 플라즈마 전극보다 기판 운송 경로에 대하여 더 큰 간격을 갖는다. 상기 장치는 플라즈마 처리시에 플라즈마 전극과 기판의 간격을 간단한 방식으로 축소할 수 있다. 이 경우에 상기 간격 축소 과정은 유전체 층이 형성되는 동안에 프로세스 챔버를 관통하는 기판의 동작에 의해서 자동으로 이루어지는 것이 바람직하다.
본 발명의 한 가지 대안적인 실시 예에서는 기판의 산화 및/또는 질화를 이용해서 기판상에 유전체 층을 형성하기 위한 장치가 제공되었으며, 이 경우 상기 장치는 적어도 하나의 공정 가스 유입구를 갖춘 프로세스 챔버를 구비한다. 상기 장치는 또한 적어도 하나의 기판 홀더, 적어도 하나의 플라즈마 전극 및 기판과 플라즈마 간의 상관 관계를 변경하기 위한 수단들을 구비하며, 이 경우 상기 기판 홀더는 기판을 프로세스 챔버 내부에 영-전위 상태로 고정하기 위한 수용 영역을 규정하고, 상기 적어도 하나의 플라즈마 전극은 기판을 위한 고정 영역에 이웃한 장소에서 또는 상기 고정 영역 내부에서 플라즈마를 발생하기 위한 두 개의 전극을 구비하며, 이때 상기 기판을 위한 고정 영역은 전극들 사이에 놓여 있지 않으며, 그리고 유전체 층이 형성되는 동안에 상기 기판과 플라즈마 간의 상관 관계를 변경하기 위한 수단들은 상기 층 형성의 제 1 시점에서는 라디칼성 반응이 주도를 하도록 그리고 그 이후의 시점에서는 양극 반응이 주도를 하도록 작동된다. 이때 상기 상관 관계를 변경하기 위한 수단들은 도전 재료로 이루어지고 플라즈마 전극과 기판 홀더 사이에 놓여 있는 격자, 그리고 상기 격자의 전기적인 초기 응력을 조절하기 위한 제어 유닛, 또는 운송 경로를 따라 프로세스 챔버를 관통해서, 기판을 위한 운송 경로에 대하여 적어도 부분적으로 상이한 간격을 두고서 배치된 다수의 플라즈마 전극을 따라서 기판을 운송하기 위한 적어도 하나의 컨베이어 유닛을 구비하며, 이 경우 기판 운송 방향으로 전방에 놓인 적어도 하나의 플라즈마 전극은 기판 운송 방향으로 그 뒤에 놓인 플라즈마 전극보다 기판 운송 경로에 대하여 더 큰 간격을 갖는다. 상기 상관 관계는 플라즈마 팽창률을 변화시키는 공정 가스 압력의 변동에 의해서도 변경될 수 있다.
점점 더 작아지는 간격을 제공하기 위하여, 다수의 플라즈마 전극으로 구성된 제 1 그룹이 운송 경로에 대해서 하나의 경사면을 형성할 수 있다. 이 경우에 균일한 상관 관계 및 그와 더불어 일정한 성장 메커니즘을 제공하기 위하여, 기판 운송 방향으로 상기 경사면 뒤에 놓인 영역에서는 다수의 플라즈마 전극으로 구성된 제 2 그룹이 상기 운송 경로에 대하여 대체로 평행하게 놓인 평면에 제공될 수 있다.
바람직하게는 플라즈마 전극에 공급되는 에너지 및/또는 압력 또는 공정 가스의 조성 그리고/또는 플라즈마와 무관한 적어도 하나의 가열 유닛을 통해 사전에 결정된 온도로 가열되는 기판의 온도를 제어하기 위한 제어 유닛이 제공되었다. 상기 제어 유닛에 의해서는 성장 메커니즘에 개별적으로 영향을 미칠 수 있는 플라즈마 특성들 그리고 경우에 따라서는 기판의 온도가 조절될 수 있다.
본 발명의 한 가지 바람직한 실시 예에서는 플라즈마 전극이 마이크로파 어플리케이터(applicator)를 구비한다. 한 가지 대안적인 실시 예에서는 플라즈마 전극이 HF-전극을 구비한다.
본 발명의 한 가지 실시 예에서 격자와 플라즈마 전극의 간격 또는 격자와 기판의 간격은 경우에 따라서는 플라즈마 전극과 기판의 간격과 무관하게 변경될 수 있다.
본 발명의 한 가지 실시 예에서는 프로세스 챔버 내부에서 기판을 가열하기 위한 적어도 하나의 가열 유닛이 제공되었으며, 이 경우 상기 적어도 하나의 가열 유닛은 기판을 위한 수용 영역이 상기 적어도 하나의 플라즈마 전극과 상기 적어도 하나의 가열 유닛 사이에 놓이도록 배치되어 있다. 이와 같은 배치 상태에 의해서는 기판을 플라즈마와 무관하게 가열할 수 있게 되며, 그리고 특히 플라즈마 전극에 의해서 가열 과정이 방해를 받지 않도록 가열이 이루어질 수 있게 된다. 기판의 온도를 제어할 수 있기 위하여, 한 가지 실시 예에서는 기판을 위한 수용 영역과 상기 적어도 하나의 가열 유닛의 간격을 변경하기 위한 수단들이 제공되었다.
본 발명은 도면들을 참조하여 이하에서 상세하게 설명된다.
도 1은 유전체 층을 형성하기 위한 본 발명의 제 1 실시 예에 따른 장치의 개략적인 단면도이며;
도 2는 유전체 층을 형성하기 위한 본 발명의 제 2 실시 예에 따른 장치의 개략적인 단면도이고;
도 3은 상이하게 형성된 유전체 층들의 표면 전하 밀도에 대한 결함 밀도를 보여주는 와이블(Weibull)-다이어그램이며;
도 4는 플라즈마의 연소 기간에 의존하는 상이한 성장 속도를 보여주는 곡선이고;
도 5a 및 도 5b는 플라즈마 전극과 기판의 간격에 의존하는 플라즈마와 기판 간의 상이한 상관 관계들을 보여주는 개략도이며;
도 6a 및 도 6b는 플라즈마 전극과 기판 사이에 놓인 격자의 전기적인 초기 응력에 의존하는 플라즈마와 기판 간의 상이한 상관 관계들을 보여주는 개략도이다.
이하의 설명 부분에서 사용되는 상대적인 용어들, 예컨대 좌측, 우측, 위 그리고 아래와 같은 용어들은 도면과 관련이 있으며, 그리고 상기 용어들이 바람직한 배열 상태를 지시할 수 있다 하더라도 결코 본 출원을 한정하지는 않는다.
도 1은 기판(2) 상에 유전체 층들을 형성하기 위한 장치(1)를 절단하여 도시한 개략적인 단면도를 보여주고 있다. 상기 장치(1)는 단지 외곽선으로만 지시된 진공 하우징(3)을 구비하며, 상기 진공 하우징은 프로세스 챔버(4)를 규정한다. 상기 장치(1)는 또한 운송 기구(6), 플라즈마 유닛(8) 그리고 가열 유닛(10)도 구비한다. 추가로 냉각 유닛도 제공될 수 있는데, 상기 냉각 유닛은 가열 유닛과 함께 하나의 온도 조절 유닛을 형성한다.
기판(2)으로서는 상이한 기판들 그리고 특히 유전체 층을 갖는 반도체 기판들이 장치(1) 내부에 제공될 수 있다. 코팅시에 에지 효과를 피하기 위하여 그리고 기판의 물리적인 표면을 임시로(virtual) 확대하기 위하여, 코팅 중에는 기판이 도면에 도시되어 있지 않은 보호 소자에 의해서 적어도 부분적으로 둘러싸일 수 있으며, 이때 상기 보호 소자는 기판과 동일한 평면에 놓여 있다. 상기 보호 소자는 바람직하게 기판과 동일한 또는 적어도 유사한 물리적 특성을 지녀야만 한다. 진공 하우징(3)은 기판(2)을 프로세스 챔버(4) 내부로 삽입 및 인출하기에 적합한 그리고 도면에 도시되어 있지 않은 수문을 포함한다.
프로세스 챔버(4)는 다른 무엇보다도 상부 벽(12) 그리고 하부 벽(14)에 의해서 제한된다. 상부 벽(12)은 예를 들어 알루미늄으로 구성되었으며, 프로세스 챔버 내에서 금속 불순물 또는 입자들이 피해지도록 처리된다. 상부 벽(12)은 도 1에서 명확하게 볼 수 있는 바와 같이 하부 벽(14)에 대하여 아래로 구부러진 비스듬한 섹션을 구비하고, 상기 하부 벽에 대하여 대체로 평행하게 연장되는 섹션을 구비한다. 이때 상기 비스듬한 벽 섹션은 프로세스 챔버가 좌측으로부터 우측으로 가면서 - 이하에서 더 자세하게 설명되는 바와 같이 입력부 단부로부터 출력부 단부로 - 점차 좁아지도록 배치되어 있다. 그 다음에 곧바른 영역이 상기 비스듬한 영역에 연결된다.
전자기 방사선을 관통시킬 수 있기 위하여 하부 벽(14)은 아래에서 더 자세하게 설명되는 바와 같이 직선으로 연장되고, 예를 들어 석영 유리로 구성되었다.
하부 벽(14) 영역에는 진공 펌프(16)가 제공되어 있으며, 상기 진공 펌프를 통해 프로세스 챔버(4)가 펌프 다운(pump down) 될 수 있다. 그러나 상기 펌프는 다른 장소에도 제공될 수 있고, 다수의 펌프가 제공될 수도 있다. 또한, 하부 벽(14) 영역에는 기판(2)의 온도를 측정하기 위한 고온계(18)(pyrometer)도 제공되어 있다. 그러나 고온계 대신에 예컨대 위로부터도 기판(2)의 온도를 측정할 수 있는 다른 온도 측정 장치도 프로세스 챔버의 다른 장소에 제공될 수 있거나 또는 기판(2)에 직접 제공될 수도 있다. 다수의 온도 측정 장치도 제공될 수 있다. 더 나아가 프로세스 챔버(4)는 도면에 도시되어 있지 않은 적어도 하나의 가스 공급 라인도 구비할 수 있으며, 상기 가스 공급 라인을 통해서는 공정 가스가 프로세스 챔버(4) 내부로 유입될 수 있다.
운송 유닛(6)은 실제로 다수의 편향- 및/또는 운송 롤러(22)를 통해서 순환 방식으로 가이드 되는 연속 컨베이어 벨트(20)로 이루어진다. 이때 기판(2)의 처리를 위한 정상적인 순환 방향은 시계 바늘 방향이지만, 컨베이어 벨트를 시계 바늘 방향과 반대로 순환하도록 작동시킬 수도 있다. 이때 컨베이어 벨트(20)의 상부에 놓인 운송 타워는 상기 컨베이어 벨트가 프로세스 챔버(4)를 직선으로 관통하여 연장되도록 배치되어 있다. 따라서, 기판(2)은 좌측으로부터 우측으로 프로세스 챔버(4)를 관통하도록 작동된다. 컨베이어 벨트(20)의 피드백 동작은 예를 들어 컨베이어 벨트(20)의 냉각- 및/또는 세척 프로세스를 실행할 수 있기 위하여 프로세스 챔버(4) 외부에서 이루어진다. 컨베이어 벨트(20)는 전자기 방사선에 대하여 실제로 투과적인 재료로 이루어진다. 컨베이어 벨트(20)는 가급적 완전히 진공 영역 내부에 배치되어야 하지만, 적합한 배열 상태에서는 적어도 부분적으로 진공 영역 외부에 놓일 수도 있다. 운송 유닛(6)은 컨베이어 벨트(20) 대신에 예를 들어 운송 롤러와 같은 다른 운송 기구 또는 자석- 혹은 공기 쿠션 가이드 장치도 구비할 수 있다.
운송 유닛(6)은 이중 화살표 A에 의해서 지시된 바와 같이 전체적으로 위·아래로 선택적으로 작동될 수 있다. 그럼으로써, 이하에서 더 자세하게 설명되는 바와 같이 운송 유닛(6) 및 특히 상기 운송 유닛의 운송 타워를 상부 벽(12) 또는 하부 벽(14)에 더 가깝게 배치할 수 있다.
프로세스 챔버(4) 내부에는 또한 플라즈마 유닛(8)도 배치되어 있다. 플라즈마 유닛(8)은 다수의 플라즈마 전극(24)으로 이루어진다. 상기 플라즈마 전극들은 바람직하게 내부 도체 및 외부 도체를 구비하는 막대 모양의 마이크로파 어플리케이터로서 형성되었다. 상기 외부 도체는 내부 도체와 외부 도체 사이의 중간 영역 외부에서 예를 들어 상기 막대 모양의 플라즈마 전극을 방사 방향으로 둘러싸는 플라즈마를 발생하기 위하여 상기 외부 도체가 상기 중간 영역으로부터 마이크로파를 디커플링시킬 수 있도록 형성되었다.
이때 상기 마이크로파 어플리케이터는 바람직하게 특히 마이크로파 방사선이 대체로 수직으로 아래 방향으로, 다시 말해 하부 벽(14)의 방향으로 방출될 수 있도록 구성되었다. 추가로는 하나 또는 다수의 플라즈마 점화 장치(들)이 제공될 수 있다. 그러나 상기 플라즈마 전극들은 HF-타입일 수도 있으며, 특히 상이한 타입의 플라즈마 전극(24)을 프로세스 챔버(4) 내부에 배치하는 것도 생각할 수 있다. 따라서, 예를 들어 한 부분 영역에는 HF-플라즈마 전극이 제공될 수 있으며, 그리고 다른 한 영역에는 마이크로파 플라즈마 전극이 제공될 수 있다. 하지만, 상기 각각의 플라즈마 전극들은 기판들이 플라즈마 전극의 도체와 전극 사이에 존재하지 않는다는 공통점을 갖는다.
플라즈마 전극의 구조는 연소하는 플라즈마의 팽창률이 제한되어 프로세스 챔버의 벽들과 접촉하지 않도록 선택될 수 있다. 따라서, 플라즈마 전극의 구조를 상기와 같은 방식으로 선택하지 않는 경우에는 기판상에서 금속 오염을 야기할 수 있는 바람직하지 않은 반응성 종류들이 생성될 수 있다. 프로세스 챔버의 재료로서 알루미늄을 사용하는 경우에는, 14 eV의 임계 충격(critical bombardment) 에너지가 플라즈마로부터 배출되는 종류들에 의해서 초과 되지 않는 한, 그에 상응하는 오염도 역시 피해질 수 있다.
막대 모양의 플라즈마 전극(24)은 각각 도시 평면에 대하여 수직으로 프로세스 챔버(4)를 가로로 관통하여 연장된다. 플라즈마 전극들은 좌측으로부터 우측으로, 다시 말해 프로세스 챔버(4)의 입력부 단부로부터 출력부 단부로 가면서 각각 균일한 간격을 두고서 상부 벽(12)의 외곽선을 따라서 배치되어 있다. 그럼으로써, 프로세스 챔버(4)의 입력부 단부에 가장 가까이 놓인 플라즈마 전극(24)은 컨베이어 벨트(20)의 운송 타워로부터 가장 멀리 떨어져 있게 된다. 그 다음에 프로세스 챔버의 중앙으로 가면서 플라즈마 전극(24)은 컨베이어 벨트(20) 쪽으로 점점 더 가깝게 배치되어 있으며, 그 다음에 중앙으로부터 출발하여 상기 플라즈마 전극들은 각각 컨베이어 벨트 쪽으로 동일한 간격을 두고 배치되어 있다. 그럼으로써, 프로세스 챔버(4)를 관통하는 이동 동작 중에는 기판(2)과 상기 기판 바로 위에 놓인 플라즈마 전극(24)의 간격이 변경된다.
가열 유닛(10)은 기판(2)을 가열하기 위하여 전자기 방사선을 프로세스 챔버(4)의 방향으로 방출하는 다수의 방사선원(30)으로 이루어진다. 이 목적을 위하여 바람직하게는 예를 들어 통상적으로 신속 가열 장치에 사용되는 것과 같은 할로겐 및/또는 아크 램프(31)(arc lamp)가 사용될 수 있다. 상기 램프(31)들은 프로세스 챔버(4)의 영역 내에서 공정 가스 및/또는 저압 상황에 대하여 절연 효과를 제공하기 위해 선택적으로 석영 튜브(32) 안에 수용될 수 있다. 이와 같은 사실은 방사선원이 프로세스 챔버(4) 내부에 직접적으로 수용된 경우에 바람직할 수 있다. 다시 말하자면, 하부 벽(14)을 통해서는 상기 프로세스 챔버로부터의 분리가 이루어지지 않는다. 대안적으로 또는 추가로는 가열 램프들이 운송 유닛(6) 위에도, 예컨대 플라즈마 전극들(24) 사이에도 배치될 수 있다.
도 2는 기판(2) 상에 유전체 층을 제공하기 위한 대안적인 실시 예에 따른 대안적인 장치(1)의 개략적인 단면도를 보여주고 있다. 본 실시 예에 대한 설명 부분에서는 동일한 또는 유사한 소자들이 기술되는 한, 이전과 동일한 도면 부호들이 사용된다.
장치(1)는 재차 도면 부호 (3)으로 단지 매우 개략적으로만 도시된 하우징을 포함한다. 상기 하우징은 재차 진공 하우징으로서 완성되었으며, 그리고 도면에 더 이상 도시되어 있지 않은 진공 유닛을 통해서 진공 압력으로 펌프 다운 될 수 있다.
하우징(3) 내부에서 프로세스 챔버(4)가 규정되었다. 장치(1)는 또한 기판 지지 유닛(6), 플라즈마 유닛(8) 그리고 가열 유닛(10)도 포함한다. 기판 지지 유닛(6)은 기판 지지부(40)를 구비하며, 상기 기판 지지부는 화살표 B에 의해서 지시된 바와 같이 샤프트(42)를 통해 회전할 수 있도록 프로세스 챔버(4) 내부에 지지가 된다. 이와 같은 목적을 위해서 샤프트(42)는 도면에 상세하게 도시되어 있지 않은 회전 유닛에 연결되어 있다. 더 나아가 샤프트(42) 및 그와 더불어 지지부(40)는 이중 화살표 C에 의해서 지시된 바와 같이 위·아래로 움직일 수 있다. 그럼으로써, 지지부(40)의 지지 평면은 이하에서 더 자세히 설명되는 바와 같이 프로세스 챔버(4) 내부에서 위로 혹은 아래로 조정될 수 있다.
플라즈마 유닛(8)은 재차 전술된 것과 동일한 타입일 수 있는 다수의 플라즈마 전극(24)으로 이루어진다. 상기 플라즈마 전극들은 이중 화살표 D에 의해서 지시된 바와 같이 개별 가이드 장치(46)를 통해 선택적으로 위·아래로 이동할 수 있도록 프로세스 챔버(4) 내부에 지지가 될 수 있다. 이와 같은 경우에는 지지 유닛(6)의 상·하-운동 가능성이 사라질 수 있지만, 상기와 같은 상·하-운동 가능성은 추가로 제공될 수도 있다. 그럼으로써, 플라즈마 전극(24)과 기판(2)의 간격이 국부적으로 변경될 수 있다. 특히 상기와 같은 변경 가능성에 의해서는, 지지 유닛(6)을 통과하는 기판(2)의 회전 동작과 조합하여 예컨대 기판(2) 에지 영역에서는 기판의 중간 영역에 비해 더 크거나 또는 더 작은 간격들이 제공될 수 있다. 또한, 플라즈마 전극(24) 및/또는 램프(31)가 기판(2)의 치수를 초과하는 경우도 바람직하다. 이 경우에도 에지 효과를 피하기 위하여 기판(2)을 자체 평면에서 적어도 부분적으로 둘러싸는 보호 장치가 제공될 수 있다. 상기 보호 장치는 회전과 관련하여 정적으로 또는 회전 가능하게 배치될 수 있다.
도면에 도시되어 있는 기판(2) 및/또는 플라즈마 전극(24)을 위한 조절 장치에 대안적으로 또는 추가로는, 플라즈마 전극(24)과 기판(2) 사이에 도전 재료로 이루어진 격자가 제공될 수도 있다. 상기 격자에는 추후에 예를 들어 상응하는 제어 유닛을 통해서 상이한 전기적인 초기 응력이 제공될 수 있다. 플라즈마 전극(24)과 기판(2)의 간격을 조절하는 것뿐만 아니라 전술된 격자에 상이한 전기적인 초기 응력을 제공하는 것도 이하에서 더 자세하게 설명되는 바와 같이 플라즈마와 기판 간의 상관 관계에 영향을 미칠 수 있다.
가열 유닛(10)은 재차 플라즈마 전극(24)에 대하여 평행하게 또는 수직으로도 배치될 수 있는 다수의 방사선원(30)으로 이루어진다. 상기 방사선원들은 각각 예를 들어 아크 램프 또는 할로겐 램프와 같이 석영 튜브(32)에 의해서 둘러싸인 램프를 구비한다. 방사선원(30)의 방사선은 상기 방사선원(30)의 방사선을 위한 지지부(40)가 실제로 투명한 경우에는 기판(2)을 직접적으로 가열할 수 있다. 이 목적을 위하여 지지부(40)는 예를 들어 석영으로 구성될 수 있다. 그러나 기판의 간접적인 가열 방식도 제공될 수 있으며, 이 경우에 예를 들어 지지부(40)는 간접적인 가열을 위해서 방사선원(30)의 방사선을 실제로 흡수하는 재료로 구성되었다. 그 다음에 방사선은 지지부(40)를 가열하게 되고, 상기 지지부는 추후에 기판(2)을 가열하게 된다.
장치(1)는 바람직하게 기판(2)의 온도를 결정하기 위하여 적어도 하나의 온도 측정 유닛을 구비한다. 결정된 온도는 도면에 도시되어 있지 않은 제어 유닛으로 전달될 수 있고, 그 다음에는 상기 제어 유닛이 본 발명에 따른 기술에 공지된 바와 같이 사전에 결정된 기판 온도를 얻기 위하여 온도 규정을 참조해서 가열 유닛(10)을 상응하게 조절할 수 있다.
도 1 및 도 2에 따른 장치의 작동은 이하에서 도면들을 참조하여 더 자세하게 설명되며, 이 경우 이하의 설명은 기판(2)이 각각 하나의 규소 반도체 웨이퍼라는 사실로부터 출발한다. 상기 기판상에는 이하에서 기술되는 공정 동안에 규소 산화물 층이 유전체 층으로서 형성된다.
상기 목적을 위하여 저압이 주도하는 프로세스 챔버(4) 내부로는 예를 들어 순수한 산소 또는 산소-수소 혼합물로 이루어진 적합한 공정 가스가 유입된다. 그 다음에 이어서 플라즈마 전극(24) 영역 내에서 각각 공정 가스의 플라즈마가 발생 된다.
도 1에 따른 실시 예에서 기판(2)은 컨베이어 벨트(20)를 통해 좌측으로부터 우측으로 프로세스 챔버를 관통해서 안내되는 한편, 개별 플라즈마 전극(24) 아래에서는 상응하는 플라즈마가 연소 된다. 도면을 통해 알 수 있는 바와 같이, 기판(2)이 프로세스 챔버를 관통해서 운송되는 경우에 좌측에 놓인 플라즈마 전극(24), 다시 말해 프로세스 챔버(4)의 입력부 영역에 놓인 플라즈마 전극(24)은 우측에 놓인 플라즈마 전극(24), 다시 말해 프로세스 챔버(4)의 출력부 영역에 놓인 플라즈마 전극보다 기판(2)으로부터 더 멀리 떨어져 있다. 따라서, 기판이 프로세스 챔버(4)를 관통해서 이송되는 동안에는 기판 표면에 대한 플라즈마 전극의 간격이 변경된다. 그럼으로써, 층 성장을 위한 상이한 성장 메커니즘들이 나타나게 된다. 이와 같은 상이한 성장 메커니즘들은 도 5를 참조하여 이하에서 더 자세하게 설명되는 바와 같이 플라즈마와 기판 간의 상이한 상관 관계들에 의해서 야기된다.
도 5a 및 도 5b는 막대 모양 플라즈마 전극(300)과 기판(320)의 간격에 의존하는 플라즈마와 기판 간의 상이한 상관 관계들을 보여주고 있다. 상기 막대 모양의 플라즈마 전극(300)은 WO 2010/015385 A호에 기술되어 있는 타입이며, 내부 도체(304) 및 외부 도체(306)를 구비한다. 마이크로파 디커플링 영역에서는 외부도체(306)가 내부 도체(304)를 완전히 둘러싸지 않는다. 오히려 외부 도체(306)는 상기 외부 도체의 자유 단부 쪽으로 확대되는 개구, 즉 기판(320) 쪽을 향하고 있는 개구를 구비한다. 도 5a 및 도 5b는 각각 상기 마이크로파 전극(300)의 디커플링 영역에서의 횡단면을 보여주고 있다. 플라즈마 전극(300)은 각각 마이크로파 방사선에 대하여 실제로 투과적인, 예를 들어 석영 튜브와 같은 피복 튜브(308)에 의해서 둘러싸여 있다. 플라즈마 전극(300)이 상응하게 트리거링 되는 경우에는 피복 튜브(308)를 방사형으로 둘러싸는 플라즈마, 즉 전자(310), 라디칼(312) 및 이온(314)으로 이루어진 플라즈마가 발생 된다.
또한, 도 5a 및 도 5b는 각각 예를 들어 SiOxNy로 이루어진 유전체 층(324)을 갖춘 예컨대 Si-베이스 기판(322)으로 이루어진 기판(320)의 한 섹션을 보여주고 있으며, 이 경우 x 및 y는 임의로 변경될 수 있다. 도면 부호 (326)은 양(+)의 Si-이온을 지시한다. 도 5a에 따른 도시 예에서는 플라즈마 전극이 기판(320)의 표면에 대하여 간격(D1)을 두고서 배치되어 있다. 도면을 통해 알 수 있는 바와 같이, 상기와 같은 배열 상태에서 플라즈마는 상기 플라즈마 내부에 존재하는 전자(310), 라디칼(312) 및 이온(314)의 실제로 균일한 분포 상태가 기판 표면에 이웃하는 장소에서 나타날 수 있도록 기판을 기준으로 배치되어 있다. 그럼으로써, 공정 가스에 의존하는 기판 표면의 양극 산화/질화가 나타나게 된다. 이와 같은 양극의 산화/질화가 자체적으로 정렬되고 자체적으로 회복됨으로써, 결과적으로 임의의 구조적인 형상들 및 층 구조물(3D 구조물)이 균일하게 산화/질화 되거나 또는 임의의 다른 유전체 층들이 증착될 수 있게 된다. 상기 양극 산화/질화의 자기 회복 효과는 성장된 층의 균일한 브레이크 쓰루(Breakthrough) 강도를 야기하는데, 그 이유는 층 두께에 대한 전기 전위가 사라질 때까지 산화물/질화물이 성장하기 때문이다. 전기장(E-field)은 유전체 층(324)의 표면에서의 전극 밀도에 의해서 사전에 일정하게 결정되었다.
도 5b에 따른 도시 예에서 플라즈마 전극은 기판(320)의 표면에 대하여 더 큰 간격(D2)을 두고서 배치되어 있다. 도면을 통해 알 수 있는 바와 같이, 상기와 같은 배열 상태에서 플라즈마는 실제로 단지 라디칼(312)만 기판 표면에 이웃하여 발생하도록 기판을 기준으로 배치되어 있다. 그럼으로써, 공정 가스에 의존하는 기판 표면의 라디칼성 산화/질화가 나타나게 된다.
디얼 그루브 모델(Deal Groove Modell)과 비교할 때 성장 모델의 확장은 플라즈마에 의해서 지원되는 그리고 그로 인해 강화되는 성장 프로세스를 위한 것이다.
유전체 층을 위해 성장 프로세스는 반응 속도를 통해서 제한되었지만, 바람직하게 450 ℃ 미만의 낮은 기판 온도에 의해서는 단지 약 2 nm까지만 제한되었으며, 그리고 800 ℃를 초과하는 고온 프로세스에서와 같이 5 또는 10 nm까지는 제한되지 않았다. 라디칼성의 산화/질화에서는 유전체 층(324)의 표면에 있는 라디칼(312)에 의해서 큰 화학적 친화성(affinity)이 제공되었다. 흡수된 라디칼들과 유전체 층의 표면에서 반응을 하기 위하여, 산화 작용을 하는 종류들이 유전체 층을 거쳐서 경계면까지 혹은 (충전된 또는 충전되지 않은) 기판-고유 중간 격자 원자로부터 유전체 층의 표면까지 확산 되는 경우는 거의 없다.
2 - 3 nm 이상의 유전체 층을 위해서는, 열적인 프로세스에서와 같이 성장 프로세스가 확산 속도에 의해서 제한되었지만, 낮은 기판 온도 때문에 다양한 종류의 확산을 가속하기 위해서는 추가의 동기력이 필요하다. 양극의 산화/질화 방식에서는 상기와 같은 추가의 동기력이 큰 전기장에 의해서 발생 되며, 이와 같은 큰 전기장은 유전체 층(324)의 표면에 있는 전자(310)에 의해서 야기된다. 그렇기 때문에 상기 프로세스는 상대적으로 짧은 시간 안에 15 nm 두께의 유전체 층들까지 성장할 수 있다. 상기와 같은 양극 프로세스 단계 동안에는 전기 전위에 의해 자극을 받아서 산화 작용을 하는 종류가 베이스 기판(322)과 유전체 층(324) 사이의 경계면까지 확산 될 뿐만 아니라, 산화 작용을 하는 흡수된 라디칼성의 그리고 이온성의 종류들과 유전체 층(324)의 표면에서 반응을 하기 위하여 (충전된 또는 충전되지 않은) 기판-고유 중간 격자 원자도 유전체 층(324)의 표면까지 확산 된다.
그렇기 때문에 전술된 장치의 경우에는 먼저 라디칼성 산화/질화에 도달하기 위하여 입력부 영역에서의 기판(2)과 플라즈마 전극(24)의 간격이 예를 들어 8 내지 15 cm(바람직하게는 대략 10 cm)의 범위 안에서 선택되었다. 그와 달리 출력부 영역에서 상기 간격은 양극의 산화/질화를 제공하기 위하여 예를 들어 2 mm 내지 5 cm(바람직하게는 약 2 cm)에 달한다. 상기 간격은 기판(2)이 프로세스 챔버(4)를 관통해서 이동하는 경우에는 상기 프로세스 챔버의 대략 중앙까지는 점차 축소되고, 그 다음에는 출력부에 이르기까지 대체로 일정하게 유지된다. 경우에 따라 상기 간격은 컨베이어 벨트의 상·하-이동 동작을 통해서도 변경될 수 있다.
당연히 서로 중첩될 수 있는 플라즈마 전극(24) 아래에 있는 개별 플라즈마 영역에서는 상응하는 가스 유입 라인을 통해서 상이한 가스 조성 및/또는 상이한 압력이 설정될 수 있다. 그러나 플라즈마들은 예컨대 유리 플레이트와 같은 적합한 분리 소자들에 의해서도 상호 분리될 수 있다. 또한, 기판(2)이 프로세스 챔버(4)를 관통해서 이동하는 동안 가열 유닛(10)을 통하여 상기 기판을 상이하게 가열할 수도 있음으로써, 결과적으로 기판은 예를 들어 입력부 영역에서는 출력부 영역에서보다 더 높은 온도를 갖게 되거나 또는 그 반대이다. 기판은 일정한 온도로 유지될 수 있거나 또는 가열될 수도 있고, 또는 플라즈마에 의해서 과도한 가열이 이루어진 경우에는 도면에 도시되어 있지 않은 냉각 장치에 의해서 냉각될 수 있다. 그럼으로써 성장 프로세스들이 계속해서 영향을 받게 된다.
도 2에 따른 실시 예에서 기판(2)은 지지 유닛(6) 상에 배치되어 있으며, 그리고 한편 개별 플라즈마 전극(24)의 영역에서는 플라즈마가 연소하면서 회전한다.
기판(2)과 플라즈마 전극의 간격은 층 성장 도중에 변경된다. 특히 상기 간격은 예를 들어 8 내지 15 cm의 범위 안에 있는 처음의 큰 간격으로부터 출발하였다가 예를 들어 2 mm 내지 5 cm의 범위 안에 있는 작은 간격으로 축소된다. 바람직하게 상기 간격은 10 내지 2 cm의 범위 안에서 변동된다. 간격 변경 중에는 예를 들어 플라즈마 전극(24)의 파워, 공정 가스 압력, 가스 유입뿐만 아니라 프로세스 챔버(4) 내부에서의 가스 조성과 같은 플라즈마와 관련된 상이한 프로세스 파라미터들이 추가로 조절될 수 있다.
그럼으로써, 재차 양극의 산화/질화와 라디칼성 산화/질화 간의 교체에 도달할 수 있게 된다. 당업자가 알 수 있는 바와 같이, 항상 순전히 양극의 산화/질화가 이루어지거나 또는 순전히 라디칼성 산화/질화가 이루어지는 것은 아니다. 오히려 요점이 상이한 두 가지 프로세스가 동시에 이루어질 수 있다. 산화/질화가 양극으로서 표기되는지 아니면 라디칼성으로 표기되는지는 주어진 시점에서 어느 프로세스가 먼저 층 성장을 결정하는지에 달려있다.
더 나아가서는 기판(2)의 온도를 가열 유닛(10)을 통해 변경하는 것도 가능하다. 이때 간격 변경 그리고 나머지 프로세스 파라미터들의 조절은 각각 전체 프로세스 동안에 바람직하게 균일한 성장- 혹은 증착 속도에 도달되도록 선택되었다. 상기 간격 변경은 바람직하게 초당 0.5 나노미터 미만의 범위 안에서, 특히 초당 0.1 나노미터 미만의 범위 안에서 그리고 바람직하게는 초당 0.01 내지 0.05 나노미터의 범위 안에서 이루어져야만 한다.
성장 프로세스는 간격 조절에 대안적으로 또는 상기 간격 조절에 추가로, 도전 재료로 이루어진 격자를 통해서도 영향을 받을 수 있다. 특히 최초 양극의 산화/질화와 최초 라디칼성 산화/질화 간의 교체도 플라즈마 전극과 기판의 간격이 일정한 경우에 가능하다. 이와 같은 내용은 도 5a 및 도 5b와 유사한 도시 예를 보여주는 도 6a 및 도 6b를 참조하여 아래에서 더 자세하게 설명된다. 특히 내부 도체(304) 및 외부 도체(306)를 구비하는 각각 하나의 플라즈마 전극(300) 그리고 유전체 층(324)을 구비하는 베이스 기판(322)으로 이루어진 기판(320)이 재차 도시되어 있다. 하지만, 도 5a 및 도 5b의 도시 예와 달리 도 6a 및 도 6b에서의 플라즈마 전극(300)과 기판(320)의 간격은 동일하다.
전자(310), 라디칼(312) 및 이온(314)으로 이루어진 각각 하나의 플라즈마가 플라즈마 전극(300)을 둘러싸고 있는 상태가 도시되어 있다. 도면 부호 (326)은 재차 양(+)의 Si-이온을 지시한다. 또한, 플라즈마 전극(300)과 기판(320) 사이에는 도전 재료로 이루어진 격자(330)가 각각 하나씩 도시되어 있으며, 상기 격자는 도면에 상세하게 도시되어 있지 않은 제어 유닛을 통해서 상이한 전기적인 초기 응력을 공급받을 수 있다. 격자가 영-전위인 경우에, 상기 격자는 실제로 플라즈마에 영향을 미치지 않으며, 양극의 산화/질화를 야기하는 도 6a에 도시된 상황이 나타난다. 그와 달리 격자에 양의 전압이 공급되거나 또는 상기 격자가 접지되면, 처음에 오로지 라디칼(312)만 유전체 층(324)의 표면에 도달하는 도 6b에 도시된 상황이 나타나게 되며, 이와 같은 상황은 라디칼성 산화/질화를 야기한다. 기판(320) 표면으로 전극이 흘러가는 과정에 영향을 미치기 위하여, 기판(320) 표면에 대한 격자(330)의 간격이 선택적으로 조정될 수도 있다.
플라즈마는 프로세스가 진행되는 동안에 바람직하게는 펄스 방식으로 작동될 수 있다. 전술된 프로세스 흐름은 산화 층을 유전체 층으로 형성하기에 특히 적합하지만, 상기 프로세스 흐름은 전술된 바와 같이 예를 들어 질화물 층 또는 옥시나이트라이드 층과 같은 다른 유전체 층들도 형성할 수 있다.
프로세스를 위한 공정 가스로서는 예를 들어 O2, N2, NH3, NF3, D2O, Ar, N2O, H2, D2, 실란 또는 디클로르실란 또는 트리클로르실란 또는 디클로르에틸렌, GeH4, 보란(BH3B2H6), 아르신(ASH3), 포스핀(PH3CF4), 트리메틸알루미늄((CH3)3Al), SF6 또는 탄소를 함유하는 다른 가스 또는 이들의 혼합물 또는 다양한 선구 물질들이 Hf- 또는 Zr-함유 유전체 층을 제조하기 위하여 제공된다. 상기 공정 가스의 가스 조성 및/또는 압력은 프로세스가 진행되는 도중에 적응될 수 있다. 플라즈마 전극(24) 그리고 램프(31)는 각각 개별적으로 그리고 상호 무관하게 트리거링 될 수 있다. 특히 예를 들어 선형 함수, 지수 함수, 2차 함수 또는 기타의 함수들과 같은 수학적인 함수들을 참조하여 상기 플라즈마 전극(24) 및 램프(31)를 파워 조절 방식으로 제어할 수 있다. 이때 플라즈마 전극(24) 또는 아크 램프/할로겐 램프(31)가 상응하는 프로세스에 의해 사전에 결정된 경우에는, 상기 플라즈마 전극(24) 또는 아크 램프/할로겐 램프(31)도 그룹으로서 조절될 수 있거나 또는 완전히 상호 독립적으로 조절될 수도 있다.
더 나아가 장치(1) 내에서는 예컨대 기판의 순전히 열적인 처리도 이루어질 수 있으며, 이때 기판은 예를 들어 후-산화 처리(post-oxidation)에서의 어닐링의 경우와 마찬가지로 가열 유닛을 통해서 사전에 결정된 온도로 조절된다. 이 목적을 위하여 예컨대 운송 유닛은 산화 층이 제공된 후에 플라즈마가 차단된 상태에서 프로세스 챔버를 통해 기판을 피드백시킬 수 있다. 열적인 처리에서는 상이한 가스들이 프로세스 챔버 내부로 유입될 수 있다. 도 2에 따른 실시 예에서 기판은 예컨대 사전에 결정된 프로세스 기간 동안 산화 처리를 거쳐서 프로세스 챔버 내부에 그대로 유지되고, 가열 유닛을 통해서 가열된다.
도 3은 상이한 산화 층들의 표면 전하 밀도에 대한 결함 밀도를 보여주는 와이블-다이어그램을 보여주고 있다. 도 3에서 알 수 있는 바와 같이, 한 편으로는 개별 플라즈마의 연장된 연소 기간이 전기 산화 품질을 현저하게 개선한다. 이와 같은 효과는 산화 두께가 증가함으로써 나타날 뿐만 아니라, 지나치게 빠르게 성장된 층들이 위쪽으로 성장되어 Si와 SiO2 사이에 있는 경계면이 개선됨으로써도 나타난다. 그렇기 때문에 플라즈마의 연소 기간이 상응하게 길어짐에 따라 성장 속도가 느려지는 것은 전기적인 특성들을 개선한다는 인식이 드러나게 된다.
도 4는 플라즈마의 연소 기간에 의존하는 그리고 상이한 가스 조성 및 압력에 의존하는 상이한 성장 속도의 곡선을 보여주고 있다. 도면을 통해 알 수 있는 바와 같이, 플라즈마의 연소 기간이 길어짐에 따라 성장 속도는 저하되고, 유전체의 전기적인 품질은 상승한다. 도면에 도시된 성장 한계선 아래에서는 700 ℃ 이상의 온도에서 성장된 유전체 층들의 특성들과 상기 전기적인 특성들이 비교될 수 있다. 또한, 플라즈마의 연소 기간이 상대적으로 긴 경우에는 공정 가스의 가스 조성 및/또는 압력이 상이한 경우에도 실제로 대등한 성장 속도가 나타난다는 것도 알 수 있다.
본 발명은 전술된 본 발명의 바람직한 실시 예들을 참조해서 기재되었지만, 구체적인 실시 예들에 한정되어서는 안 된다. 예컨대 전술된 장치는 성장 프로세스 이전에 기판 표면을 세척하기 위해서도 사용될 수 있다. 상기 장치에 의해서는 오염물 또는 규정되지 않은 층(예컨대 천연 SiO2)이 표면으로부터 제거될 수 있다. 그 다음에 이어서 저압 상태를 파괴하지 않으면서 규정된 층이 사전에 결정된 공정 가스에 의해서 성장될 수 있다. 세척용 가스로서는 순수한 수소로만 이루어진 환원 가스가 제시될 수 있거나, 또는 불활성 가스(예컨대 He, Ar 등)에 의해서 임의의 방식으로 희석된 수소 분위기 또는 순수한 불활성 가스 분위기도 고려될 수 있다. 환원 분위기의 교체 후에 이루어지는 제 2 프로세스 단계에서 전술된 성장 프로세스가 가능하다. 세척 효과는 플라즈마 전극과 기판의 간격 및/또는 (만일 존재한다면) 격자에서의 전기적인 초기 응력을 통해서도 영향을 받을 수 있다.

Claims (24)

  1. 기판상에 유전체 층을 형성하기 위한 방법으로서,
    플라즈마 전극과 기판 사이에서 공정 가스로부터 플라즈마가 발생 됨으로써, 기판상에 유전체 층을 형성하기 위하여 기판 및 공정 가스의 화학적인 반응이 적어도 부분적으로 나타나게 되거나 공정 가스 성분들의 증착이 적어도 부분적으로 나타나게 되며,
    양극의 산화/질화로부터 라디칼성 산화/질화로의 교체가 가능하도록, 플라즈마 전극과 기판의 간격은 공정 가스 성분들의 화학 반응 중 또는 증착 중에 축소되고,
    기판상에 유전체 층을 형성하기 위한 방법.
  2. 기판의 산화 또는 질화 중 적어도 하나를 이용해서 기판상에 유전체 층을 형성하기 위한 방법으로서,
    기판에 이웃하는 적어도 하나의 플라즈마 전극에 의해서 공정 가스로부터 플라즈마가 발생 되며, 기판은 영-전위(zero-potential)이고, 적어도 하나의 플라즈마 전극의 전극들 사이에 놓이지 않으며, 유전체 층이 형성되는 동안 기판과 플라즈마 간의 상관 관계가 변경됨으로써, 층 형성의 처음 시점에서는 라디칼성 반응이 주도를 하게 되고 그리고 추후의 시점에서는 양극의 반응이 주도를 하게 되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  3. 제 2 항에 있어서,
    상기 기판과 플라즈마 간의 상관 관계는 기판과 플라즈마 전극의 간격 조절을 통해서 또는 플라즈마 전극에 공급되는 에너지, 공정 가스의 압력 또는 조성 중 적어도 하나, 플라즈마와 무관한 적어도 하나의 열원을 통해서 사전에 결정된 온도로 가열되는 기판 온도와 같은 파라미터들 중에 적어도 하나의 파라미터를 통해서 변경되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  4. 제 1 항 또는 제 3 항에 있어서,
    플라즈마 전극과 기판의 간격이 사전에 이미 성장된 또는 증착된 층의 두께에 따라 조절됨으로써, 층의 두께가 증가함에 따라 상기 플라즈마 전극과 기판의 간격이 축소되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  5. 제 1 항 또는 제 3 항에 있어서,
    플라즈마 전극에 공급되는 에너지, 공정 가스의 압력 또는 조성 중 적어도 하나, 플라즈마와 무관한 적어도 하나의 열원을 통해서 사전에 결정된 온도로 가열되는 기판 온도와 같은 파라미터들 중에 적어도 하나의 파라미터가 상기 플라즈마 전극과 기판의 간격에 따라서 변동되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  6. 제 2 항에 있어서,
    상기 기판과 플라즈마 사이에는 도전 재료로 이루어진 격자가 제공되어 있으며, 그리고 상기 기판과 플라즈마 간의 상관 관계는 상기 격자의 전기적인 초기 응력을 통해서 변경되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  7. 제 4 항에 있어서,
    상기 성장된 또는 증착된 층은 산화물, 옥시나이트라이드, 질화물 또는 k ≥ 3.9의 높은 유전 상수를 갖는 기타의 재료인,
    기판상에 유전체 층을 형성하기 위한 방법.
  8. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    적어도 하나의 막대 모양 플라즈마 전극을 구비하고, 고정된 간격으로 배치된 전극들을 구비하는 플라즈마가 발생 되며, 그리고 상기 플라즈마는 마이크로파 또는 HF-방사선에 의해서 발생 되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  9. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    0.5 nm/s 미만의 일정한 속도로 층 구조물이 발생 되도록 상기 층의 성장 속도 또는 증착 속도 중 적어도 하나가 제어되는,
    기판상에 유전체 층을 형성하기 위한 방법.
  10. 기판상에 유전체 층을 형성하기 위한 장치로서,
    적어도 하나의 공정 가스 유입구를 갖춘 프로세스 챔버를 구비하며,
    운송 경로를 따라 상기 프로세스 챔버를 관통해서 기판을 운송하기 위한 적어도 하나의 컨베이어 유닛을 구비하고, 상기 컨베이어 유닛은 기판을 수용하기 위한 수용 영역을 구비하며, 그리고
    기판을 위한 운송 경로에 대하여 상이한 간격을 두고서 적어도 부분적으로 배치된 다수의 플라즈마 전극을 구비하며,
    양극의 산화/질화로부터 라디칼성 산화/질화로의 교체가 가능하도록, 기판 운송 방향으로 전방에 놓인 적어도 하나의 플라즈마 전극은 기판 운송 방향으로 그 뒤에 놓인 플라즈마 전극보다 기판 운송 경로에 대하여 더 큰 간격을 갖는,
    기판상에 유전체 층을 형성하기 위한 장치.
  11. 기판의 산화 또는 질화 중 적어도 하나를 이용해서 기판상에 유전체 층을 형성하기 위한 장치로서,
    적어도 하나의 공정 가스 유입구 및 기판을 프로세스 챔버 내부에 영-전위 상태로 고정하기 위한 수용 영역을 규정하는 적어도 하나의 기판 홀더를 구비하며, 그리고
    기판을 위한 고정 영역에 이웃한 장소에서 또는 상기 고정 영역의 내부에서 플라즈마를 발생하기 위한 두 개의 전극을 포함하는 적어도 하나의 플라즈마 전극을 구비하며, 상기 기판을 위한 고정 영역은 전극들 사이에 놓여 있지 않으며, 그리고
    유전체 층이 형성되는 동안에 기판과 플라즈마 간의 상관 관계를 변경하기 위한 수단을 구비하고, 상기 변경하기 위한 수단은 상기 유전체 층의 형성의 제 1 시점에서는 라디칼성 반응이 주도를 하도록 그리고 그 이후의 시점에서는 양극 반응이 주도를 하도록 작동되며,
    상기 상관 관계를 변경하기 위한 수단은 도전 재료로 이루어지고 플라즈마 전극과 기판 홀더 사이에 놓여 있는 격자, 그리고 상기 격자의 전기적인 초기 응력을 조절하기 위한 제어 유닛, 또는 운송 경로를 따라 프로세스 챔버를 관통해서, 기판을 위한 운송 경로에 대하여 적어도 부분적으로 상이한 간격을 두고서 배치된 다수의 플라즈마 전극을 따라서 기판을 운송하기 위한 적어도 하나의 컨베이어 유닛을 구비하며, 기판 운송 방향으로 전방에 놓인 적어도 하나의 플라즈마 전극은 기판 운송 방향으로 그 뒤에 놓인 플라즈마 전극보다 기판 운송 경로에 대하여 더 큰 간격을 갖는,
    기판상에 유전체 층을 형성하기 위한 장치.
  12. 제 10 항 또는 제 11 항에 있어서,
    플라즈마 전극에 공급되는 에너지, 공정 가스의 압력 또는 조성 중 적어도 하나, 플라즈마와 무관한 적어도 하나의 열원을 통해서 사전에 결정된 온도로 가열되는 기판 온도와 같은 프로세스 파라미터들 중에 적어도 하나의 프로세스 파라미터를 제어하기 위한 적어도 하나의 제어 유닛을 구비하는,
    기판상에 유전체 층을 형성하기 위한 장치.
  13. 제 10 항 또는 제 11 항에 있어서,
    적어도 하나의 플라즈마 전극이 마이크로파 어플리케이터 또는 적어도 하나의 HF-전극 중 적어도 하나를 구비하는,
    기판상에 유전체 층을 형성하기 위한 장치.
  14. 제 10 항 또는 제 11 항에 있어서,
    프로세스 챔버 내부에서 기판을 가열하기 위한 적어도 하나의 가열 유닛을 구비하며, 상기 적어도 하나의 가열 유닛은 기판을 위한 수용 영역이 상기 적어도 하나의 플라즈마 전극과 상기 적어도 하나의 가열 유닛 사이에 놓이도록 배치된,
    기판상에 유전체 층을 형성하기 위한 장치.
  15. 제 14 항에 있어서,
    기판을 위한 수용 영역과 상기 적어도 하나의 가열 유닛의 간격을 변경하기 위한 수단을 구비하는,
    기판상에 유전체 층을 형성하기 위한 장치.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
KR1020127019514A 2009-12-23 2010-12-23 기판상에 유전체 층을 형성하기 위한 방법 그리고 장치 KR101708397B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009060230 2009-12-23
DE102009060230.5 2009-12-23
PCT/EP2010/007927 WO2011076430A2 (de) 2009-12-23 2010-12-23 Verfahren und vorrichtung zum ausbilden einer dielektrischen schicht auf einem substrat
DE102010056020.0A DE102010056020B4 (de) 2009-12-23 2010-12-23 Verfahren und Vorrichtung zum Ausbilden einer dielektrischen Schicht auf einem Substrat

Publications (2)

Publication Number Publication Date
KR20120132476A KR20120132476A (ko) 2012-12-05
KR101708397B1 true KR101708397B1 (ko) 2017-02-20

Family

ID=43734124

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127019514A KR101708397B1 (ko) 2009-12-23 2010-12-23 기판상에 유전체 층을 형성하기 위한 방법 그리고 장치

Country Status (4)

Country Link
EP (1) EP2517228A2 (ko)
KR (1) KR101708397B1 (ko)
DE (1) DE102010056020B4 (ko)
WO (1) WO2011076430A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010035593B4 (de) 2010-08-27 2014-07-10 Hq-Dielectrics Gmbh Verfahren und Vorrichtung zum Behandeln eines Substrats mittels eines Plasmas
DE202010015818U1 (de) 2010-08-27 2011-02-17 Hq-Dielectrics Gmbh Vorrichtung zum Behandeln eines Substrats mittels eines Plasmas
DE102011119013B4 (de) * 2011-11-21 2022-11-03 Hq-Dielectrics Gmbh Verfahren zum ausbilden einer dielektrischen schicht auf einem substrat
KR102396430B1 (ko) * 2020-03-30 2022-05-10 피에스케이 주식회사 기판 처리 장치 및 기판 처리 방법
KR20230127665A (ko) 2022-02-25 2023-09-01 동우 화인켐 주식회사 티타늄계 금속막 식각액 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060003603A1 (en) * 2004-06-30 2006-01-05 Cannon Kabushiki Kaisha Method and apparatus for processing
US20070049048A1 (en) * 2005-08-31 2007-03-01 Shahid Rauf Method and apparatus for improving nitrogen profile during plasma nitridation
JP2007227522A (ja) * 2006-02-22 2007-09-06 Mitsubishi Heavy Ind Ltd 光電変換装置の製造装置および光電変換装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643731A (en) * 1979-09-17 1981-04-22 Mitsubishi Electric Corp Film forming method
EP0469791A1 (en) * 1990-08-02 1992-02-05 AT&T Corp. Soluble oxides for integrated circuits
JP3223661B2 (ja) * 1993-08-31 2001-10-29 ソニー株式会社 プラズマ堆積方法
TW269743B (ko) * 1994-04-26 1996-02-01 Toshiba Eng Co
DE19722272A1 (de) 1997-05-28 1998-12-03 Leybold Systems Gmbh Vorrichtung zur Erzeugung von Plasma
JP2001144088A (ja) * 1999-11-17 2001-05-25 Hitachi Kokusai Electric Inc 半導体製造方法
US7381595B2 (en) 2004-03-15 2008-06-03 Sharp Laboratories Of America, Inc. High-density plasma oxidation for enhanced gate oxide performance
US7064089B2 (en) * 2002-12-10 2006-06-20 Semiconductor Energy Laboratory Co., Ltd. Plasma treatment apparatus and method for plasma treatment
US7608549B2 (en) 2005-03-15 2009-10-27 Asm America, Inc. Method of forming non-conformal layers
WO2009096952A1 (en) * 2008-01-30 2009-08-06 Applied Materials, Inc. System and method for containment shielding of pecvd deposition sources
DE102008036766B4 (de) 2008-08-07 2013-08-01 Alexander Gschwandtner Vorrichtung und Verfahren zum Erzeugen dielektrischer Schichten im Mikrowellenplasma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060003603A1 (en) * 2004-06-30 2006-01-05 Cannon Kabushiki Kaisha Method and apparatus for processing
US20070049048A1 (en) * 2005-08-31 2007-03-01 Shahid Rauf Method and apparatus for improving nitrogen profile during plasma nitridation
JP2007227522A (ja) * 2006-02-22 2007-09-06 Mitsubishi Heavy Ind Ltd 光電変換装置の製造装置および光電変換装置の製造方法

Also Published As

Publication number Publication date
WO2011076430A3 (de) 2011-09-01
KR20120132476A (ko) 2012-12-05
EP2517228A2 (de) 2012-10-31
WO2011076430A2 (de) 2011-06-30
DE102010056020A1 (de) 2011-06-30
DE102010056020B4 (de) 2021-03-18

Similar Documents

Publication Publication Date Title
CN1294630C (zh) 半导体处理用的热处理装置及方法
US6955836B2 (en) Silicon oxide film formation method
US6758224B2 (en) Method of cleaning CVD device
KR101689147B1 (ko) 기존 구조에 대한 영향을 최소화하면서 실리콘에 산화물 박막을 성장시키는 방법 및 장치
KR101708397B1 (ko) 기판상에 유전체 층을 형성하기 위한 방법 그리고 장치
US20050281951A1 (en) Dielectric barrier discharge method for depositing film on substrates
JP2009545165A (ja) 多結晶のシリコン及びシリコン−ゲルマニウムの太陽電池を製造するための方法及びシステム
JP2013513238A (ja) 高移動度のモノリシックpinダイオード
US20110220026A1 (en) Plasma processing device
KR20140107580A (ko) 원자 수소로 기판 표면들을 세정하기 위한 방법들 및 장치
JP2012216737A (ja) 熱処理装置
JPWO2009107196A1 (ja) プラズマ成膜方法、およびプラズマcvd装置
KR101579504B1 (ko) 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 기록 매체
KR101948731B1 (ko) 저온들에서 기판 상에 층을 형성하기 위한 방법
US20130277354A1 (en) Method and apparatus for plasma heat treatment
KR20030074392A (ko) 반도체 웨이퍼를 에피택셜하게 코팅하는 방법 및 장치와에피택셜하게 코팅된 반도체 웨이퍼
KR101224529B1 (ko) 열처리장치
KR101869068B1 (ko) 플라즈마를 이용한 기판 처리 방법 및 장치
KR102357328B1 (ko) 도핑된 ⅳ족 재료들을 성장시키는 방법
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JP2009117569A (ja) 反射防止膜成膜方法および反射防止膜成膜装置
JP2011225965A (ja) 基板処理装置
CN108411273B (zh) 一种用于离子注入设备的辅助加热系统及方法
JP2008159802A (ja) プラズマドーピング方法及び装置
JP5193488B2 (ja) 酸化膜の形成方法及びその装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 4