KR101644642B1 - 제한된 공간을 갖는 구조 상에서의 동기 로봇 조작 - Google Patents

제한된 공간을 갖는 구조 상에서의 동기 로봇 조작 Download PDF

Info

Publication number
KR101644642B1
KR101644642B1 KR1020090038338A KR20090038338A KR101644642B1 KR 101644642 B1 KR101644642 B1 KR 101644642B1 KR 1020090038338 A KR1020090038338 A KR 1020090038338A KR 20090038338 A KR20090038338 A KR 20090038338A KR 101644642 B1 KR101644642 B1 KR 101644642B1
Authority
KR
South Korea
Prior art keywords
end effector
fastener
robotic system
vector
confined space
Prior art date
Application number
KR1020090038338A
Other languages
English (en)
Other versions
KR20090117622A (ko
Inventor
브랑코 사라
데이비드 에이치. 아미레테샤미
Original Assignee
더 보잉 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 보잉 컴파니 filed Critical 더 보잉 컴파니
Publication of KR20090117622A publication Critical patent/KR20090117622A/ko
Application granted granted Critical
Publication of KR101644642B1 publication Critical patent/KR101644642B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/14Riveting machines specially adapted for riveting specific articles, e.g. brake lining machines
    • B21J15/142Aerospace structures
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32285Multi manipulator assembly cell
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39121Two manipulators operate on same object
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39122Follower, slave mirrors leader, master
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39141Slave program has no taught positions, receives position from master, convert from master
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45059Drilling robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45064Assembly robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45126Riveting machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/49943Riveting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49948Multipart cooperating fastener [e.g., bolt and nut]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49947Assembling or joining by applying separate fastener
    • Y10T29/49954Fastener deformed after application
    • Y10T29/49956Riveting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5124Plural diverse manufacturing apparatus including means for metal shaping or assembling with means to feed work intermittently from one tool station to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/52Plural diverse manufacturing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble

Abstract

완전히 자동화된 방법은 제한된 공간을 갖는 구조 상에서 수행된다. 상기 구조는 제한된 공간 내부 및 제한된 공간 외부로부터 식별가능한 위치를 갖는다. 제1 로봇 시스템은 제1 엔드 이펙터가 상기 위치에 위치하도록 상기 제한된 공간 내부로 상기 제1 엔드 이펙터를 이동시킨다. 상기 위치에 대응하는 제1 벡터가 생성된다. 제2 로봇 시스템은 제2 엔드 이펙터가 상기 위치에 위치하도록 상기 제한된 공간 외부로 상기 제2 엔드 이펙터를 이동시킨다. 상기 위치에 대응하는 제2 벡터가 생성된다. 제1 및 제2 벡터는, 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터가 대향해서 동작하도록 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 새로운 위치로 이동시키기 위해 제1 및 제2 로봇 시스템의 각각을 위한 기준 프레임으로서 이용된다. 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터는 상기 새로운 위치에서 동기 조작(synchronous operation)을 수행한다.

Description

제한된 공간을 갖는 구조 상에서의 동기 로봇 조작 {SYNCHRONOUS ROBOTIC OPERATION ON A STRUCTURE HAVING A CONFINED SPACE}
본 발명은, 제한된 공간을 갖는 구조 상에서의 동기 로봇 조작에 관한 것이다.
항공기의 조립 중에, 구조의 반대측에서 특정 조작이 동시에 수행된다. 윙 박스(wing box) 상에서의 패스닝 조작(fastening operation: 잠금 조작)을 생각해 보자. 윙 박스 외부의 로봇 시스템은 드릴링, 카운터 싱킹(countersinking: 나사못 원추형 머리에 맞도록 접시형으로 구멍을 파는 조작) 및 패스너(fastener: 잠금쇠) 삽입 조작을 수행한다. 윙 박스 내의 사람은 이들 조작을 지원하고, 또한 상기 로봇 시스템이 상기 패스너를 유지하고 있는 동안 삽입된 패스너 전면에 슬리브 및 너트를 위치시킨다.
수동적인 노동을 제거하고 그러한 잠금 조작을 완전히 자동화하는 것이 바람직하다. 여전히 볼트의 나사산에 너트를 위치시키는 것은 인간에게는 간단한 조작 인 반면, 로봇 시스템에게는 그렇게 간단하지는 않다. 볼트에 대해 너트를 정확하게 위치결정하고 배향시키는 것은 복잡한 작업이다.
이 작업은, 로봇 시스템이 너트를 제한된 공간 내에서 부착해야만 하기 때문에, 오히려 더 복잡하다. 상기 로봇 시스템이 액세스 홀을 통하여 상기 제한된 공간으로 들어가야 하기 때문에, 상기 조작은 오히려 더 복잡하다. 항공기의 허용오차가 극도로 작기 때문에, 상기 조작은 오히려 더 복잡하다. 상기 제한된 공간 내부의 로봇 시스템이 상기 제한된 공간 외부의 로봇 시스템의 조작과 그 작업을 동시에 진행하여야 하기 때문에, 상기 작업은 오히려 더 복잡하다.
본 발명은 상기와 같은 사정을 감안해서 이루어진 것으로, 제한된 공간을 갖는 구조 상에서 완전히 자동화된 방법, 물품 및 시스템을 제공하는 것을 목적으로 한다.
본 명세서에 기재된 실시예에 따르면, 완전히 자동화된 방법은 제한된 공간을 갖는 구조 상에서 수행된다. 상기 구조는 제한된 공간 외부로부터 및 제한된 공간 내부로부터 식별가능한 위치를 갖는다. 제1 로봇 시스템(robotic system)은, 제1 엔드 이펙터(end effector)가 상기 위치에 위치하도록 상기 제한된 공간 내부로 상기 제1 엔드 이펙터를 이동시킨다. 상기 위치에 대응하는 제1 벡터가 생성된다. 제2 로봇 시스템은, 제2 엔드 이펙터가 상기 위치에 위치하도록 상기 제한된 공간 외부로 상기 제2 엔드 이펙터를 이동시킨다. 상기 위치에 대응하는 제2 벡터가 생성된다. 상기 제1 및 제2 벡터는, 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터가 대향해서 동작하도록, 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 새로운 위치로 이동시키기 위해 제1 및 제2 로봇 시스템의 각각을 위한 기준 프레임으로서 이용된다. 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터는 상기 새로운 위치에서 동기 조작을 수행한다.
본 명세서에 기재된 다른 실시예에 따르면, 구조의 제한된 공간 내부에 엔드 이펙터를 위치시키는 방법은, 상기 엔드 이펙터를 상기 구조의 액세스 포트를 통해 상기 제한된 공간 내로 이동시키기 위해 컴플라이언트(compliant) 로봇 암을 이용하는 단계와; 상기 제한된 공간 내의 한 표면의 한 위치에 상기 엔드 이펙터를 대충(coarsely) 위치시키기 위해 상기 로봇 암을 이용하는 단계; 상기 표면에 대해 상기 엔드 이펙터를 누르기 위해 상기 로봇 암을 이용하는 단계 및; 상기 엔드 이펙터를 상기 위치에 정확하게 위치시키도록 상기 표면을 따라 상기 엔드 이펙터를 시프트시키기 위해 상기 엔드 이펙터에 부착된 장치를 이용하는 단계를 포함한다.
본 명세서에 기재된 다른 실시예에 따른 방법은, 항공기의 미리 조립된 윙 박스 상에서 수행된다. 상기 미리 조립된 윙 박스는 복수의 패스너를 포함한다. 제1 로봇 시스템은 제1 임시 패스너 및 제2 임시 패스너를 통해 상기 윙 박스 내부로 제1 엔드 이펙터를 이동시키고, 상기 제1 임시 패스너 및 상기 제2 임시 패스너를 위한 제1 벡터를 생성한다. 제2 로봇 시스템은 상기 제1 패스너 및 상기 제2 패스너를 통해 상기 윙 박스 외부로 제2 엔드 이펙터를 이동시키고, 상기 제1 패스너 및 상기 제2 패스너를 위한 제2 벡터를 생성한다. 상기 제1 벡터 및 상기 제2 벡터는 상기 제1 패스너와 상기 제2 패스너 사이의 영구적인 패스너 위치를 계산하기 위해 이용된다. 상기 제1 로봇 시스템을 위한 영구적인 패스너 위치는 상기 제1 벡터로부터 계산되고, 상기 제2 로봇 시스템을 위한 영구적인 패스너 위치는 상기 제2 벡터로부터 계산된다.
또한, 항공기의 미리 조립된 윙 박스 상에서 수행되는 방법이 제공되는데, 상기 윙 박스는 복수의 패스너로 미리 조립되고, 상기 방법은 제1 패스너 및 제2 패스너를 통해 상기 윙 박스 내부로 제1 엔드 이펙터를 이동시키기 위해 제1 로봇 시스템을 이용하고, 상기 제1 패스너 및 상기 제2 패스너를 위한 제1 벡터를 생성하는 단계와; 상기 제1 패스너 및 상기 제2 패스너를 통해 상기 윙 박스 외부로 제2 엔드 이펙터를 이동시키기 위해 제2 로봇 시스템을 이용하고 상기 제1 패스너 및 상기 제2 패스너를 위한 제2 벡터를 생성하는 단계 및; 상기 제1 패스너와 상기 제2 패스너 사이의 영구적인 패스너 위치를 계산하기 위해 상기 제1 벡터 및 상기 제2 벡터를 이용하는 단계를 포함하되, 상기 제1 로봇 시스템을 위한 상기 영구적인 패스너 위치는 상기 제1 벡터로부터 계산되고, 상기 제2 로봇 시스템을 위한 상기 영구적인 패스너 위치는 상기 제2 벡터로부터 계산된다.
상기 방법은, 상기 윙 박스 내부의 영구적인 패스너 위치로 상기 제1 엔드 이펙터를 이동시키기 위해 상기 제1 로봇 시스템을 이용하는 단계와, 상기 윙 박스 외부의 대응하는 영구적인 패스너 위치로 상기 제2 엔드 이펙터를 이동시키기 위해 상기 제2 로봇 시스템을 이용하는 단계 및, 그들의 각 위치에서 동시 조립 동작을 수행하기 위해 엔드 이펙터를 이용하는 단계를 더 포함한다.
상기 방법은, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템을 이용하기 전에 상기 윙 박스를 미리 조립하는 단계를 더 포함한다.
상기 방법에 있어서, 상기 윙 박스는 기능화된 패스너(instrumented fastener)로 미리 조립되고, 상기 제1 패스너 및 상기 제2 패스너로부터 나오는 비컨(beacon)의 배향을 감지함으로써 상기 제1 벡터 및 상기 제2 벡터가 생성된다.
또, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템이 상기 방법을 수행하도록 하기 위한 데이터로 인코드된 컴퓨터 메모리를 포함하는 물품(article)도 제공 된다.
또한, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템과, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템이 상기 방법을 수행하도록 하기 위한 로봇 컨트롤러를 포함하는 시스템도 제공된다.
제한된 공간을 갖는 구조 상에서 하나 또는 그 이상의 조작을 수행하는 제1 로봇 시스템(110) 및 제2 로봇 시스템(120)을 나타내는 도 1을 참조한다. 상기 제1 로봇 시스템(110)은, 상기 제한된 공간으로 제1 엔드 이펙터(114)를 이동시키고 상기 제한된 공간 내부에서 상기 제1 엔드 이펙터(114)의 위치를 결정하여 상기 제1 엔드 이펙터(114)를 배향시키기 위한 위치결정 및 배향 시스템(112)을 포함한다. 상기 제2 로봇 시스템(120)은 상기 제한된 공간 외부로 제2 엔드 이펙터(124)를 이동시키기 위한 위치결정 및 배향 시스템(122)을 포함한다. 상기 제1 엔드 이펙터(114) 및 상기 제2 엔드 이펙터(124)가 배향되고 위치결정되면, 상기 구조 상에서 하나 또는 그 이상의 조작(예를 들어, 조립 조작)을 수행한다.
로봇 컨트롤러(130)는 상기 로봇 시스템(110, 120)을 조작하도록 프로그램된 컴퓨터를 포함할 수 있다. 상기 컴퓨터는 상기 제1 로봇 시스템(110) 및 상기 제2 로봇 시스템(120)에 명령을 내리는 데이터로 인코딩된 컴퓨터 메모리를 포함한다.
이제, 제한된 공간을 갖는 구조 상에서 동기 조작을 수행하도록 상기 제1 로봇 시스템(110) 및 상기 제2 로봇 시스템(120)을 조작하기 위한 방법을 설명하는 도 2를 참조한다. 상기 구조는, 상기 제한된 공간의 내부 및 상기 제한된 공간의 외부로부터 식별가능한 위치를 갖는다. 상기 위치는, 시각적 수단(예를 들어, 마크, 패스너, 또는 구멍이나 상기 구조의 다른 특색), 자기 수단(magnetic means; 예를 들어, 매립된 자석에 의한 수단), 또는 기능화된 패스너(instrumented fastener; 후술함)에 의해 제한없이 식별될 수 있다.
블록 210에서, 상기 제1 로봇 시스템(110)은, 상기 제1 엔드 이펙터(114)가 상기 위치에 위치되도록, 상기 제한된 공간 내부로 상기 제1 엔드 이펙터(114)를 이동시키도록 명령된다. 일단 상기 제1 엔드 이펙터(114)가 위치결정되면, 상기 제1 로봇 시스템(110)은 상기 로봇 컨트롤러(130)로 제1 벡터를 전달한다. 상기 제1 벡터는 위치 정보(예를 들어, x-y 좌표) 및/또는 각도 배향(예를 들어, 수직한 표면에 관해)을 포함할 수 있다.
상기 제1 엔드 이펙터(114)의 위치결정의 정밀도는 특수 용도(application-specific)이다. 예를 들어, 항공기 조립의 정밀도는 전형적으로 다른 종류의 산업계에서의 조립보다 더 높다.
블록 220에서, 상기 제2 로봇 시스템(120)은, 상기 제2 엔드 이펙터(124)가 상기 위치에 위치되도록, 상기 제한된 공간 외부로 상기 제2 엔드 이펙터(124)를 이동시키도록 명령된다. 일단 상기 제2 엔드 이펙터(124)가 위치결정되면, 상기 제2 로봇 시스템(120)은 상기 로봇 컨트롤러(130)로 제2 벡터를 전달한다. 상기 제2 벡터는 위치 정보 및/또는 각도 배향을 포함할 수 있다.
따라서, 두 벡터가 상기 로봇 컨트롤러(130)로 전달된다. 상기 제1 벡터는 상기 제1 로봇 시스템(110)을 위한 기준 프레임으로서 이용된다. 마찬가지로, 상기 제2 벡터는 상기 제2 로봇 시스템(120)을 위한 기준 프레임으로서 이용된다.
블록 230에서, 상기 제1 로봇 시스템(110) 및 상기 제2 로봇 시스템(120)은 상기 제1 엔드 이펙터(114) 및 상기 제2 엔드 이펙터(124)를 새로운 위치로 각각 이동시키기 위해 상기 제1 벡터 및 상기 제2 벡터를 제1 및 제2 로봇 시스템의 각각을 위한 기준 프레임으로서 이용한다. 이 새로운 위치에 있어서, 상기 제1 엔드 이펙터(114) 및 상기 제2 엔드 이펙터(124)는, 상기 제1 엔드 이펙터(114)가 상기 제한된 공간의 내부에, 상기 제2 엔드 이펙터(124)가 상기 제한된 공간의 외부에 있으면서, 대향해서 동작하고 있다.
블록 240에서, 상기 제1 엔드 이펙터(114) 및 상기 제2 엔드 이펙터(124)는 상기 새로운 위치에서 동기 조작을 수행하도록 명령된다. 예를 들어, 상기 새로운 위치에서 동기 조립 조작(synchronous assembly operation)을 수행할 수 있다.
따라서, 도 2의 방법을 이용해서, 상기 제1 엔드 이펙터(114)가 상기 제한된 공간의 외부로부터 관찰가능하지 않더라도 상기 구조 상에서 동기 조작을 수행할 수 있다. 게다가, 상기 제1 로봇 시스템(110) 및 상기 제2 로봇 시스템(120)이 하나의 고정된 기준 프레임을 갖지 않더라도, 동기 조작을 수행할 수 있다.
상기 도 2의 방법은 자율적으로 수행할 수 있다. 그러한 자율적 조작은 수동 조립을 감소시키거나, 오히려 제거할 수 있다.
상기 도 2의 방법은 하나의 위치로부터 기준 프레임을 얻는 것에 한정되지 않는다. 상기 구조가 상기 제한된 공간의 외부 및 내부로부터 관찰가능한 다수의 위치를 포함하고 있는 경우, 둘 또는 그 이상의 위치가 기준 프레임을 설정하기 위 해 이용될 수 있다. 기준 프레임을 설정하기 위해 두 위치를 이용하는 예를 이하에 설명한다.
상기 제한된 공간 내에서의 상기 제1 엔드 이펙터의 정확한 위치결정을 달성하는 장치(310) 및 방법을 설명하는 도 3a 및 도 3b를 참조한다. 상기 장치(310)는 다중 자유도를 갖는 긴 컴플라이언트 암(compliant arm; 312)을 포함한다. 그러한 암의 일례가 스네이크 암(snake arm)이다. 상기 제1 엔드 이펙터는 상기 로봇 암(312)의 자유 단부에 있다. 상기 장치(310)는 상기 제1 엔드 이펙터에 부착된 위치결정장치(314)를 더 포함한다.
블록 310에서, 상기 컴플라이언트 암은 상기 제한된 공간 내의 한 표면의 한 위치로 상기 제1 엔드 이펙터를 대충(coarsely) 위치결정하기 위해 이용된다. 상기 위치는 상기 암의 컴플라이언스(compliance)로 인해 정확하지 않다.
블록 320에서, 상기 로봇 암(312)은 상기 표면에 대해 상기 제1 엔드 이펙터를 누른다. 상기 제1 엔드 이펙터와 상기 표면 사이의 마찰은 상기 제1 엔드 이펙터가 상기 암(312)의 컴플라이언스로 인해 그 x-y 위치를 시프트시키는 것을 방지한다.
블록 330에서, 상기 위치결정장치(위치조절장치; 314)는 상기 표면을 따라 상기 제1 엔드 이펙터의 위치를 시프트시키기 위해 이용된다. 상기 제1 엔드 이펙터가 상기 위치에 정확하게 위치되는 때를 결정하기 위해, 비전 시스템(vision system; 316) 또는 다른 감지 장치를 이용할 수 있다. 상기 장치(314)는, 상기 제1 엔드 이펙터의 실제의 위치가 상기 위치의 허용오차 내로 될 때까지, 상기 제1 엔드 이펙터를 반복적으로 시프트시키도록 명령할 수 있다. 상기 위치결정장치(314)는 상기 로봇 컨트롤러(130)에 의해 또는 컨트롤러를 탑재한 제1 로봇 시스템(110)에 의해 명령될 수 있다.
동기 조작 및 구조는 특별히 어느 것에도 한정되지 않는다. 단지 일례로서, 잠금 조작을 제한된 공간을 갖는 항공기 구조 상에서 수행할 수 있다. 적어도 하나의 제한된 공간을 갖는 항공기 구조는, 날개, 수평 및 수직 안정화기(stabilizer) 및 화물 칸막이 및 다른 동체 칸막이를 포함한다(그러나, 이에 한정되지는 않는다).
이제, 윙 박스의 윙 베이(wing bay; 410)를 나타내는 도 4를 참조한다. 상기 윙 박스는 스킨 패널(skin panel; 420), 가로날개뼈대(spar; 430) 및 리브(rib; 도시하지 않음)와 같은 부품을 포함한다. 각 윙 베이(410)는, 제한된 내부 공간 및 이 제한된 공간으로 인도하는 액세스 포트(440)를 구비한다. 상기 윙 박스는 복수의 윙 베이(410)를 가진다.
도 2 및 도 3b의 방법은 사전 조립된 윙 박스 상의 영구적인 잠금 조작을 수행하기 위해 변경될 수 있다. 사전 조립 중에, 윙 박스 부품(예를 들어, 가로날개뼈대, 스킨 패널 및 리브)의 접합(즉, 오버래핑) 표면은 방수제(sealant)로 덮이고, 함께 눌린다. 상기 방수제는 버리스 드릴링(burrless drilling)을 촉진하기 위해 상기 접합 표면 사이의 갭을 제거한다. 상기 윙 박스의 함께 눌린 부품은 택 패스너(tack fastener: 압정 패스너)로 (일시적으로 또는 영구적으로) 잠겨질 수 있다. 상기 택 패스너는 가로날개뼈대를 스킨 패널로, 가로날개뼈대를 리브로, 그 리고 리브를 스킨 패널로 잠글 수 있다.
일부 실시예에서는, 상기 윙 박스는, 본 명세서에 레퍼런스로서 통합되어 있는 본 출원인의 2007년 5월 31일자 미국 출원 제11/756,447호에 개시된 기능화된 패스너로 사전에 조립될 수 있다. 한 실시예에서, 기능화된 패스너는 광 비컨(light beacon)을 제작하도록 구성된 하나 또는 그 이상의 광원(예를 들어, 발광 다이오드)을 포함한다. 상기 기능화된 패스너에 관한 정보(예를 들어, 패스너 수)는 상기 광 비컨 내에 인코딩될 수 있다.
이들 기능화된 패스너는, 상기 제1 로봇 시스템이 패스너 위치를 통해 뻗은 축의 배향 및 위치결정을 하는 것을 허용한다. 상기 광 비컨은 상기 윙 베이의 외부 및 내부로 유도되어 상기 제1 로봇 시스템(110) 및 상기 제2 로봇 시스템(120)에 의해 감지될 수 있다.
항공기의 사전 조립된 윙 박스 상에서의 영구적인 잠금 조작을 수행하기 위한 방법을 설명하는 도 5a 및 도 5b를 추가적으로 참조한다. 잠금 조작은, 상기 윙 박스를 통해 버리스 구멍을 드릴링하는 것, 패스너가 상기 윙 박스 내로 뻗도록 상기 구멍을 통해 패스너를 삽입하는 것, 및 상기 윙 박스 내부로부터 볼트로 너트를 잠그는 것을 포함한다.
블록 510에서, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템은 제1 윙 베이로 이동된다. 블록 512에서, 상기 제1 로봇 시스템의 로봇 암은 상기 윙 베이의 액세스 포트를 통해 상기 윙 베이의 내부로 제1 엔드 이펙터를 이동시킨다.
블록 514에서, 상기 제2 로봇 시스템은, 제2 엔드 이펙터가 제1 패스너 상으 로 올 때까지 상기 윙 박스 외부로 상기 제2 엔드 이펙터를 이동시킨다. 예를 들어, 상기 제2 로봇 시스템은 상기 제2 엔드 이펙터를 대충의 위치(coarse position)로 이동시키고, (예를 들어, 비전 시스템을 이용해서) ΔX, ΔY 오프셋을 판단하며, 이들 오프셋이 허용오차 내에 있는지를 판단하고, 그렇지 않은 경우, 상기 오프셋이 허용오차 내로 될 때까지 제2 엔드 이펙터의 위치를 조정할 수 있다. 블록 514에서의 기능이 완료된 후에, 상기 제2 엔드 이펙터는 상기 제1 패스너에 대해 적절한 평면 내 위치를 가진다.
상기 사전 조립된 윙 박스는 대개 각 윙 베이에 대해 몇 개의 패스너를 구비한다. 그들 패스너 중의 하나는 "제1"로서 식별된다. 제1의 예로서, 상기 로봇 컨트롤러는, 상기 제1 엔드 이펙터가 특정 위치, 아마도 제1 패스너가 대충 위치한 곳으로 이동되도록 프로그램될 수 있다. 제2의 예로서, 상기 제1 패스너를 위치시키기 위해 비전 시스템이 이용된다. 제3의 예로서, 상기 윙 박스는 비컨이 패스너 수로 인코딩된 기능화된 패스너로 일시적으로 조립된다. 상기 비컨을 디코딩함으로써, 엔드 이펙터가 상기 "제1의" 기능화된 패스너 상에 배치되어 있는지를 판단할 수 있다.
블록 516에서, 상기 제2 로봇 시스템은 상기 제2 엔드 이펙터 상의 전자석을 상기 윙 베이의 표면에 수직으로 되도록 배향한다. 예를 들어, 상기 제2 로봇 시스템은 상기 제2 엔드 이펙터를 대충의 회전가능한 배향으로 이동시키고, 수직한 표면으로부터의 ΔA, ΔB 각도 오프셋을 판단하며, 이들 오프셋이 허용오차 내에 있는지를 판단하고, 그렇지 않은 경우, 상기 오프셋이 상기 허용오차 내로 될 때까 지 상기 제2 엔드 이펙터의 상기 회전가능한 배향을 조정할 수 있다.
상기 수직한 표면에 대한 배향은 촉각 또는 비촉각 센서에 의해 감지할 수 있다. 예를 들어, 센서는 한 원 내에 배열된 4개의 검출기(예를 들어, 0°, 90°, 180°, 270°)를 구비할 수 있다. 각 검출기는 상기 비컨의 강도를 측정한다. 상기 제2 엔드 이펙터가 상기 제1 패스너의 가운데에 있으면서 상기 윙 베이의 표면에 대해 수직한 점(point)에서 모든 강도 측정값이 동일하게 될 때까지, 상기 제2 엔드 이펙터를 이동시킨다.
블록 518에서, 상기 제2 로봇 어셈블리는 상기 제1 패스너에 대한 상기 제2 엔드 이펙터의 위치 및 배향 [X1, Y1, A1, B1]2를 발생시키고, 이 벡터를 상기 로봇 컨트롤러로 전달한다. 다음으로, 블록 520에서, 상기 제2 로봇 시스템은 상기 제1 로봇 시스템으로부터의 입력을 대기한다.
블록 522에서, 상기 제1 로봇 시스템의 상기 로봇 암은 상기 제1 패스너 상의 대충의 위치로 상기 제1 엔드 이펙터를 이동시킨다. 예를 들어, 상기 제1 로봇 시스템은 상기 제1 엔드 이펙터를 대충의 위치로 이동시키고, (예를 들어, 비전 시스템을 이용해서) 상기 제1 패스너로의 ΔX, ΔY 오프셋을 판단하며, 이들 오프셋이 대충의 위치 허용오차 내에 있는지를 판단하고, 그렇지 않은 경우, 상기 오프셋이 상기 대충의 위치 허용오차 내로 될 때까지 제1 엔드 이펙터의 위치를 조정할 수 있다.
블록 524에서, 상기 제1 엔드 이펙터는 상기 제1 패스너 상에 정확한 배향으 로 이동된다. 예를 들어, 상기 제1 엔드 이펙터는 회전가능한 배향으로 이동된다. ΔA, ΔB 및 ΔC 배향 오프셋을 판단하기 위해, 내부 센서 또는 독출 인코더(read enconder)를 이용한다. 상기 배향 오프셋을 허용오차와 비교하고, 상기 배향 오프셋이 상기 허용오차 내로 될 때까지 상기 배향을 더 조정한다.
블록 526에서, 상기 제1 로봇 시스템은 상기 윙 박스의 내부 표면에 대해 상기 제1 엔드 이펙터를 누른다. 상기 표면 사이의 마찰은, 상기 제1 엔드 이펙터가 (상기 로봇 암의 컴플라이언스로 인해) 위치를 시프트시키는 것을 방지한다.
블록 528에서, 상기 제1 엔드 이펙터에 부착된 상기 위치결정장치는 상기 제1 엔드 이펙터를 상기 제1 패스너 상의 정확한 위치로 이동시킨다. 예를 들어, 상기 제1 로봇 시스템은, (예를 들어, 비전 시스템을 이용해서) 상기 제1 패스너로의 ΔX, ΔY 오프셋을 판단하고, 이들 오프셋이 미세(fine) 위치 허용오차 내에 있는지를 판단하며, 그렇지 않은 경우, 상기 오프셋이 상기 미세 위치 허용오차 내로 될 때까지 상기 장치가 제1 엔드 이펙터의 위치를 시프트시키도록 명령할 수 있다.
블록 530에서, 상기 제1 로봇 시스템은 상기 제1 패스너에 대해 상기 제1 엔드 이펙터의 위치 및 배향 [X1, Y1, A1, B1, C1]1을 발생시킨다. 이 벡터는 상기 로봇 컨트롤러로 전달된다.
블록 532에서, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템은 인접한 (제2) 패스너 상에 정확하게 위치결정되어 배향되고, 상기 제2 패스너에서의 벡터 [X2, Y2, A2, B2, C2]1 및 [X2, Y2, A2, B2]2가 발생되어 상기 로봇 컨트롤러로 전 달된다. 블록 514∼530에서의 기능은, 상기 제2 패스너에 대해 수행되는 것을 제외하고는, 여기서 반복해도 좋다.
블록 534에서, 상기 로봇 컨트롤러는 상기 제1 엔드 이펙터의 상기 위치에 대응하는 상기 제1 벡터 및 상기 제2 엔드 이펙터의 상기 위치에 대응하는 상기 제2 벡터를 이용하여 상기 제1 패스너와 상기 제2 패스너 사이의 영구적인 패스너 위치를 계산한다. 도 6은 일렬로 늘어서 있으면서 상기 제1 패스너(TF1) 및 상기 제2 패스너(TF2) 사이에 등간격으로 이격되어 있는, (십자로 표시된) 영구적인 패스너 위치를 나타낸다. 그러나, 이 영구적인 패스너 위치는 그다지 한정되지 않는다. 예를 들어, 상기 영구적인 패스너 위치는 상기 제1 패스너(TF1) 및 상기 제2 패스너(TF2) 사이의 곡선을 따를 수 있다.
블록 536에서, 각 영구적인 패스너 위치에서 잠금 조작이 수행된다. 도 7에 잠금 조작의 예가 나타내어져 있다. 그러나, 도 5의 방법은 그러한 잠금 조작에 한정되지 않는다. 다른 잠금 조작은, 제한없이 리벳 작업을 포함한다.
블록 538∼540에서, 최후의 영구적인 잠금 조작이 완료된 후, 제1 패스너에서의 좌표는 제2 패스너의 좌표로 설정된다. 즉,
[X1, Y1, A1, B1, C1]1 = [X2, Y2, A2, B2, C2]1; 및
[X1, Y1, A1, B1]2 = [X2, Y2, A2, B2]2
다음으로, 제어는 블록 532로 되돌아간다.
윙 베이 내의 상기 최후의 영구적인 잠금 조작이 수행된 후, 제어는 블록 510)으로 되돌아가는 바, 상기 제1 및 제2 로봇 어셈블리는 다음 윙 베이로 이동되고, 다음 윙 베이 상에서 영구적인 잠금 조작을 수행한다. 이 방법은, 잠금 조작 이 상기 윙 박스의 각 윙 베이 상에서 수행될 때까지 계속된다(블록 542).
이제, 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템에 의해 수행되는 잠금 조작의 예를 설명하는 도 7을 참조한다. 잠금 조작은 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 각 표면에 대해 클램핑하는 것을 포함한다(블록 710). 예를 들어, 이는 상기 제1 엔드 이펙터 상의 강철판을 자기적으로 끌어당기도록 상기 제2 엔드 이펙터 상의 전자석을 활성화시킴으로써 행해질 수 있다(상기 전자석으로부터의 자속은 함께 클램핑된 부품을 통과함).
이 클램핑 힘은 방수제를 짜내고, 부품의 접합 표면 사이의 갭을 제거한다. 이는, 상기 제2 엔드 이펙터가 블록 720에서 수행하는, 버리스 드릴링(burrless drilling)을 돕는다. 상기 제2 엔드 이펙터는 또한 블록 720에서 카운터 싱킹(countersinking: 나사못 원추형 머리에 맞도록 접시형으로 구멍을 파는 조작)을 수행할 수 있다. 블록 730에서, 상기 제2 엔드 이펙터는 상기 드릴링된 구멍에 패스너(fastener: 잠금쇠)를 삽입한다.
블록 740에서, 상기 삽입된 볼트에 비례하여 상기 제1 엔드 이펙터의 위치가 결정된다. 오프셋이 허용오차범위 내에 있지 않으면(블록 750), 상기 제1 엔드 이펙터의 위치를 시프트 및/또는 배향을 변경하기 위해 상기 제1 엔드 이펙터의 단부에서 위치결정장치를 이용한다. 상기 제1 엔드 이펙터와 상기 제2 엔드 이펙터 사이의 자기 클램핑 힘은 상기 위치 조정을 허용하도록 완화될 수 있다.
블록 770에서, 상기 제1 엔드 이펙터는 상기 패스너의 단부를 마무리(terminate: 종단)한다. 예를 들어, 상기 제1 엔드 이펙터는 슬리브 및 너트를 상기 패스너 상으로 인스톨한다.
이제, 도 8을 참조한다. 다른 실시예에서, 상기 제2 로봇 시스템(820)은 상기 제1 로봇 시스템(810)과 동일한 구성을 갖고, 상기 제1 로봇 시스템(810)과 동일한 기능을 수행할 수 있다. 예를 들어, 상기 제1 로봇 시스템(810) 및 상기 제2 로봇 시스템(820)은 인접한 베이 내에서 제1 엔드 이펙터(814) 및 제2 엔드 이펙터(824)를 이동시키기 위한 컴플라이언트 암(812, 822)을 포함하고, 다른 구조 또는 리브의 상반구조(RU) 및 하반구조(RL) 상에서 잠금 조작을 수행할 수 있다. 물론, 이들 다른 실시예는 윙 박스에 한정되지 않고, 다른 인접한 제한된 공간에 걸쳐 수행되는 동기 조작에 적용될 수 있다.
본 명세서에서의 시스템은 제한된 공간 내에서 엔드 이펙터를 위치시키기 위한 로봇 암에 한정되지 않는다. 예를 들어, 제한된 공간 내에 엔드 이펙터를 위치시키기 위해 로봇 암 대신에 무한궤도(crawler)를 이용할 수 있다.
본 명세서에서의 방법은 잠금 조작에 한정되지 않는다. 본 명세서에서의 방법은 항공기에서의 다른 조작을 수행하기 위해 이용될 수 있다. 그러한 조작의 예는, 제한없이 제한된 공간 내의 검사, 페인팅, 청소 및 방수제 인가를 포함한다.
본 명세서에서의 방법은 항공기 상에서의 동기 조작에 한정되지 않는다. 예를 들어, 본 명세서에서의 방법은 컨테이너, 승용차, 트럭, 배 및 제한된 공간을 갖는 다른 구조 상에서의 동기 조작에 적용될 수 있다.
항공기에 관하여, 본 명세서에서의 방법은 제조에 한정되지 않는다. 본 명 세서에서의 방법은 다른 단계의 항공기 제조 및 서비스에 적용될 수 있다.
이제, 항공기 제조 및 서비스 방법의 예를 설명하는 도 9를 참조한다. 사전 제작 중에, 상기 방법은 항공기의 명세(specification: 사양) 및 디자인(910)을 포함하고, 재료 조달(procurement)(920)을 포함할 수 있다. 제작 중에, 부품 및 서브어셈블리 제조(930) 및 항공기의 시스템 통합(940)이 일어난다. 이어서, 항공기는 서비스에 배치(960)되도록 보증 및 배달(950)을 거칠 수 있다. 고객에 의해 이용되는 동안, 항공기는 (변경, 재구성, 새단장 등을 또한 포함할 수 있는) 정기적인 유지 및 서비스(920)가 예정되어 있다.
상기 방법의 각 프로세스는 시스템 통합자, 제3자, 및/또는 운영자(예를 들어, 고객)에 의해 수행되거나 실행될 수 있다. 이 설명의 목적으로, 시스템 통합자는 제한없이 어떠한 수의 항공기 제조업자 및 메이저 시스템 하청계약자도 포함할 수 있고, 제3자는 제한없이 어떠한 수의 공급자, 하청계약자 및 부품제조업자도 포함할 수 있으며, 또한 조작자는 항공사, 임대사, 군대, 서비스 조직 등일 수 있다.
본 명세서에서의 실시예는 어느 하나 또는 그 이상의 제조 및 서비스 방법에서의 단계 사이에 채용될 수 있다. 예를 들어, 제조 프로세스(930)에 해당하는 부품 또는 서브어셈블리는 항공기가 서비스 중에 있는 동안 제작된 서브어셈블리 또는 부품으로 마찬가지로 제작되거나 제조될 수 있다. 또한, 하나 또는 그 이상의 장치 실시예, 방법 실시예, 또는 그들의 조합이, 예를 들어 실질적으로 항공기의 조립을 촉진하거나 항공기의 비용을 감소시킴으로써, 제조 단계(930, 940) 중에 이 용될 수 있다. 마찬가지로, 본 명세서 내의 하나 또는 그 이상의 실시예가, 항공기가 서비스되는 동안, 제한없이 예를 들어 유지보수 및 서비스(970)에 이용될 수 있다.
도 1은 제1 및 제2 로봇 시스템과 로봇 컨트롤러를 포함하는 시스템을 나타낸 것이다.
도 2는 상기 로봇 시스템을 조작하는 방법을 나타낸 것이다.
도 3a 및 도 3b는 제한된 공간 내에서 정확한 위치결정을 위한 방법 및 장치를 나타낸 것이다.
도 4는 항공기의 윙 박스를 나타낸 것이다.
도 5a 및 도 5b는 상기 로봇 시스템을 조작하는 방법을 나타낸 것이다.
도 6은 2개의 미리 조립된 패스너에 비례하는 영구적인 패스너 위치를 나타낸 것이다.
도 7은 잠금 조작을 수행하는 방법을 나타낸 것이다.
도 8은 인접한 제한된 공간의 두 로봇 암을 나타낸 것이다.
도 9는 항공기 제조 및 서비스 방법의 흐름도이다.

Claims (14)

  1. 제한된 공간을 갖는 구조 상에서의 조작을 수행하기 위한 자동화된 방법으로서,
    상기 구조가 상기 제한된 공간 내부 및 상기 제한된 공간 외부로부터 식별가능한 위치를 갖고,
    상기 방법이,
    제1 엔드 이펙터가 상기 위치에 위치하도록 상기 제한된 공간 내부로 상기 제1 엔드 이펙터를 이동시키기 위해 제1 로봇 시스템을 이용하고, 상기 위치에 대한 제1 엔드 이펙터의 위치 및 방향을 포함하는 제1 벡터를 생성하는 단계와;
    제2 엔드 이펙터가 상기 위치에 위치하도록 상기 제한된 공간 외부로 상기 제2 엔드 이펙터를 이동시키기 위해 제2 로봇 시스템을 이용하고, 상기 위치에 대한 제2 엔드 이펙터의 위치 및 방향을 포함하는 제2 벡터를 생성하는 단계;
    상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터가 대향해서 동작하도록 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 새로운 위치로 이동시키기 위해 상기 제1 벡터 및 상기 제2 벡터를 제1 및 제2 로봇 시스템의 각각을 위한 기준 프레임으로서 이용하는 단계 및;
    상기 새로운 위치에서의 조작을 수행하기 위해 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 이용하는 단계를 포함하여 이루어지되,
    기능화된 패스너가 상기 위치에 있고, 상기 기능화된 패스너에 의해 발생된 비컨으로부터 상기 벡터가 얻어지는 것을 특징으로 하는 자동화된 방법.
  2. 제1항에 있어서, 각 로봇 시스템은, 정확한 위치결정이 달성된 때에, 로봇 컨트롤러로 자신의 벡터를 전달하는 것을 특징으로 하는 자동화된 방법.
  3. 제1항에 있어서, 상기 조작은 동기 조립을 포함하는 것을 특징으로 하는 자동화된 방법.
  4. 제3항에 있어서, 상기 동기 조립은, 상기 제2 로봇 시스템이 상기 새로운 위치에 구멍을 뚫고 그 구멍을 통해 패스너를 삽입하는 것과, 상기 제1 로봇 시스템이 상기 패스너를 마무리하는 것을 포함하는 것을 특징으로 하는 자동화된 방법.
  5. 제4항에 있어서, 상기 제1 엔드 이펙터와 상기 제2 엔드 이펙터 사이에 자기 인력을 발생시켜, 버리스 드릴링이 수행되도록 하는 단계를 더 포함하는 것을 특징으로 하는 자동화된 방법.
  6. 제1항에 있어서, 상기 제1 엔드 이펙터 및 상기 제2 엔드 이펙터를 상기 새로운 위치에 위치시키고, 상기 새로운 위치에 대응하는 제1 벡터 및 제2 벡터를 생성하기 위해 상기 제1 로봇 시스템 및 상기 제2 로봇 시스템의 각각의 위치결정 및 배향 시스템을 이용하는 단계를 더 포함하되,
    상기 제1 엔드 이펙터의 상기 새로운 위치가 상기 제1 벡터에 의해 계산되고, 상기 제2 엔드 이펙터의 상기 새로운 위치가 상기 제2 벡터에 의해 계산되는 것을 특징으로 하는 자동화된 방법.
  7. 삭제
  8. 제1항에 있어서, 상기 제1 엔드 이펙터를 상기 위치 상에 대충(coarsely) 위치시키고 표면에 대해 상기 제1 엔드 이펙터를 누르기 위해 상기 제1 로봇 시스템의 컴플라이언트 암을 이용하고, 상기 표면을 따라 상기 제1 엔드 이펙터를 시프트시키기 위해 상기 제1 엔드 이펙터에 부착된 위치결정장치를 이용하도록 된 것을 특징으로 하는 자동화된 방법.
  9. 삭제
  10. 제1항에 있어서, 상기 구조는 항공기 윙 박스인 것을 특징으로 하는 자동화된 방법.
  11. 제10항에 있어서, 상기 제2 로봇 시스템은 액세스 포트를 통해 인접한 윙 박스의 제한된 공간 내로 상기 제2 엔드 이펙터를 이동시키는 것을 특징으로 하는 자동화된 방법.
  12. 제1항에 따른 방법을 수행하기 위해 제1 로봇 시스템 및 제2 로봇 시스템에 명령을 내리기 위한 데이터가 인코딩된 컴퓨터 메모리를 포함하는 것을 특징으로 하는 물품.
  13. 제1 로봇 시스템 및 제2 로봇 시스템과;
    상기 제1 로봇 시스템 및 상기 제2 로봇 시스템이 제1항에 따른 방법을 수행 하도록 하기 위한 로봇 컨트롤러를 포함하는 것을 특징으로 하는 시스템.
  14. 삭제
KR1020090038338A 2008-05-08 2009-04-30 제한된 공간을 갖는 구조 상에서의 동기 로봇 조작 KR101644642B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/117,153 2008-05-08
US12/117,153 US8301302B2 (en) 2008-05-08 2008-05-08 Synchronous robotic operation on a structure having a confined space

Publications (2)

Publication Number Publication Date
KR20090117622A KR20090117622A (ko) 2009-11-12
KR101644642B1 true KR101644642B1 (ko) 2016-08-01

Family

ID=40863621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090038338A KR101644642B1 (ko) 2008-05-08 2009-04-30 제한된 공간을 갖는 구조 상에서의 동기 로봇 조작

Country Status (8)

Country Link
US (1) US8301302B2 (ko)
EP (1) EP2116340B8 (ko)
JP (1) JP5563238B2 (ko)
KR (1) KR101644642B1 (ko)
CN (1) CN101574805B (ko)
CA (1) CA2657085C (ko)
ES (1) ES2746178T3 (ko)
RU (1) RU2509681C2 (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442451B1 (en) * 2000-12-28 2002-08-27 Robotic Workspace Technologies, Inc. Versatile robot control system
WO2010026889A1 (ja) 2008-09-03 2010-03-11 本田技研工業株式会社 ワーク取付システム、ワーク取付方法、サンルーフユニット把持装置、およびサンルーフユニット把持方法
US20100217437A1 (en) * 2009-02-24 2010-08-26 Branko Sarh Autonomous robotic assembly system
US8666546B2 (en) * 2009-07-10 2014-03-04 The Boeing Company Autonomous robotic platform
US8510952B2 (en) * 2010-07-15 2013-08-20 The Boeing Company Agile manufacturing apparatus and method for high throughput
US9764464B2 (en) * 2011-08-03 2017-09-19 The Boeing Company Robot including telescopic assemblies for positioning an end effector
JP5469144B2 (ja) * 2011-09-30 2014-04-09 富士フイルム株式会社 検索画面情報の表示方法、検索画面情報処理システム及びそのプログラム
GB2498977B (en) * 2012-02-01 2015-10-07 Bae Systems Plc Drilling apparatus and method
US9517556B2 (en) * 2012-06-29 2016-12-13 Mitsubishi Electric Corporation Robot control apparatus and robot control method
US8950054B2 (en) 2012-10-10 2015-02-10 The Boeing Company Manufacturing method and robotic assembly system
US9395041B2 (en) 2013-05-14 2016-07-19 The Boeing Company Small frame crawler system
US9481028B2 (en) * 2013-09-26 2016-11-01 The Boeing Company Automated drilling through pilot holes
US9874628B2 (en) * 2013-11-12 2018-01-23 The Boeing Company Dual hidden point bars
US10189214B2 (en) 2014-03-28 2019-01-29 Composite Cluster Singapore Pte. Ltd. Freespace composite manufacturing process and device
EP3221078B1 (en) * 2014-11-18 2018-08-29 Apex Brands, Inc. System and method for processing holes in a work piece
US9975137B2 (en) * 2015-03-24 2018-05-22 The Boeing Company Systems and methods for sealant layering
US11035672B2 (en) * 2015-05-12 2021-06-15 The Boeing Company Sensing of a magnetic target
DE202015008713U1 (de) 2015-12-18 2017-03-21 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Roboter mit Werkzeug zur Spurstangenverstellung
US9937625B2 (en) * 2015-12-29 2018-04-10 The Boeing Company Self-locating robots
US10023250B2 (en) * 2016-06-10 2018-07-17 The Boeing Company Multi-tread vehicles and methods of operating thereof
JP6484213B2 (ja) * 2016-12-09 2019-03-13 ファナック株式会社 複数のロボットを含むロボットシステム、ロボット制御装置、及びロボット制御方法
US11305390B2 (en) 2018-12-21 2022-04-19 The Boeing Company Method and apparatus for single-sided clamp-up
EP3674012A1 (en) * 2018-12-21 2020-07-01 The Boeing Company High-density robotic system
NL2022542B1 (en) * 2019-02-08 2020-08-19 Boeing Co Method and apparatus for single-sided clamp-up
EP3670025A1 (en) * 2018-12-21 2020-06-24 The Boeing Company Method and apparatus for single-sided clamp-up
EP3674011A1 (en) * 2018-12-21 2020-07-01 The Boeing Company High-density robotic system
NL2022543B1 (en) * 2019-02-08 2020-08-19 Boeing Co Method and apparatus for single-sided clamp-up
EP3670024A1 (en) * 2018-12-21 2020-06-24 The Boeing Company Method and apparatus for single-sided clamp-up
NL2022540B1 (en) * 2019-02-08 2020-08-19 Boeing Co High-density robotic system
NL2022547B1 (en) * 2019-02-08 2020-08-19 Boeing Co High-density robotic system
NL2022545B1 (en) * 2019-02-08 2020-08-19 Boeing Co Method and apparatus for single-sided clamp-up
NL2022541B1 (en) * 2019-02-08 2020-08-19 Boeing Co High-density robotic system
EP3670023A1 (en) * 2018-12-21 2020-06-24 The Boeing Company Method and apparatus for single-sided clamp-up
EP3670021A1 (en) * 2018-12-21 2020-06-24 The Boeing Company Method and apparatus for single-sided clamp-up
NL2022546B1 (en) * 2019-02-08 2020-08-19 Boeing Co Method and apparatus for single-sided clamp-up
US11584503B2 (en) 2018-12-21 2023-02-21 The Boeing Company High-density robotic system
US11884377B2 (en) 2018-12-21 2024-01-30 The Boeing Company High-density robotic system
US11224951B2 (en) 2018-12-21 2022-01-18 The Boeing Company Method and apparatus for single-sided clamp-up
US11224950B2 (en) 2018-12-21 2022-01-18 The Boeing Company Method and apparatus for single-sided clamp-up
EP3670026A1 (en) * 2018-12-21 2020-06-24 The Boeing Company High-density robotic system
US11110606B2 (en) * 2019-01-02 2021-09-07 The Boeing Company Coordinating work within a multi-robot cell
US11530621B2 (en) 2019-10-16 2022-12-20 General Electric Company Systems and method for use in servicing a machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759324B2 (ja) 1988-04-23 1998-05-28 ファナック株式会社 ロボットのミラーイメージ方法
JP2000506816A (ja) 1996-03-22 2000-06-06 ザ・ボーイング・カンパニー 決定的な翼アセンブリ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1096094A1 (ru) * 1983-01-13 1984-06-07 Казанский Ордена Трудового Красного Знамени И Ордена Дружбы Народов Авиационный Институт Им.А.Н.Туполева Манипул тор с ручным управлением
KR950005415B1 (ko) * 1986-09-19 1995-05-24 텍사스 인스트루먼츠 인코포레이티드 자동 로롯 장치
US4885836A (en) 1988-04-19 1989-12-12 Imta Riveting process and apparatus
FR2647696B1 (fr) 1989-06-06 1991-09-27 Dassault Avions Ensemble d'outillage pour rivetage de pieces
JP2686839B2 (ja) * 1990-02-28 1997-12-08 松下電器産業株式会社 産業用ロボットシステム
US4995148A (en) * 1990-03-30 1991-02-26 Imta Robotically controlled multi-task end effector
US5477597A (en) 1993-04-14 1995-12-26 Gemcor Engineering Corp. Apparatus for positioning tooling
FR2739794B1 (fr) * 1995-10-11 1997-12-26 Dassault Aviat Appareillage de rivetage operant par chocs et procede de mise en oeuvre de cet appareillage
US5785571A (en) * 1996-09-16 1998-07-28 Camp; Richard S. Multi-configuration amusement device
SE511704C2 (sv) * 1998-03-19 1999-11-08 Saab Ab Förfarande och anordning för montering av vinge
US6505393B2 (en) * 1998-07-31 2003-01-14 Airbus Deutschland Gmbh Two-part riveting apparatus and method for riveting barrel-shaped components such as aircraft fuselage components
US6357101B1 (en) * 2000-03-09 2002-03-19 The Boeing Company Method for installing fasteners in a workpiece
US6729809B2 (en) * 2001-10-09 2004-05-04 The Boeing Company Combined clamp and drill guide for elimination of inter-laminate burrs during drilling
JP3961323B2 (ja) * 2002-03-28 2007-08-22 株式会社神戸製鋼所 ロボットの制御方法、制御ユニット及び制御装置
US6772508B2 (en) * 2002-07-24 2004-08-10 The Boeing Company Fastener delivery and installation system
CN1256224C (zh) * 2003-06-26 2006-05-17 上海交通大学 开放式网络机器人通用控制系统
FR2861326B3 (fr) * 2003-10-24 2006-02-03 Dufieux Ind Procede et dispositif d'usinage de panneaux
FR2865952B1 (fr) * 2004-02-10 2006-06-23 Airbus France Procede et dispositif d'usinage mecanique de panneaux flexibles en particulier de forme complexe
DE102004015978A1 (de) * 2004-04-01 2005-12-01 Aksys Gmbh Verfahren und Einrichtungen zum Aufbringen von Folien auf Innenwandabschnitte einer Fahrzeugkarosserie
US7216436B2 (en) * 2004-08-24 2007-05-15 Bell Helicopter Textron Inc. Method and apparatus for locating and aligning fasteners
US20080028880A1 (en) * 2006-08-01 2008-02-07 Asada H Harry Gravity driven underactuated robot arm for assembly operations inside an aircraft wing box
US8051547B2 (en) * 2006-12-29 2011-11-08 The Boeing Company Robot-deployed assembly tool
US7937817B2 (en) * 2007-05-31 2011-05-10 The Boeing Company Methods and apparatus for an instrumented fastener
US7967549B2 (en) * 2008-05-15 2011-06-28 The Boeing Company Robotic system including foldable robotic arm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759324B2 (ja) 1988-04-23 1998-05-28 ファナック株式会社 ロボットのミラーイメージ方法
JP2000506816A (ja) 1996-03-22 2000-06-06 ザ・ボーイング・カンパニー 決定的な翼アセンブリ

Also Published As

Publication number Publication date
CA2657085A1 (en) 2009-11-08
CN101574805B (zh) 2015-03-25
US8301302B2 (en) 2012-10-30
JP2009269168A (ja) 2009-11-19
CN101574805A (zh) 2009-11-11
EP2116340A1 (en) 2009-11-11
CA2657085C (en) 2015-12-22
JP5563238B2 (ja) 2014-07-30
EP2116340B1 (en) 2019-06-19
EP2116340B8 (en) 2019-08-21
US20110245971A1 (en) 2011-10-06
KR20090117622A (ko) 2009-11-12
RU2509681C2 (ru) 2014-03-20
ES2746178T3 (es) 2020-03-05
RU2009117381A (ru) 2010-11-20

Similar Documents

Publication Publication Date Title
KR101644642B1 (ko) 제한된 공간을 갖는 구조 상에서의 동기 로봇 조작
Frommknecht et al. Multi-sensor measurement system for robotic drilling
US10442555B2 (en) Apparatus, system, and method for supporting a wing assembly
CA2883728C (en) System and method for assembly manufacturing
KR102341145B1 (ko) 유연한 제조 시스템을 작업하는 계측-기반 시스템
EP2848375B1 (en) Method of manufacture within a confined space using an inner end effector and an outer end effector
US8544163B2 (en) Robot having obstacle avoidance mechanism
CN106477068A (zh) 机器人系统和操作机器人系统的方法
CN107867409B (zh) 用于控制可移动机器人装配件的运动的系统和方法
Drouot et al. Measurement assisted assembly for high accuracy aerospace manufacturing
US10197987B2 (en) Use of manufacturing compounds to create fiducial marks
US9878450B2 (en) Method and apparatus for multi-stage spar assembly
US20210276072A1 (en) Offset collar delivery for swage tools
EP2853327B1 (en) Automated drilling through pilot holes
Liu et al. Hybrid visual servoing for rivet-in-hole insertion based on super-twisting sliding mode control
NL2029839B1 (en) Method and system for transporting a workpiece in a manufacturing environment
Luc et al. Swaging End Effector

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
E902 Notification of reason for refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190712

Year of fee payment: 4