KR101623541B1 - 후진파 발진기 및 이의 제조방법 - Google Patents

후진파 발진기 및 이의 제조방법 Download PDF

Info

Publication number
KR101623541B1
KR101623541B1 KR1020090040889A KR20090040889A KR101623541B1 KR 101623541 B1 KR101623541 B1 KR 101623541B1 KR 1020090040889 A KR1020090040889 A KR 1020090040889A KR 20090040889 A KR20090040889 A KR 20090040889A KR 101623541 B1 KR101623541 B1 KR 101623541B1
Authority
KR
South Korea
Prior art keywords
substrates
mask layer
electron beam
output terminal
beam path
Prior art date
Application number
KR1020090040889A
Other languages
English (en)
Other versions
KR20100121941A (ko
Inventor
홍석우
이상훈
백찬욱
김영일
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020090040889A priority Critical patent/KR101623541B1/ko
Publication of KR20100121941A publication Critical patent/KR20100121941A/ko
Application granted granted Critical
Publication of KR101623541B1 publication Critical patent/KR101623541B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/01Generation of oscillations using transit-time effects using discharge tubes
    • H03B9/08Generation of oscillations using transit-time effects using discharge tubes using a travelling-wave tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/34Travelling-wave tubes; Tubes in which a travelling wave is simulated at spaced gaps
    • H01J25/36Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field
    • H01J25/40Tubes in which an electron stream interacts with a wave travelling along a delay line or equivalent sequence of impedance elements, and without magnet system producing an H-field crossing the E-field the backward travelling wave being utilised

Landscapes

  • Micromachines (AREA)

Abstract

후진파 발진기 및 이의 제조방법이 개시된다. 개시된 후진파 발진기는 전자빔 발생원과 전자빔 집전 전극 사이에 마련된 빔 통로 구조체가 서로 대칭되는 형상을 갖는 기판에 금속막이 도포되어 형성된 상부 및 하부 빔 통로 구조체가 접합되어 형성되며, 전자빔 발생원에서 방출되는 전자빔이 경유하는 빔 통로와, 빔 통로를 따라 양측에 다수개 마련된 공진부와, 전자빔과 공진부의 상호작용에 의해 방출되는 전자기파가 출력되는 출력단자는 다단차 식각을 이용하여 형성될 수 있다.

Description

후진파 발진기 및 이의 제조방법{Backward wave oscillator and method of fabricating the same}
본 발명은 후진파 발진기 및 이의 제조방법에 관한 것으로, 보다 상세하게는 다단차 식각을 이용하여 제조될 수 있는 후진파 발진기 및 이의 제조방법에 관한 것이다.
후진파 발진기는 마이크로파 대역에서 테라헤르츠 대역의 전자기파를 발진하는 장치이다.
후진파 발진기는, 전자총(electron gun), 즉 캐소드(cathode)에서 방출되는 전자빔이 콜렉터(collector)에서 반사되어 진행하는 후진파를 이용한다. 후진파는 금속 격자가 마련된 빔 통로(beam tunnel)를 지나면서 전자기파를 발생시킨다.
테라헤르츠 대역은 분자광학, 생물물리학, 의학, 분광학, 영상 및 보안 응용 면에서 매우 중요하다. 기존의 마이크로파 대역과 광학 주파수 사이에 놓여 있는 테라헤르츠(1012 Hz) 대역은 그 중요성에도 불구하고 현재까지 개발되어 있는 발진기가 거의 없는 형편이다. 여러 가지 물리적, 공학적 한계로 개발이 미미하다가 최 근에 와서 여러 가지 신개념과 미세가공 기술의 발달로 테라헤르츠파 발진기의 개발이 한창 진행되고 있다. 이러한 테라헤르츠파 발진기를 제작하는 여러 가지 시도 중에는 MEMS 기술을 이용하여 기판에 금속 격자를 만들고, 전자빔이 금속 격자들 사이들 지나가게 하여 테라헤르츠 전자기파를 발생시키는 후진파 발진기가 개발되고 있다.
상술한 필요성에 따라 본 발명의 실시예들은 다단차 식각을 이용하여 제조될 수 있는 후진파 발진기 및 이의 제조방법을 제공하고자 한다.
본 발명의 일 실시예에 따른 후진파 발진기는,
전자빔 발생원;
전자빔 발생원에서 방출되는 전자빔을 수신하는 전자빔 집전 전극; 및
전자빔 발생원과 전자빔 집전 전극 사이에 마련된 것으로, 서로 대칭되는 형상을 갖는 기판에 금속막이 도포되어 형성된 상부 및 하부 빔 통로 구조체가 접합되어 형성되며, 전자빔 발생원에서 방출되는 전자빔이 경유하는 빔 통로와, 빔 통로를 따라 양측에 다수개 마련된 공진부와, 전자빔과 공진부의 상호작용에 의해 방출되는 전자기파가 출력되는 출력단자를 구비하는 빔 통로 구조체;를 포함한다.
상부 및 하부 빔 통로 구조체의 접합면을 기준으로 볼 때, 출력포트 및 공진부는 동일 깊이로 형성되며, 빔 통로는 상기 출력포트 및 공진부보다 낮게 형성될 수 있다.
본 발명의 일 실시예에 따른 다단차 식각을 이용한 후진파 발진기 제조방법은, 후면파 발진기의 빔 통로 구조체를 제조하는 후진파 발진기의 제조 방법으로서,
제1 및 제2 기판 각각에 빔 통로, 출력단자 및 공진부를 위한 제1 마스크를 제1 마스크 형성 단계;
제1 마스크의 식각 선택비와 다른 식각 선택비를 갖는 것으로, 제1 및 제2 기판 각각에 공진부 및 출력포트를 위한 제2 마스크를 제2 마스크 형성 단계;
제2 마스크를 이용하여 제1 및 제2 기판 각각에 공진부 및 출력포트를 위한 1차 트렌치를 형성하는 1차 식각 단계;
제1 마스크를 이용하여 제1 및 제2 기판 각각에 공진부 및 출력포트를 위한 2차 트렌치를 형성하고 빔 통로를 위한 트렌치를 형성하는 2차 식각 단계;
제1 및 제2 기판 각각에 금속막을 도포하는 단계; 및
제1 및 제2 기판을 금속막을 이용하여 접합하는 단계;를 포함한다.
기판에 돌출선을 형성하는 단계를 더 포함하며, 돌출선에 대응되는 금속막의 접합선을 이용하여 상기 제1 및 제2 기판을 접합할 수 있다.
제1 및 제2 기판의 접합은 유텍틱 접합일 수 있다.
제1마스크층은 제1 및 제2 기판 각각에 서로 대칭되게 형성하며, 제2마스크층은 제1 및 제2 기판 각각에 서로 대칭되게 형성할 수 있다.
제1마스크층은 제1 및 제2 기판 각각에 산화막으로 형성하며, 제2마스크층은 제1 및 제2 기판 각각에 포토레지스트를 도포하여 형성할 수 있다.
본 발명의 일 실시예에 따르면, 웨이퍼를 다단차 식각법으로 서로 대칭되게 식각하여 빔 통로 구조체를 제작하고 이를 서로 마주보게 접합하여 간단하게 제조될 수 있는 후진파 발진기 및 이의 제조방법을 제공한다.
이하, 첨부된 도면들을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나 아래에 예시되는 실시예는 본 발명의 범위를 한정하는 것이 아니며, 본 발명을 이 기술 분야에서 통상의 지식을 가진 자에게 충분히 설명하기 위해 제공되는 것이다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 도면상에서 각 구성요소의 크기는 설명의 명료성과 편의상 과장되어 있을 수 있다.
도 1은 본 발명의 일 실시예에 따른 다단차 식각을 이용한 후진파 발진기를 개략적으로 도시한다.
도 1을 참조하면, 본 실시예의 후진파 발진기는 캐소드(210), 콜렉터(250), 및 상기 캐소드(210)와 콜렉터(250) 사이에 배치되는 전자빔 통로 구조체(100)를 구비한다. 본 실시예의 후진파 발진기는 후술하는 바와 같이 반도체 공정을 이용한 마이크로 전자기계 시스템(Microelectromechanical Systems; MEMS)으로 제조될 수 있다.
캐소드(210)는 전자빔 발생원의 일례로서, 전자빔(B)이 방출된다. 캐소드(210) 앞에는 방출되는 전자빔(B)을 집속시키기 위한 자석과 같은 집속 수단(미도시)이 배치될 수도 있다. 콜렉터(250)는 전자빔(B)이 수신되는 집전 전극이다. 캐소드(210)와 콜렉터(250) 사이에는 소정의 전압이 인가되어, 전자빔(B)이 콜렉터(250)를 향해 진행하며, 전자빔(B)은 콜렉터(250)에서 반사될 수 있다. 콜렉터(250)에서 반사된 전자빔, 즉 후진파는 금속 격자가 마련된 빔 통로 구조체(100) 를 지나면서 전자기파를 발생시킨다.
빔 통로 구조체(100)는 상부 빔 통로 구조체(100A)와 하부 빔 통로 구조체(100A,100B)가 접합된 구조를 가지고 있다. 상부 및 하부 빔 통로 구조체(100A,100B) 각각은 후술하는 반도체 공정을 통해 제조될 수 있다.
하부 빔 통로 구조체(100B)는 기판(110)에 빔 통로(beam tunnel)(150), 출력단자(output port)(160) 및 공진부(170)가 다단차 식각법으로 식각되어 형성되며, 빔 통로(150), 출력단자(160) 및 공진부(170)는 금속막(140)으로 도포되어 있다. 상부 및 하부 빔 통로 구조체(100A,100B)의 접합면을 기준으로 볼 때, 출력단자(160) 및 공진부(170)는 동일 깊이로 형성되며, 빔 통로(150)는 출력단자(160) 및 공진부(170)보다 낮게 형성되어 있다. 한편, 공진부(170)는 빔 통로(150)를 따라 빔 통로(150)의 양측에 다수개 마련되어 있다. 빔 통로(150)를 지나가는 전자빔(B)은 공진부(170)와의 상호작용을 통해 예를 들어 테라 헤르츠의 전자기파가 방출되며, 이러한 전자기파는 출력단자(160)를 통해 출력될 수 있다. 다수의 공진부(170)로 이루어진 격자 구조의 배열 간격은 출력되는 전자기파의 파장에 따라 달라질 수 있다. 상부 빔 통로 구조체(100A)는 하부 빔 통로 구조체(100B)와 대칭되게 형성된다.
다음으로, 도 2a 내지 도 2j를 참조하여 본 발명의 일 실시예에 따른 후진파 발진기 제조방법을 설명하기로 한다.
먼저 도 2a 및 도 2b를 참조하면, 기판(110)의 상면에 돌출선(115)을 형성한다. 기판(110)은 예를 들어 실리콘 기판을 사용할 수 있다. 도 2b는 기판(110)의 상면에 형성된 돌출선(115)의 일례를 보여준다. 돌출선(115)은 후술하는 바와 같이 서로 대칭되게 형성되는 상부 및 하부 빔 통로 구조체(도 2j의 100A,100B 참조)가 접합될 때 서로 만나게 되는 접합선(bonding line)(도 2i의 141)을 위한 것이다.
다음으로, 도 2c 및 도 2d와 같이 기판(110)의 상면에 제1마스크층(120)을 형성한다. 도 2d는 기판(110)의 상면에서 본 제1마스크층(120)의 일례이다. 제1마스크층(120)은 빔 통로, 출력단자 및 공진부의 형성을 위해 마련된 층이다. 참조번호 121은 빔 통로를 위해 제1마스크층(120)이 제거된 영역이며, 참조번호 125는 공진부을 위해 제1마스크층(120)이 제거된 영역이고, 참조번호 127는 출력단자를 위해 제1마스크층(120)이 제거된 영역이다. 제1마스크층(120)은 예를 들어 기판(110)의 표면을 산화시킨 SiO2와 같은 산화막일 수 있다.
다음으로, 도 2e 및 도 2f와 같이 제1마스크층(120)가 형성된 기판(110)의 상면에 제2마스크층(130)을 더 형성한다. 제2마스크층(130)은 공진부 및 출력단자를 위해 마련된 층이다. 도 2f는 기판(110)의 상면에서 본 제2마스크층(130)의 일례이다. 참조번호 135는 공진부를 위해 제2마스크층(130)이 제거된 영역이고, 참조번호 137는 출력단자를 위해 제2마스크층(130)이 제거된 영역이다. 제1 및 2마스크층(120,130)은 식각 선택비(etching selectivity)가 서로 다른 물질이다. 예를 들어, 제1 마스크층(120)은 산화막으로 형성하고, 제2 마스크층(130)은 포토레지스트(Photh Ressist)를 도포하여 형성할 수 있다.
다음으로, 도 2g에 도시된 바와 같이, 제2마스크층(130)을 이용하여 1차 식 각을 하여 공진부에 대응되는 영역(135´) 및 출력단자에 대응되는 영역(도 2f의 137 참조)에 1차 트렌치(trench)를 형성한다.
다음으로, 제2마스크층(130)을 제거하고, 도 2h에 도시된 바와 같이 제1마스크층(120)을 이용하여 2차 식각을 하여 공진부에 대응되는 영역(136) 및 출력단자에 대응되는 영역(도 2f의 137 참조)에 2차 트렌치를 형성하고, 빔 통로에 해당되는 영역(122)에 트렌치를 형성한다. 공진부에 대응되는 영역(136) 및 출력단자에 대응되는 영역은 2차 트렌치가 형성되므로, 그 깊이는 빔 통로에 해당되는 영역(122)에 형성된 트렌치의 깊이보다 깊게 형성된다.
다음으로, 도 2i를 참조하면, 빔 통로, 출력단자 및 공진부에 해당되는 트렌치가 마련된 기판(110)의 상면에 금속막(140)을 도포한다. 금속막(140)은 Au, Ag, Cu 등의 도전성이 좋은 금속을 증착하여 형성할 수 있다. 또한, 금속막(140)을 도포하기 전에 평탄화 공정(smoothing process)를 수행하여, 트렌치 내부의 금속막(140)을 보다 매끄럽게 증착시킬 수 있다.
기판(110)의 상면에는 돌출선(도 2a의 115 참조)이 형성되어 있으므로, 이에 대응되어 금속막(140)에도 돌출된 접합선(141)이 형성된다. 금속막(140)이 도포된 기판(110)의 구조물은 서로 마주보는 면이 대칭되는 상부 및 하부 빔 통로 구조체(100A,100B)를 이룬다.
도 2j를 참조하면, 상부 및 하부 빔 통로 구조체(100A,100B)는 금속막(140)이 도포된 면이 서로 마주본 상태로 접합된다. 상부 및 하부 빔 통로 구조체(100A,100B)의 접합은 예를 들어, 유테틱 접합(Eutectic bonding)을 통해 이루어 질 수 있다. 이러한 유테틱 접합의 예로, Au로 금속막(140)을 형성하는 경우, 400도의 온도에서 60N의 힘을 가하여 상부 및 하부 빔 통로 구조체(100A,100B)를 접합시킬 수 있다. 본 실시예는 상부 및 하부 빔 통로 구조체(100A,100B)의 내부를 이루는 금속막(140)을 이용하여 접합함으로써, 별도의 접합재료의 도포 공정을 생략할 수 있다. 도면의 A에서 표시되는 바와 같이, 서로 맞닿는 접합선(141)에 의해 상부 및 하부 빔 통로 구조체(100A,100B)는 균일하게 접합될 수 있다. 이와 같은 접합선(141)은 기판(110) 자체의 돌출선(115) 패턴에 의한 것이므로, 접합선(141) 형성의 자유도가 높아질 수 있다. 아울러, 상부 및 하부 빔 통로 구조체(100A,100B)에는 정렬키(alignment key)(미도시)를 마련하여 접합시 정렬의 정확도를 높일 수 있다. 한편, 전술한 2단계 식각을 통하여 형성된 영역들은 빔 통로(150), 출력단자(미도시) 및 공진부(170)를 이루게 된다. 본 실시예에 의한 후진파 발진기 제조방법은 한 번의 웨이퍼 접합으로서 입체 구조의 빔 통로 구조체가 제조될 수 있으므로, 웨이퍼의 정렬(alignment) 오차문제나 공정불량의 가능성 등을 최소화할 수 있다.
다음으로, 접합된 상부 및 하부 빔 통로 구조체(100A,100B)에 캐소드(도 1의 210) 및 콜렉터(250) 등을 부착함으로써, 후진파 발진기를 완성할 수 있다. 본 실시예의 후진파 발진기는 전술한 바와 같은 MEMS 공정을 통해 소형화시킬 수 있다.
이러한 본 발명인 후진파 발진기 및 이의 제조방법은 이해를 돕기 위하여 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
도 1은 본 발명의 일 실시예에 따른 후진파 발진기의 구성도이다.
도 2a 내지 도 2j는 본 발명의 일 실시예에 따른 후진파 발진기의 제조 방법을 도시한다.
<도면의 주요부분에 대한 부호의 설명>
110...기판 115...접합선
120...제1마스크 130...제2마스크
140...금속막 150...빔 통로
160...출력단자 170...공진부
210...캐소드 250...콜렉터
B...전자빔

Claims (7)

  1. 전자빔 발생원;
    상기 전자빔 발생원에서 방출되는 전자빔을 수신하는 전자빔 집전 전극; 및
    상기 전자빔 발생원과 전자빔 집전 전극 사이에 마련된 것으로, 서로 대칭되는 형상을 갖는 기판에 금속막이 도포되어 형성된 상부 및 하부 빔 통로 구조체가 접합되어 형성되며, 상기 전자빔 발생원에서 방출되는 전자빔이 경유하는 빔 통로와, 상기 빔 통로를 따라 양측에 다수개 마련된 공진부와, 상기 전자빔과 공진부의 상호작용에 의해 방출되는 전자기파가 출력되는 출력단자를 구비하는 빔 통로 구조체;를 포함하는 후진파 발진기.
  2. 제1 항에 있어서,
    상기 상부 및 하부 빔 통로 구조체의 접합면을 기준으로 볼 때, 상기 출력단자 및 공진부는 동일 깊이로 형성되며, 상기 빔 통로는 상기 출력단자 및 공진부보다 낮게 형성되는 후진파 발진기.
  3. 후면파 발진기의 빔 통로 구조체를 제조하는 후진파 발진기의 제조 방법에 있어서,
    제1 및 제2 기판 각각에 빔 통로, 출력단자 및 공진부를 위한 제1 마스크층을 형성하는 제1 마스크 형성 단계;
    상기 제1 마스크층의 식각 선택비와 다른 식각 선택비를 갖는 것으로, 상기 제1 및 제2 기판 각각에 공진부 및 출력단자를 위한 제2 마스크층을 형성하는 제2 마스크 형성 단계;
    상기 제2 마스크층을 이용하여 상기 제1 및 제2 기판 각각에 공진부 및 출력단자를 위한 1차 트렌치를 형성하는 1차 식각 단계;
    상기 제1 마스크층을 이용하여 상기 제1 및 제2 기판 각각에 공진부 및 출력단자를 위한 2차 트렌치를 형성하고 빔 통로를 위한 트렌치를 형성하는 2차 식각 단계;
    상기 제1 및 제2 기판 각각에 금속막을 도포하는 단계; 및
    상기 제1 및 제2 기판을 금속막을 이용하여 접합하는 단계;를 포함하는 후진파 발진기의 제조 방법.
  4. 제3 항에 있어서,
    기판에 돌출선을 형성하는 단계를 더 포함하여, 상기 돌출선에 대응되는 금속막의 접합선을 이용하여 상기 제1 및 제2 기판을 접합하는 후진파 발진기의 제조 방법.
  5. 제3 항 또는 제4 항에 있어서,
    상기 제1 및 제2 기판의 접합은 유텍틱 접합인 후진파 발진기의 제조 방법.
  6. 제3 항에 있어서,
    상기 제1마스크층은 제1 및 제2 기판 각각에 서로 대칭되게 형성하며,
    상기 제2마스크층은 제1 및 제2 기판 각각에 서로 대칭되게 형성하는 후진파 발진기의 제조 방법.
  7. 제3 항 또는 제6 항에 있어서,
    상기 제1마스크층은 상기 제1 및 제2 기판 각각에 산화막으로 형성하며,
    상기 제2마스크층은 상기 제1 및 제2 기판 각각에 포토레지스트를 도포하여 형성하는 후진파 발진기의 제조 방법.
KR1020090040889A 2009-05-11 2009-05-11 후진파 발진기 및 이의 제조방법 KR101623541B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090040889A KR101623541B1 (ko) 2009-05-11 2009-05-11 후진파 발진기 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090040889A KR101623541B1 (ko) 2009-05-11 2009-05-11 후진파 발진기 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20100121941A KR20100121941A (ko) 2010-11-19
KR101623541B1 true KR101623541B1 (ko) 2016-05-24

Family

ID=43407027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090040889A KR101623541B1 (ko) 2009-05-11 2009-05-11 후진파 발진기 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101623541B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150027518A (ko) 2013-09-04 2015-03-12 한국전자통신연구원 통신 시스템에서 후진파 발진기
CN104332374B (zh) * 2014-09-01 2016-11-30 电子科技大学 一种太赫兹曲折准平板结构
CN105428190B (zh) * 2015-11-06 2017-08-15 西北核技术研究所 直接产生圆极化te11模的相对论返波管
CN105280462B (zh) * 2015-11-06 2017-04-26 西北核技术研究所 直接产生线极化te11模的相对论返波管

Also Published As

Publication number Publication date
KR20100121941A (ko) 2010-11-19

Similar Documents

Publication Publication Date Title
JP5641391B2 (ja) 電極を有するマルチビーム・デフレクタアレー装置の製造方法、マルチビーム・デフレクタアレー装置、及び、照射リソグラフィシステム。
JP6021118B2 (ja) 光デバイスおよびその製造方法
US8638035B2 (en) Terahertz radiation sources and methods of manufacturing the same
US10630053B2 (en) High power laser grid structure
KR101623541B1 (ko) 후진파 발진기 및 이의 제조방법
JP2001517866A (ja) 多波長半導体レーザアレイ装置(チップ)を製造および実装する技術、ならびにシステムアーキテクチャにおけるその応用
US20150034825A1 (en) Device for radiating or receiving electromagnetic waves
KR101710714B1 (ko) 테라헤르츠 발진기용 멤스 소자 및 그 제조 방법
US10438921B2 (en) Method for direct bonding with self-alignment using ultrasound
US6521476B2 (en) Method for manufacturing a semiconductor optical functional device
KR101301157B1 (ko) 다단계 기판 식각 방법 및 이를 이용하여 제조된테라헤르츠 발진기
US20230041174A1 (en) Electrostatic devices to influence beams of charged particles
JP2021057517A (ja) 波長可変レーザ素子およびその製造方法
JP2018026407A (ja) 光デバイスの製造方法
KR20090063131A (ko) 반도체 장치의 제조 방법
US10782475B2 (en) III-V component with multi-layer silicon photonics waveguide platform
KR101196727B1 (ko) 습식공정으로 제작된 그리드 구조를 포함한 광결정 공진기 및 그 제조방법
KR101040676B1 (ko) 습식공정으로 제작된 격자회로를 적용한 스미스-퍼셀 자유전자레이저 소자의 제조 방법
JP2022024909A (ja) ガスセル、原子発信器、及び、それらの製造方法
KR101310668B1 (ko) 다단계 기판 식각 방법 및 이를 이용하여 제조된테라헤르츠 발진기
JP5350859B2 (ja) 光学部材および光学装置の製造方法と光学装置
WO2019026943A1 (ja) 光半導体素子の製造方法および光半導体素子
WO2021260833A1 (ja) 半導体装置の製造方法
JP2005183871A (ja) 面発光レーザ
WO2023105591A1 (ja) 光回路

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190418

Year of fee payment: 4