KR101604858B1 - Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating - Google Patents

Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating Download PDF

Info

Publication number
KR101604858B1
KR101604858B1 KR1020140090300A KR20140090300A KR101604858B1 KR 101604858 B1 KR101604858 B1 KR 101604858B1 KR 1020140090300 A KR1020140090300 A KR 1020140090300A KR 20140090300 A KR20140090300 A KR 20140090300A KR 101604858 B1 KR101604858 B1 KR 101604858B1
Authority
KR
South Korea
Prior art keywords
nonwoven fabric
plating
nickel
electroless
fiber
Prior art date
Application number
KR1020140090300A
Other languages
Korean (ko)
Other versions
KR20160010700A (en
Inventor
곽규범
강승원
이남귀
장민환
이종길
허수형
박민영
강병록
강지훈
Original Assignee
(주)크린앤사이언스
주식회사 불스원신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)크린앤사이언스, 주식회사 불스원신소재 filed Critical (주)크린앤사이언스
Priority to KR1020140090300A priority Critical patent/KR101604858B1/en
Priority to DE112015003301.7T priority patent/DE112015003301B4/en
Priority to PCT/KR2015/006719 priority patent/WO2016010287A1/en
Priority to US15/326,583 priority patent/US20170204519A1/en
Priority to JP2017502868A priority patent/JP6797790B2/en
Publication of KR20160010700A publication Critical patent/KR20160010700A/en
Application granted granted Critical
Publication of KR101604858B1 publication Critical patent/KR101604858B1/en
Priority to JP2019136647A priority patent/JP2020007639A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

본 발명은 부직포의 무전해 및 전해 연속 공정 금속(구리 및 니켈, 또는 니켈 및 니켈) 도금방법 및 상기 방법으로 도금된 부직포에 관한 것이다. 본 발명은 구리 또는 니켈을 무전해 도금하여 생긴 금속 이온들의 공간에 짧은 시간의 니켈 전해 도금을 함으로써 공간이 메워져 얇으면서도 전도도가 우수한 금속 도금된 부직포를 제조 할 수 있다. 도금액의 조성을 변경 또는 도금 속도를 조절하여 원하는 전도도를 얻을 수 있으며 구리 및 니켈, 니켈 및 니켈, 단독 니켈 또는 단독 구리 도금을 병행할 수 있는 라인을 만들 수 있다. 또한 무전해 도금만 한 것과 도금 두께 차이가 없는 고전도성 부직포를 생산 가능하게 한다.The present invention relates to an electroless and electrolytic continuous process metal (copper and nickel, or nickel and nickel) plating process of a nonwoven fabric and a nonwoven fabric plated by the above method. The present invention can produce a metal-plated nonwoven fabric having a small thickness and a high conductivity by filling a space with metal ions formed by electroless plating of copper or nickel for a short period of time by nickel electroplating. The composition of the plating solution can be changed or the plating rate can be adjusted to obtain a desired conductivity and a line can be formed that can be combined with copper and nickel, nickel and nickel, single nickel or single copper plating. It also makes it possible to produce highly conductive nonwoven fabrics which are not only different from those of electroless plating but different in plating thickness.

Description

무전해 및 전해 도금의 연속 공정을 이용한 부직포의 도금방법{Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating} BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of plating a nonwoven fabric using a continuous process of electroless plating and electrolytic plating,

본 발명은 무전해 및 전해 도금의 연속 공정을 이용한 부직포의 도금방법 및 상기 방법에 의해 도금된 부직포에 관한 것으로, 더욱 상세하게는 부직포에 표면 처리되는 금속과 부직포를 구성하는 섬유와의 결합력을 높여 전도성을 향상시킨 금속 도금된 부직포의 제조에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonwoven fabric plating method using a continuous process of electroless plating and electrolytic plating and a nonwoven fabric plated by the above method and more particularly to a method of plating a nonwoven fabric by increasing the bonding force between a metal surface- To a metal-coated nonwoven fabric having improved conductivity.

항공, 우주산업의 발달과 더불어 급속하게 개발되기 시작한 탄소 섬유 강화 복합재료는 오늘날 항공, 우주산업뿐만 아니라 전기, 전자 재료, 토목, 건축 재료, 자동차, 선박, 군사장비, 스포츠용품 등 다양한 분야에서 사용되고 있는 첨단 소재중의 한가지이다.Carbon fiber reinforced composite materials, which have been rapidly developed with the development of aviation and space industry, are used today in various fields such as electric and electronic materials, civil engineering, building materials, automobiles, ships, military equipment, It is one of the advanced materials.

그러나, 최근 탄소 섬유 강화 복합재료는 단점인 저전도성 문제로 인하여 기계적 물성과 전자파 차폐성능을 동시에 구현해야 하는 자동차 전장품 및 통신용 디바이스 하우징(device housing) 등에는 아주 제한적으로 사용되고 있다.However, recently, carbon fiber reinforced composite materials have been used very limitedly in automobile electrical equipment and device housing for communication, which must simultaneously realize mechanical properties and electromagnetic wave shielding performance due to low conductivity, which is a disadvantage.

따라서, 이를 극복 하고자 고분자 복합소재에 전자파 차폐기능을 구현하기 위한 필러(filler)로서, 탄소 섬유(carbon fiber), 카본 블랙(carbon black), CNT, TiO2, 니켈-코팅 흑연(nickel coated graphite) 및 가장 최근에 발표한 그래핀 등을 첨가하여 전자파 차폐 효율을 갖는 고분자 복합소재를 개발하고 있으나, 분산의 문제와 기계적 물성 저하 등의 이유로 그 상용화에 많은 문제점을 가지고 있다. 그리고, 가격적인 문제 및 기계적 물성 때문에 많은 시행착오를 경험하고 있다.Carbon fiber, carbon black, CNT, TiO 2 , nickel coated graphite, and the like are used as a filler for implementing an electromagnetic wave shielding function in a polymer composite material in order to overcome this problem. And recently introduced graphene have been developed to develop polymer composite materials having electromagnetic wave shielding efficiency. However, they have many problems in commercialization due to problems of dispersion and deterioration of mechanical properties. And, it is experiencing many trial and error because of price problem and mechanical property.

한편, 종전 방식인 무전해 또는 전해 표면 처리공정, 즉 각 단계를 분리하여 처리 후 재처리 하는 경우에는 공정 시간을 단축하지 못하고 가격 경쟁력이 없으며, 생산설비 역시 간소화하지 못하는 문제점이 있었다.On the other hand, when the electroless or electrolytic surface treatment process, that is, the process of separating and treating each step separately after reprocessing, does not shorten the process time, has no price competitiveness, and can not simplify the production facility.

그리고, 탄소 섬유와 금속간의 결합력을 높이기 위하여 종전에는 CVD 공정 혹은 스퍼터링 방식을 사용하고 있었는데, 이는 생산비용이 높아 가격경쟁력을 가지지 못하기 때문에 많은 문제점을 가지고 있었다.In order to increase the bonding force between the carbon fiber and the metal, a CVD process or a sputtering process has been used before, which has many problems because it is not cost competitive due to high production cost.

또한, 무전해 탄소 섬유 도금방법이 화학적 이온결합으로 인하여 인 성분을 함유하여 탄소 섬유에 도전성을 높이는 부분에서 다소 제한적이며, 전해 도금의 경우 전도도는 높일 수 있으나 탄소 섬유 각 필라멘트(filament)에는 균일하게 도금이 되지 않아 각 필라멘트의 역할이 중요한 복합소재로서는 부적합하다. 전해 도금으로 생산된 도금 탄소 섬유는 보풀이 많이 발생하고 필라멘트 단절 현상이 많아 제품의 도금 상태를 유지해야 하는 복합재료로서의 사용이 제한적이다.In addition, the electroless carbon fiber plating method is limited to a part that increases the conductivity to the carbon fiber by containing the phosphorus component due to the chemical ionic bonding. In the case of electrolytic plating, the conductivity can be increased, but the carbon fiber filaments are uniformly It is not suitable as a composite material in which the role of each filament is important because plating is not performed. Plated carbon fiber produced by electrolytic plating has a lot of fluffs and many filament disconnection phenomena, so it is limited to use as a composite material in which the plating state of the product must be maintained.

본 발명에서 개발한 연속공정의 하이브리드 타입(hybrid type)의 경우, 1차로 무전해 도금을 통하여 탄소 섬유의 모든 필라멘트에 도금이 되게 하고 화학적 시약을 완벽히 제거 후 전해를 통하게 되면 모든 탄소 섬유에 고루 균일하게 도금이 될 뿐 아니라 짧은 전해도금 시간에도 불구하고 금속 간에 치밀한 도금 층이 형성되어 두께가 얇으면서도 전도성이 급격히 향상되어 복합재료의 용도로 매우 적합한 것을 발견할 수 있었다.In the case of the hybrid type of the continuous process developed in the present invention, all the filaments of the carbon fiber are plated through the electroless plating, and when the chemical reagent is completely removed after the electrolysis, And it is found that a thin plated layer is formed between the metals in spite of a short electrolytic plating time, and the conductivity is improved sharply while being thin, so that it is very suitable for use as a composite material.

종래 생산의 경우 각기 다른 생산 공정으로 진행하여 생산 공정의 비용이 매우 크고 생산설비도 비싸며 또한 제품의 도금 두께를 조정하여 전도성을 컨트롤 하는 것이 매우 어려웠다.In the case of the conventional production, it is very difficult to control the conductivity by adjusting the thickness of the plating of the product.

그러나, 본 발명에서 개발한 연속 공정상의 하이브리드 타입의 경우, 단일 생산설비로 연속으로 무전해 및 전해를 진행함으로 비용이 저렴하고 컨트롤이 용이하여 경쟁력 있는 제품의 생산이 가능하며 품질 검사가 용이 하다는 장점을 가지고 있다.
However, in the case of the hybrid type in the continuous process developed in the present invention, since the electroless and electrolysis are continuously performed in a single production facility, it is possible to produce a competitive product with ease in cost and easy control, Lt; / RTI >

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 경제성과 전도성이 우수한 금속 도금된 섬유 부직포를 제조하는 방법을 개발하고자 노력하였다. 그 결과, 무전해와 전해 표면처리 공정을 연속으로 진행하는 방법을 채택한 경우, 종전 방식인 무전해 또는 전해 표면 처리공정만을 실시하는 경우보다, 공정 시간을 단축, 가격 경쟁력, 생산설비 간소화 등의 장점이 있으며, 종전 방식에 의한 제품 보다 금속 구조 간에 치밀한 도금이 되어 전도성이 우수할 뿐만 아니라 생산비용이 저렴함을 확인하였다.
The present inventors have sought to develop a method for producing a metal-plated fibrous nonwoven fabric having excellent economy and conductivity. As a result, when electroless and electrolytic surface treatment processes are continuously adopted, advantages such as shortening of process time, price competitiveness, and simplification of production facilities are more advantageous than the conventional electroless or electrolytic surface treatment process , And it is confirmed that it is not only excellent in conductivity but also in production cost because it is densely plated between metal structures than the product by the former method.

따라서, 본 발명의 목적은 무전해 및 전해 연속 공정의 부직포 금속(구리 및 니켈) 도금방법을 제공하는 데 있다.Accordingly, an object of the present invention is to provide a non-woven metal (copper and nickel) plating method in an electroless and electrolytic continuous process.

본 발명의 다른 목적은 무전해 및 전해 연속 공정의 부직포 금속(니켈 및 니켈) 도금방법을 제공하는 데 있다.Another object of the present invention is to provide a nonwoven metal (nickel and nickel) plating method in an electroless and electrolytic continuous process.

본 발명의 또 다른 목적은 상술한 본 발명의 방법에 의해 금속(구리 및 니켈) 도금된 부직포를 제공하는 데 있다.It is still another object of the present invention to provide a metal (copper and nickel) plated nonwoven fabric by the above-described method of the present invention.

본 발명의 다른 목적은 상술한 본 발명의 방법에 의해 금속(니켈 및 니켈) 도금된 부직포를 제공하는 데 있다.
Another object of the present invention is to provide a metal (nickel and nickel) plated nonwoven fabric by the above-described method of the present invention.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 부직포(non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법을 제공한다: According to one aspect of the present invention, there is provided a method of electroless and electrolytic continuous metal plating of a non-woven fabric comprising the steps of:

(a) 부직포를 순수(pure water)의 부피를 기준으로 하여 Cu 이온 2.5-5.5 g/l, EDTA 20-55 g/l, 포름알데하이드 2.5-4.5 g/l, TEA(트리에탄올아민) 2-6 g/l, 농도 25%의 NaOH 8-12 ml/l 및 2,2'-비피리딘(bipiridine) 0.008-0.15 g/l를 포함하고, pH 12-13 및 온도 36-45℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 단계; 및(a) The nonwoven fabric is treated with 2.5-5.5 g / l of Cu ion, 20-55 g / l of EDTA, 2.5-4.5 g / l of formaldehyde, 2-6 g of TEA (triethanolamine) based on the volume of pure water an electroless plating solution containing 8-12 ml / l of NaOH at 25% concentration and 0.008-0.15 g / l of 2,2'-bipyridine at pH 12-13 and a temperature of 36-45 ° C And plating copper on the nonwoven fabric for 6 to 10 minutes; And

(b) 상기 단계 (a)의 구리 도금된 부직포를 Ni(NH2SO3)2 280-320 g/l, NiCl2 15-25 g/l 및 H3BO3 35-45 g/l을 포함하고, pH 4.0-4.2 및 온도 50-60℃인 전해 도금액에 통과시켜 1-3 분 동안 구리 도금된 부직포에 니켈을 도금시키는 단계.
(b) the copper-plated nonwoven fabric of step (a) comprises 280-320 g / l Ni (NH 2 SO 3 ) 2 , 15-25 g / l NiCl 2 and 35-45 g / l H 3 BO 3 And plating the nickel-plated non-woven fabric for 1-3 minutes by passing through an electrolytic plating solution having a pH of 4.0 to 4.2 and a temperature of 50 to 60 ° C.

본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 부직포(non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법을 제공한다: According to another aspect of the present invention, the present invention provides a method of electroless and electrolytic continuous metal plating of a non-woven fabric comprising the steps of:

(a) 부직포를 순수(pure water)의 부피를 기준으로 하여 Ni이온 5-7 g/l, NaH2PO2 20-30 g/l, Na3C6H5O7 20-30 g/l 및 티오황산칼륨 0.0005g-0.001 g/l을 포함하고, pH 8.5-9.5 및 온도 30-35℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 니켈을 도금시키는 단계; 및 (a) The nonwoven fabric is impregnated with 5-7 g / l Ni ions, NaH 2 PO 2 20-30 g / l Na 3 C 6 H 5 O 7 20-30 g / l and potassium thiosulfate 0.0005 g-0.001 g / l, pH 8.5-9.5 and temperature 30-35 ° C And plating nickel on the nonwoven fabric for 6-10 minutes; And

(b) 상기 단계 (a)의 구리 도금된 부직포를 Ni(NH2SO3)2 280-320 g/l, NiCl2 15-25 g/l 및 H3BO3 35-45 g/l을 포함하고, pH 4.0-4.2 및 온도 50-55℃인 전해 도금액에 통과시켜 1-3 분 동안 니켈 도금된 부직포에 니켈을 도금시키는 단계.
(b) the copper-plated nonwoven fabric of step (a) comprises 280-320 g / l Ni (NH 2 SO 3 ) 2 , 15-25 g / l NiCl 2 and 35-45 g / l H 3 BO 3 And plating nickel on the nickel plated nonwoven fabric for 1-3 minutes through an electrolytic plating solution having a pH of 4.0-4.2 and a temperature of 50-55 ° C.

본 발명자들은 경제성과 전도성이 우수한 금속 도금된 섬유 부직포를 제조하는 방법을 개발하고자 예의 연구 노력한 결과, 무전해와 전해 표면처리 공정을 연속으로 진행하는 방법을 채택한 경우, 종전 방식인 무전해 또는 전해 표면 처리공정만을 실시하는 경우보다, 공정 시간을 단축, 가격 경쟁력, 생산설비 간소화 등의 장점이 있으며, 종전 방식에 의한 제품 보다 금속 구조 간에 치밀한 도금이 되어 전도성이 우수할 뿐만 아니라 생산비용이 저렴함을 확인하였다.The inventors of the present invention have made extensive efforts to develop a method for producing a metal-plated fibrous nonwoven fabric having excellent economy and conductivity. As a result, when a method of continuously conducting electroless and electrolytic surface treatment processes is adopted, It has advantages such as shortening of process time, cost competitiveness, simplification of production facilities, etc. than the case of carrying out only the treatment process, and it is confirmed that the production cost is low Respectively.

본 발명의 방법의 특징은 섬유(fiber) 부직포를 비 산화 방법에 의해 표면 처리하여 1차적으로 무전해 도금(구리 또는 니켈)후 전해(니켈)도금 하는 것으로서, 이는 생산 공정을 최소화 하여 양극 산화처럼 연속공정이 가능하며 상대적으로 우월한 전도도를 갖는 고기능성 부직포를 제조할 수 있다.The method of the present invention is characterized in that a fiber nonwoven fabric is surface-treated by a non-oxidative method to primarily electrolytically (nickel or plated) after electroless plating (copper or nickel) It is possible to produce a high-performance nonwoven fabric capable of continuous processing and having a relatively high conductivity.

본 발명의 방법은 무전해 구리도금, 또는 무전해 니켈도금을 1차로 한 뒤에 전해도금으로 이어지는 방식으로 진행된다.The method of the present invention proceeds in a manner that is followed by electroless copper plating, or electroless nickel plating, followed by electrolytic plating.

본 발명의 방법은 공지된 다양한 제조방법에 의한 부직포에 적용될 수 있으며, 예컨대 건식부직포, 습식 부직포 또는 스펀본드(spunbond) 부직포 등에 적용될 수 있다. 본 발명의 일 실시예에 따르면, 본 발명의 방법은 습식 부직포로서 탄소섬유 부직포 또는 PET 부직포에 적용될 수 있다. 상술한 건식부직포, 습식 부직포 또는 스펀본드(spunbond) 부직포의 제조방법은 당업계에 널리 알려져 있으며, 대한민국 공개특허 제10-2012-0121079호, 대한민국 등록특허 제101049623호, 대한민국 등록특허 제101133851호 및 대한민국 등록특허 제101156844호가 참조로서 삽입된다.The method of the present invention can be applied to a nonwoven fabric by various known production methods, and can be applied to, for example, a dry nonwoven fabric, a wet nonwoven fabric or a spunbond nonwoven fabric. According to one embodiment of the present invention, the method of the present invention can be applied to a carbon fiber nonwoven fabric or a PET nonwoven fabric as a wet nonwoven fabric. Methods of making the dry, nonwoven or spunbond nonwoven fabrics as described above are well known in the art and are described in Korean Patent Publication Nos. 10-2012-0121079, 101049623, 101133851, Korean Patent No. 101156844 is inserted as a reference.

본 발명의 도금 방법은 공지된 다양한 종류의 부직포에 적용될 수 있으며, 예컨대, 탄소 섬유, 폴리에스테르 섬유, 유리 섬유, 아라미드 섬유, 세라믹 섬유, 금속 섬유, 폴리이미드 섬유, 폴리벤즈옥사졸 섬유, 천연 섬유 또는 이들의 혼합 섬유로 제작된 부직포에 적용될 수 있다. The plating method of the present invention can be applied to various kinds of known nonwoven fabrics and can be applied to various kinds of known nonwoven fabrics such as carbon fiber, polyester fiber, glass fiber, aramid fiber, ceramic fiber, metal fiber, polyimide fiber, polybenzoxazole fiber, Or a nonwoven fabric made of mixed fibers thereof.

폴리에스테르 섬유는 폴리에틸렌 테레프탈레이트(PET), 폴리글리콜리드(PGA), 폴리락트산(PLA), 폴리카프롤락톤(PCL), 폴리히드록시알카노에이트(PHA), 폴리히드록시부티레이트(PHB), 폴리에틸렌 아디페이트(PEA), 폴리부틸렌 숙시네이트(PBS), 폴리(3-히드록시부티레이트-코-3-히드록시발레르에이트(PHBV), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN) 및 벡트란(Vectran)을 포함하며 이에 한정되지 않는다.The polyester fiber may be a polyester fiber such as polyethylene terephthalate (PET), polyglycolide (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PEA), polybutylene succinate (PBS), poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), and Vectran.

본 발명의 일 실시예에 따르면, 본 발명의 방법은 탄소섬유 부직포 또는 PET 섬유 부직포에 적용될 수 있다.According to one embodiment of the present invention, the method of the present invention can be applied to carbon fiber nonwoven fabric or PET fiber nonwoven fabric.

한편, 본 발명의 방법이 적용되는 부직포는 상술한 섬유(제1섬유라 한다)에 강화 섬유로서 제2섬유를 혼합하여 제조할 수 있다. 강화 섬유란 부직포의 강도를 증가시키기 위한 재료로서, 저융점 섬유(low melting fiber) 또는 저융점 필라멘트(low melting filament)이며, 예컨대 L/M 폴리에스테르 섬유(LMP)를 사용할 수 있다. 저융점 폴리에스테르 섬유는 일반적인 폴리에스테르의 융점인 255℃ 보다 낮은 융점을 가지며, 열융착 목적으로 사용된다.On the other hand, the nonwoven fabric to which the method of the present invention is applied can be produced by mixing the second fibers as the reinforcing fibers with the above-mentioned fibers (referred to as first fibers). The reinforcing fiber is a low melting fiber or a low melting filament, for example, L / M polyester fiber (LMP) can be used as a material for increasing the strength of the nonwoven fabric. The low melting point polyester fiber has a melting point lower than the melting point of general polyester of 255 DEG C and is used for heat fusion purposes.

본 발명에 따르면, 상기 제2섬유로서 저융점 섬유는 L/M 폴리에틸렌 테레프탈레이트(low melting PET)이다. L/M 폴리에틸렌 테레프탈레이트는 용융점이 비교적 낮으므로, 약 100℃로 가열 압착 시 용융되어 제1섬유에 혼합됨으로써 전체 부직포의 강도를 증가시킨다. According to the present invention, the low melting point fiber as the second fiber is L / M polyethylene terephthalate (low melting PET). Since L / M polyethylene terephthalate has a relatively low melting point, it melts when heated to about 100 캜 and is mixed with the first fiber, thereby increasing the strength of the entire nonwoven fabric.

본 발명의 부직포(non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법은 최종적으로 금속 도금된 부직포를 제조하기 위한 것으로서, 무전해 및 전해 연속 공정으로 금속 도금된 부직포의 제조방법과 동일한 의미로서 사용될 수 있다.
The method of electroless and electrolytic continuous metal plating of a non-woven fabric of the present invention is for producing a metal-plated nonwoven fabric finally and has the same meaning as the method of producing a metal-plated nonwoven fabric by electroless and electrolytic continuous process Lt; / RTI >

이하, 무전해 및 전해 연속 공정으로 금속 도금된 부직포를 제조하기 위한 본 발명의 방법을 단계별로 상세하게 설명하면 다음과 같다:Hereinafter, the method of the present invention for producing a metal-plated nonwoven fabric by an electroless and electrolytic continuous process will be described step by step as follows:

(a) 무전해 도금 공정 (a) Electroless plating process

우선, 부직포에 금속을 무전해 도금시키는 단계를 거친다.First, the non-woven fabric is electroless-plated with metal.

일 구현예로서, 탄소 섬유 부직포에 구리를 도금시키는 경우에는 무전해 도금액은 순수(pure water), 구리 금속염, 착화제, 환원제, 안정제 및 pH 조절제를 포함한다.In one embodiment, when the carbon fiber nonwoven fabric is plated with copper, the electroless plating solution includes pure water, a copper metal salt, a complexing agent, a reducing agent, a stabilizer, and a pH adjusting agent.

상기 무전해 도금액에 포함되는 구리 금속염은 탄소 섬유에 도전성을 부여하기위한 구리 이온을 공급하며, 환원제는 포름알데하이드를 이용하였으며, 착화제로 EDTA, 안정제로 TEA(트리에탄올아민) 및 2,2'-비피리딘(bipiridine), 그리고 pH 조절제로는 농도 25%의 NaOH를 이용하였다.The copper metal salt contained in the electroless plating solution supplies copper ions for imparting conductivity to the carbon fiber. Formaldehyde is used as a reducing agent. EDTA as a complexing agent, TEA (triethanolamine) and 2,2'-bis Bipiridine was used as a buffer and NaOH (25%) was used as a pH controller.

실시예에서 확인할 수 있듯이, 무전해 도금액에 포함되는 환원제인 포름알데하이드 및 pH 조절제인 NaOH의 농도가 증가함에 따라 도금 속도는 상승하였으나, 도금액의 수명이 짧아지는 단점이 있어, 이를 고려하여 환원제와 pH 조절제의 함량을 채택하였다.As can be seen from the examples, although the plating rate was increased as the concentration of formaldehyde and NaOH, which are the reducing agents included in the electroless plating solution, was increased, the lifetime of the plating solution was shortened. The content of modulator was adopted.

한편, 실시예에서 명확히 확인할 수 있듯이, 구리 이온 및 착화제의 함량이 동일 비율로 증가할 때 환원제의 함량을 조절함으로써 도금 속도 및 액 안정성 시험을 실시한 결과, 구리 이온 및 환원제인 포름알데하이드의 농도의 조절로 도금 속도 및 도금층의 두께를 조절할 수 있고, 도금층 두께 조절을 통해 비중, 강도, 탄성율 및 스트레인(strain)을 조절할 수 있는 데, 본 발명에서는 도금층의 두께가 두꺼워 질수록, 비중이 증가하고, 강도, 탄성율 및 스트레인(strain)이 저하되므로, 구리 이온 및 환원제인 포름알데하이드의 농도 조절과 함께 전해 도금을 실시하여 얇은 두께로 전도도가 향상되어 상기 문제점을 해결하였으며, 이는 본 발명에서 무전해 및 전해 연속 공정을 채택한 이유이다.On the other hand, as clearly shown in the examples, when the content of copper ion and complexing agent increased in the same ratio, the plating rate and liquid stability test were conducted by controlling the content of reducing agent. As a result, the copper ion and the concentration of formaldehyde, It is possible to adjust the plating speed and the thickness of the plating layer by adjusting the thickness of the plating layer and adjust the specific gravity, strength, elastic modulus and strain by adjusting the thickness of the plating layer. In the present invention, the thicker the plating layer, The strength, the modulus of elasticity, and the strain are lowered. Therefore, the electrolytic plating is performed together with the adjustment of the concentration of copper ion and formaldehyde as a reducing agent to improve the conductivity at a thin thickness, This is why we adopted the continuous process.

본 발명의 일 구현예에 따르면, 상기 단계 (a)의 무전해 도금 단계는 부직포를 순수(pure water)의 부피를 기준으로 하여 Cu 이온 4.5-5.5 g/l, EDTA 45-55 g/l, 포름알데하이드 3.5-4.5 g/l, TEA(트리에탄올아민) 4-6 g/l, 농도 25%의 NaOH 8-12 ml/l 및 2,2'-비피리딘(bipiridine) 0.01-0.15 g/l를 포함하고, pH 12-13 및 온도 40-45℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 것을 특징으로 한다.According to an embodiment of the present invention, the electroless plating step of the step (a) comprises the steps of: providing the nonwoven fabric with 4.5-5.5 g / l of Cu ion, 45-55 g / l of EDTA, 3.5-4.5 g / l of formaldehyde, 4-6 g / l of TEA (triethanolamine), 8-12 ml / l of 25% NaOH and 0.01-0.15 g / l of 2,2'-bipyridine , And is passed through an electroless plating solution having a pH of 12-13 and a temperature of 40-45 ° C, and copper is plated on the nonwoven fabric for 6-10 minutes.

다른 구현예로서, 부직포에 니켈을 도금시키는 경우에는 무전해 도금액은 순수(pure water), 니켈 금속염, pH 완충제, 환원제 및 안정제를 포함한다.In another embodiment, when nickel is plated on the nonwoven fabric, the electroless plating solution includes pure water, a nickel metal salt, a pH buffer, a reducing agent, and a stabilizer.

상기 무전해 도금액에 포함되는 니켈 금속염은 부직포에 도전성을 부여하기위한 니켈 이온을 공급하며, 환원제는 NaH2PO2을 이용하였으며, 안정제로 티오황산칼륨, 그리고 pH 완충제로는 Na3C6H5O7를 이용할 수 있다.The nickel metal salt included in the electroless plating solution supplies nickel ions for imparting conductivity to the nonwoven fabric. NaH 2 PO 2 is used as a reducing agent, potassium thiosulfate as a stabilizer, and Na 3 C 6 H 5 O 7 can be used.

그리고, 무전해 도금 후 수세 3단을 하며 수세 3단 중 3번째에는 H2SO4 1-2%를 섞어 수세한다. 이는 전해 도금조의 pH를 보존하기 위한 수단이며 무전해 도금된 탄소섬유의 표면을 활성화 시켜주기 위함이다.
Then, electroless plating is of a three-stage water washing, and the washing with water after the plating, the third three-stage washing with water mixed with H 2 SO 4 1-2%. This is a means to preserve the pH of the electrolytic plating bath and to activate the surface of the electrolessly plated carbon fiber.

(b) 전해 도금 공정 (b) Electroplating process

단계 (a) 과정 이후, 구리 또는 니켈 무전해 도금된 부직포에 대하여 전해 도금 공정으로 니켈을 연속적으로 도금시킨다. After step (a), nickel or nickel is electroless plated on the copper or nickel electroless plated nonwoven fabric.

본 발명의 특징 중 하나는 무전해 도금 공정을 실시한 다음 니켈 전해 도금 공정을 실시하여 섬유 또는 부직포의 전기 전도도를 개선시켰다는 점이다.One of the features of the present invention is that the electroless plating process is performed and then the nickel electroplating process is performed to improve the electrical conductivity of the fiber or the nonwoven fabric.

상기 전해 도금 공정을 실시하기 위한 전해 도금액은 니켈 금속염으로 Ni(NH2SO3)2 NiCl2을, pH 완충제로 H3BO3를 이용한다.The electrolytic plating solution for carrying out the electrolytic plating process includes Ni (NH 2 SO 3 ) 2 and NiCl 2 and H 3 BO 3 as a pH buffer.

실시예에서 명확히 확인할 수 있듯이, 무전해 및 전해 연속 공정을 통해 도금되지 않는 탄소 섬유에 비해 전기저항 값이 약 32-37배 감소하며, 비교예에 비해서는 약 2배 감소하여 전기 전도도가 개선되었다. 이로써, 탄소섬유로 제작한 부직포의 경우에도 전기 전도도가 개선됨을 알 수 있다. As clearly shown in the examples, the electric resistance value was reduced by about 32-37 times as compared with the non-plated carbon fiber through the electroless and electrolytic continuous process, and the electrical conductivity was improved by about twice as compared with the comparative example . As a result, it can be seen that the electric conductivity is improved even in the case of nonwoven fabric made of carbon fiber.

이는 무전해 도금 후 구리 또는 니켈의 공극을 빠른 시간에 Ni 전해 도금을 실시하여 메꾸는 방식으로 전기 전도도가 개선되었다고 판단된다.It is considered that the electroconductivity is improved by performing the Ni electroplating in a short time after the electroless plating and the voids of copper or nickel.

본 발명의 일 구현예에 따르면, 상기 단계 (c)의 전해 도금 공정은 정전압(CV, constant voltage) 5-15 Volt를 가하여 실시한다.According to an embodiment of the present invention, the electrolytic plating process of step (c) is performed by applying a constant voltage (CV) of 5-15 volts.

무전해 구리 도금 및 전해 니켈 도금의 연속 공정의 경우, 전해 도금 공정은 정전압(CV, constant voltage) 5-10 Volt를 가하여 실시하고, 보다 바람직하게는 6-8 Volt를 가하여 실시한다.In the case of electroless copper plating and continuous electrolytic nickel plating, the electrolytic plating process is performed by applying a constant voltage (CV) of 5-10 volts, more preferably by applying a voltage of 6-8 volts.

무전해 니켈 도금 및 전해 니켈 도금의 연속 공정의 경우, 전해 도금 공정은 정전압(CV, constant voltage) 10-15 Volt를 가하여 실시한다.
In the continuous process of electroless nickel plating and electrolytic nickel plating, the electroplating process is performed by applying a constant voltage (CV) of 10-15 volts.

이러한 무전해 및 전해 도금의 장점은 전기 전도도의 우수성을 띄며 밀착력 및 연성에 효과적이고 무전해 도금에서 생긴 금속들의 공간에 전해 금속이 붙어 두께는 얇고 전도도는 우수한 형태의 합금 층이 형성된다. 또한, 섬유 또는 부직포에 고른 도금을 할 수 있는 효과를 갖는다. The advantage of electroless and electrolytic plating is that it has excellent electrical conductivity, is effective in adhesion and ductility, and has an electrolytic metal attached to the space of the metal formed by electroless plating to form an alloy layer having a thin thickness and an excellent conductivity. In addition, it has an effect of enabling uniform plating of fibers or nonwoven fabrics.

1차로 무전해 도금(구리 또는 니켈)후 연속으로 전해도금을 실시하며 욕 중에 부직포를 놓고 전압을 인가함으로써 무전해 도금에서 생긴 공극에 전해이온이 결합해 도금 두께가 얇고 전도도는 향상된 제품이 생산된다.
Electrolytic plating is carried out continuously after electroless plating (copper or nickel), and a nonwoven fabric is placed in the bath, and a voltage is applied to produce a product in which electrolytic ions are bonded to the pores formed by electroless plating, .

본 발명에 따르면, 상기 단계 (a)의 부직포는 단계 (a)의 실시 전 다음의 단계를 포함하는 방법으로 전처리(pre-treatment)되는 것을 특징으로 한다:According to the present invention, the nonwoven fabric of step (a) is pre-treated by a method comprising the following steps before carrying out step (a):

(ⅰ) 부직포를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계;(I) passing the nonwoven fabric through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric;

(ⅱ) 상기 단계 (ⅰ)의 결과물인 부직포를 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하는 단계; (Ii) the resultant nonwoven fabric of step (i) is treated with sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ) Passing an aqueous solution containing pure water to perform an etching process for neutralizing, cleaning and conditioning;

(ⅲ) 상기 단계 (ⅱ)의 결과물인 부직포를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (Iii) The resultant nonwoven fabric of step (ii) is treated with PdCl 2 Passing the solution through an aqueous solution to perform a sensitizing process; And

(ⅳ) 상기 단계 (ⅲ)의 결과물인 부직포를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계.(Iv) passing the resultant nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process.

(ⅰ) 탄소 섬유의 탈지 및 연화 (I) degreasing and softening of carbon fibers

본 발명의 방법 중 부직포의 전처리는 우선, 탄소 섬유를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계를 거친다.In the method of the present invention, the pretreatment of the nonwoven fabric is carried out by first passing the carbon fiber through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric.

상기 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액은 탄소 섬유에 사이징된 에폭시나 우레탄을 제거하는 탈지 작용을 하며, 동시에 섬유 표면을 팽윤(swelling)시켜 연화(softening) 시킨다.The aqueous solution containing the surfactant, the organic solvent and the nonionic surfactant performs a degreasing action to remove the epoxy or urethane which is dispersed in the carbon fiber, and at the same time, softens the surface of the fiber by swelling.

본 발명에 따르면, 상기 단계 (ⅰ)의 수용액은 계면활성제로 순수(pure water) 및 NaOH를 중량비 40-49: 1-10으로 혼합한 용액 15-35 중량%, 유기 용매로 디에틸 프로판디올(diethyl propanediol) 50-80중량% 및 디프로필렌 글리콜 메틸 에테르(dipropylene glycol methyl ether) 5-15 중량%, 그리고 400-600 ppm의 비이온성 계면활성제를 포함하고, 보다 더 바람직하게는 계면활성제로 순수(pure water) 및 NaOH를 중량비 45-48: 2-5으로 혼합한 용액 20-30 중량%, 유기 용매로 디에틸 프로판디올(diethyl propanediol) 58-72중량% 및 디프로필렌 글리콜 메틸 에테르(dipropylene glycol methyl ether) 8-12 중량%, 그리고 450-550 ppm의 비이온성 계면활성제를 포함한다.According to the present invention, the aqueous solution of step (i) is prepared by mixing 15 to 35% by weight of a solution obtained by mixing pure water and NaOH in a weight ratio of 40-49: 1-10 as a surfactant, adding diethyl propanediol diethyl propanediol, 5-15% by weight of dipropylene glycol methyl ether, and 400-600 ppm of non-ionic surfactant, and even more preferably, 20 to 30% by weight of a solution of pure water and NaOH in a weight ratio of 45 to 48: 2-5, 58 to 72% by weight of diethyl propanediol as an organic solvent and dipropylene glycol methyl ether ether of from 8 to 12% by weight, and from 450 to 550 ppm of nonionic surfactant.

상기 비이온성 계면활성제는 당업계에 공지된 다양한 비이온성 계면활성제를 포함하나, 바람직하게는 에폭시레이티드 리니어 알코올(ethoxylated linear alcohol), 에폭시레이티드 리니어 알킬페놀(ethoxylated linear alkyl-phenol) 또는 에폭시레이티드 리니어 티올(ethoxylated linear thiol)이고, 보다 바람직하게는 에폭시레이티드 리니어 알코올(ethoxylated linear alcohol) 이다.The nonionic surfactant includes various nonionic surfactants known in the art, but is preferably selected from the group consisting of ethoxylated linear alcohol, ethoxylated linear alkyl-phenol, Ethoxylated linear thiol, and more preferably ethoxylated linear alcohol.

본 발명의 보다 다른 바람직한 구현예에 따르면, 상기 단계 (ⅰ)는 온도 40-60℃에서 1-5분 동안 실시하고, 보다 바람직하게는 온도 45-55℃에서 1-3분 동안 실시한다.According to a further preferred embodiment of the present invention, step (i) is carried out at a temperature of 40-60 ° C for 1-5 minutes, more preferably at a temperature of 45-55 ° C for 1-3 minutes.

(ⅱ) 에칭 공정 (Ii) etching process

이어, 강알카리 성분을 중화 시키고, 다음 공정인 센시타이징(sensitizing)공정을 위해 세정작용을 돕고 조질(conditioning)작용을 하는 에칭 공정을 실시한다.Next, the strong alkaline components are neutralized, and an etching process is performed to assist the cleaning action and the conditioning action for the next sensitizing process.

에칭 공정을 위한 수용액은 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함한다.The aqueous solution for the etching process includes sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ) and pure water do.

본 발명에 따르면, 상기 단계 (ⅱ)의 수용액은 아황산수소나트륨(sodium bisulfite; NaHSO3) 0.1-10 중량%, 황산(H2SO4) 0.1-3 중량%, 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 5-25 중량% 및 순수(pure water) 62-94.8 중량%를 포함하고, 보다 더 바람직하게는 아황산수소나트륨(sodium bisulfite; NaHSO3) 0.8-2 중량%, 황산(H2SO4) 0.3-1 중량%, 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 10-20 중량% 및 순수(pure water) 77-88.9 중량%를 포함한다.According to the present invention, the aqueous solution of step (ii) may contain 0.1-10% by weight of sodium bisulfite (NaHSO 3 ), 0.1-3% by weight of sulfuric acid (H 2 SO 4 ), ammonium persulfate NH 4 ) 2 S 2 O 8 ) and 62-94.8 wt% pure water, more preferably 0.8-2 wt% sodium bisulfite (NaHSO 3 ) 0.3-1% by weight of sulfuric acid (H 2 SO 4 ), 10-20% by weight of ammonium persulfate (NH 4 ) 2 S 2 O 8 and 77-88.9% by weight of pure water.

본 발명의 일 구현예에 따르면, 상기 단계 (ⅱ)는 온도 20-25℃에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 20-25℃에서 1-3분 동안 실시한다.According to one embodiment of the present invention, step (ii) is carried out at a temperature of 20-25 ° C for 1-5 minutes, more preferably at a temperature of 20-25 ° C for 1-3 minutes.

(ⅲ) 센시타이징 ( sensitizing ) 공정 (Ⅲ) Sensi palletizing (sensitizing) process

그 다음, 상기 단계 (ⅱ)의 결과물인 부직포를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계를 거친다.Then, the resultant nonwoven fabric of step (ii) was washed with PdCl2 And passing the solution through an aqueous solution to perform a sensitizing process.

상기 센시타이징 공정은 표면 개질된 섬유 또는 부직포의 표면에 금속 이온이 흡착되도록 하기 위함이다.The sensing process is for adsorbing metal ions on the surface of the surface-modified fiber or nonwoven fabric.

보다 바람직하게는 PdCl2 수용액의 농도는 10-30%이고, 보다 더 바람직하게는 15-25%이다. More preferably PdCl 2 The concentration of the aqueous solution is 10-30%, more preferably 15-25%.

본 발명의 일 구현예에 따르면, 상기 단계 (ⅲ)은 온도 20-40℃에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 25-35℃에서 1-3분 동안 실시한다.According to one embodiment of the present invention, step (iii) is carried out at a temperature of 20 to 40 DEG C for 1 to 5 minutes, more preferably at a temperature of 25 to 35 DEG C for 1 to 3 minutes.

(ⅳ) 활성화( activating ) 공정 (Ⅳ) activation (activating) process

이어, 상기 단계 (ⅲ)의 결과물인 부직포를 농도 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시한다.Then, the resultant nonwoven fabric of step (iii) is passed through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process.

상기 활성화 공정은 센시타이징 공정 이후에 실시한 것으로 기재하였으나, 센시타이징(sensitizing) 공정과 함께 실시하는 것도 본 발명의 범위에 포함된다.Although the activation process is described as being performed after the sensing process, it is also within the scope of the present invention to perform the activation process together with the sensitizing process.

활성화 공정은 Pd의 산화방지를 위하여 콜로이드화된 Sn의 제거를 위하여 실시한다.The activation process is performed to remove the colloidal Sn to prevent oxidation of Pd.

보다 바람직하게는 황산(H2SO4) 수용액의 농도는 5-15%이다.More preferably sulfuric acid (H 2 SO 4) concentration of the aqueous solution is 5-15%.

본 발명의 보다 바람직한 구현예에 따르면, 상기 단계 (ⅳ)는 온도 40-60℃에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 45-55℃에서 1-3분 동안 실시한다.According to a more preferred embodiment of the present invention, the step (iv) is carried out at a temperature of 40-60 ° C for 1-5 minutes, more preferably at a temperature of 45-55 ° C for 1-3 minutes.

이러한 방법으로 부직포를 전처리 할 수 있으며, 전처리된 부직포에 금속인 구리 및 니켈, 그리고 니켈 및 니켈을 무전해 및 전해 연속 공정으로 도금시킬 수 있다. 한편, 상기 전처리 과정은 부직포 제작 후 이루어지는 것으로 기재되어 있지만, 부직포를 제작하기 이전 섬유 자체에 전처리 과정이 적용될 수도 있다.
In this way, the nonwoven fabric can be pretreated, and the pre-treated nonwoven fabric can be plated with metals such as copper and nickel, and nickel and nickel by an electroless and electrolytic continuous process. On the other hand, the pretreatment process is described after the fabrication of the nonwoven fabric, but the pretreatment process may be applied to the fiber itself before the fabrication of the nonwoven fabric.

본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 방법에 의해 제조된 금속(구리 및 니켈) 도금된 부직포를 제공한다.According to another aspect of the present invention, there is provided a metal (copper and nickel) plated nonwoven fabric produced by the above-described method of the present invention.

본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 방법에 의해 제조된 금속(니켈 및 니켈) 도금된 부직포를 제공한다.According to another aspect of the present invention, the present invention provides a metal (nickel and nickel) plated nonwoven fabric produced by the method of the present invention described above.

본 발명의 구리 및 니켈, 또는 니켈 및 니켈이 도금된 부직포는 상술한 본 발명의 무전해 및 전해 연속 공정으로 금속 도금된 탄소 섬유의 제조방법으로 제조되는 것이기 때문에, 이 둘 사이에 공통된 내용은 반복 기재에 따른 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.
Since the copper and nickel or nickel and nickel plated nonwoven fabric of the present invention is produced by the method of manufacturing the metal-plated carbon fiber by the electroless and electrolytic continuous process of the present invention described above, In order to avoid the excessive complexity of the specification according to the description, the description is omitted.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명에서 사용한 도금방법은 연속공정이 가능하고, 안정적인 처리가 가능함과 동시에 탄소섬유 표면에 구리-니켈 합금 또는 니켈-니켈 금속을 도입시킴으로써 섬유 또는 부직포가 높은 전기 전도도를 가지게 된다.(a) The plating method used in the present invention allows a continuous process, and stable treatment can be performed, and a copper or nickel alloy or a nickel-nickel metal is introduced into the surface of the carbon fiber, so that the fiber or the nonwoven fabric has high electrical conductivity.

(b) 또한 이를 이용하여 복합소재를 제작 시에 탄소 섬유와 구리-니켈 도금 또는 니켈-니켈 도금이 제품 성형 시 박리되는 현상이 없어 복합재료 완성 시에도 같은 전도도를 유지하므로 종래의 제품과는 달리 전기전도도를 높이기 위하여 도전성 필러(filer)를 추가하는 공정 및 비용을 절감할 수 있으며, 복합재료의 중요한 특성 중의 하나인 기계적 물성에도 문제가 없다.
(b) There is no phenomenon that the carbon fiber, copper-nickel plating or nickel-nickel plating is peeled off during the production of the composite material, and thus the same conductivity is maintained even when the composite material is finished. It is possible to reduce the process and cost of adding a conductive filler to increase the electrical conductivity, and there is no problem in mechanical properties, which is one of the important characteristics of the composite material.

도 1은 본 발명에 따른 부직포의 표면처리 장치를 나타낸다.1 shows an apparatus for surface treatment of a nonwoven fabric according to the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 “%“는 별도의 언급이 없는 경우, 고체/고체는 (중량/중량) %, 고체/액체는 (중량/부피) %, 그리고 액체/액체는 (부피/부피) %이다.
Throughout this specification, "%" used to denote the concentration of a particular substance is intended to include solids / solids (wt / wt), solid / liquid (wt / The liquid / liquid is (vol / vol)%.

실시예Example 1:  One: 탄소섬유Carbon fiber 부직포 및  Nonwoven and PETPET 부직포의 제작 Fabrication of nonwoven fabric

탄소섬유Carbon fiber 부직포 Non-woven

탄소섬유 부직포는 습식 부직포(wet laid) 형태로 제작되었다.The carbon fiber nonwoven fabric was made in the form of a wet laid.

우선, 탄소섬유(12K, 구입처: 토레이(Toray) 사, 효성 사 또는 태광(TK) 사)를 약 6 mm 길이로 절단한 후, 절단된 탄소섬유 chop을 물에 분산시켰다. 분산된 탄소섬유를 물에 띄워 좌우 진동을 통해 수중에서 일정 두께의 층을 형성시켰다. 이어, 상기 탄소섬유 층을 걷어내어 건조시킨 다음 롤러(roller)에서 압착하하여 부직포를 제작하였다. First, carbon fibers (12K, purchased from Toray, Hyosung or TK) were cut to a length of about 6 mm, and then the cut carbon fiber chops were dispersed in water. The dispersed carbon fibers were floated in water to form a layer having a certain thickness in water through left and right vibrations. Next, the carbon fiber layer was taken out, dried, and then pressed on a roller to produce a nonwoven fabric.

한편, 부직포의 강도를 높이기 위하여, L/M PET (low melting PET chop 6 mm)를 탄소 섬유 6 mm chop과 함께 물에 분산시킨 후, 가열 롤러에서 약 100℃에서 압착하여 부직포를 생성할 수 있다. L/M PET는 약 100℃에서 용융성이 있으므로, 이를 탄소섬유에 소량 혼합한 후 가열 압착하여 생성된 부직포는 100% 탄소섬유로 제작된 부직포와 비교하여 강도가 증가된다.
Meanwhile, in order to increase the strength of the nonwoven fabric, a nonwoven fabric can be produced by dispersing L / M PET (low melting PET chop 6 mm) together with carbon fiber 6 mm chop in water and pressing it at about 100 ° C on a heating roller . Since the L / M PET has a melting property at about 100 ° C, the nonwoven fabric produced by mixing a small amount of the carbon fiber with the carbon fiber after heating and pressing is increased in strength as compared with a nonwoven fabric made of 100% carbon fiber.

PETPET 부직포 Non-woven

PET 부직포는 습식 부직포(wet laid) 형태로 제작되었으며, 탄소섬유 대신 PET(구입처:일본 TEIJIN 사) 6 mm chop을 사용한 점을 제외하고 상술한 탄소섬유 부직포 제작방법과 동일한 방법으로 제작되었다. 한편, 상술한 바와 같이 PET 부직포의 강도를 높이기 위하여 일정량의 L/M PET를 혼합하여 부직포를 생성할 수 있다.
The PET nonwoven fabric was produced in the form of a wet laid and manufactured in the same manner as in the above-described method of producing a carbon fiber nonwoven fabric, except that PET instead of carbon fiber (purchased from TEIJIN, Japan) 6 mm chop was used. Meanwhile, as described above, to increase the strength of the PET nonwoven fabric, a certain amount of L / M PET may be mixed to produce a nonwoven fabric.

탄소섬유Carbon fiber 부직포 및  Nonwoven and PETPET 부직포의 전처리 Pretreatment of nonwoven fabric

1) 탈지 및 연화 공정1) degreasing and softening process

우선, 유기용매를 이용하여 탄소섬유에 사이징된 에폭시나 우레탄을 제거하며, 동시에 섬유 표면을 팽윤(Swelling)시켜 연화(Softening) 시키는 공정을 실시하였다.First, an epoxy or urethane which is sized by carbon fiber is removed by using an organic solvent, and at the same time, a process of softening the fiber surface by swelling is performed.

계면활성제로 순수(pure water) 및 NaOH를 중량비 47:3로 혼합한 용액 25 중량%, 유기용매로 디에틸 프로판디올(diethyl propanediol) 65 중량% 및 디프로필렌 글리콜 메틸 에테르(dipropylene glycol methyl ether) 10 중량%, 그리고 500 ppm의 비이온 계면 활성제(non-ionic surfactant, low foam)로서 에폭시레이티드 리니어 알코올(ethoxylated linear alcohol)를 포함하는 전처리 조에 실시예 1의 탄소섬유 부직포 또는 PET 부직포를 통과시켜 탈지 및 연화 공정을 실시하였다. 탈지 및 연화 공정은 온도 50℃에서 시간 2분 동안 실시하였다.25% by weight of a solution obtained by mixing pure water and NaOH in a weight ratio of 47: 3 as a surfactant, 65% by weight of diethyl propanediol as an organic solvent, and 10% by weight of dipropylene glycol methyl ether 10 The carbon fiber nonwoven fabric or the PET nonwoven fabric of Example 1 was passed through a pretreatment tank containing 10% by weight of a nonionic surfactant (non-ionic surfactant, low foam) and 5% by weight of an ethoxylated linear alcohol, And a softening process. The degreasing and softening process was carried out at a temperature of 50 DEG C for 2 minutes.

2) 에칭 공정2) Etching process

NaOH의 강알카리 성분을 황산(H2SO4)을 이용하여 중화 시키고, 다음 공정인 센시타이징(sensitizing)공정에 부담을 줄이며 과황산 암모늄((NH4)2S2O8)을 이용하여 세정작용을 돕고 조질(Conditioning)작용을 하여 파라듐의 흡착을 강력하게 하기 위해서, 에칭 공정을 실시하였다.The strong alkaline components of NaOH are neutralized by using sulfuric acid (H 2 SO 4 ), and it is possible to reduce the burden on the next step of sensitizing process by using ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) An etching process was carried out in order to facilitate the cleaning action and to perform a conditioning action to enhance the adsorption of palladium.

구체적으로, 아황산수소나트륨(sodium bisulfite; NaHSO3) 1 중량%, 황산(H2SO4) 0.5 중량%, 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 15 중량% 및 순수(pure water) 83.5 중량%를 포함하는 전처리 조에 탈지 및 연화 공정을 거친 부직포를 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하였다. 상기 에칭 공정은 온도 20-25℃에서 2분 동안 실시하였다.Specifically, 1 wt% of sodium bisulfite (NaHSO 3 ), 0.5 wt% of sulfuric acid (H 2 SO 4 ), 15 wt% of ammonium persulfate (NH 4 ) 2 S 2 O 8 , and 83.5% by weight of pure water was passed through a nonwoven fabric subjected to a degreasing and softening process to perform an etching process for neutralizing, cleaning and conditioning. The etching process was performed at a temperature of 20-25 ° C for 2 minutes.

3) 센시타이징(sensitizing) 공정(촉매부여공정)3) Sensing process (catalyst addition process)

상기 에칭 공정을 실시한 부직포에 농도 20%의 PdCl2를 온도 30℃에서 2분 동안 처리하여 센시타이징 공정을 실시하였다. 센시타이징 공정은 표면 개질된 탄소섬유 또는 PET의 표면에 금속 이온을 흡착시키기 위해서 실시한다.The nonwoven fabric subjected to the etching process was treated with PdCl 2 at a concentration of 20% at a temperature of 30 ° C for 2 minutes to carry out a sensing process. The sensing process is carried out to adsorb metal ions on the surface of the surface-modified carbon fiber or PET.

4) 활성화(activating) 공정4) Activating process

센시타이징(sensitizing) 공정과 함께 실시하는 공정으로 Pd의 산화방지를 위하여 콜로이드화된 Sn의 제거를 위하여 온도 50℃에서 농도 10%의 황산(H2SO4)을 부직포에 2분 동안 처리하였다. In order to prevent the oxidation of Pd, sulfuric acid (H 2 SO 4 ) at a concentration of 10% at a temperature of 50 ° C was treated with a nonwoven fabric for 2 minutes in order to prevent oxidation of Pd in a process carried out in conjunction with a sensitizing process .

상기 공정으로 부직포를 전처리하였으며, 탄소섬유 부직포 및 PET 부직포는 동일한 공정으로 전처리하였다.The nonwoven fabric was pretreated by the above process, and the carbon fiber nonwoven fabric and PET nonwoven fabric were pretreated by the same process.

실시예Example 2 및 3:  2 and 3: 무전해Electroless 및 전해 연속 도금 공정으로 구리 및 니켈 도금된  And a copper and nickel plated 탄소섬유Carbon fiber

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유(12K, 구입처: 토레이(Toray) 사), 그리고 상기 실시예 1에서 전처리된 탄소 섬유(12K, 구입처: 태광(TK) 사)를 다음 표 1의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 2의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였으며, 이를 각각 실시예 2 및 3으로 이용하였다: 이하 실시예에 기재된 도금액 성분의 함량은 순수(pure water) 1L를 기준으로 한다.Carbon fiber (12K, purchased from Toray) pretreated with the process of Example 1 using the plating apparatus shown in Fig. 1 below and carbon fiber 12K pretreated in Example 1 (TK) were subjected to electroless copper plating under the composition and conditions shown in the following Table 1 and subjected to electrolytic nickel plating process under the composition and conditions of the following Table 2 in a continuous process to produce copper and nickel-plated carbon fibers , Which were used in Examples 2 and 3, respectively: The content of the plating solution component described in the following examples is based on 1 L of pure water.

무전해 구리 도금액Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 3 g/l3 g / l 착화제Complexing agent EDTAEDTA 30 g/l30 g / l 환원제reducing agent 포름알데하이드Formaldehyde 3.0 g/l3.0 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 3 g/l3 g / l 2,2'-bipiridine2,2'-bipyridine 0.01 g/l0.01 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 12 ml/l12 ml / l 온도Temperature 38℃38 ° C pHpH 12.512.5 처리시간Processing time 6 min6 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 300 g/l300 g / l NiCl2 NiCl 2 20 g/l20 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 40 g/l40 g / l 온도Temperature 55℃55 ° C pHpH 4.24.2 처리시간Processing time 1 min1 min

실시예Example 4:  4: 무전해Electroless 및 전해 연속 도금 공정으로 구리 및 니켈 도금된 탄소 섬유 And copper and nickel plated carbon fibers in an electrolytic continuous plating process

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 3의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 4의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였다: The carbon fiber pretreated with the process of Example 1 was subjected to electroless copper plating under the composition and conditions shown in Table 3 below using the plating apparatus of FIG. 1, An electrolytic nickel plating process was performed to produce carbon fiber coated with copper and nickel:

무전해 구리 도금액Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 2.5-3.5 g/l2.5-3.5 g / l 착화제Complexing agent EDTAEDTA 25-35 g/l25-35 g / l 환원제reducing agent 포름알데하이드Formaldehyde 2.5-3.5 g/l2.5-3.5 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 2-3 g/l2-3 g / l 2,2'-bipiridine2,2'-bipyridine 0.008-0.01 g/l0.008-0.01 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 8-12 ml/l8-12 ml / l 온도Temperature 36-40℃36-40 ° C pHpH 12-1312-13 처리시간Processing time 6-10 min6-10 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 280-320 g/l280-320 g / l NiCl2 NiCl 2 15-25 g/l15-25 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 35-45 g/l35-45 g / l 온도Temperature 50-55℃50-55 ℃ pHpH 4.0-4.24.0-4.2 처리시간Processing time 1-3 min1-3 min

전해 도금의 경우, 전해 니켈조에 정전압(CV, constant voltage) 5-10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼(ball)을 이용하였다.
In the case of electrolytic plating, a constant voltage (CV) of 5-10 volts was added to the electrolytic nickel bath. The metal plate used as the anode was a Ni metal plate or a Ni ball.

실시예Example 5:  5: 무전해Electroless 및 전해 연속 도금 공정으로 구리 및 니켈 도금된 탄소 섬유 And copper and nickel plated carbon fibers in an electrolytic continuous plating process

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 5의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 6의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였다:The carbon fibers pretreated with the process of Example 1 were subjected to electroless copper plating under the composition and conditions shown in Table 5 below using the plating apparatus shown in Fig. An electrolytic nickel plating process was performed to produce carbon fiber coated with copper and nickel:

무전해 구리 도금액Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 4.5-5.5 g/l4.5-5.5 g / l 착화제Complexing agent EDTAEDTA 45-55 g/l45-55 g / l 환원제reducing agent 포름알데하이드Formaldehyde 3.5-4.5 g/l3.5-4.5 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 4-6 g/l4-6 g / l 2 ,2'-bipiridine2, 2'-bipyridine 0.01-0.15 g/l0.01-0.15 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 8-12 ml/l8-12 ml / l 온도Temperature 40-45℃40-45 ℃ pHpH 12-1312-13 처리시간Processing time 6-10 min6-10 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 280-320 g/l280-320 g / l NiCl2 NiCl 2 15-25 g/l15-25 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 35-45 g/l35-45 g / l 온도Temperature 50-55℃50-55 ℃ pHpH 4.0-4.24.0-4.2 처리시간Processing time 1-3 min1-3 min

전해 도금의 경우, 전해 니켈조에 정전압(CV, constant voltage) 5-10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼(ball)을 이용하였다.
In the case of electrolytic plating, a constant voltage (CV) of 5-10 volts was added to the electrolytic nickel bath. The metal plate used as the anode was a Ni metal plate or a Ni ball.

실시예Example 6:  6: 무전해Electroless 및 전해 연속 도금 공정으로 니켈 및 니켈 도금된 탄소 섬유 And nickel and nickel plated carbon fibers in an electrolytic continuous plating process

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 7의 조성 및 조건으로 무전해 니켈 도금을 실시하고, 연속 공정으로 다음 표 8의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 니켈이 도금된 탄소 섬유를 제조하였다:The carbon fibers pretreated with the process of Example 1 were subjected to electroless nickel plating under the composition and conditions shown in Table 7 below using the plating apparatus shown in FIG. An electrolytic nickel plating process was performed to produce nickel-plated carbon fibers:

무전해 니켈 도금액Electroless nickel plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Ni이온Ni ion 5-7 g/l5-7 g / l 환원제reducing agent NaH2PO2 NaH 2 PO 2 20-30 g/l20-30 g / l pH 완충제pH buffer Na3C6H5O7 Na 3 C 6 H 5 O 7 20-30 g/l20-30 g / l 안정제stabilizator 티오황산칼륨Potassium thiosulfate 0.0005g-0.001g/l0.0005 g-0.001 g / l 온도Temperature 30-35℃30-35 ℃ pHpH 8.5-9.58.5-9.5 처리시간Processing time 6-10 min6-10 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 280-320 g/l280-320 g / l NiCl2 NiCl 2 15-25 g/l15-25 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 35-45 g/l35-45 g / l 온도Temperature 50-55℃50-55 ℃ pHpH 4.0-4.24.0-4.2 처리시간Processing time 1-3 min1-3 min

전해 도금의 경우, 전해 니켈조에 정전압(CV, constant voltage) 10-15 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼(ball)을 이용하였다.
In the case of electrolytic plating, a constant voltage (CV) of 10-15 volts was added to the electrolytic nickel bath. The metal plate used as the anode was a Ni metal plate or a Ni ball.

실험예Experimental Example 1 : 전류 밀도의 변화 및 도금된 탄소 섬유의  1: Change in current density and the change of the plated carbon fiber 선저항값Line resistance value 측정 Measure

상기 실시예 4의 구리 및 니켈 도금된 탄소 섬유를 제조하는 조성 및 조건 중 pH를 조절하는 NaOH의 농도와 Cu의 환원 반응을 돕는 HCHO의 농도 조절을 통해 무전해 및 전해 도금의 최적화 조건을 설정하였다.In the composition and conditions for preparing the copper and nickel-plated carbon fibers of Example 4, optimization conditions of electroless and electrolytic plating were set through controlling the concentration of NaOH to adjust the pH and the concentration of HCHO to help the reduction reaction of Cu .

농도 25%의 NaOH를 8, 9, 10, 11 및 12 ml/l, 그리고 HCHO를 2.5, 2.7, 2.9, 3.1, 3.3 g/l로 각각 변화시키면서, 탄소 섬유에 흐르는 전류밀도(A)의 변화를 측정하고, 최종적으로 얻어진 제품(구리 및 니켈 도금된 탄소 섬유)의 선저항값(Ω/30cm)으로 평가 하였고, 그 결과는 아래 표 9에 정리하였고, 전해 니켈조에 정전압(CV, constant voltage) 7 Volt를 가하였으며, 그 외 일정하게 유지한 조건은 다음 표 10 및 11에 정리하였다:(A) change in the carbon fiber while changing the concentration of 25% NaOH to 8, 9, 10, 11 and 12 ml / l and the HCHO to 2.5, 2.7, 2.9, 3.1 and 3.3 g / (Ω / 30 cm) of the finally obtained products (copper and nickel-plated carbon fibers), and the results are summarized in Table 9 below. The results are summarized in Table 9, and a constant voltage (CV) 7 Volt, and the other constant conditions are summarized in Tables 10 and 11 below:

HCHOHCHO NaOHNaOH 전류밀도(A)Current density (A) 저항(Ω/30cm)Resistance (Ω / 30cm) 도금액 사용기간Period of use of plating solution 2.52.5 88 100100 0.80.8 10 turn 사용Use 10 turn 99 110110 0.60.6 1010 120120 0.40.4 1111 130130 0.30.3 1212 140140 0.20.2 2.72.7 88 110110 0.70.7 8 turn 사용Use 8 turn 99 120120 0.60.6 1010 130130 0.50.5 1111 140140 0.30.3 1212 150150 0.20.2 2.92.9 88 120120 0.60.6 6 turn 사용Use 6 turns 99 130130 0.50.5 1010 140140 0.40.4 1111 150150 0.30.3 1212 160160 0.20.2 3.13.1 88 130130 0.60.6 4 turn 사용Use 4 turn 99 140140 0.50.5 1010 150150 0.40.4 1111 160160 0.30.3 1212 170170 0.20.2 3.33.3 88 140140 0.50.5 2 turn 사용Use 2 turns 99 150150 0.40.4 1010 160160 0.30.3 1111 170170 0.20.2 1212 180180 0.10.1

상기 표 9에서 1 turn은 무전해 구리 도금 1 건욕량을 나타낸다.In Table 9, 1 turn represents the amount of one electroless copper plating bath.

무전해 구리 도금액Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 3 g/l3 g / l 착화제Complexing agent EDTAEDTA 30 g/l30 g / l 환원제reducing agent 포름알데하이드(HCHO)Formaldehyde (HCHO) 2.5-3.3 g/l2.5-3.3 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 3 g/l3 g / l 2 ,2'-bipiridine2, 2'-bipyridine 0.10 g/l0.10 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 8-12 ml/l8-12 ml / l 온도Temperature 37℃37 ℃ pHpH 12.512.5 처리시간Processing time 6 min6 min

전해 도금액Electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 300 g/l300 g / l NiCl2 NiCl 2 20 g/l20 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 40 g/l40 g / l 온도Temperature 55℃55 ° C pHpH 4.24.2 처리시간Processing time 1 min1 min 정전압(Cv)Constant voltage (Cv) 7 V7 V

상기 표 9에서 확인할 수 있듯이, 환원제 및 NaOH의 양이 증가함에 따라 도금속도는 상승함을 알 수 있으나 도금액의 수명이 짧아지는 단점을 알 수 있었다. 이에 환원제의 양은 최소(2.5-3.0 g/l)로 유지하고 NaOH의 양을 최대로 올려 작업하는 것이 바람직하다 할 수 있다.
As can be seen from Table 9, although the plating rate was increased as the amount of the reducing agent and NaOH was increased, it was found that the lifetime of the plating solution was shortened. It may be desirable to keep the amount of reducing agent at minimum (2.5-3.0 g / l) and work up to the maximum amount of NaOH.

실험예Experimental Example 2 : 도금 속도 및 액 안정성 시험 2: Plating speed and liquid stability test

구리이온 및 착화제(EDTA)의 농도 조절를 통해 도금 속도 및 액 안정성 시험은 구리 이온과 착화제가 동일 비율로 상승할 때, 환원제의 양을 조절하여(표 12), 구리 도금의 최적화 조건을 시험하였고, 그 외 일정하게 유지되는 성분 및 조건에 대해서는 아래 표 13 및 14에 정리하였다:The plating rate and liquid stability test through the control of copper ion and complexing agent (EDTA) showed that when the copper ions and complexing agent were rising at the same rate, the amount of reducing agent was controlled (Table 12) , And other constant ingredients and conditions are summarized in Tables 13 and 14 below:

금속염(Cu)Metal salt (Cu) 환원제(HCHO)Reducing agent (HCHO) 착화제(EDTA)Complexing agent (EDTA) NaOHNaOH 도금두께(㎛)Plating thickness (탆) 2.52.5 2.52.5 2525 1212 0.2-0.30.2-0.3 3.53.5 3.03.0 3535 0.3-0.50.3-0.5 4.54.5 3.53.5 4545 0.4-0.60.4-0.6 5.55.5 44 5555 0.5-0.80.5-0.8

무전해 구리 도금액Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 2.5-5.5 g/l2.5-5.5 g / l 착화제Complexing agent EDTAEDTA 25-55 g/l25-55 g / l 환원제reducing agent 포름알데하이드Formaldehyde 2.5-4 g/l2.5-4 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 3 g/l3 g / l 2,2'-bipiridine2,2'-bipyridine 0.01 g/l0.01 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 12 ml/l12 ml / l 온도Temperature 37℃37 ℃ pHpH 12.512.5 처리시간Processing time 6 min6 min

전해 도금액Electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 300 g/l300 g / l NiCl2 NiCl 2 20 g/l20 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 40 g/l40 g / l 온도Temperature 55℃55 ° C pHpH 4.24.2 처리시간Processing time 1 min1 min C.VC.V 7 V7 V

상기 표 12에서 알 수 있듯이, 구리 농도와 HCHO의 농도가 높을수록 고속 도금이 가능해지고 도금층의 두께도 높아짐을 확인하였다(도금 두께 0.7 미크론 이상). 탄소 섬유에 바람직한 도금 두께 0.3 ㎛를 가지기 위해서는 구리이온 농도 2.5-3.0 g/l 및 HCHO 농도 2.5-3.0 g/l 이하에서 가장 좋은 결과물을 얻었다.As shown in Table 12, it was confirmed that the higher the concentration of copper and the concentration of HCHO, the higher the plating speed and the higher the thickness of the plating layer (the plating thickness is 0.7 micron or more). In order to have a preferable plating thickness of 0.3 mu m for the carbon fiber, the best result was obtained at a copper ion concentration of 2.5-3.0 g / l and a HCHO concentration of 2.5-3.0 g / l or less.

탄소 섬유의 도금두께가 증가할수록 비중도 증가하며 강도, 탄성율 및 스트레인(strain)이 저하 되기 때문에 무전해 도금에서 무리하게 도금 두께를 올리는 것보다는 무전해 도금 후 Cu의 공극을 빠른시간에 Ni 전해 도금을 행하여 우수한 전기 전도도를 가지는 탄소 섬유를 제조하는 것이 바람직하다고 판단된다.
As the thickness of the carbon fiber increases, the specific gravity also increases, and the strength, elastic modulus and strain are lowered. Therefore, rather than raising the plating thickness for the electroless plating, It is considered desirable to produce carbon fibers having excellent electrical conductivity.

실험예Experimental Example 3 : 물성 및 전기 전도도의 비교 3: Comparison of physical properties and electrical conductivity

다음 표 15에는 실시예 2 및 3의 구리 및 니켈 도금된 탄소섬유와 시판 중인 무전해 도금 공정으로 제조된 니켈 도금 탄소 섬유를 비교예 1로 하여 물성 및 전기전도도 등의 특성을 비교하여 정리하였다:In the following Table 15, the nickel-plated carbon fibers of Examples 2 and 3 and the nickel-plated carbon fibers produced by the commercially available electroless plating process were compared with each other by comparing the properties such as physical properties and electrical conductivity as follows:

-- 비교예 1Comparative Example 1 실시예 2Example 2 실시예 3Example 3 비고Remarks 가닥 강도
(kgf/㎟)(Range)
Strand strength
(kgf / ㎟) (Range)
280280 380
(367~405)
380
(367 to 405)
338
(325~353)
338
(325 to 353)
--
탄성율(tons/㎟)Elastic modulus (tons / mm2) 22.022.0 20.020.0 22.522.5 -- 스트레인(strain) (%)Strain (%) 1.21.2 1.91.9 1.51.5 -- 비중(g/㎤)Specific gravity (g / cm3) 2.702.70 2.72772.7277 2.78942.7894 -- 지름(㎛)Diameter (㎛) 7.57.5 7.8287.828 7.7057.705 -- 텍스(tex)
(섬유굵기)
Tex (tex)
(Fiber thickness)
14201420 15751575 15611561 --
전기저항(Ω/m)Electrical resistance (Ω / m) -- 0.80.8 0.70.7 -- 전기저항(Ω㎝)Electrical resistance (Ω cm) 7.5 × 10-5 7.5 × 10 -5 4.62×10-5 4.62 × 10 -5 4.05 × 10-5 4.05 x 10 -5 -- 일반 CF 대비
전기저항
General CF contrast
Electrical resistance
-- 32배 감소32 times reduction 37배 감소37 times reduction 일반 CF:
1.50 × 10-3Ω㎝ 기준
General CF:
Based on 1.50 × 10 -3 Ω cm
코팅 두께(nm)Coating Thickness (nm) 250250 240
(210~271)
240
(210-271)
350
(305~392)
350
(305 to 392)
--

상기 표 15에서 볼 수 있듯이, 무전해 도금 공정에 의해 제조된 비교예 1에 비해서 실시예 2 및 3의 구리 및 니켈 도금된 탄소 섬유는 물성이 우수하고 전기저항 값이 낮아 우수한 전기 전도도 값을 나태내고 있음을 알 수 있었다.
As can be seen from Table 15 above, the copper and nickel plated carbon fibers of Examples 2 and 3 had better physical properties and lower electrical resistivity values than Comparative Example 1 produced by the electroless plating process, I was able to find out.

실시예Example 7:  7: 무전해Electroless 및 전해 연속 도금 공정으로 구리 및 니켈 도금된  And a copper and nickel plated 탄소섬유Carbon fiber 부직포 및  Nonwoven and PETPET 부직포 Non-woven

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 탄소섬유 부직포 및 PET 부직포를 다음 표 16의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 17의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소섬유 부직포 및 PET 부직포를 제조하였다.The carbon fiber nonwoven fabric and the PET nonwoven fabric of Example 1 were subjected to electroless copper plating under the composition and conditions shown in Table 16 below using the plating apparatus shown in Fig. 1 below. An electrolytic nickel plating process was performed to produce a carbon fiber nonwoven fabric and a PET nonwoven fabric plated with copper and nickel.

무전해 구리 도금액 Electroless copper plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Cu 이온Cu ion 4.5-5.5 g/l4.5-5.5 g / l 착화제Complexing agent EDTAEDTA 45-55 g/l45-55 g / l 환원제reducing agent 포름알데하이드Formaldehyde 3.5-4.5 g/l3.5-4.5 g / l 안정제stabilizator TEA(트리에탄올아민)TEA (triethanolamine) 4-6 g/l4-6 g / l 2 ,2'-bipiridine2, 2'-bipyridine 0.01-0.15 g/l0.01-0.15 g / l pH 조절제pH adjusting agent NaOH(25%)NaOH (25%) 8-12 ml/l8-12 ml / l 온도Temperature 40-45℃40-45 ℃ pHpH 12-1312-13 처리시간Processing time 6-10 min6-10 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 280-320 g/l280-320 g / l NiCl2 NiCl 2 15-25 g/l15-25 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 35-45 g/l35-45 g / l 온도Temperature 50-55℃50-55 ℃ pHpH 4.0-4.24.0-4.2 처리시간Processing time 1-3 min1-3 min

전해 도금의 경우, 전해 니켈조에 정전압(CV, constant voltage) 5-10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼(ball)을 이용하였다.
In the case of electrolytic plating, a constant voltage (CV) of 5-10 volts was added to the electrolytic nickel bath. The metal plate used as the anode was a Ni metal plate or a Ni ball.

실시예Example 8:  8: 무전해Electroless 및 전해 연속 도금 공정으로 니켈 도금된  And nickel plated by an electrolytic continuous plating process 탄소섬유Carbon fiber 부직포 및  Nonwoven and PETPET 부직포 Non-woven

하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 부직포를 다음 표 18의 조성 및 조건으로 무전해 니켈 도금을 실시하고, 연속 공정으로 다음 표 19의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 니켈이 도금된 부직포를 제조하였다:The nonwoven fabric pretreated with the process of Example 1 was subjected to electroless nickel plating with the composition and conditions shown in Table 18 below using the plating apparatus of FIG. 1, A nickel plating process was carried out to prepare a nickel-plated nonwoven fabric:

무전해 니켈 도금액Electroless nickel plating solution -- 성분ingredient 함량(조건)Content (Conditions) 금속염Metal salt Ni이온Ni ion 5-7 g/l5-7 g / l 환원제reducing agent NaH2PO2 NaH 2 PO 2 20-30 g/l20-30 g / l pH 완충제pH buffer Na3C6H5O7 Na 3 C 6 H 5 O 7 20-30 g/l20-30 g / l 안정제stabilizator 티오황산칼륨Potassium thiosulfate 0.0005g-0.001g/l0.0005 g-0.001 g / l 온도Temperature 30-35℃30-35 ℃ pHpH 8.5-9.58.5-9.5 처리시간Processing time 6-10 min6-10 min

Ni 전해 도금액Ni electrolytic plating solution -- 성분ingredient 함량(조건)Content (Conditions) 전해도금 용액Electrolytic plating solution 니켈 금속염Nickel metal salt Ni(NH2SO3)2 Ni (NH 2 SO 3) 2 280-320 g/l280-320 g / l NiCl2 NiCl 2 15-25 g/l15-25 g / l pH 완충제pH buffer H3BO3 H 3 BO 3 35-45 g/l35-45 g / l 온도Temperature 50-55℃50-55 ℃ pHpH 4.0-4.24.0-4.2 처리시간Processing time 1-3 min1-3 min

전해 도금의 경우, 전해 니켈조에 정전압(CV, constant voltage) 10-15 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼(ball)을 이용하였다.
In the case of electrolytic plating, a constant voltage (CV) of 10-15 volts was added to the electrolytic nickel bath. The metal plate used as the anode was a Ni metal plate or a Ni ball.

실험예Experimental Example 4 : 부직포의 전기적 특성 4: Electrical properties of nonwoven fabric

상기 실시예 7 및 실시예 8의 도금된 부직포에 대하여 각각 표 20 및 표 21와 같이 전기적 특성을 분석하였다. The electrical properties of the plated nonwoven fabrics of Examples 7 and 8 were analyzed as shown in Tables 20 and 21, respectively.

항목Item 구성Configuration 도금 전
평량
Before plating
Basis weight
구리/니켈 이중도금 후 전기적 특성Electrical properties after copper / nickel double plating
(g/m2)(g / m 2 ) 저항
(Ω)
resistance
(Ω)
표면 저항
(Ω/square)
Surface resistance
(Ω / square)
체적 저항
(Ω*㎝)
Volume resistance
(Ω * cm)
전기전도도 (S/cm)Electrical Conductivity (S / cm)
1One C/F 100%C / F 100% 1515 2*10-1 2 * 10 -1 9.97*10-2 9.97 * 10 -2 3.69*10-2 3.69 * 10 -2 2.7*101 2.7 * 10 1 22 C/F 80%
+ L/M PET
20%
C / F 80%
+ L / M PET
20%
2020 3.88*10-1 3.88 * 10 -1 1.76*100 1.76 * 10 0 3.69*10-2 3.69 * 10 -2 2.7*101 2.7 * 10 1
33 PET 80%
+ L/M PET 20%
PET 80%
+ L / M PET 20%
55 1.79*102 1.79 * 10 2 8.12*102 8.12 * 10 2 1.62*100 1.62 * 10 0 6.15*10-1 6.15 * 10 -1
44 PET 60%
+ L/M PET 40%
PET 60%
+ L / M PET 40%
1010 6.91*10-1 6.91 * 10 -1 3.13*100 3.13 * 10 0 1.25*10-2 1.25 * 10 -2 7.97*101 7.97 * 10 1

항목Item 구성Configuration 도금 전
평량
Before plating
Basis weight
니켈/니켈 이중도금 후 전기적 특성Electrical properties after nickel / nickel double plating
(g/m2)(g / m 2 ) 저항
(Ω)
resistance
(Ω)
표면 저항
(Ω/square)
Surface resistance
(Ω / square)
체적 저항
(Ω*㎝)
Volume resistance
(Ω * cm)
전기전도도 (S/cm)Electrical Conductivity (S / cm)
1One C/F : 70%
1.1d L/M PET : 30%
C / F: 70%
1.1d L / M PET: 30%
1515 6.62*10-1 6.62 * 10 -1 3.00*100 3.00 * 10 0 5.70*10-2 5.70 * 10 -2 1.75*101 1.75 * 10 1

C/F : 탄소섬유C / F: carbon fiber

L/M PET : 저융점 PETL / M PET: Low melting point PET

PET : 폴리에틸렌 테레프탈레이트
PET: Polyethylene terephthalate

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

다음의 단계를 포함하는 부직포(non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법:
(a') 부직포를 전처리(pre-treatment)하는 단계로서, (ⅰ) 부직포를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계; (ⅱ) 상기 단계 (ⅰ)의 결과물인 부직포를 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하는 단계; (ⅲ) 상기 단계 (ⅱ)의 결과물인 부직포를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (ⅳ) 상기 단계 (ⅲ)의 결과물인 부직포를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계를 실시하며,
(a) 상기 단계 (a')의 부직포를 순수(pure water)의 부피를 기준으로 하여 Cu 이온 2.5-5.5 g/l, EDTA 20-55 g/l, 포름알데하이드 2.5-4.5 g/l, TEA(트리에탄올아민) 2-6 g/l, 농도 25%의 NaOH 8-12 ml/l 및 2,2'-비피리딘(bipiridine) 0.008-0.15 g/l를 포함하고, pH 12-13 및 온도 36-45℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 단계; 및
(b) 상기 단계 (a)의 구리 도금된 부직포를 Ni(NH2SO3)2 280-320 g/l, NiCl2 15-25 g/l 및 H3BO3 35-45 g/l을 포함하고, pH 4.0-4.2 및 온도 50-60℃인 전해 도금액에 통과시켜 1-3 분 동안 구리 도금된 부직포에 니켈을 도금시키는 단계.
An electroless and electrolytic continuous process of a nonwoven fabric comprising the steps of:
(a ') pre-treating a nonwoven fabric, comprising the steps of: (i) passing the nonwoven fabric through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric; (Ii) the resultant nonwoven fabric of step (i) is treated with sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ) Passing an aqueous solution containing pure water to perform an etching process for neutralizing, cleaning and conditioning; (Iii) passing the resultant nonwoven fabric of step (ii) through a PdCl 2 aqueous solution to perform a sensitizing process; And (iv) passing the resultant nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process,
(a) the nonwoven fabric of step (a ') is treated with 2.5-5.5 g / l Cu ion, 20-55 g / l EDTA, 2.5-4.5 g / l formaldehyde, TEA (Triethanolamine) 2-6 g / l, 8-12 ml / l NaOH at 25% concentration and 0.008-0.15 g / l 2,2'-bipyridine, pH 12-13 and temperature 36 Passing through an electroless plating solution at -45 占 폚 to deposit copper on the nonwoven fabric for 6 to 10 minutes; And
(b) the copper-plated nonwoven fabric of step (a) comprises 280-320 g / l Ni (NH 2 SO 3 ) 2 , 15-25 g / l NiCl 2 and 35-45 g / l H 3 BO 3 And plating the nickel-plated non-woven fabric for 1-3 minutes by passing through an electrolytic plating solution having a pH of 4.0 to 4.2 and a temperature of 50 to 60 ° C.
다음의 단계를 포함하는 부직포(non-woven fabric)의 무전해 및 전해 연속 공정의 금속 도금방법:
(a') 부직포를 전처리(pre-treatment)하는 단계로서, (ⅰ) 부직포를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계; (ⅱ) 상기 단계 (ⅰ)의 결과물인 부직포를 아황산수소나트륨(sodium bisulfite; NaHSO3), 황산(H2SO4), 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 및 순수(pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질(conditioning)작용을 하는 에칭 공정을 실시하는 단계; (ⅲ) 상기 단계 (ⅱ)의 결과물인 부직포를 PdCl2 수용액에 통과시켜 센시타이징(sensitizing) 공정을 실시하는 단계; 및 (ⅳ) 상기 단계 (ⅲ)의 결과물인 부직포를 황산(H2SO4) 수용액에 통과시켜 활성화(activating) 공정을 실시하는 단계를 실시하며,
(a) 상기 단계 (a')의 부직포를 순수(pure water)의 부피를 기준으로 하여 Ni이온 5-7 g/l, NaH2PO2 20-30 g/l, Na3C6H5O7 20-30 g/l 및 티오황산칼륨 0.0005g-0.001 g/l을 포함하고, pH 8.5-9.5 및 온도 30-35℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 니켈을 도금시키는 단계; 및
(b) 상기 단계 (a)의 니켈 도금된 부직포를 Ni(NH2SO3)2 280-320 g/l, NiCl2 15-25 g/l 및 H3BO3 35-45 g/l을 포함하고, pH 4.0-4.2 및 온도 50-55℃인 전해 도금액에 통과시켜 1-3 분 동안 니켈 도금된 부직포에 니켈을 도금시키는 단계.
A method of metal plating in an electroless and electrolytic continuous process of a non-woven fabric comprising the steps of:
(a ') pre-treating a nonwoven fabric, comprising the steps of: (i) passing the nonwoven fabric through an aqueous solution containing a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric; (Ii) the resultant nonwoven fabric of step (i) is treated with sodium bisulfite (NaHSO 3 ), sulfuric acid (H 2 SO 4 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ) Passing an aqueous solution containing pure water to perform an etching process for neutralizing, cleaning and conditioning; (Iii) passing the resultant nonwoven fabric of step (ii) through a PdCl 2 aqueous solution to perform a sensitizing process; And (iv) passing the resultant nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process,
(a) to the non-woven fabric of step (a '), based on the volume of the pure water (pure water) Ni ions 5-7 g / l, NaH 2 PO 2 20-30 g / l, Na 3 C 6 H 5 O 7 20-30 g / l potassium thiosulfate, and 0.0005 g-0.001 g / l potassium thiosulfate and passed through an electroless plating solution having a pH of 8.5-9.5 and a temperature of 30-35 ° C to electroplating nickel on the nonwoven fabric for 6-10 minutes step; And
(b) the nickel plated nonwoven fabric of step (a) comprises 280-320 g / l Ni (NH 2 SO 3 ) 2 , 15-25 g / l NiCl 2 and 35-45 g / l H 3 BO 3 And plating nickel on the nickel plated nonwoven fabric for 1-3 minutes through an electrolytic plating solution having a pH of 4.0-4.2 and a temperature of 50-55 ° C.
제 1 항 또는 제 2 항에 있어서, 상기 부직포는 탄소 섬유, 폴리에스테르 섬유, 유리 섬유, 아라미드 섬유, 세라믹 섬유, 금속 섬유, 폴리이미드 섬유, 폴리벤즈옥사졸 섬유, 천연 섬유 또는 이들의 혼합 섬유로 제작된 것을 특징으로 하는 방법.
The nonwoven fabric according to any one of claims 1 to 5, wherein the nonwoven fabric is made of carbon fiber, polyester fiber, glass fiber, aramid fiber, ceramic fiber, metal fiber, polyimide fiber, polybenzoxazole fiber, natural fiber, .
제 3 항에 있어서, 상기 폴리에스테르 섬유는 폴리에틸렌 테레프탈레이트(PET), 폴리글리콜리드(PGA), 폴리락트산(PLA), 폴리카프롤락톤(PCL), 폴리히드록시알카노에이트(PHA), 폴리히드록시부티레이트(PHB), 폴리에틸렌 아디페이트(PEA), 폴리부틸렌 숙시네이트(PBS), 폴리(3-히드록시부티레이트-코-3-히드록시발레르에이트(PHBV), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN) 또는 벡트란(Vectran)인 것을 특징으로 하는 방법.
The method of claim 3, wherein the polyester fiber is selected from the group consisting of polyethylene terephthalate (PET), polyglycolide (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyhydroxyalkanoate Hydroxybutyrate (PHBV), polybutylene terephthalate (PBT), polybutylene terephthalate (PBT), polybutylene terephthalate (PBT), polybutylene terephthalate ), Polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) or Vectran.
제 1 항에 있어서, 상기 단계 (a)는 부직포를 순수(pure water)의 부피를 기준으로 하여 Cu 이온 4.5-5.5 g/l, EDTA 45-55 g/l, 포름알데하이드 3.5-4.5 g/l, TEA(트리에탄올아민) 4-6 g/l, 농도 25%의 NaOH 8-12 ml/l 및 2,2'-비피리딘(bipiridine) 0.01-0.15 g/l를 포함하고, pH 12-13 및 온도 40-45℃인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 것을 특징으로 하는 방법.
The method of claim 1, wherein the step (a) comprises: providing a nonwoven fabric with 4.5-5.5 g / l Cu ion, 45-55 g / l EDTA, 3.5-4.5 g / l formaldehyde, based on the volume of pure water , 4-6 g / l of TEA (triethanolamine), 8-12 ml / l of 25% NaOH and 0.01-0.15 g / l of 2,2'-bipyridine, Passing through an electroless plating solution at a temperature of 40-45 占 폚 and plating copper on the nonwoven fabric for 6-10 minutes.
제 1 항 또는 제 2 항에 있어서, 상기 단계 (b)는 정전압(CV, constant voltage) 5-15 Volt를 가하여 실시하는 것을 특징으로 하는 방법.
3. The method according to claim 1 or 2, wherein the step (b) is performed by applying a constant voltage (CV) of 5-15 volts.
삭제delete 제 1 항에 있어서, 상기 단계 (ⅰ)의 수용액은 계면활성제로 순수(pure water) 및 NaOH를 중량비 40-49: 1-10으로 혼합한 용액 15-35 중량%, 유기 용매로 디에틸 프로판디올(diethyl propanediol) 50-80 중량% 및 디프로필렌 글리콜 메틸 에테르(dipropylene glycol methyl ether) 5-15 중량%, 그리고 400-600 ppm의 비이온성 계면활성제를 포함하는 것을 특징으로 하는 방법.
The method according to claim 1, wherein the aqueous solution of step (i) comprises 15 to 35% by weight of a solution obtained by mixing pure water and NaOH in a weight ratio of 40-49: 1-10 as a surfactant, 50 to 80% by weight of diethyl propanediol, 5 to 15% by weight of dipropylene glycol methyl ether, and 400 to 600 ppm of nonionic surfactant.
제 1 항에 있어서, 상기 단계 (ⅱ)의 수용액은 아황산수소나트륨(sodium bisulfite; NaHSO3) 0.1-10 중량%, 황산(H2SO4) 0.1-3 중량%, 과황산 암모늄(ammonium persulfate; (NH4)2S2O8) 5-25 중량% 및 순수(pure water) 62-94.8 중량%를 포함하는 것을 특징으로 하는 방법.
The method of claim 1, wherein the aqueous solution of step (ii) comprises 0.1-10% by weight of sodium bisulfite (NaHSO 3 ), 0.1-3% by weight of sulfuric acid (H 2 SO 4 ), ammonium persulfate (NH 4 ) 2 S 2 O 8 ) and 62-94.8 wt% of pure water.
제 1 항에 있어서, 상기 단계 (ⅰ)은 온도 40-60℃에서 1-5분 동안 실시하고, 상기 단계 (ⅱ)는 온도 20-25℃에서 1-5분 동안 실시하며, 상기 단계 (ⅲ)은 온도 20-40℃에서 1-5분 동안 실시하고, 상기 단계 (ⅳ)는 온도 40-60℃에서 1-5분 동안 실시하는 것을 특징으로 하는 방법.The method according to claim 1, wherein the step (i) is carried out at a temperature of 40 to 60 ° C for 1 to 5 minutes, the step (ii) is carried out at a temperature of 20 to 25 ° C for 1 to 5 minutes, ) Is carried out at a temperature of 20 to 40 ° C for 1 to 5 minutes, and the step (iv) is carried out at a temperature of 40 to 60 ° C for 1 to 5 minutes.
KR1020140090300A 2014-07-17 2014-07-17 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating KR101604858B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020140090300A KR101604858B1 (en) 2014-07-17 2014-07-17 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating
DE112015003301.7T DE112015003301B4 (en) 2014-07-17 2015-06-30 Process for coating a nonwoven fabric by continuous electroless and electrolytic coating processes
PCT/KR2015/006719 WO2016010287A1 (en) 2014-07-17 2015-06-30 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
US15/326,583 US20170204519A1 (en) 2014-07-17 2015-06-30 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
JP2017502868A JP6797790B2 (en) 2014-07-17 2015-06-30 Non-woven fabric plating method using a continuous process of electroless and electroplating
JP2019136647A JP2020007639A (en) 2014-07-17 2019-07-25 Plating method for nonwoven fabric using continuous process of electroless plating and electrolytic plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140090300A KR101604858B1 (en) 2014-07-17 2014-07-17 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating

Publications (2)

Publication Number Publication Date
KR20160010700A KR20160010700A (en) 2016-01-28
KR101604858B1 true KR101604858B1 (en) 2016-03-21

Family

ID=55078728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140090300A KR101604858B1 (en) 2014-07-17 2014-07-17 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating

Country Status (5)

Country Link
US (1) US20170204519A1 (en)
JP (2) JP6797790B2 (en)
KR (1) KR101604858B1 (en)
DE (1) DE112015003301B4 (en)
WO (1) WO2016010287A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604858B1 (en) 2014-07-17 2016-03-21 (주)크린앤사이언스 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating
US10758936B2 (en) 2015-12-08 2020-09-01 The Boeing Company Carbon nanomaterial composite sheet and method for making the same
US10093041B2 (en) * 2016-04-11 2018-10-09 The Boeing Company Conductive pre-impregnated composite sheet and method for making the same
CN106756904A (en) * 2016-12-16 2017-05-31 贵阳华科电镀有限公司 A kind of high phosphorus chemical plating nickel liquid
CN111094646B (en) * 2017-07-21 2023-11-10 通用纳米有限责任公司 Conductive broad article providing lightning strike protection
KR102010366B1 (en) * 2018-02-14 2019-08-14 전주대학교 산학협력단 Method for producing metal-coated carbon fiber
WO2020040387A1 (en) * 2018-08-22 2020-02-27 전북대학교산학협력단 Method for manufacturing korean paper planar heating mat having replaceable blocks, and korean paper planar heating mat
DE102018124344A1 (en) 2018-10-02 2020-04-02 Chemische Fabrik Budenheim Kg Conductive textiles
CZ308348B6 (en) * 2018-11-06 2020-06-10 Bochemie A.S. Process for continuously metallizing a textile material, the apparatus for carrying out the process, metallized textile material and its use
KR102607280B1 (en) * 2019-02-01 2023-11-27 주식회사 엘지에너지솔루션 Battery assembly capable of simultaneous application of mechanical pressing and magnetic pressing to battery cell
CN110205611B (en) * 2019-06-25 2020-10-02 北京理工大学 Chemical nickel-phosphorus plating method for quartz fiber
KR102375924B1 (en) 2019-06-25 2022-03-18 주식회사 카본엑트 Method of manufacturing carbon fiber heating wire and carbon fiber heating wire manufactured thereby
US11969963B2 (en) 2020-01-28 2024-04-30 General Nano Llc Light-weight, highly-conductive repair material
CN112680959A (en) * 2020-12-16 2021-04-20 深圳大学 Metallized stretchable elastic fabric and preparation method thereof
CN113215630A (en) * 2021-04-21 2021-08-06 飞荣达科技(江苏)有限公司 High-performance carbon fiber and electroplating method thereof
CN113605087B (en) * 2021-07-30 2023-06-23 铜陵蔚屹新材料有限公司 Continuous production process for nickel metal firmly-attached aromatic special fiber filaments
CN113634745A (en) * 2021-08-06 2021-11-12 金华职业技术学院 Method for preparing NiCu double-layer alloy powder by chemical plating method and application thereof
CN114438565B (en) * 2022-02-21 2023-07-18 湖南昇通新材料科技有限公司 Electromagnetic shielding fabric electric brush nickel plating production equipment and method
CN115474345B (en) * 2022-09-14 2023-04-28 东华大学 Ceramic fabric circuit manufacturing method based on screen printing and chemical deposition

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360445A (en) * 1965-01-04 1967-12-26 Du Pont Electrodeposition of nickel from the sulfamate bath
US4061802A (en) * 1966-10-24 1977-12-06 Costello Francis E Plating process and bath
US4503131A (en) * 1982-01-18 1985-03-05 Richardson Chemical Company Electrical contact materials
JPH01162868A (en) * 1987-12-17 1989-06-27 Mitsubishi Kasei Corp Electroless plating of alumina ceramic fiber
IT1217328B (en) * 1988-02-01 1990-03-22 Donegani Guido Ist PROCESS FOR THE METALLIZATION OF FIBROUS MATERIALS
JP2747321B2 (en) * 1989-04-19 1998-05-06 日清紡績株式会社 Method for producing metal-coated synthetic resin structure
JP3150810B2 (en) * 1993-01-19 2001-03-26 日本バイリーン株式会社 Manufacturing method of electroless plating material
JPH06326113A (en) * 1993-05-13 1994-11-25 Casio Comput Co Ltd Plating method
KR0176299B1 (en) * 1996-02-24 1999-02-18 김순택 Electroless plating for shielding electromagnetic wave
KR19990042939A (en) * 1997-11-28 1999-06-15 김만곤 Manufacturing method of electromagnetic shielding sheet
KR100377265B1 (en) * 2000-11-15 2003-03-26 김선기 Conductive fabric and manufacturing method thereof
KR100572995B1 (en) * 2001-12-17 2006-04-24 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
JP4225408B2 (en) 2003-01-20 2009-02-18 金星製紙株式会社 Dry pulp nonwoven fabric with integrated layered structure
JP2005048243A (en) * 2003-07-30 2005-02-24 C Uyemura & Co Ltd Conductive plated fibrous structure, and its production method
JP2005232634A (en) * 2004-02-20 2005-09-02 Gun Ei Chem Ind Co Ltd Abs/phenol conjugate fiber and method for producing electromagnetic shield material
KR100894904B1 (en) * 2007-07-27 2009-04-30 조희욱 Plating method of metal to textile
JP2009163976A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Nonwoven fabric substrate for battery, and its manufacturing method
JP5638751B2 (en) * 2008-08-07 2014-12-10 名古屋メッキ工業株式会社 Method for plating polymer fiber material and method for producing polymer fiber material
JP2010126824A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Metal-plated fiber structure and metal structure obtained by firing the same
KR101133851B1 (en) 2009-09-17 2012-04-06 도레이첨단소재 주식회사 Spunbond nonwoven treated with a natural extract and manufacturing method thereof
CN101705615B (en) * 2009-11-03 2011-11-23 上海大学 Preparation method of nickel-plated and copper-plated aromatic polyamide conductive fibers
KR101156844B1 (en) 2009-11-09 2012-06-18 도레이첨단소재 주식회사 Spunbond nonwoven mixed with fiber filament yarn and manufacturing method thereof
US20110272289A1 (en) * 2010-05-10 2011-11-10 Eci Technology, Inc. Boric acid replenishment in electroplating baths
KR101221936B1 (en) 2011-04-26 2013-01-15 건양대학교산학협력단 Wet Process Nonwoven Web and The Method for Preparing The Same
KR20140015006A (en) * 2012-07-27 2014-02-06 주식회사 불스원신소재 Method for processing conductive of carbon fiber
KR102031201B1 (en) 2012-12-20 2019-10-11 에스케이하이닉스 주식회사 Latency control circuit and semiconductor memory device including the same
KR101604858B1 (en) 2014-07-17 2016-03-21 (주)크린앤사이언스 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating

Also Published As

Publication number Publication date
US20170204519A1 (en) 2017-07-20
DE112015003301T5 (en) 2017-04-06
DE112015003301B4 (en) 2018-10-31
KR20160010700A (en) 2016-01-28
JP2020007639A (en) 2020-01-16
JP2017526816A (en) 2017-09-14
WO2016010287A1 (en) 2016-01-21
JP6797790B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
KR101604858B1 (en) Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating
KR101427309B1 (en) Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
KR101548279B1 (en) Non-Woven Fabric for Shielding and Absorbing of Electromagnetic Waves or Non-Woven Fabric Composite Comprising the Same
US10385208B2 (en) Preparation method for electromagnetic wave shield composite material using copper- and nickel-plated carbon fiber prepared by electroless and electrolytic continuous processes, and electromagnetic wave shield composite material
JP3845823B2 (en) Method for coating natural fibers with carbon nanotubes
CN103221577A (en) Electrically conductive metal-oated fibers, continuous process for preparation thereof, and use thereof
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
JP2015507100A (en) Carbon fiber for composites with improved conductivity
KR102010366B1 (en) Method for producing metal-coated carbon fiber
CN102746823A (en) Material with characteristics of fire retardation, thermal insulation and wave absorption, and preparation method thereof
CN102733179A (en) Method for chemically plating and electroplating copper on artificial fibers and textile
Fatema et al. A new electroless Ni plating procedure of iodine-treated aramid fiber
KR101811995B1 (en) An electrically conductive fabric comprising metal-plated glass fiber, a process for preparing the same, a process for preparing a FRP prepreg using the same
CN105133301B (en) A kind of preparation method of nickel plating aromatic polyamide fibre
CN110983763A (en) Chemical copper plating process suitable for clothing cotton fabric
KR102072483B1 (en) Method for plating of carbon fiber fabric using continuous process of electroless and electrolysis plating, and fabrics that can shield electromagnetic waves including the carbon fiber fabric plated by the method
CN115464941A (en) Preparation method of carbon fiber/graphene composite electromagnetic shielding prepreg
KR101811993B1 (en) METAL-PLATED GLASS FIBER SMC(Sheet Moldings Compound) FOR EMI SHIELDING AND MANUFACTURING METHOD THEREBY
CN112813675A (en) Metallized polyimide fiber and preparation method thereof
KR102109339B1 (en) Method for manufacturing highly conductive fiber with improved magnetic susceptibility using electroless-electrolytic plating method
KR20210001634A (en) Method of Manufacturing Metal Coated Carbon Fiber
KR101504154B1 (en) Carbon fiber comprising ZnO nano-rod and fabrication method of the same
WO2014193169A1 (en) Preparation method for electromagnetic wave shield composite material using copper- and nickel- plated carbon fiber prepared by electroless and electrolytic continuous processes, and electromagnetic wave shield composite material
EP0066073A1 (en) Metallised flat textile materials provided with electrically conductive contacts, and their manufacture
DE102009045061A1 (en) Producing electrically conductive, structured or fully flat surface, comprises applying base layer on a support using a dispersion, curing and/or drying the material, exposing particle by partial disruption and forming metal- on base layer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190225

Year of fee payment: 4