KR0176299B1 - Electroless plating for shielding electromagnetic wave - Google Patents

Electroless plating for shielding electromagnetic wave Download PDF

Info

Publication number
KR0176299B1
KR0176299B1 KR1019960004407A KR19960004407A KR0176299B1 KR 0176299 B1 KR0176299 B1 KR 0176299B1 KR 1019960004407 A KR1019960004407 A KR 1019960004407A KR 19960004407 A KR19960004407 A KR 19960004407A KR 0176299 B1 KR0176299 B1 KR 0176299B1
Authority
KR
South Korea
Prior art keywords
minutes
electroless
sodium
plating
washing
Prior art date
Application number
KR1019960004407A
Other languages
Korean (ko)
Other versions
KR970062068A (en
Inventor
김순택
박종육
조정제
Original Assignee
김순택
호진산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 호진산업주식회사 filed Critical 김순택
Priority to KR1019960004407A priority Critical patent/KR0176299B1/en
Publication of KR970062068A publication Critical patent/KR970062068A/en
Application granted granted Critical
Publication of KR0176299B1 publication Critical patent/KR0176299B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde

Abstract

본 발명은 전기·전자기기의 플라스틱 하우징의 유해 전자파를 차폐하는 편면 무전해 도금법에 관한 것으로서, 플라스틱 피도물을 플라스틱 탈지제로 탈지하고 수세한 후 60∼65℃에서 35∼40℃ 까지 냉각하고 도전성 도료로써 도장하여 35∼40분간 방치하고, 60∼65℃에서 50분에서 1 시간 건조한 후 상온에서 3시간 이상 방치하여 도전성 도막을 무전해 도금을 하고져 하는 부위에 형성한다. 피도물의 표면에 전기전도층이 형성되면 그 표면을 5∼7분간 알칼리 탈지처리하고 염화파라듐(PdCl2) 0.2∼0.3g/ℓ, 염산(Hcℓ) 3%의 혼합 수용액에서 3∼5분간 활성화 처리하여 수세한 후 염화동(CuCl2) 5∼6g/ℓ, 포르말린(HCHO)2∼3g/ℓ, EDTA-4나트륨 45∼56g/ℓ, 수산화나트륨 6∼7g/ℓ의 PH 12∼13 의 무전해 동도금액에서 45∼50℃로 1시간 20분간 무전해용 도금하여 균일하고 치밀한 전기전도성 동막을 형성시킨다. 이후 다시 수세를 3회한후 염화파라듐(PdCl2) 0.2∼0.3g/ℓ, 염산 3%의 30℃ 혼합 수용액에서 1∼2 분간 활성처리하여 2회 수세하고 황산니켈(NiSO4) 5∼7g/ℓ, 차아인산나트륨(NaH2PO2) 30∼50g/ℓ, 구연산 나트륨 30∼50g/ℓ로 혼합한 후, 암모니아수(NH4OH)로써 PH 8.5∼9.0 으로 조절한 후, 35∼40℃에서 20분간 무전해 니켈도금하여 수세함을 특징으로 하는 균일하고 내구성이 높으며 전자파 차폐능이 뛰어난 편면 무전해 도금법.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a one-sided electroless plating method for shielding harmful electromagnetic waves from plastic housings of electrical and electronic devices. It is left to paint for 35 to 40 minutes, dried at 60 to 65 ° C. for 1 hour, and then left to stand at room temperature for 3 hours or more to form a conductive coating on a portion to be electroless plated. When an electrically conductive layer is formed on the surface of the workpiece, alkali degreasing is performed on the surface for 5 to 7 minutes and activated for 3 to 5 minutes in a mixed aqueous solution of 0.2 to 0.3 g / l of palladium chloride (PdCl 2 ) and 3% of hydrochloric acid (Hcℓ). After treatment and washing, radioactive (PuCl 2 ) 5-6 g / l, formalin (HCHO) 2-3 g / l, EDTA-4 sodium 45-56 g / l, sodium hydroxide 6-7 g / l, PH 12-13 Electrolytic plating for 1 hour 20 minutes at 45 ~ 50 ℃ in the copper plating solution to form a uniform and dense electroconductive copper film. After washing with water three times again, Palladium chloride (PdCl 2 ) 0.2 ~ 0.3g / ℓ, hydrochloric acid 3% active treatment in 30 ℃ mixed aqueous solution for 1 to 2 minutes and washed twice and nickel sulfate (NiSO 4 ) 5-7g / l, sodium hypophosphite (NaH 2 PO 2 ) 30 to 50 g / l, sodium citrate 30 to 50 g / l, and then adjusted to pH 8.5 to 9.0 with aqueous ammonia (NH 4 OH), 35 to 40 ℃ Single sided electroless plating method with uniform, durable and excellent electromagnetic shielding ability, which is electroless nickel plated and washed with water for 20 minutes at.

Description

전자파를 차폐하는 편면 무전해 도금법Single sided electroless plating method to shield electromagnetic waves

제1도는 SO2환경에서의 시간에 따른 제품의 저항 변화.1 is the change in resistance of a product over time in a SO 2 environment.

제2도는 H2O 환경에서의 시간에 따른 제품의 저항 변화.2 shows the change in resistance of a product over time in an H 2 O environment.

제3도는 편면 도금법과 도전성 도장법의 염수침적에 의한 저항치 변화.3 is a change in resistance caused by salt deposition of the one-side plating method and the conductive coating method.

본 발명은 플라스틱 부품에 전자파 차폐막을 형성시키는 편면 무전해 도금법에 관한 것이다.The present invention relates to a single-sided electroless plating method for forming an electromagnetic wave shielding film on a plastic part.

현대 산업사회는 정보화 사회로서 보다 많은 양의 다국 정보를 짧은 시간에 상호교환 또는 공유하며 처리를 해야하고 이를 위하여 관련기술은 고기능화 고속화 되어 가고 있다. 그리하여 최근 거의 모든 기기들이 정보처리, 발생, 관리 등을 위한 전기, 전자 장비들을 탑재하고 최신기기로서의 효능을 향상시키고 있다.The modern industrial society is an information society that needs to exchange and share a large amount of multi-national information in a short time. As a result, almost all devices are equipped with electric and electronic equipment for information processing, generation, management, etc. and improve the efficiency as a modern device.

그러나, 이러한 전기, 전자 장비의 이용이 증대될수록 기기와 기기 상호간의 전자기적 간섭이 커지게 되어 급기야 전자파 장해라는 커다란 사회문제까지 야기시키고, 심지어 인체에 대한 유해성 까지 논란의 대상이 되고 있다.However, as the use of such electric and electronic equipment increases, electromagnetic interference between devices and devices increases, causing a large social problem such as electromagnetic disturbances, and even harmfulness to the human body.

이에 따라 구미, 선진국들은 전자파 규제를 점점더 강화하여 전자파 장해에 대한 대책이 제대로 수립되지 않은 기기들에 대한 사용 및 제조생산에 까지 관련법규를 확대 적용하고 있으며, 심지어는 무역장벽의 수단으로 이용하기 까지한다. 이때문에 전자파 장해에 대한 보다 적극적인 대책이 필요하게 되었고, 본 발명자등이 이미 ABS 등 플라스틱의 전기·전자기기 하우징에 대한 전자파 차폐를 위한 무전해 도금법을 개발한 이래 알카리(Alkali)에 녹기 쉬운 플라스틱 재료의 무전재 도금액 등의 발명을 완성하여 공업적 적용을 하였다. 이들 발명들이 주로 적용된 곳은 전기·전자기의 플라스틱 하우징으로서 하우징의 안과 바깥 양쪽에 무전해도금을 하여 전자파의 차폐를 하는 방법으로 전기전도성 및 전자파차폐능, 화학적, 열적내구성 등이 가장 뛰어나서 현재 고주파수의 회로를 내장한 전기·전자기기에 적용하고 바깥쪽에 금속도금막이 노출이 되어 도장에 의한 장식처리를 추가적으로 필요로 하는 등 처리 공정이 길어지고, 플라스틱 수지의 외관적 아름다움을 나타낼 수 없는 등의 문제점이 있어 왔다.As a result, European and Western countries are increasingly tightening the regulation of electromagnetic waves, expanding the laws and regulations on the use and manufacturing of devices that do not have adequate countermeasures against electromagnetic interference, even as a means of trade barriers. Until. Because of this, more active countermeasures against electromagnetic interference have been required, and since the present inventors have already developed an electroless plating method for shielding electromagnetic waves on electrical and electronic device housings of plastics such as ABS, they are easily soluble in alkali. Inventions such as electroless plating solutions for materials have been completed, and industrial applications have been made. These inventions are mainly applied to plastic housings of electric and electronic devices. Electroless plating is applied to both inside and outside of the housings to shield electromagnetic waves, and they have the highest electric conductivity, electromagnetic shielding ability, chemical and thermal durability. It is applied to electric and electronic devices with built-in circuits, and the metal plating film is exposed on the outside, which requires additional decorative treatment by painting. It has been.

플라스틱 재료에 대한 기존의 전자파 차폐 도금기술은 플라스틱 재료의 표면에 수㎛ 이하의 미세한 요철을 부여하고 거기에 촉매활성이 뛰어난 팔라듐, 백금 등과 같은 귀금속을 흡착시켜 무전해 도금을 하는 것으로서 밀착이 좋고 치밀하며 전기 전도성이 좋은 동이나 니켈 등이 금속막을 형성시켜 전자기적 에너지파의 통과를 차단하는 기술로서, 도막과 플라스틱 재료와의 밀착력은 미세한 요철부가 금속도막을 기계적인 힘으로 강하게 구속함으로써 얻어진다.Conventional electromagnetic shielding plating technology for plastic materials gives electroless plating by adhering fine surface irregularities of several micrometers or less on the surface of plastic materials and adsorbing precious metals such as palladium and platinum with excellent catalytic activity. In addition, copper or nickel, which has good electrical conductivity, forms a metal film to block the passage of electromagnetic energy waves. The adhesion between the coating film and the plastic material is obtained by fine concavity and convexity strongly constraining the metal coating film with mechanical force.

이러한 무전해 도금법은 플라스틱 피도물이 공정중의 모든 처리액속에 완전히 침적되는 것을 특징으로 함으로 원하지 않는 곳에도 도금이 되는 문제가 있다. 이를 방지하기 위하여 마스킹 도료 등으로써 도장하여 도금공정중의 처리액과 피도물의 측정면과의 접촉을 차단할 수 있으나 대개 마스킹 도장이 불완전하거나 마스킹 도장을 한 부위가 변질하여 플라스틱 재료 원래의 표면 특성을 유지할 수가 없다. 뿐만 아니라 현재 전기·전자기기의 하우징재료로 사용되는 ABS, PC/ABS, PC 등과 같은 플라스틱 재료들은 이러한 특징이 현저하게 드러나므로, 현재 이들 재료로된 전기·전자기기의 하우징의 안팎으로 도금하고 바깥쪽에 외장 도장을 하여 사용하고 있다. 이러한 문제들 때문에 플라스틱 재료의 표면특성을 하우징의 외측에는 그대로 유지하며 내측에만 전도성 도료를 도포하여 사용하고 있다. 이 전도성 도료에 의한 전자파 차폐특성은 전도성 도료에 의해 형성된 도막의 두께에 의해 결정되어 지므로 대개 40∼60㎛ 정도의 두께로 도전성 도막을 형성하여 이용하고 있다. 그러나 도장법으로써 도전성 도막을 형성하면 피도물의 형상이나 도장 작업자의 기능에 따라 균일한 도막을 얻어내기가 어렵고, 도막의 품질도 균일하지 않으며 피도물의 구석진 곳 등에는 적절한 두께의 도막형성이 어렵고, 도료내의 도전성 물질(금속입자 등)로 이루어진 가루가 많이 생겨 향후 정밀한 전기·전자기기의 고장원인이 되기도 한다. 또한, 열적, 화학적 환경 등의 변화를 겪으면서 원래의 도막상태를 유지하지 못하여 표면 전도성 등이 현저히 저하하는 등의 문제점도 있으므로 제한적으로만 적용할 수 있고, 전자파 차폐능도 무전해 도금법에 비해 현저히 낮다. 현재 시중에서 유통되는 도전성 도료의 전자파 차폐능의 적용한계는 대개 80dB 이하로서 무전해 도금법의 110dB 정도에 비해서 훨씬 낮다.The electroless plating method is characterized in that the plastic coating is completely deposited in all the processing liquids in the process, thereby causing plating problems even where it is not desired. In order to prevent this, it is possible to cut off the contact between the treatment liquid and the measurement surface of the coating during the plating process by painting with a masking paint, etc. I can't. In addition, plastic materials such as ABS, PC / ABS, PC, etc., which are currently used as housing materials for electrical and electronic devices, exhibit such a remarkable feature. The exterior is painted on the side. Due to these problems, the surface characteristics of the plastic material are maintained on the outside of the housing and the conductive paint is applied only on the inside. Electromagnetic shielding characteristics by the conductive paint are determined by the thickness of the coating film formed by the conductive paint, and therefore, a conductive coating film is usually formed with a thickness of about 40 to 60 µm. However, when the conductive coating film is formed by the coating method, it is difficult to obtain a uniform coating film according to the shape of the coating object or the function of the painting worker, the quality of the coating film is not uniform, and it is difficult to form a coating film of an appropriate thickness in the corners of the coating material. Many powders made of conductive materials (metal particles, etc.) are generated, which may cause the failure of precise electric and electronic devices in the future. In addition, there is a problem that the surface conductivity, such as failing to maintain the original coating state while undergoing changes in the thermal, chemical environment, etc., can be applied only limitedly, and the electromagnetic shielding ability is also significantly higher than that of the electroless plating method. low. The current limit of electromagnetic shielding ability of conductive paints on the market is usually 80 dB or less, much lower than about 110 dB of electroless plating.

본 발명은 상기와 같은 종래의 문제점을 개선하기 위하여 안출한 것으로서, 전기·전자기기의 플라스틱 부품의 전자파 차폐를 위한 플라스틱 하우징의 한쪽면만을 도금하는 편면 무전해 도금법을 제공하는 것에 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object thereof is to provide a one-side electroless plating method for plating only one side of a plastic housing for shielding electromagnetic waves of plastic parts of electrical and electronic devices.

본 발명은 상기와 같은 목적을 달성하기 위하여 플라스틱 피도물을 탈지제(PC-200) 60g/ℓ 등과 같은 플라스틱 탈지제로서 탈지처리하고 수세한 후, 건조하고 35∼40℃가 될때까지 식힌 후, 전도성 도료로써 도포하여 35∼40분간 방치하고 60∼65℃에서 50분에서 1시간 건조한 후, 상온에서 3시간 이상 방치한 다음 다시 5∼7분간 알카리 탈지처리하고, 염화파라듐(PdCl2) 0.2∼0.3g/ℓ, 염산(HCI) 3%의 혼합 수용액에서 3∼5분간 활성화 처리하고 수세한 후, 염화동(CuCl2) 5∼6g/ℓ, 포르말린(HCHO)2∼3g/ℓ, EDTA 18∼22g/ℓ, 수산화나트륨 6∼7g/ℓ의 PH 12∼13의 무전해 도금액에서 온도 45∼50℃로 1시간 20분간 침적하여 무전해 동도금하고 3회 수세한 후, 다시 염화파라듐(PdCl2) 0.2∼0.3g/ℓ 염산 3% 의 30℃ 혼합수용액에서 1∼2분간 치환도금한 다음 2회 수세하고, 황산니켈(NiSO4) 5∼7g/ℓ, 차아인산나트륨(NaH2PO2) 30∼50g/ℓ 구연산 나트륨 30∼50g/ℓ로 혼합한 후 암모니아수(NH4OH)로써 PH를 8.5∼9.0으로 조절하여 온도 35∼40℃ 에서 20분간 무전해 니켈도금하여 수세함을 특징으로 하는 것이다.In order to achieve the above object, the present invention degreasing plastic water as a plastic degreasing agent such as 60 g / l of a degreasing agent (PC-200), washing with water, drying and cooling down to 35-40 ° C., and then as a conductive paint. After application, it is allowed to stand for 35 to 40 minutes, dried at 60 to 65 ° C. for 1 hour, and then left to stand at room temperature for 3 hours or more, and then further degreased for 5 to 7 minutes, and 0.2 to 0.3 g of palladium chloride (PdCl 2 ). / l, hydrochloric acid (HCI) in a mixed aqueous solution of 3% for 3 to 5 minutes, washed with water, copper chloride (CuCl 2 ) 5-6 g / l, formalin (HCHO) 2-3 g / l, EDTA 18-22 g / 1 L, sodium hydroxide 6-7 g / L, pH 12-13, electroless plating solution deposited at temperature of 45-50 DEG C for 1 hour 20 minutes, electroless copper plating, washing with water three times, and again palladium chloride (PdCl 2 ) 0.2 Substituted and plated for 1 to 2 minutes in a mixed solution of 30 ° C. containing 3% of 0.3 g / L hydrochloric acid, followed by washing twice with nickel sulfate (NiSO 4 ). 5 to 7 g / l, sodium hypophosphite (NaH 2 PO 2 ) 30 to 50 g / l, sodium citrate 30 to 50 g / l, mixed with ammonia water (NH 4 OH) to pH 8.5 to 9.0 It is characterized by washing with electroless nickel plating at 20 ° C. for 20 minutes.

이하 본 발명의 제조공정을 상세히 설명하면 다음과 같다.Hereinafter, the manufacturing process of the present invention will be described in detail.

[제 1 공정][Step 1]

플라스틱 피도금물을 탈지제(PC-200) 60g/ℓ등과 같은 플라스틱 탈지제로서 3 ∼ 5 분간 탈지하여 이형제 등과 같은 유지분을 제거하고 2회 수세한다.Plastic degreaser is degreased with a plastic degreasing agent such as 60 g / l of degreasing agent (PC-200) for 3 to 5 minutes to remove oils such as mold release agent and washed twice.

[제 2 공정]Second Process

제 1 공정을 거친 플라스틱 피도물을 60∼65℃에서 수분이 완전히 마를때까지 건조한다.The plastic coating material which passed through the 1st process is dried at 60-65 degreeC until moisture dry completely.

[제 3 공정][Third process]

제 2 공정을 거쳐 플라스틱 피도물을 35∼40℃가 될때까지 식힌다. 제 3 공정에 이르기 전에 은계 혹은 니켈계나 동계 도전성 도료를 충분히 교반하여 둔다.After the second process, the plastic coating is cooled down to 35 to 40 ° C. Before the third step, the silver-based or nickel-based or copper-based conductive paint is sufficiently stirred.

[제 4 공정][4th process]

제 3 공정을 거친 후 도전성 도료를 피도물 표면의 도금을 하고자 하는 곳에 분사하여 도장한다.After the third process, the conductive paint is sprayed and sprayed at the place where the surface of the workpiece is to be plated.

[제 5 공정][5th process]

제 4 공정을 거친 후 35∼40분간 방치하고 60∼65℃에서 50분에서 1시간 건조한다.After the fourth step, it is left for 35 to 40 minutes and dried at 60 to 65 ° C. for 50 minutes for 1 hour.

[제 6 공정][Sixth Step]

제 5 공정을 거쳐 상온에서 3시간 이상 방치한다.It is left to stand at room temperature for 3 hours or more after the 5th process.

[제 7 공정][7th process]

제 6 공정을 거친 피도물을 도금액과 도장면과의 접촉을 돕기 위해 알카리 탈지액에서 5∼7분간 침적하여 도금액과의 패면에 접촉성을 향상시키고 3회 수세한다.In order to assist contact between the plating liquid and the coating surface, the coated material subjected to the sixth step is dipped in alkaline degreasing solution for 5 to 7 minutes to improve contact with the plating liquid and wash with water three times.

[제 8 공정][Step 8]

제 7 공정을 거쳐 염화파라듐(PdCl2) 0.2∼0.3g/ℓ, 염산 3%의 15∼30℃ 혼합 수용액에서 3∼5분간 활성화 처리하고 3회 수세한다.After the seventh step, activation treatment is performed for 3 to 5 minutes in a mixed aqueous solution of 0.2 to 0.3 g / l palladium chloride (PdCl 2 ) and 3% hydrochloric acid for 3 to 5 minutes, followed by washing with water three times.

[제 9 공정][Ninth process]

제 8 공정을 거쳐 염화동(CuCl2) 5∼6g/ℓ, 포르말린(HCHO) 2∼3g/ℓ, EDTA-4나트륨 45∼56g/ℓ, 수산화나트륨 6∼7g/ℓ의 혼합수용액을 PH 12 ∼13, 온도 45∼50℃ 으로 하여 1시간 20분간 무전해 동도금하고 3회 수세한다.Through the eighth process, a mixed aqueous solution of copper chloride (CuCl 2 ) 5-6 g / l, formalin (HCHO) 2-3 g / l, EDTA-4 sodium 45-56 g / l, sodium hydroxide 6-7 g / l and pH 12- 13, electroless copper plating for 1 hour and 20 minutes at the temperature of 45-50 degreeC, and it washes three times.

[제 10 공정][10th process]

제 9 공정을 거쳐 무전해 동 도금된 피도물을 다시 염화파라듐(PdCl2) 0.2∼0.3g/ℓ 염산 3% 의 30℃ 혼합 수용액에서 1∼2분간 치환도금하여 활성화하고 2회 수세한다.Through the ninth step, the electroless copper-plated workpiece is again activated by substitution plating for 1-2 minutes in a 30 ° C. aqueous solution of 0.2-0.3 g / L hydrochloric acid 3% of palladium chloride (PdCl 2 ) and washed twice.

[제 11 공정][Step 11]

제 10 공정을 거쳐 황산니켈(NiSO4) 5∼7g/ℓ, 차아인산나트륨(NaH2PO2) 30∼50g/ℓ, 구연산 나트륨 30∼50g/ℓ로 혼합한 후 암모니아수(NH4OH)로써 PH를 8.5∼9.0 에 맞추고 온도를 35∼40℃로 하여 20분간 무전해 니켈도금하여 주된 전기 전도층인 동도막을 보호하는 니켈도막층을 형성시키고 5회 수세한다.After the tenth step, the mixture was mixed with 5 to 7 g / l of nickel sulfate (NiSO 4 ), 30 to 50 g / l of sodium hypophosphite (NaH 2 PO 2 ), and 30 to 50 g / l of sodium citrate, followed by aqueous ammonia (NH 4 OH). The pH is set to 8.5 to 9.0 and the temperature is set to 35 to 40 ° C. Electroless nickel plating is carried out for 20 minutes to form a nickel coating layer that protects the copper conductive film, which is the main electrically conductive layer, and washed with water five times.

[제 12 공정][12th process]

제 11 공정을 거쳐 피도금물을 50∼55℃ 의 증류수에서 5∼7분간 세척한 다음 건조함으로써 피도금물에 편면도금이 완성되는 것이다.After the eleventh step, the plated object is washed in distilled water at 50 to 55 ° C. for 5 to 7 minutes and then dried to complete the one-side plating on the plated object.

이와 같은 공정을 거친 도금물은 피도물의 특정위치에만 동 약 3㎛ 이상 니켈 약 0.7㎛ 이상이 석출되어 전기적 전도성을 띄게 되며, 기존의 양면무전해 도금법에서 갖고 있는 플라스틱재료의 선택상의 제한성, 도금후의 외장도장 등의 문제점과 도전성 도료 도장법에서 갖고 있는 전자파 차폐능의 저하, 도막 두께의 불균일성 및 열적, 화학적 환경변화에 의한 도전성 저하에 따르는 전자파 차폐능 저하의 문제를 해결할 수 있다. 따라서, 도금막이 형성된 모든 부위에 거의 일정한 전자파 차폐능을 갖게된다. 도전성 도장법이나 양면 무전해 도금법 등 거의 모든 전자파 차폐 표면처리법은 도막의 고유 전기전도성과 두께에 따라 차폐능이 증가하므로 제조공정에서 두께를 균일하게 조절하는 것은 대단히 중요하다. 양면 무전해 도금법은 근본적으로 무전해 도금액에 피도물을 침적하여 도막을 제조하므로 도금액과 피도물 표면과의 접촉이 가능한 곳이면 도막이 균일한 속도로 형성되고, 또한 공기교반 등 기계적 도금액 교반으로 도막형성속도의 부위별 균일함이 더욱 향상된다. 그러나, 도전성 도장법으로 전도막을 제조할 때에는 피도물의 구석진 곳이나 가리워 진곳등은 도료의 도포가 제대로 이루어지지 못하고 이러한 문제는 피도물의 크기가 작고 복잡한 형상일수록 더욱 심하다. 따라서, 부위별로 전기전도도도 현저한 차이가 있으며 전자파 차폐능도 마찬가지로 많은 편차를 가질 수 밖에 없다. 편면 도금법에서도 물론 도전성 도장법과 마찬가지로 일단 도전성 도료를 도포해야 하지만 도막의 전기전도성이 도장막의 두께에 의존하는 것이 아니라 도금막의 두께에 의존하므로 도장막은 무전해도금이 가능한 표면을 형성해줄 수 있고 도장막 및 도금막과 피도물 표면간의 밀착력을 유지할 수 있는 정도이면 아무리 두께가 얇아도 상관없다. 또한 도전성 도막의 제조비용면에 있어서도 양면 도금의 경우 도금후의 외장도장 때문에 도막 제조비용이 도전성 도장법에 비해 상대적으로 높지만 편면도금법의 경우 도장막을 얇게 제조하여도 되므로 도장 공정에서의 비용을 도전성도장법에 비해 훨씬 낮게 유지할 수가 있기 때문에 전체적인 도막 제조비용이 도전성 도장법에 비해 오히려 낮아질 수도 있다.The plated material that has undergone the above process has the copper conductivity of about 3㎛ or more and about 0.7㎛ or more of nickel at the specific position of the coated material, and it shows electrical conductivity. Problems such as exterior coating and the problem of lowering the electromagnetic wave shielding ability due to the decrease in electromagnetic wave shielding ability, the non-uniformity of the thickness of the coating film, and the conductivity due to thermal and chemical environmental changes can be solved. Therefore, almost all electromagnetic wave shielding ability is provided in all the parts in which the plating film was formed. Almost all electromagnetic shielding surface treatment methods such as conductive coating method and double-sided electroless plating method increase the shielding ability according to the intrinsic electrical conductivity and thickness of the coating film, so it is very important to control the thickness uniformly in the manufacturing process. In the double-sided electroless plating method, a coating film is prepared by depositing a coating film on an electroless plating solution, so that the coating film is formed at a uniform speed where the plating liquid and the surface of the coating surface can be contacted. Partial uniformity is further improved. However, when the conductive film is manufactured by the conductive coating method, the corners or the covered areas of the coating are not properly coated, and the problem is more severe in the small and complicated shape of the coating. Therefore, there is a remarkable difference in the electrical conductivity for each part, and the electromagnetic shielding ability also has many variations. In the single-sided plating method, of course, like the conductive coating method, the conductive coating should be applied once, but since the electrical conductivity of the coating film is not dependent on the thickness of the coating film, the coating film can form a surface capable of electroless plating. As long as the adhesion between the plated film and the surface of the workpiece can be maintained, the thickness may be thin. In terms of the manufacturing cost of the conductive coating film, in the case of double-sided plating, the coating film manufacturing cost is relatively higher than that of the conductive coating method due to the exterior coating after plating. However, in the one-side plating method, the coating film may be made thinner. Since it can be kept much lower, the overall coating film manufacturing cost may be lower than that of the conductive coating method.

이렇게 하여 제조된 편면 도금막의 전기적 특성과 전자파 차폐능을 표 1, 표 2에 기재하였다.The electrical properties and the electromagnetic shielding ability of the single-side plated film thus prepared are shown in Table 1 and Table 2.

이하 본 발명의 실시예를 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail.

[실시예]EXAMPLE

폴리카보네이트판을 가로 10cm, 세로 10cm로 절단하여 탈지제(PC200) 60g/ℓ 및 NaOH 10g/ℓ로써 50℃로 3분간 탈지처리하고 3회 수세한후 62℃ 에서 1시간 건조하였다. 수분이 완전히 증발한 폴리카보네이트판을 대기중에서 37℃가 될 때까지 냉각한뒤 한쪽면만을 시중에서 구입한 니켈계 도전성 도료로써 십자형으로 도포하여 두께 10㎛까지 올렸다. 도전성 니켈계 도료로 도포된 폴리카보네이트판을 25℃에서 40분간 방치한뒤 62℃ 에서 1시간 동안 건조한 후 25℃에서 4시간 동안 방치하였다. 도전성 도장이된 폴리카보네이트판을 다시 탈지제(PC200) 60g/ℓ 및 NaOH 10g/ℓ의 혼합액에서 6분간 침적하여 도장막과 도금액과의 접촉을 향상시키고 3회 수세한 후 염화파라듐 0.3g/ℓ 염산 3%의 30℃ 용액에서 4분간 활성처리하고 3회 수세하였다. 수세가 완료된 후 염화동(CuCl2) 5g/ℓ 포르말린(HCHO) 3g/ℓ, EDTA-4나트륨 48g/ℓ, 수산화나트륨(NaOH) 7g/ℓ의 무전해도금액을 PH 12.7, 온도 45℃로 하여 제조하고, 도전성 도장된 폴리카보네이트판을 침적하여 1시간 20분간 도금하고 3회 수세하고 다시 염화파라듐 0.3g/ℓ 염산 3% 의 30℃ 용액에서 1분간 활성처리한 후 2회 수세하였다. 활성처리되고 수세한 피도물을 공기중에 오래두지 않고 곧바로 황산니켈(NiSO4) 6g/ℓ, 차아인산나트륨(NaH2PO2) 40g/ℓ, 구연산 나트륨 40g/ℓ 농도에 암모니아수(NH4OH)로써 PH 8.8로 조절하고 37℃인 혼합액에 무전해 니켈 도금을 행하였다. 이렇게 하여 제조된 편면도금물의 전기저항치를 표 4에 화학적 환경변화에 대한 전기전도성 변화를 표 3, 표 4, 표 5 에 기재하고 각각의 변화경향은 제1도, 제2도 및 제3도에 도시하였다.The polycarbonate plate was cut into 10 cm and 10 cm lengths, and then degreased at 50 ° C. for 3 minutes with 60 g / L of degreasing agent (PC200) and 10 g / L of NaOH, washed three times, and dried at 62 ° C. for 1 hour. After cooling the polycarbonate plate which completely evaporated the moisture until it reached 37 degreeC in air | atmosphere, only one side was cross-coated with the nickel-based electroconductive paint purchased commercially, and it raised up to 10 micrometers in thickness. The polycarbonate plate coated with the conductive nickel-based paint was left at 25 ° C. for 40 minutes, dried at 62 ° C. for 1 hour, and left at 25 ° C. for 4 hours. The conductive polycarbonate plate was again immersed in a mixed solution of 60 g / l of degreasing agent (PC200) and 10 g / l of NaOH for 6 minutes to improve contact between the coating film and the plating solution and washed three times, followed by 0.3 g / l of palladium chloride. The solution was activated for 4 minutes in a 30% solution of 3% hydrochloric acid and washed three times. After completion of washing with water, the electroless solution of copper chloride (CuCl 2 ) 5g / ℓ formalin (HCHO) 3g / ℓ, EDTA-4 sodium 48g / ℓ, sodium hydroxide (NaOH) 7g / ℓ was prepared at pH 12.7, temperature 45 ℃. Then, the conductive coated polycarbonate plate was deposited, plated for 1 hour and 20 minutes, washed with water three times, and again treated with Palladium chloride 0.3 g / L hydrochloric acid 3% in a 30 ° C. solution for 1 minute, and washed twice. Do not leave the activated and washed objects in the air immediately, but 6 g / l of nickel sulfate (NiSO 4 ), 40 g / l of sodium hypophosphite (NaH 2 PO 2 ), and 40 g / l of sodium citrate as aqueous ammonia (NH 4 OH). It adjusted to PH 8.8 and electroless nickel plating was performed to the liquid mixture which is 37 degreeC. The electrical resistance values of the single-sided plating thus prepared are shown in Table 4, and the electrical conductivity change with respect to chemical environment change is shown in Table 3, Table 4, and Table 5, respectively. Shown in

상술한 바와 같은 본 발명의 편면 무전해 도금법은 뛰어난 전자파 차폐특성 및 도막의 균일성과 도전성도료의 편면 표면처리의 용이함 및 피도물 플라스틱 재료 선택의 다양성 등의 효과를 갖는 전자파 차폐를 위한 표면 처리법인 것이다.The one-sided electroless plating method of the present invention as described above is a surface treatment method for electromagnetic shielding having effects such as excellent electromagnetic shielding characteristics, uniformity of coating film, ease of single-sided surface treatment of conductive paint, and variety of selection of workpiece plastic materials.

Claims (1)

플라스틱 피도금물을 탈지제(PC-200) 60g/ℓ 등과 같은 플라스틱 탈지제로서 탈지처리하고 수세한 후, 건조하고 35∼40℃가 될때까지 식힌 후, 전도성 도료로써 도전성 도장을 실시하여 35∼40분간 방치하고 60∼65℃에서 50분에서 1시간 건조한 후, 상온에서 3시간 이상 방치한 다음 다시 5∼7분간 알칼리 탈지처리하고, 염화파라듐(PdCl2) 0.2∼0.3g/ℓ, 염산(HCI) 3%의 혼합 수용액에서 3∼5분간 활성화 처리하고 수세한 후, 염화동(CuCl2) 5∼6g/ℓ, 포르말린(HCHO) 2∼3g/ℓ, EDTA-4나트륨 45∼56g/ℓ, 수산화나트륨 6∼7g/ℓ의 PH 12∼13의 무전해 도금액에서 온도 45∼50℃로 1시간 20분간 침적하여 무전해 동도금하고 3회 수세한 후, 다시 염화파라듐(PdCl2) 0.2∼0.3g/ℓ 염산 3% 의 30℃ 혼합수용액에서 1∼2분간 치환도금한 다음 2회 수세하고, 황산니켈(NiSO4) 5∼7g/ℓ, 차아인산나트륨(NaH2PO2) 30∼50g/ℓ 구연산 나트륨 30∼50g/ℓ로 혼합한 후 암모니아수(NH4OH)로써 PH를 8.5∼9.0으로 조절하여 온도 35∼40℃ 에서 20분간 무전해 니켈도금하여 수세함을 특징으로 하는 전자파 차폐를 위한 편면 무전해 도금법.Degreasing and washing the plastic plated product with a plastic degreasing agent such as 60 g / l of a degreasing agent (PC-200), drying, cooling it to 35-40 ° C., and then conducting conductive coating with a conductive paint for 35-40 minutes. After being left to stand and dried at 60 to 65 ° C. for 1 hour and then at room temperature for 3 hours or longer, alkali degreasing treatment is performed for 5 to 7 minutes again, and 0.2 to 0.3 g / l of palladium chloride (PdCl 2 ) and hydrochloric acid (HCI). Activation and washing in 3% mixed aqueous solution for 3 to 5 minutes, followed by 5-6 g / l copper chloride (CuCl 2 ), formalin (HCHO) 2-3 g / l, EDTA-4 sodium 45-56 g / l, hydroxide In electroless plating solution of sodium 6-7g / l PH 12-13, it was immersed at 45-50 ℃ for 1 hour 20 minutes, electroless copper plating, washed three times, and again 0.2-0.3g of palladium chloride (PdCl 2 ) / ℓ hydrochloric acid was replaced 3% 30 ℃ 1~2 minutes in a mixed aqueous solution of the coating, and then twice washed with water, and nickel sulfate (NiSO 4) 5~7g / ℓ, and hypophosphorous acid, or Cerium (NaH 2 PO 2) 30~50g / ℓ of citric acid was mixed with sodium 30~50g / ℓ of aqueous ammonia (NH 4 OH) to adjust the PH to 8.5 to 9.0 for 20 minutes at a temperature in the electroless nickel plating as a 35~40 ℃ Single-sided electroless plating method for shielding electromagnetic waves by washing with water.
KR1019960004407A 1996-02-24 1996-02-24 Electroless plating for shielding electromagnetic wave KR0176299B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960004407A KR0176299B1 (en) 1996-02-24 1996-02-24 Electroless plating for shielding electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960004407A KR0176299B1 (en) 1996-02-24 1996-02-24 Electroless plating for shielding electromagnetic wave

Publications (2)

Publication Number Publication Date
KR970062068A KR970062068A (en) 1997-09-12
KR0176299B1 true KR0176299B1 (en) 1999-02-18

Family

ID=19451687

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960004407A KR0176299B1 (en) 1996-02-24 1996-02-24 Electroless plating for shielding electromagnetic wave

Country Status (1)

Country Link
KR (1) KR0176299B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010287A1 (en) * 2014-07-17 2016-01-21 (주)크린앤사이언스 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230031493A (en) 2021-08-27 2023-03-07 주식회사 아모센스 Electromagnetic wave and magnetic field shield and absorption sheet and electronic device comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016010287A1 (en) * 2014-07-17 2016-01-21 (주)크린앤사이언스 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes

Also Published As

Publication number Publication date
KR970062068A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
US4514586A (en) Method of using a shielding means to attenuate electromagnetic radiation in the radio frequency range
US3962494A (en) Sensitized substrates for chemical metallization
US4169171A (en) Bright electroless plating process and plated articles produced thereby
US4670306A (en) Method for treatment of surfaces for electroless plating
EP0288491A1 (en) Selective metallization process, additive method for manufacturing printed circuit boards, and composition for use therein.
US5376248A (en) Direct metallization process
US3597266A (en) Electroless nickel plating
US3928670A (en) Selective plating on non-metallic surfaces
KR19980703108A (en) A method for selectively or partially electrolytic metallizing a substrate surface made of non-conductive material
EP0312551A4 (en) Additive method for manufacturing printed circuit boards using aqueous alkaline developable and strippable photoresists.
EP0007577B1 (en) Method of improving the adhesion of electroless metal deposits
US4770751A (en) Method for forming on a nonconductor a shielding layer against electromagnetic radiation
US5358602A (en) Method for manufacture of printed circuit boards
JP3343522B2 (en) Manufacturing method of plastic molded products
US3694250A (en) Electroless copper plating
JPS61210183A (en) Method for providing metal film to surface of polymer
KR101298746B1 (en) Metallization process of non-conductive polymer substrates using wet surface treatment technology
KR0176299B1 (en) Electroless plating for shielding electromagnetic wave
US5219815A (en) Low corrosivity catalyst containing ammonium ions for activation of copper for electroless nickel plating
GB1242995A (en) Electroless nickel plating on a nonconductive substrate
JP2001200376A (en) Method for depositing electro-magnetic wave shield film
KR20190011674A (en) Chrome-free etch solutions for chemically resistant polymer materials
JPH05287543A (en) Electroless silver plating method
WO1991009151A1 (en) Method of metallizing substrates by chemical redox
GB2287472A (en) Selective metallisation of insulating substrates by printing surface with carbon-based ink catalyst and electroless and electrolytic plating

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20051031

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee