KR101596770B1 - 내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법 - Google Patents

내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법 Download PDF

Info

Publication number
KR101596770B1
KR101596770B1 KR1020150018188A KR20150018188A KR101596770B1 KR 101596770 B1 KR101596770 B1 KR 101596770B1 KR 1020150018188 A KR1020150018188 A KR 1020150018188A KR 20150018188 A KR20150018188 A KR 20150018188A KR 101596770 B1 KR101596770 B1 KR 101596770B1
Authority
KR
South Korea
Prior art keywords
metal
coating
phosphate
lubricant
oxide
Prior art date
Application number
KR1020150018188A
Other languages
English (en)
Inventor
공호성
한흥구
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to US14/674,544 priority Critical patent/US20160130520A1/en
Application granted granted Critical
Publication of KR101596770B1 publication Critical patent/KR101596770B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/24Compounds containing phosphorus, arsenic or antimony
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/007Processes for applying liquids or other fluent materials using an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • C10M2201/0623Oxides; Hydroxides; Carbonates or bicarbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/0653Sulfides; Selenides; Tellurides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • C10M2201/0663Molybdenum sulfide used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

본 발명 기술은 고온(400~900℃) 환경에서 무급유 상태로 고속 미끄럼 접촉운동을 하는 터빈 회전축 등의 기계요소가 베어링과의 접촉으로 인한 마찰, 발열 및 마모에 대해 잘 견딜 수 있도록 회전축 표면 위에 코팅되는 내열, 내마모, 저마찰 특성을 가지는 세라믹 복합체 코팅제에 관한 것이다.
본 발명의 세라믹 복합체 윤활제 조성물은 우수한 윤활 성능을 보일 뿐만 아니라 상시 사용 온도 범위가 400℃ 이상 범위에서도 지속적으로 사용이 가능할 정도로 내열성이 높아 고온에서도 견딜 수 있고 우수한 내마모성을 발휘할 수 있다. 본 발명은 또한 고온 환경에서 구동되는 발전용 터빈 축 및 자동차 엔진 실린더 스커트 부재, 그리고 철강 열연공장 및 선재압연 등 여러 종류의 미끄럼 부재 표면에 코팅 윤활제로 이용 할 수 있다.

Description

내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법{Coating material of ceramic complex having heat and abrasion resistance and low friction characteristics and coating method thereof}
본 발명은 고온(400~900℃) 환경에서 무급유 상태로 고속 미끄럼 접촉운동을 하는 터빈 회전축 등의 기계요소가 베어링과의 접촉으로 인한 마찰, 발열 및 마모에 대해 잘 견딜 수 있도록 회전축 표면 위에 코팅되는 내열, 내마모, 저마찰 특성을 가지는 세라믹 복합체 코팅제에 관한 것이다.
본 발명은 코팅제에 관한 것으로, 보다 상세하게는, 고온(400~900℃) 및 무급유 조건 하에서 고속 회전 운동을 하는 터빈 회전축 등의 작동체와 이를 지지하는 베어링 사이에서 발생하는 마찰을 저감하고 마모를 최소화할 수 있도록 회전체 표면에 코팅되는 내열, 내마모, 저마찰 특성을 가지는 고온용 내마모 저마찰 금속-인산염계 세라믹 복합체 코팅제 및 이의 코팅방법에 관한 것이다. 일반적으로 회전속도가 상대적으로 낮은 조건 하에서의 윤활방법으로 오일이나 그리스 윤활제를 접촉면에 급유하는 윤활방법이 사용된다. 그러나 발전용 개스터빈과 같이 600~1,000℃ 이상의 고온 개스가 흡입되는 경우에는 고온 개스의 영향으로 베어링 축계의 온도가 400℃ 이상으로 높아지므로 이와 같은 전통적인 오일 급유방법을 사용할 수가 없다. 오일과 같은 습식 윤활이 불가능한 경우에, 에폭시 또는 폴리-이미드 수지 등과 같은 열경화성 수지를 바인더 결합제로 하고 이 결합제에 이황화몰리브덴(MoS2), 그라파이트, PTFE 등과 같이 윤활성이 우수한 고체윤활제 등을 혼입한 피막접착형 고체윤활제가 사용될 수 있으나, 사용온도가 200~300℃ 이하로 제한되는 문제가 있다.
고온 환경 하에서 사용할 수 있는 코팅 윤활제 기술과 관련하여 대한민국 특허등록 제479901호에서는 졸-겔 공정에 의해 합성된 알콕시실란류와 금속 알콕시 화합물 중합체의 무기계 결합제를 포함하는 피막 접착형 고체 윤활제 조성물 및 그의 제조 방법에 관한 기술을 기재하고 있다. 그러나 상기 윤활제의 경우에 상시 사용 온도 범위가 250-350℃이며, 400-500℃ 범위에서도 순간적인 사용이 가능하지만, 본 발명에서와 같이 고온(400~900℃)의 환경 조건 하에서는 만족할만한 성능을 충분히 발휘하기 어렵다. 본 발명의 효과에서 상기 기술에 의하여 얻어진 코팅윤활제와 본 발명에서 얻어진 세라믹 복합 코팅윤활제들의 마찰/마모수명 시험결과에서 이를 비교할 수 있다.
400℃ 이상의 고온 환경 하에서 접촉운동을 하는 기계요소에서의 효과적인 윤활을 위하여, 미국특허 제3,199,934호, 제3,419,363호, 제5,866,518호 및 제8,753,417호에서는 각각 니켈-크롬 또는 니켈-코발트 또는 니켈-몰리브덴-알루미늄 합금 금속입자와; 내열성이 우수한 크롬-카바이드(CrC) 또는 크롬옥사이드(Cr2O3); 그리고 고온 하에서 윤활성이 우수한 은(Ag) 및 불화바륨(BaF2)/불화칼슘(CaF2) 공융 혼합물(eutectic)을 혼합하고 이를 플라즈마 스프레이 방법으로 회전 축 표면에 코팅하는 방법을 기재하고 있다.
또한 대한민국 특허등록 제655366호에서는 상기의 방법과 유사하게 고온 환경에서 무급유 상태로 동작하는 회전축의 효과적인 코팅 윤활방법으로서 니켈(Ni) 60~80중량%와 크롬(Cr) 20~40중량%를 포함하는 결합제 40~60중량%에 크롬옥사이드(Cr2O3) 20~40중량%, 이황화텅스텐(WS2) 10~20중량%, 그리고 은(Ag) 10~20중량%를 포함하는 금속 기재 복합물을 플라즈마 스프레이 방법으로 회전 축 표면에 코팅하는 방법을 기재하고 있다.
미국특허 제3,199,934호, 제3,419,363호, 제5,866,518호 및 제8,753,417호, 그리고 대한민국 특허등록 제655366호에서와 같이 합금 금속을 기재로 한 내열성 윤활제(Metal bonded lubricant) 복합 분말들을 플라즈마 스프레이 코팅방법으로 표면에 코팅하는 방법은 경제적 관점에서 고가의 플라즈마 코팅장비를 사용해야 하는 단점이 있으며, 기술적인 측면에서도 스프레이 코팅 건(gun)이 코팅면과 직각 방향에서 일정한 거리를 유지하도록 위치해야 하기 때문에 코팅면이 평탄하지 않거나 혹은 내부에 위치되어 있는 경우에는 코팅을 용이하게 적용하기 어려운 문제점이 있다.
세라믹 바인더를 고온용 코팅용 윤활제로 사용할 경우, 열 경화 공정 후의 세라믹 바인더 결합제가 미세한 크기의 다공성 구조적 형태를 이루어 반복적인 접촉하중에 의하여 미세한 크랙이 발생하는 등 마모가 발생하기 쉽고, 열 경화온도가 너무 높게 요구되면 코팅하는 모재의 열변형이 발생할 수 있다. 따라서, 가급적 열경화 온도를 낮출 수 있도록 하는 것이 바람직하고, 미끄럼 마찰계수가 낮고 고온 하의 마찰접촉조건 하에서 긴 내구수명을 갖도록 바림직한 윤활제 조성물의 조합 및 함량을 갖도록 하는 것이 요구된다.
또한, 고체 윤활제를 침지(dipping) 또는 스프레이 코팅 또는 롤-코팅 방법 등으로 코팅면에 용이하게 코팅하는 방법이 요구된다.
본 발명은 금속-인산염(Metal Phosphate)계 세라믹 바인더 20~35중량%, 고체윤활제 10~60 중량%, 저융점을 갖는 금속 4~15중량% 및 나머지 물을 포함하고 바람직하게는 세라믹 바인더 20~30중량%, 고체윤활제 20~30 중량%, 저융점을 갖는 금속 5~15중량% 및 나머지 물을 포함하고 가장 바람직하게는 세라믹 바인더 25~30중량%, 고체윤활제 25~30 중량%, 저융점을 갖는 금속 8~12중량% 및 나머지 물을 포함하되, 상기 저융점을 갖는 금속은 세라믹과 서멧 형태를 이루도록 하는 것을 특징으로 하는 피막 접착형 코팅제 조성물을 제공한다. 상기 금속-인산염은 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 크로미늄(Cr), 실리콘(Si), 지르코니아(Zr), 아연(Zn), 몰리브덴(Mo), 티타늄(Ti) 철(Fe)로 이루어진 군 중에서 하나 이상을 선택한 금속들의 수산화물 또는 산화물이 인산염으로 된 것을 특징으로 하는 것이 바람직하다. 상기 고체 윤활제 성분이 이황화텡스텐(WS2), 이황화몰리브덴(MoS2), 안티모니옥사이드(Sb2O3), 그라파이트, 그래핀, 플로렌, 산화안티몬, 산화납, 산화티타니움, 산화철, 테프론(PTFE) 및 보론나이트라이드(BN)로 이루어진 군 중에서 하나 이상을 선택한 것이 바람직하다. 상기 저융점을 갖는 금속은 주석(Sn), 납(Pb), 아연(Zn), 인디움(In)으로 이루어진 군 중에서 하나 이상을 선택하는 것이 바람직하다. 상기 금속-인산염계 세라믹 바인더에 은(Ag), 금(Au) 또는 이들의 혼합물을 더욱 첨가하는 것이 바람직 하다.
본 발명은 (a) 금속 수산화물 또는 산화물을 인산과 반응시켜 금속-인산염계 세라믹 바인더 용액을 얻는 단계; (b) 상기 금속-인산염계 세라믹 바인더 용액에 고체윤활제를 첨가하여 복합 윤활제를 얻는 단계; (c) 상기 복합 윤활제에 저융점을 갖는 금속을 첨가하여 코팅제를 얻는 단계; (d) 상기 코팅제를 구동체의 표면에 도포하는 단계; (e) 상기 도포된 코팅제를 상온 조건 하에서 건조하는 단계; (f) 상기 건조된 코팅제를 200~400℃ 온도에서 열경화시켜 겔화 시키는 단계; 및 (g) 상기 열경화된 코팅층의 표면을 그라인딩 및 폴리싱하여 코팅층의 두께가 40~200㎛인 것을 특징으로 하는 코팅방법을 제공한다. 상기 (a) 단계에서 얻은 금속-인산염계 세라믹 용액을 물 용매로 희석하는 단계;및 상기 금속-인산염계 세라믹 용액에 pH 조정제를 더욱 첨가하는 단계를 더욱 포함하는 것이 바람직하다. 상기 (d) 단계에서 도포하는 방법은 스프레이 도장법(spray painting), 텀블링(tumbling)법, 침지법(dipping), 브러시-칠법, 롤형 인쇄법, 벨형 회전무화형 정전 도장(electrostatic coating)법으로 이루어진 군 중에서 하나 이상의 방법을 선택하여 이루어지는 것이 바람직하다.
상기와 같은 발명의 효과로서 본 발명의 세라믹 복합체 윤활제 조성물은 우수한 윤활 성능을 보일 뿐만 아니라 상시 사용 온도 범위가 400℃ 이상 범위에서도 지속적으로 사용이 가능할 정도로 내열성이 높아 고온에서도 견딜 수 있고 우수한 내마모성을 발휘할 수 있다.
본 발명은 또한 고온 환경에서 구동되는 발전용 터빈 축 및 자동차 엔진 실린더 스커트 부재, 그리고 철강 열연공장 및 선재압연 등 여러 종류의 미끄럼 부재 표면에 코팅 윤활제로 이용 할 수 있다.
도1은 고온 왕복동 마찰마모시험기 및 시험 시편을 예시한 도면이다.
도2는 본 발명에 의한 코팅 시편에서의 마찰 및 내구성 시험 결과를 나타낸 도면이다.
세라믹 코팅은 우수한 내마모성, 내화학성 및 고온에서의 내산화성을 지니고 있으며, 화학적증기증착법(CVD), 물리적증기증착법(PVD), 이온빔보조증착법(IBAD), 열 또는 플라즈마 스프레이 및 졸-겔 방법 등에 의하여 시행될 수 있다. 상기 방법 중 졸-겔 코팅 방법을 사용할 경우, 모재 표면에 침지, 스프레이, 또는 붓을 이용하여 간단하게 도포하여 코팅할 수 있으며, 다른 방법에 비하여 상대적으로 저온 하에서 코팅을 행하므로 코팅 및 모재의 열 변형을 최소화할 수 있는 장점을 지니고 있다.
본 발명은 금속-인산염(Metal Phosphate)계 세라믹 바인더 20~35중량%, 고체윤활제 10~60 중량%, 저융점을 갖는 금속 4~15중량% 및 나머지 물을 포함하고 바람직하게는 세라믹 바인더 20~30중량%, 고체윤활제 20~30 중량%, 저융점을 갖는 금속 5~15중량% 및 나머지 물을 포함하고 가장 바람직하게는 세라믹 바인더 25~30중량%, 고체윤활제 25~30 중량%, 저융점을 갖는 금속 8~12중량% 및 나머지 물을 포함하되, 상기 저융점을 갖는 금속은 세라믹과 서멧 형태를 이루도록 하는 것을 특징으로 하는 피막 접착형 코팅제 조성물을 제공한다.
본 발명의 피막 접착형 코팅제 조성물은 금속-인산염(Metal Phosphate)계 세라믹 바인더 20~35중량%을 포함하고, 바람직하게는 20~30중량%를 포함하며, 가장 바람직하게는 25~30중량%를 포함한다. 상기 금속-인산염계 세라믹 바인더가 20중량% 미만이면 열 경화후 코팅층이 모재 표면에서 쉽게 떨어지는 코팅 불량 현상이 나타나고, 35중량% 초과이면 코팅후 반복적인 접촉하중에 의해 미세한 크랙이 발생하는 등 마모가 발생하게 된다.
금속-인산염(metal phosphate)은 세라믹 물질 중에서도 기계적 및 열적 강도가 높고, 고온 하에서의 안정성이 우수하며, 내마모성이 매우 우수하여 내열성 바인더로 사용할 수 있는 대표적인 물질이며, 졸-겔 방법에 의하여 용이하게 모재 표면에 코팅할 수 있는 물질이다.
금속-인산염 바인더는 금속 수산화물 (Metal hydroxide; 예를 들어, 알루미늄이라면 수산화알루미늄(Al(OH)3)) 및 인산의 화학적 반응에 의해 합성될 수 있다. 상기 금속으로는 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 크로미늄(Cr), 실리콘(Si), 지르코니아(Zr), 아연(Zn), 몰리브덴(Mo), 티타늄(Ti) 및 철(Fe)로 이루어진 군 중에서 하나 이상을 선택하는 것이 바람직하다. 금속의 수산화물과 인산(H3PO4)의 화학적인 반응은, 예를 들어 알루미늄-인산염(Aluminum phosphate)의 경우, 1 몰(mol) 당량의 수산화알루미늄을 탈이온 증류수(deionized water)에 용해하고, 상기 용해물에 알루미늄과 인산의 분자비가 1:3 내지 1.5:3 비율 정도의 인산 용액을 첨가한 후에 80~100℃ 온도 조건 하에서 교반시키며 반응을 시켜 얻는다.
상기 금속-인산염 바인더의 pH 값 및 밀도를 조절하기 위하여, 상기 금속-인산염 세라믹 바인더를 물 용매로 희석하거나 알카리성 화합물을 부가적으로 첨가할 수 있으며, 상기 알칼리성 화합물로는 수산화나트륨(NaOH)이 바람직하다.
상기 금속-인산염 바인더의 기계적 안정성과 열안정성을 향상시키기 위해, 상기 금속-인산염 합성 반응 중에 다른 금속의 수산화물 또는 산화물을 첨가할 수 있는데, 예를 들면 상기 수산화알루미늄과 함께 마그네슘 산화물(MgO) 또는/및 크롬 산화물(CrO3)을 부가적으로 첨가할 수 있다. 특히, 상기 크롬 산화물을 첨가하여 합성된 바인더는 안정성이 증가될 뿐만 아니라 코팅의 내식성이 증가되는 효과를 얻을 수 있다. 마그네슘이나 크로미늄 등은 알루미늄과 달리 수산화물 형태가 아닌 산화물 형태로도 인산과의 반응성이 우수하여 금속-인산염을 이루며, 이들을 복합할 경우 하이브리드 형태의 금속-인산염 구조를 갖는다.
이와 같은 과정을 통하여 합성된 졸 형태의 세라믹 바인더 용액에 미세한 크기의 윤활성이 우수한 다양한 고체윤활제를 첨가한다. 본 발명의 피막 접착형 코팅제 조성물은 고체윤활제 10~60 중량%를 포함하고, 바람직하게는 20~30중량%를 포함하고, 가장 바람직하게는 25~30중량%를 포함한다. 상기 고체윤활제가 10중량% 미만이면 코팅후 반복적인 접촉하중에 의해 미세한 크랙이 발생하는 등 마모가 발생하게 되고, 60중량% 초과이면 열 경화후 코팅층이 모재 표면에서 쉽게 떨어지는 코팅 불량 현상이 나타나게 된다. 상기 고체윤활제의 크기는 0.5 ㎛ 내지 20 ㎛ 이 바람직한데, 0.5 ㎛ 미만이면 윤활 내구성이 떨어지고, 20 ㎛ 초과이면 고체윤활제의 분산성이 떨어진다. 상기 고체윤활제는 이황화텡스텐(WS2), 이황화몰리브덴(MoS2), 안티모니옥사이드(Sb2O3), 그라파이트, 그래핀, 플로렌, 산화안티몬, 산화납, 산화티타니움, 산화철, 테프론(PTFE) 및 보론나이트라이드(BN)로 이루어진 군 중에서 하나 이상을 선택하여 첨가하는 것이 바람직하다. 내마모 특성이나 윤활피막 기계적 강도를 개선하기 위하여, 상기 고체윤활제에 윤활성이 우수한 금속산화물 또는 금속을 더욱 첨가하는 것이 바람직하다. 상기 윤활특성이 우수한 금속산화물로서 산화티타니움(TiO2), 산화철(Iron oxide, Fe3O4)로 이루어진 군 중에서 하나 이상을 선택하는 것이 바람직하고, 상기 윤활성이 우수한 금속으로서 은(Ag), 금(Au), 또는 이들의 혼합물로 이루어진 군 중에서 하나 이상을 선택하는 것이 바람직하다. 상기 윤활성이 우수한 금속 산화물 또는 금속은 이황화텡스텐 또는 이황화몰리브덴 등의 전형적인 고체윤활제 물질에 비하여 윤활제로서의 특성은 상대적으로 낮으나, 코팅층의 기계적 강도를 증가시키는 역할을 하기 때문에 상기 고체윤활제에 보조적으로 더욱 첨가하는 것이 바람직하다.
본 발명의 피막 접착형 코팅제 조성물은 저융점을 갖는 금속 4~15중량%를 포함하고, 바람직하게는 5~15중량%를 포함하고, 가장 바람직하게는 8~12중량%를 포함하되, 상기 저융점을 갖는 금속은 세라믹과 서멧 형태를 이루도록 하는 것을 특징으로 한다. 상기 저융점을 갖는 금속이 4중량% 미만이면 세라믹 재료의 취성 파손이 증가하게 되고, 15중량% 초과이면 코팅층의 기계적 강도가 낮아진다. 상기 합성된 졸 형태의 세라믹 바인더 용액에 저융점(low melting)을 갖는 금속이 첨가되는 것이 바람직하다. 상기 저융점을 갖는 금속으로서 주석(Sn), 납(Pb), 아연(Zn), 인디움(In) 으로 이루어진 군 중에서 하나 이상을 선택하는 것이 더욱 바람직하다. 저융점(low melting)을 갖는 금속을 혼합하여 합성한 세라믹 바인더의 경우, 저융점 금속 입자들이 열 경화 과정 후에 궁극적으로 미세한 크기의 다공성 구조를 갖는 세라믹 구조의 계면 사이에 젖어 들어가는 서멧(cermet) 형태를 이루게 된다. 금속산화물이나 금, 은 등과 같은 윤활제들은 용해되지는 않지만, 이와 달리 저융점 금속 입자들은 세멧 형태를 이루어 금속 입자들이 세라믹과 결합하여 기계적/열적 안정성을 향상시킴으로써 경질의 세라믹 재료가 일반적으로 갖는 취성 파손을 완화시킬 수 있는 우수한 효과를 얻을 수 있으며, 합성된 코팅층의 인성 (toughness)을 증가시키고 고온 마찰접촉 시에는 상기 금속이 용해되어 melt lubrication 됨으로서 마찰을 저감하는 시너지 효과를 얻을 수 있다.
상기 고체윤활제 및 저융점 금속 등의 선택은 용도에 따라 2 종류 이상을 혼합하여 사용하는 것이 바람직하다. 졸 형태로 합성된 세라믹 바인더 용액에 상기와 같이 다양한 종류의 윤활 충진제를 첨가한 후에 볼-밀링(Ball Milling) 공정 등을 이용하여 상기 혼합물을 충분히 교반하면서 고르게 혼합한다.
본 발명은 (a) 금속 수산화물 또는 산화물을 인산과 반응시켜 금속-인산염계 세라믹 바인더 용액을 얻는 단계; (b) 상기 금속-인산염계 세라믹 바인더 용액에 고체윤활제를 첨가하여 복합 윤활제를 얻는 단계; (c) 상기 복합 윤활제에 저융점을 갖는 금속을 첨가하여 코팅제를 얻는 단계; (d) 상기 코팅제를 구동체의 표면에 도포하는 단계; (e) 상기 도포된 코팅제를 상온 조건 하에서 건조하는 단계; (f) 상기 건조된 코팅제를 200~400℃ 온도에서 열경화시켜 겔화 시키는 단계; 및 (g) 상기 열경화된 코팅층의 표면을 그라인딩 및 폴리싱하여 코팅층의 두께가 40~200㎛인 것을 특징으로 하는 코팅방법을 제공한다.
예를 들면, 상기 졸 형태의 세라믹 코팅제를 샌드-블래스트(Sand Blast) 등의 방법을 사용하여 조면화된 모재 표면에 윤활제를 혼합해 스프레이(spraying) 등의 방법으로 도포한 후, 상온 조건 하에서 일차적으로 건조하고, 이차적으로 200~400℃ 온도 조건 하에서 순차적으로 열경화하여 졸 형태의 무기계 화합물을 겔화 시킨다. 따라서 경화된 코팅층은 무정형(amorphous)의 금속-인산염 세라믹 바인더 내에 미세한 크기의 윤활재료들이 고루 분산된 형태를 갖는다. 상기 열 경화 온도는 200℃ 미만이면 열경화가 충분히 일어나지 않아 기계적 강도가 떨어지게 되고, 400℃ 초과이면 금속-인산염 바인더는 점차적으로 결정 형태로 바뀌며 내열 특성이 증가하나, 상대적으로 취성이 증가하게 된다.
상기 (a) 단계에서 얻은 금속-인산염계 세라믹 용액을 물 용매로 희석하는 단계;및 상기 금속-인산염계 세라믹 용액에 pH 조정제를 더욱 첨가하는 단계를 더욱 포함하는 것이 바람직하다. 금속-인산염 바인더는 철(Fe)계 모재에 도포될 경우에, 모재 표면과 강하게 화학적 결합하여 코팅층의 응착력을 향상시키는 매우 우수한 효과를 얻을 수 있다. 그러나, 금속-인산염 바인더와 철계 모재 사이의 화학반응이 지나치게 강할 경우에는 모재 표면이 부식되면서 기포가 발생하여 코팅층의 형성을 방해할 수 있다. 따라서, 금속-인산염계 세라믹 용액을 물 용매로 희석하여 사용하거나, 상기 코팅제에 pH 조정제로서 알칼리 화합물을 적용하여 pH를 높이는 것이 바람직하고, 상기 알칼리 화합물은 수산화나트륨(NaOH)이 바람직하다. 또한, 상기 철계 모재 표면을 본 발명의 코팅제로 코팅을 하기 이전에 인산염 (phosphating) 또는 산화 (oxidation) 처리하여 상기의 부작용을 최소화할 수 있도록 모재 표면을 부동태화 함이 바람직하다. 철계 모재를 Zn-Phospahte 혹은 Mn-Phospahating 과 같은 인산염 처리를 하면, 철 표면이 미세한 크기의 다공성 표면으로 됨과 동시에 인산이 철과 반응하여 내산화성 및 내부식성이 증가하고 아울러 세라믹 코팅과의 접합성이 증가하게 된다. 산화처리는 철계 표면을 400-500℃ 정도의 고온 하에서 가열하는 것으로서, 철 표면 위에 산화철이 생성되어 내산화성 및 내부식성이 증가함과 동시에 세라믹 코팅층과의 친화력이 증가하게 된다.
고체윤활 피막은 스프레이 도장법(spray painting), 텀블링(tumbling)법, 침지법(dipping), 브러시-칠법, 롤형 인쇄법, 벨형 회전무화형 정전 도장 (electrostatic coating)법으로 이루어진 군 중에서 하나 이상의 방법을 선택하여 모재 표면에 윤활 피막을 형성할 수 있다. 코팅은 침지 및 스프레이 코팅 횟수를 조절하여 두께를 조절할 수 있으며, 열경화되어 완성된 세라믹 코팅층 표면을 그라인딩 및 폴리싱 등의 기계가공을 행하여 최종적으로 세라믹 복합체 윤활제 코팅층을 완성한다. 윤활 코팅층의 두께는 대략적으로 40~200㎛ 인 것이 바람직하다. 상기 코팅층의 두께가 40 ㎛ 미만이면 윤활제의 내구 수명이 떨어지고, 200 ㎛ 초과이면 모재와의 열팽창계수 차이로 인하여 모재와 코팅층의 결합력이 떨어진다.
본 발명에 따른 고온용 세라믹 복합체 코팅제의 마찰 특성 및 내구수명을 평가하기 위하여 도1에 도시한 Cameron Plint 사 제품인 고온 왕복동 마찰마모시험기(ASTM G-133)를 사용하였다. 코팅된 윤활피막 시료의 마찰 및 내구수명 시험은, 시험 하중이 200 N (접촉압력: 20 kg/cm2), 미끄럼 속도가 0.14 m/s (10 Hz)로 일정하게 설정하였으며, 시험 플레이트 시편 밑에 위치한 전기 히터 소자를 가열하여 플레이트 시편 온도가 평균적으로 400oC 정도의 온도가 유지되도록 하였다.
표 1은 여러 가지 종류의 세라믹 복합 윤활제들이 코팅된 플레이트 시편에서의 마찰계수 및 내구수명 측정값들을 비교한 시험결과이다. 윤활제의 코팅은 플레이트 모재 표면을 샌드-블라스팅으로 처리하여 표면거칠기를 대략 Ra=1.0(3) mm 정도가 되도록 전처리한 후에 코팅윤활제를 도포하여 모재 위에 코팅된 윤활피막의 두께가 대략 평균적으로 40 내지 200 ㎛ 정도가 되도록 하였다. 윤활피막의 내수수명은 윤활피막의 마찰계수 값이 초기 값보다 2배 이상으로 증가한 시점까지로 정의하였다.
코팅 시편 세라믹 바인더 종류 윤활제 종류 [바인더/
윤활제]
체적비
두께
(㎛)
미끄럼마찰
계수
내구
수명
(cycle)
실시예 1 Al/Cr/Mg phosphate WS2(26.8%)+MoS2(4.3%)+
Graphite(2.0%)+
Sb2O3(1.1%)
3:1 150 0.07 55,000
실시예 2 Al/Cr/Mg phosphate
WS2(24.5%)+MoS2(10.6%)+
Graphite(5.8%)+
Sb2O3(4.4%)
2:1 30 0.1 45,000
실시예 3 Al/Cr/Mg phosphate WS2(24.5%)+MoS2(10.6%)+
Graphite(5.8%)+
Sb2O3(4.4%)
2:1 140 0.1 130,000
실시예 4 Al/Cr/Mg phosphate WS2(24.5%)+MoS2(10.6%)+
Graphite(5.8%)+
Sb2O3(4.4%)
2:1 85 0.2 100,000
실시예 5 Al/Cr/Mg phosphate WS2(33.7%)+MoS2(14.6%)+
Graphite(7.9%)+
Sb2O3(6.0%)
1:1 140 - 코팅
불량
실시예 6 Al/Cr/Mg phosphate WS2(22.9%)+MoS2(9.9%)+
Graphite(5.4%)+
Sn(10.4%)
2:1 140 0.07 130,000
실시예 7 Al/Cr/Mg phosphate WS2(24.2%)+MoS2(10.5%)+
Graphite(5.7%)+
Zn(5.6%)
2:1 140 0.07 80,000
비교예 1 Si + Ti
alkoxide
WS2(20.0%)+
Graphite(13.3%)
3:1 40 0.07 13,000
비교예 2 Si + Ti
alkoxide
WS2(16.3%)+MoS2(7.0%)+
Graphite(8.3%)+
Fe2O3(1.7%)
3:1 100 0.17 20,000
비교예 3 Si + Ti
alkoxide
WS2(16.3%)+MoS2(7.0%)+
Graphite(8.3%)+
Sb2O3(1.7%)
3:1 45 0.15 13,000
비교예 4 Si + Ti
alkoxide
WS2(16.3%)+MoS2(7.0%)+
Graphite(8.3%)+
Sb2O3(1.7%)
3:1 100 0.12 30,000
도2는 본 발명에 의한 세라믹 복합체 윤활제가 코팅된 시편에서의 마찰 특성 측정 시험결과의 예를 나타낸 것으로, 시험 시간이 증가함에 따라 일정한 순간부터 윤활피막의 파손이 발생하면 마찰계수가 갑작스럽게 증가함과 동시에 윤활피막이 파손됨을 알 수 있다. 상기 시험결과에서 본 발명에서의 세라믹 복합체 윤활제는 고체윤활 충진제의 체적비(volume ratio)가 증가할수록 내구수명이 증가함을 알 수 있으며, 세라믹 바인더와 고체윤활 충진제 고형분(solid content)의 체적비가 2:1 조성물에서 가장 긴 내구수명이 나타났다. 고체윤활 충진제의 배합 비율이 너무 높을 경우에서는 세라믹 바인더의 양이 상대적으로 부족한 탓에 열 경화 후에 코팅층이 모재 표면에서 쉽게 떨어지는 코팅 불량 현상이 나타났다. 아울러 코팅층의 내구수명은 코팅층의 두께에 대략적으로 비례하여 증가하는 것으로 나타났다. 특히 본 발명의 실시예 6에서 나타나듯이, 세라믹 바인더에 저융점을 갖는 주석 입자를 첨가한 경우에서는 코팅된 윤활제의 마찰계수도 낮고 내구수명도 길게 나타남을 알 수 있었는데, 이는 저융점을 갖는 주석 입자가 세라믹 바인더와 서멧 형태를 이루면서 바인더의 기계적 및 열적 특성을 향상시킴은 물론 마찰 접촉 시에 저융점을 갖는 주석의 melt lubrication 효과에 의하여 미끄럼 마찰계수를 저감하는 것으로 사료된다. 한편 본 발명에서의 세라믹 복합체 윤활제의 마찰 및 내구수명은 비교예에서 졸-겔 공정에 의해 합성된 알콕시실란류와 금속 알콕시 화합물 중합체의 무기계 윤활제 (Si/Ti alkoxide)와 비교하여 상대적으로 우수한 내구수명이 나타났으며, 이는 본 발명에서의 세라믹 복합체 윤활제가 보다 우수한 내열 특성을 지니고 있기 때문으로 사료된다.
이하, 본 발명의 실시예를 통해 본 발명을 설명한다.
냉각 콘덴서와 온도계를 장착한 3 neck 1L 둥근 플라스크에 인산(H3PO4) 147.0g을 넣고 크롬 산화물(CrO3) 25g을 용해하고, 미리 증류수 106g 에 수산화알루미늄(Al(OH)3) 19.5g 을 넣어 슬러리로 만든 용액을 첨가하고 온도를 80~100℃로 유지하며 투명한 용액이 얻어질 때까지 약 2시간 정도 강하게 교반하며 반응시킨 다음, 온도를 약 60℃ 로 낮추고, 마찬가지로 미리 증류수 106g 에 산화마그네슘 20.15g을 넣어 슬러리로 만들어 놓은 용액을 천천히 일정량씩 나누어 첨가한다. 이때 반응열로 인해 온도가 상승하게 되는데 100℃ 가 넘지 않도록 유의하며, 투명한 용액이 얻어질 때까지 80~90℃ 정도를 유지하며 반응시켜 고형분(solid content) 50%의 Al(0.5몰)-Mg(1.0몰)-Cr(0.5몰)의 복합 금속-인산염을 합성한다.
상기와 같이 합성된 금속-인산염과 고체윤활제 성분으로서 WS2 26.8중량%, MoS2 4.3중량%, 그라파이트 2.0중량%, Sb2O3 1.1중량% 등을 혼합한 후 milling machine을 이용하여 균질의 윤활제 용액을 제조한 다음, 샌드블라스팅과, 노말헥산과 아세톤 등의 용제세척 과정을 통해 청결한 표면을 이루고 있는 스테인리스(stainless) 강 시편에 150㎛ 정도의 두께로 코팅 하였다. 코팅된 고형분의 부피비는 바인더:윤활제=3:1 이었다. ASTM G-133 표준규격에 의하여 마찰 마모 성능시험을 행하였다.
상기 실시예 1에서 금속-인산염 세라믹 바인더 성분과 고체윤활제 성분으로서 WS2 24.5중량%, MoS2 10.6중량%, 그라파이트 5.8중량%, Sb2O3 4.4중량% 등을 혼합한 후, 동일한 방법으로 윤활제 용액을 제조한 다음, 30㎛ 정도의 두께로 코팅하여 실시예 1에서와 같은 방법으로 시험하였다. 코팅된 고형분의 부피비는 바인더:윤활제=2:1 이었다.
상기 실시예 2와 동일하되 윤활제 코팅 두께를 140㎛으로 코팅한 후 시험하였다.
상기 실시예 2와 동일하되 윤활제 코팅 두께를 80㎛으로 코팅한 후 시험하였다.
상기 실시예 1에서 금속-인산염 세라믹 바인더 성분과 고체윤활제 성분으로서 WS2 33.7중량%, MoS2 14.6중량%, 그라파이트 7.9중량%, Sb2O3 6.0중량% 등을 혼합한 후, 동일한 방법으로 윤활제 용액을 제조한 다음 140㎛ 두께로 코팅하여 시험하였다. 코팅된 고형분의 부피비는 바인더:윤활제=1:1이 되었다.
상기 실시예 2에서 고체윤활제 성분 중 Sb2O3 을 연질 금속인 Sn 으로 10.4중량%으로 대체시켜 제조한 윤활제 용액을 140㎛ 두께로 코팅하여 시험하였다.
상기 실시예 2에서 고체윤활제 성분 중 Sb2O3 을 연질 금속인 Zn 으로 5.6중량%으로 대체시켜 제조한 윤활제 용액을 140㎛ 두께로 코팅하여 시험하였다.
[비교예 1]
본 발명에서의 금속-인삼염계 세라믹 복합 코팅제와 비교하기 위하여 메틸트리에톡시 실란과 테트라에톡시실란을 2:1의 당량비로 혼합하여 1차 중합시킨 후, 티타늄 테트라프로폭사이드를 3:2의 중량비로 2차 중합시켜 졸-겔 무기계 바인더를 제조하였다.
상기 무기계 바인더에 첨가한 고체 윤활제로서 이황화텡스텐 20.0중량%, 이황화몰리브덴 13.3중량% 비율로 밀링 장치를 이용하여 균일하게 분산시켜 코팅윤활제를 제조하고, 스프레이 분사법을 이용하여 약 40㎛ 정도의 두께로 코팅하여 200℃로 조정된 오븐에서 1시간 경화시킨 후 상기 방법에 의해 시험하였다.
[비교예 2]
상기 비교예 1과 동일하되, 고체 윤활제로서 이황화텡스텐 16.3중량%, 이황화몰리브덴 7.0중량%, 그라파이트 8.3중량%, 산화철 1.7중량% 비율로 밀링 장치를 이용하여 균일하게 분산시켜 코팅윤활제를 제조하고, 윤활제를 100㎛ 정도의 두께로 두껍게 코팅하여 시험하였다.
[비교예 3]
상기 비교예 1과 동일하되, 고체 윤활제로서 이황화텡스텐 16.3중량%, 이황화몰리브덴 7.0중량%, 그라파이트 8.3중량%, 안티모니옥사이드 1.7중량%를 사용하여 코팅 윤활제를 제조한 후 약 45㎛ 정도의 두께로 코팅하여 시험하였다.
[비교예 4]
상기 비교예 3과 동일하되, 윤활제를 100㎛ 정도의 두께로 두껍게 코팅하여 시험하였다.

Claims (8)

  1. 금속-인산염(Metal Phosphate)계 세라믹 바인더 20~35중량%; 고체윤활제 10~60 중량%; 주석(Sn), 납(Pb), 아연(Zn) 및 인디움(In)으로 이루어진 군 중에서 선택된 하나 이상의 저융점을 갖는 금속 4~15중량%; 및 나머지 물을 포함하되, 상기 저융점을 갖는 금속은 세라믹과 서멧 형태를 이루도록 하는 것을 특징으로 하는 내열 내마모 저마찰용 코팅제 조성물.
  2. 제1항에 있어서, 상기 금속-인산염은 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 크로미늄(Cr), 실리콘(Si), 지르코니아(Zr), 아연(Zn), 몰리브덴(Mo), 티타늄(Ti) 및 철(Fe)로 이루어진 군 중에서 하나 이상을 선택한 금속들의 수산화물 또는 산화물이 인산염으로 된 것을 특징으로 하는 내열 내마모 저마찰용 코팅제 조성물.
  3. 제1항에 있어서, 상기 고체 윤활제 성분이 이황화텡스텐(WS2), 이황화몰리브덴(MoS2), 안티모니옥사이드(Sb2O3), 그라파이트, 그래핀, 플로렌, 산화안티몬, 산화납, 산화티타니움, 산화철, 테프론(PTFE) 및 보론나이트라이드(BN)로 이루어진 군 중에서 하나 이상을 선택한 것을 특징으로 하는 내열 내마모 저마찰용 코팅제 조성물.
  4. 삭제
  5. 제1항에 있어서, 상기 고체윤활제에 보조적으로 산화티타니움(TiO2), 산화철(Iron oxide, Fe3O4), 은(Ag), 금(Au) 또는 이들의 혼합물을 더욱 첨가하는 것을 특징으로 하는 내열 내마모 저마찰용 코팅제 조성물.
  6. (a) 금속 수산화물 또는 산화물을 인산과 반응시켜 금속-인산염계 세라믹 바인더 용액을 얻는 단계;
    (b) 상기 금속-인산염계 세라믹 바인더 용액에 고체윤활제를 첨가하여 복합 윤활제를 얻는 단계;
    (c) 상기 복합 윤활제에 주석(Sn), 납(Pb), 아연(Zn) 및 인디움(In)으로 이루어진 군 중에서 선택된 하나 이상의 저융점을 갖는 금속을 첨가하여 코팅제를 얻는 단계;
    (d) 상기 코팅제를 구동체의 표면에 도포하는 단계;
    (e) 상기 도포된 코팅제를 상온 조건 하에서 건조하는 단계;
    (f) 상기 건조된 코팅제를 200~400℃ 온도에서 열경화시켜 겔화 시키는 단계; 및
    (g) 상기 열경화된 코팅층의 표면을 그라인딩 및 폴리싱하여 코팅층의 두께가 40~200㎛인 것을 특징으로 하는 코팅방법.
  7. 제6항에 있어서, 상기 (a) 단계에서 얻은 금속-인산염계 세라믹 용액을 물 용매로 희석하는 단계;및 상기 금속-인산염계 세라믹 용액에 pH 조정제를 더욱 첨가하는 단계를 더욱 포함하는 것을 특징으로 하는 코팅 방법.
  8. 제6항에 있어서, 상기 (d) 단계에서 도포하는 방법은 스프레이 도장법(spray painting), 텀블링(tumbling)법, 침지법(dipping), 브러시-칠법, 롤형 인쇄법, 벨형 회전무화형 정전 도장(electrostatic coating)법으로 이루어진 군 중에서 하나 이상의 방법을 선택하여 이루어지는 것을 특징으로 하는 코팅방법.
KR1020150018188A 2014-11-10 2015-02-05 내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법 KR101596770B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/674,544 US20160130520A1 (en) 2014-11-10 2015-03-31 Coating material of metal-phosphate-based ceramic complex having heat and abrasion resistance and low friction characteristics and coating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140155731 2014-11-10
KR20140155731 2014-11-10

Publications (1)

Publication Number Publication Date
KR101596770B1 true KR101596770B1 (ko) 2016-02-23

Family

ID=55449372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150018188A KR101596770B1 (ko) 2014-11-10 2015-02-05 내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법

Country Status (2)

Country Link
US (1) US20160130520A1 (ko)
KR (1) KR101596770B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844779B1 (ko) * 2016-05-18 2018-05-02 (주)에코파워텍 열충격에 강한 세라믹 도료 조성물 및 이의 제조방법
KR20220168744A (ko) 2021-06-17 2022-12-26 주식회사 투피엘 차량하부의 부식 방지용 세라믹 코팅 조성물 및 이의 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133544B1 (ko) 2014-06-23 2020-07-13 사우쓰와이어 컴퍼니, 엘엘씨 자외선-저항성 초소수성 코팅 조성물
CN106544106B (zh) * 2016-11-03 2020-02-07 长沙新材料产业研究院有限公司 一种冲压模具用润滑剂及镁合金冲压成型工艺
MX2020004447A (es) 2017-10-13 2020-07-24 Nippon Steel Corp Composicion y conexion roscada para tubos o tuberias, incluyendo la capa de recubrimiento lubricante formada a partir de la composicion.
US10889727B1 (en) 2018-06-14 2021-01-12 Southwire Company, Llc Electrical cable with improved installation and durability performance
CN110066934B (zh) * 2019-06-04 2020-08-28 宁波达尔机械科技有限公司 一种轴承滚动体用合金材料及其制备方法
CN112341845A (zh) * 2020-09-27 2021-02-09 中昊北方涂料工业研究设计院有限公司 一种无铬化含铝磷酸盐组合物及涂层
CN114107906B (zh) * 2021-11-18 2022-07-15 中国地质大学(北京) 一种用于太阳帆板驱动轴承内壁的低摩擦薄膜及其制备方法
CN116640005A (zh) * 2023-05-22 2023-08-25 醴陵市东方电瓷电器有限公司 一种直流超高压输电线路用抗污瓷绝缘子及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655366B1 (ko) * 2005-07-04 2006-12-08 한국과학기술연구원 내열, 내마모, 저마찰 특성을 가지는 코팅제 및 이의코팅방법
KR20110076203A (ko) * 2009-12-29 2011-07-06 (주)동진하이테크 산성계 바인더 수성 코팅제 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071368A (en) * 1976-07-12 1978-01-31 Lubeco, Inc. Mold release composition
CN101809092B (zh) * 2007-09-27 2012-10-31 大丰工业株式会社 用于滑动部件的组合物和涂覆有该组合物的滑动部件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655366B1 (ko) * 2005-07-04 2006-12-08 한국과학기술연구원 내열, 내마모, 저마찰 특성을 가지는 코팅제 및 이의코팅방법
KR20110076203A (ko) * 2009-12-29 2011-07-06 (주)동진하이테크 산성계 바인더 수성 코팅제 조성물

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844779B1 (ko) * 2016-05-18 2018-05-02 (주)에코파워텍 열충격에 강한 세라믹 도료 조성물 및 이의 제조방법
KR20220168744A (ko) 2021-06-17 2022-12-26 주식회사 투피엘 차량하부의 부식 방지용 세라믹 코팅 조성물 및 이의 제조방법

Also Published As

Publication number Publication date
US20160130520A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
KR101596770B1 (ko) 내열 내마모 저마찰용 세라믹 복합체 코팅제 및 코팅 방법
EP2402606B1 (en) Self-lubricating wear-resistant coating swash plate and the production process thereof
JP4932884B2 (ja) 摺動部材用被膜組成物
KR101580345B1 (ko) 베어링
EP1236914B1 (en) Plain bearing
CN102226125B (zh) 一种无机耐高温干膜润滑剂
US20120058923A1 (en) Self-Lubricating Surface Coating Composition for Low Friction or Soft Substrate Applications
TWI642806B (zh) 鋅系鍍覆鋼板用表面處理液、帶表面處理皮膜的鋅系鍍覆鋼板的製造方法及帶表面處理皮膜的鋅系鍍覆鋼板
CN106321635A (zh) 发动机低摩擦轴瓦及其制备方法
CN101906347A (zh) 一种常温固化的水基耐高温固体润滑涂料及其制备方法
JP5114539B2 (ja) 物品の磨耗性能を改良するコーティングおよび物品のコーティング方法
US20170350448A1 (en) Sliding bearing element
JP4485131B2 (ja) すべり軸受
WO2009081825A1 (ja) スラスト軸受用摺動部材
US9029302B2 (en) Sliding member
JP2007016288A (ja) 軸受材被覆摺動部材の製造方法及び軸受材被覆摺動部材
TW200415215A (en) Coating composition, fluorine-containing laminate and resin composition
WO2019198311A1 (ja) 複層摺動部材
CN113980545A (zh) 一种聚醚醚酮/黑磷自润滑复合涂层、复合材料及其制备方法
US6713535B2 (en) Low-friction chromate-free coating of epoxy resins and sulfonyldianiline
JP4490119B2 (ja) 乾性潤滑被膜形成用組成物
KR101837116B1 (ko) 부시용 고체 윤활제
CN1032296C (zh) 非铁金属机械零件
CN115232492A (zh) 一种水性磷酸盐陶瓷涂料及其制备方法
JP2014149085A (ja) ピストンリング

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 5