KR101552159B1 - Method for the detection of fungal disease by loop-mediated isothermal amplification - Google Patents

Method for the detection of fungal disease by loop-mediated isothermal amplification Download PDF

Info

Publication number
KR101552159B1
KR101552159B1 KR1020150032911A KR20150032911A KR101552159B1 KR 101552159 B1 KR101552159 B1 KR 101552159B1 KR 1020150032911 A KR1020150032911 A KR 1020150032911A KR 20150032911 A KR20150032911 A KR 20150032911A KR 101552159 B1 KR101552159 B1 KR 101552159B1
Authority
KR
South Korea
Prior art keywords
disease
primer
isothermal amplification
lamp
concentration
Prior art date
Application number
KR1020150032911A
Other languages
Korean (ko)
Other versions
KR20150053258A (en
Inventor
윤병수
임희영
Original Assignee
경기대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기대학교 산학협력단 filed Critical 경기대학교 산학협력단
Priority to KR1020150032911A priority Critical patent/KR101552159B1/en
Publication of KR20150053258A publication Critical patent/KR20150053258A/en
Application granted granted Critical
Publication of KR101552159B1 publication Critical patent/KR101552159B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/143Concentration of primer or probe

Abstract

꿀벌의 진균성 질병으로 백묵병과 석고병의 초기 감염 확인을 위한 방법으로서, 기존의 RT-PCR을 사용하는 것이 아니라, 더욱 더 정확성이 높은 고리-매개 등온 증폭법(Loop-mediated Isothermal Amplification; LAMP)을 사용하는 백묵병과 석고병의 탐지 방법이 개시된다. 본 발명은 서열번호 1 내지 4의 프라이머 세트를 포함하는 프라이머 조성물로 등온증폭반응을 수행하여 석고병(Stone brood disease) 또는 백묵병(Chalk brod disease)을 검출하는 방법을 제공한다.As a method for confirming the initial infection of chalk disease and plaster disease with fungal diseases of bees, it is necessary to use a more accurate loop-mediated isothermal amplification (LAMP) method instead of the conventional RT- A method of detecting a chalk bottle and a plaster bottle using the same. The present invention provides a method for detecting a Stone brood disease or Chalk brod disease by performing an isothermal amplification reaction with a primer composition comprising the primer set of SEQ ID NOS:

Description

고리-매개 등온 증폭법을 이용한 진균성 질병 검출 방법{METHOD FOR THE DETECTION OF FUNGAL DISEASE BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION}Method for detecting fungal diseases using ring-mediated isothermal amplification method {METHOD FOR THE DETECTION OF FUNGAL DISEASE BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION}

본 발명은 진균성 질병 검출 방법에 관한 것으로, 보다 상세하게는 고리-매개 등온 증폭법을 이용한 석고병 또는 백묵병 검출 방법에 관한 것이다.The present invention relates to a method for detecting fungal diseases, and more particularly, to a method for detecting plaster or chalk disease using a ring-mediated isothermal amplification method.

꿀벌의 수분매개 활동에 의해 세계 식량의 25%가 생산되며, 양봉산업을 통해 각종 기능성 식품은 물론 각종 질병 치료제도 제공되고 있다. 또한, 꿀벌은 화분매개 곤충으로 전 세계 주요 100대 농작물의 71%를 수정하여 농업생산에 큰 영향을 줄 뿐만 아니라 각종 유용 산물을 생산하여 그 경제적 가치는 매우 높다. 그러나, 해충, 응애, 원생동물, 곰팡이, 박테리아, 바이러스 등에 의하여 유발된 질병으로 봉군 감소 및 폐사로 농업생산에 심각한 위기를 초래하고 있다.25% of the world's food is produced by the pollinating activities of bees, and various functional foods as well as various treatments for diseases are provided through the beekeeping industry. In addition, bees are pollen-borne insects that fertilize 71% of the world's top 100 crops, which not only greatly affects agricultural production, but also produces various useful products, so their economic value is very high. However, due to diseases caused by pests, mites, protozoa, fungi, bacteria, viruses, etc., it is causing a serious crisis in agricultural production due to the reduction and death of rebels.

그 중 꿀벌의 진균성 질병으로는 백묵병(Chalk brood disease)와 석고병(Stone brood disease)이 가장 잘 알려져 있으며, 국내에서는 이 두 질병의 이름이 혼동되어 사용되고 있다. 하지만, 백묵병은 아스코스파에라 아피스(Ascosphaera apis)가 원인균인 것에 비해서 석고병은 아스퍼질러스(Aspergillus) 속 균에 의해 발병이 되며 아스퍼질러스 플라버스(Aspergillus flavus)에 의해 가장 빈번하게 발병된다. 석고병의 원인 균은 독일의 Maassen에 의해 최초로 보고되었으며, 발병은 병원성의 포자가 애벌레의 소화기 안에 들어가 발아하며, 이 균사가 각 조직에 침투해 들어가 자라남에 따라 애벌레가 치사되어 사체는 딱딱한 석고 모양의 형상으로 발견된다. 그렇기에 백묵병과 비교하여 증상이 비슷하기 때문에 일반 농가에서는 혼용되어 보고되기도 한다.Among them, chalk brood disease and stone brood disease are the best known fungal diseases of bees, and the names of these two diseases are confusingly used in Korea. However, chalk disease ascorbyl spa Era Apis (Ascosphaera apis) gypsum bottle compared to the causative organism is a caused by the spp Aspergillus (Aspergillus) and is endemic most frequently by Aspergillus Plastic bus (Aspergillus flavus) . The causative agent of gypsum disease was first reported by Maassen, Germany, and pathogenic spores enter and germinate in the digestive tract of the larva. It is found in the shape of. Therefore, the symptoms are similar compared to those of chalk disease, so it is reported to be mixed in general farmhouses.

백묵병과 석고병은 강원도 지방의 양봉농가에서 가장 심각하게 인식된 질병으로 조사된 바 있으며, 적지 않은 피해를 주는 것으로 알려져 있다. 또한, 많은 경우 노제마, 바이러스, 부저병과 함께 혼합 감염을 야기시킬 위험성이 매우 높으며, 이런 혼합 감염은 보다 심각한 결과를 초래하게 된다. 그러므로, 꿀벌 진균성 질병의 빠른 조기진단, 예방법 및 치료법의 개발이 요구되고 있다.Chalk disease and plaster disease have been investigated as the most seriously recognized diseases in beekeepers in Gangwon-do, and are known to cause considerable damage. In addition, in many cases, there is a very high risk of causing mixed infection with nozema, virus, and buzzer disease, and such mixed infection has more serious consequences. Therefore, there is a need for rapid early diagnosis of honeybee fungal diseases, development of preventive methods and treatments.

[선행기술문헌][Prior technical literature]

- 공개특허 제2010-0083398호(2010.07.22)-Publication Patent No. 2010-0083398 (2010.07.22)

이에 본 발명은 꿀벌의 진균성 질병으로 백묵병과 석고병의 초기 감염 확인을 위한 방법으로서, 기존의 RT-PCR을 사용하는 것이 아니라, 더욱 더 정확성이 높은 고리-매개 등온 증폭법(Loop-mediated Isothermal Amplification; LAMP)을 사용하는 백묵병과 석고병의 탐지 방법을 제공하고자 한다.Accordingly, the present invention is a method for confirming the initial infection of chalk disease and gypsum disease as a fungal disease of bees, not using the existing RT-PCR, but a loop-mediated isothermal amplification method with higher accuracy. Amplification (LAMP) is used to provide a detection method for chalk and plaster.

상기 과제를 해결하기 위하여 본 발명은, 서열번호 1 내지 4의 프라이머 세트를 포함하는 프라이머 조성물로 등온증폭반응을 수행하여 석고병(Stone brood disease) 또는 백묵병(Chalk brood disease)을 검출하는 방법을 제공한다.In order to solve the above problems, the present invention provides a method for detecting stone brood disease or chalk brood disease by performing an isothermal amplification reaction with a primer composition comprising a primer set of SEQ ID NOs: 1 to 4 to provide.

또한, 상기 등온증폭반응은 46~54℃에서 수행되는 것을 특징으로 하는 방법을 제공한다.In addition, it provides a method characterized in that the isothermal amplification reaction is carried out at 46 ~ 54 ℃.

또한, 상기 등온증폭반응은 내부 프라이머 농도 20~60pmole 및 외부 프라이머 농도 5~15pmole에서 수행되는 것을 특징으로 하는 방법을 제공한다.In addition, the isothermal amplification reaction provides a method characterized in that it is carried out at an internal primer concentration of 20 ~ 60 pmole and an external primer concentration of 5 ~ 15 pmole.

또한, 상기 등온증폭반응은 dNTP 농도 1.25~5mM에서 수행되는 것을 특징으로 하는 방법을 제공한다.In addition, the isothermal amplification reaction provides a method characterized in that it is carried out at a dNTP concentration of 1.25 ~ 5mM.

이러한 본 발명에 따르면, 기존 RT-PCR 반응을 수행하여 꿀벌의 진균성 질병을 검출하는 방법보다 신속하고 감도가 좋은 고리-매개 등온 증폭법을 이용하여, 등온이라는 장점으로 현장에 적용 가능할 뿐만 아니라, 꿀벌의 바이러스 감염여부도 쉽게 모니터링하여 판단할 수 있는 효과가 있다.According to the present invention, using a ring-mediated isothermal amplification method that is faster and more sensitive than a method of detecting fungal diseases of bees by performing an existing RT-PCR reaction, it can be applied to the field with the advantage of isothermal, There is an effect that can be easily monitored and judged whether or not a bee is infected with a virus.

도 1 및 도 2는 각각 실시예 2에 따라 수행된 A. flavus-LAMP 및 A. apis-LAMP 결과를 나타낸 전기영동 사진,
도 3 및 도 4는 각각 실시예 3에 따라 프라이머 농도 및 dNTP 농도 변화에 따른 A. apis & A. flavus-LAMP 결과를 나타낸 전기영동 사진.
1 and 2 are electrophoresis photographs showing the results of A. flavus -LAMP and A. apis -LAMP performed according to Example 2, respectively,
3 and 4 are electrophoretic photographs showing A. apis & A. flavus -LAMP results according to changes in primer concentration and dNTP concentration according to Example 3, respectively.

이하, 실시예를 통하여 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
Hereinafter, the present invention will be described in detail through examples. Prior to this, terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention. Therefore, the configuration of the embodiments described in the present specification is only the most preferred embodiment of the present invention, and does not represent all the technical spirit of the present invention, and various equivalents and modifications that can replace them at the time of the present application It should be understood that there may be.

본 발명자들은 서열번호 1 내지 4의 프라이머 세트를 포함하는 프라이머 조성물로 등온증폭반응을 수행할 경우 신속, 정확하게 석고병과 백묵병을 탐지할 수 있음을 발견하고 본 발명에 이르게 되었다.The present inventors have found that when performing isothermal amplification reaction with a primer composition comprising a primer set of SEQ ID NOs: 1 to 4, it has been found that gypsum disease and chalk disease can be detected quickly and accurately.

따라서, 본 발명은 서열번호 1 내지 4의 프라이머 세트를 포함하는 프라이머 조성물로 등온증폭반응을 수행하여 석고병(Stone brood disease) 또는 백묵병(Chalk brood disease)을 검출하는 방법을 개시한다. 이하, 실시예를 들어 본 발명을 상세히 설명한다.
Accordingly, the present invention discloses a method of detecting stone brood disease or chalk brood disease by performing an isothermal amplification reaction with a primer composition comprising a primer set of SEQ ID NOs: 1 to 4. Hereinafter, the present invention will be described in detail by way of examples.

실시예Example 1: One: 프라이머primer 설계 및 제작 Design and fabrication

아스코스파에라 아피스(이하, 'A. apis'라 칭함.) 및 아스퍼질러스 플라버스(이하, 'A. flavus'라 칭함.)-고리-매개 등온 증폭법(이하, 'LAMP'라 칭함.)에 사용할 서열번호 1 내지 4의 프라이머 세트(primer set)를 하기 표 1(순서대로 서열번호 1 내지 4)에 나타내었다.Ascospaera apis (hereinafter referred to as'A. apis ') and Aspergillus flaverse (hereinafter referred to as'A. flavus' )-ring-mediated isothermal amplification method (hereinafter referred to as'LAMP'. ) The primer sets of SEQ ID NOs: 1 to 4 to be used are shown in Table 1 below (in sequence, SEQ ID NOs: 1 to 4).

Figure 112015023151956-pat00001
Figure 112015023151956-pat00001

표 1을 참조하면, 정방향 내부 프라이머(Forward inner primer)인 A. apis & A. flavus-FIP는 A. flavus 안티센스 서열(antisense sequence)과 A. apis 안티센스 서열의 상보적인 염기서열(F2)과 TTTT 연결자(linker) 및 고리(loop)를 형성하는 염기서열(F1c) 부분을 결합한 것으로, 45개 뉴클레오티드(45nt)의 긴 뉴클레오티드(long-nucleotide)로 제작하였다. 역방향 내부 프라이머(Reverse inner primer)인 A. apis & A. flavus-BIP는 A. flavus 센스 서열(sense sequence)과 A. apis 안티센스 서열(antisense sequence)의 상보적인 염기서열(B2)과 TTTT 연결자(linker) 및 고리(loop)를 형성하는 염기서열(B1c) 부분을 결합한 것으로, 각각 48개 뉴클레오티드(48nt)의 긴 뉴클레오티드(long-nucleotide)로 제작하였다. 또한, 외부 프라이머(outer primer)인 A. apis & A. flavus-F3와 A. apis & A. flavus-B3는 내부 프라이머(inner primer)들의 바깥쪽에 위치하도록 설계하였으며, 각각 22개 뉴클레오티드(22nt) 및 20개 뉴클레오티드(20nt)의 크기로 제작하였다. 이 프라이머 세트는 Bionics사(한국)에 의뢰하여 제작하였으며 내부 프라이머들의 경우에는 PAGE 정제 후 사용하였다.
Referring to Table 1, forward inner primers, A. apis & A. flavus -FIP, are complementary base sequences (F2) and TTTT of A. flavus antisense sequence and A. apis antisense sequence. A linker and a nucleotide sequence (F1c) that forms a loop were combined, and were prepared as a long-nucleotide of 45 nucleotides (45 nt). The reverse inner primer, A. apis & A. flavus -BIP, is the complementary base sequence (B2) of the A. flavus sense sequence and the A. apis antisense sequence, and the TTTT linker ( linker) and a nucleotide sequence (B1c) that forms a loop were combined, and each was prepared as a long-nucleotide of 48 nucleotides (48 nt). In addition, the external primers (outer primer) A. apis & A. flavus and A. -F3 apis & A. flavus -B3 was designed so as to be positioned on the outside of the inner primer (inner primer), 22 gae each nucleotide (22nt) And 20 nucleotides (20 nt). This primer set was produced by requesting Bionics (Korea), and the internal primers were used after PAGE purification.

실시예Example 2: 2: LAMPLAMP 최적 반응 온도 확인 Checking the optimum reaction temperature

먼저, A. flavus 검출을 위한 프라이머 세트의 활성 최적 온도를 측정하였다. 반응액은 주형인 A. flavus 플라스미드(plasmid) 1ng, A. flavus-FIP/BIP는 각각 40pmole, A. flavus-F3/B3는 각각 10pmole, 5mM dNTP, 10×완충액(Reaction buffer), 8U Bst DNA 중합효소(polymerase)(NEB, 미국), DMSO(최종농도 5%)를 첨가하여 총 20㎕로 조성하였다. Bst DNA 중합효소는 80℃ 이상이 되면 불활성화되는 특징을 가지고 있어, 94℃에서 5분간 DNA를 해리시킨 뒤 즉시 4℃로 온도를 낮추고 1분 정치 후에 첨가하였으며, 이후 60분간 DNA 신장을 진행하였고 80℃에서 10분간 정치해 Bst DNA 중합효소를 불활성화시킨 후 종료하였다. DNA 신장의 최적온도 측정은 45~65℃ 구간에서 1시간 동안 등온조건하에서 진행하였으며, 각 LAMP 반응이 끝난 후 전기영동으로 확인하여 A. flavus-LAMP에 대한 최적온도를 확인하였다.First, the optimal activity temperature of the primer set for A. flavus detection was measured. The reaction solution was A. flavus plasmid 1ng, A. flavus -FIP/BIP was 40pmole each, A. flavus -F3/B3 was 10pmole, 5mM dNTP, 10×Reaction buffer, 8U Bst DNA Polymerase (NEB, USA) and DMSO (final concentration 5%) were added to form a total of 20 µl. Bst DNA polymerase is characterized by being inactivated when it reaches 80°C or higher. After dissociating DNA at 94°C for 5 minutes, the temperature was immediately lowered to 4°C and allowed to stand for 1 minute, followed by DNA extension for 60 minutes. It was allowed to stand at 80° C. for 10 minutes to inactivate Bst DNA polymerase and then terminated. The optimum temperature for DNA elongation was measured at 45~65℃ for 1 hour under isothermal conditions, and after the completion of each LAMP reaction, the optimum temperature for A. flavus -LAMP was confirmed by electrophoresis.

다음으로, A. apis 검출을 위한 프라이머 세트의 활성 최적 온도를 측정하였다. 반응액은 주형인 A. apis 플라스미드 1ng, A. apis & A. flavus-FIP/BIP는 각각 40pmole, A. apis & A. flavus-F3/B3는 각각 10pmole, 2.5mM dNTP, 10×완충액, 8U Bst DNA 중합효소(NEB, 미국), DMSO(최종농도 5%)를 첨가하여 총 20㎕로 조성하였다. Bst DNA 중합효소는 80℃ 이상이 되면 불활성화되는 특징을 가지고 있어, 94℃에서 5분간 DNA를 해리시킨 뒤 즉시 4℃로 온도를 낮추고 1분 정치 후에 첨가하였으며, 이후 60분간 DNA 신장을 진행하였고 80℃에서 10분간 정치해 Bst DNA 중합효소를 불활성화시킨 후 종료하였다. DNA 신장의 최적온도 측정은 45~65℃ 구간에서 1시간 동안 등온조건하에서 진행하였으며, 각 LAMP 반응이 끝난 후 전기영동으로 확인하여 A. apis & A. flavus-LAMP에 대한 최적온도를 확인하였다.Next, the optimal activity temperature of the primer set for detecting A. apis was measured. The reaction solution was the template A. apis plasmid 1 ng, A. apis & A. flavus -FIP/BIP is 40 pmoles, A. apis & A. flavus -F3/B3 is 10 pmoles, 2.5 mM dNTP, 10× buffer solution, 8 U Bst DNA polymerase (NEB, USA) and DMSO (final concentration 5%) were added to form a total of 20 µl. Bst DNA polymerase is characterized by being inactivated when it reaches 80°C or higher. After dissociating DNA at 94°C for 5 minutes, the temperature was immediately lowered to 4°C and allowed to stand for 1 minute, followed by DNA extension for 60 minutes. It was allowed to stand at 80° C. for 10 minutes to inactivate Bst DNA polymerase and then terminated. The optimum temperature for DNA extension was measured at 45~65℃ for 1 hour under isothermal conditions, and after each LAMP reaction was completed, it was confirmed by electrophoresis to confirm the optimum temperature for A. apis & A. flavus -LAMP.

도 1 및 도 2는 각각 실시예 2에 따라 수행된 A. flavus-LAMP 및 A. apis-LAMP 결과를 나타낸 전기영동 사진이다. 도 1 및 도 2에서 레인 1 내지 8은 각각 45℃, 46.7℃, 48.2℃, 53.4℃, 56.7℃, 61.8℃, 63.4℃, 65℃에서 진행한 LAMP-PCR 결과이고, 레인 N은 LAMP-PCR의 음성 대조군(negative control) 결과를 나타내고 있다.1 and 2 are electrophoresis photographs showing the results of A. flavus -LAMP and A. apis -LAMP performed according to Example 2, respectively. In FIGS. 1 and 2, lanes 1 to 8 are LAMP-PCR results performed at 45°C, 46.7°C, 48.2°C, 53.4°C, 56.7°C, 61.8°C, 63.4°C, and 65°C, respectively, and lane N is LAMP-PCR. The results of the negative control are shown.

먼저, 도 1을 참조하면, 실험 결과 46~54℃에서 양호한 증폭을 보인 것을 알 수 있고, 47℃부터 강하게 증폭이 되는 것을 확인할 수 있었으며, 그 중에서도 약 48℃부터 LAMP에 의한 증폭량이 가장 크게 나온 것으로 확인되었다. 따라서, A. flavus는 상기 사용된 프라이머에서는 48℃가 최적의 온도인 것으로 확인되었다.First, referring to FIG. 1, it can be seen that the experimental results showed good amplification at 46-54°C, and it was confirmed that amplification was strong from 47°C. Among them, the amplification amount by LAMP from about 48°C was the largest. Was confirmed. Therefore, it was confirmed that A. flavus was the optimum temperature at 48° C. in the primers used above.

다음으로, 도 2를 참조하면, 실험 결과 백묵병 또한, 46~54℃에서 양호한 증폭을 보인 것을 알 수 있고, 47℃부터 강하게 증폭이 되는 것을 확인할 수 있었으며, 그 중에서도 약 48℃부터 증폭량이 가장 크게 나온 것으로 확인되었다. 따라서, 결과적으로 진균성 질병(백묵병, 석고병)용 LAMP 키트(Kit)의 최적온도를 48℃로 확정할 수 있었다.
Next, referring to FIG. 2, the experimental results showed that the chalk disease also showed good amplification at 46-54°C, and it was confirmed that the amplification was strongly amplified from 47°C. Among them, the amplification amount was the highest from about 48°C. It was confirmed that it came out large. Therefore, as a result, the optimum temperature of the LAMP kit for fungal diseases (chalk disease, gypsum bottle) could be determined at 48°C.

실시예Example 3: 3: LAMPLAMP 최적 반응액 조성 확인 Confirmation of optimal reaction solution composition

먼저, A. flavus-LAMP의 최적 반응 조건을 확립하기 위하여 프라이머 세트와 dNTP의 농도를 달리하여 반응액 조성에 따른 최적 조건을 확인하였다. 프라이머의 농도는 Notomi 등(2000)이 제시한 외부 프라이머와 내부 프라이머의 농도가 1:4일때 가장 높은 효율을 보였다는 결과를 바탕으로 이 비율을 유지하되 프라이머의 절대농도만을 변화시켜 그 결과를 측정하였다. 즉, 내부 프라이머의 각 농도가 20pmole, 40pmole, 60pmole, 80pmole, 100pmole일 때 외부 프라이머의 각 농도는 5pmole, 10pmole, 15pmole, 20pmole, 25pmole로 하여 LAMP를 수행하였다. dNTP의 경우 각각 1.25mM, 2.5mM, 5mM, 7.5mM, 10.0mM이 되도록 조성하여 측정함으로써 최적 반응 조건을 확인하였다.First, in order to establish an optimal reaction condition for A. flavus- LAMP, the concentration of the primer set and dNTP was different to confirm the optimum condition according to the composition of the reaction solution. Based on the result that the concentration of the outer primer and the inner primer suggested by Notomi et al. (2000) was 1:4, the highest efficiency was maintained, but the result was measured by changing only the absolute concentration of the primer. I did. That is, when each concentration of the inner primer was 20pmole, 40pmole, 60pmole, 80pmole, 100pmole, each concentration of the outer primer was 5pmole, 10pmole, 15pmole, 20pmole, 25pmole, and LAMP was performed. In the case of dNTP, the optimum reaction conditions were confirmed by measuring the composition to be 1.25mM, 2.5mM, 5mM, 7.5mM, and 10.0mM, respectively.

다음으로, A. apis & A. flavus-LAMP의 최적 반응 조건을 확립하기 위하여 프라이머 세트와 dNTP의 농도를 달리하여 반응액 조성에 따른 최적 조건을 확인하였다. 프라이머의 농도는 Notomi 등(2000)이 제시한 외부 프라이머와 내부 프라이머의 농도가 1:4일 때 가장 높은 효율을 보였다는 결과를 바탕으로 이 비율을 유지하되 프라이머의 절대농도만을 변화시켜 그 결과를 측정하였다. 즉, 내부 프라이머의 각 농도가 20pmole, 40pmole, 60pmole, 80pmole, 100pmole일 때 외부 프라이머의 각 농도는 5pmole, 10pmole, 15pmole, 20pmole, 25pmole로 하여 LAMP를 수행하였다. dNTP의 경우 각각 1.25mM, 2.5mM, 5mM, 7.5mM, 10.0mM이 되도록 조성하여 측정함으로써 최적 반응 조건을 확인하였다.Next, in order to establish the optimal reaction conditions for A. apis & A. flavus -LAMP, the concentrations of the primer set and dNTP were changed to confirm the optimum conditions according to the composition of the reaction solution. Based on the result that the concentration of the outer primer and the inner primer suggested by Notomi et al. (2000) was 1:4, the highest efficiency was maintained, but only the absolute concentration of the primer was changed to determine the result. It was measured. That is, when each concentration of the inner primer was 20pmole, 40pmole, 60pmole, 80pmole, 100pmole, each concentration of the outer primer was 5pmole, 10pmole, 15pmole, 20pmole, 25pmole, and LAMP was performed. In the case of dNTP, the optimum reaction conditions were confirmed by measuring the composition to be 1.25mM, 2.5mM, 5mM, 7.5mM, and 10.0mM, respectively.

도 3 및 도 4는 각각 실시예 3에 따라 프라이머 농도 및 dNTP 농도 변화에 따른 A. apis & A. flavus-LAMP 결과를 나타낸 전기영동 사진이다. 도 3에서 레인 M은 1kbp 래더 마커(ladder marker), 레인 1 내지 5는 A. apis-LAMP 결과이고 각각 내부 프라이머 농도/외부 프라이머 농도가 20pmole/5pmole, 40pmole/10pmole, 60pmole/15pmole, 80pmole/20pmole, 100pmole/25pmole일 때, 레인 6 내지 10은 A. flavus-LAMP 결과이고 각각 내부 프라이머 농도/외부 프라이머 농도가 20pmole/5pmole, 40pmole/10pmole, 60pmole/15pmole, 80pmole/20pmole, 100pmole/25pmole일 때, 레인 N은 음성 대조군(negative control) 결과를 나타내고 있다. 또한, 도 4에서 레인 M은 1kbp 래더 마커(ladder marker), 레인 1 내지 5는 A. apis-LAMP 결과이고 각각 dNTP 농도가 1.25mM, 2.5mM, 5mM, 7.5mM, 10.0mM일 때, 레인 6 내지 10은 A. flavus-LAMP 결과이고 1.25mM, 2.5mM, 5mM, 7.5mM, 10.0mM일 때, 레인 N은 음성 대조군(negative control) 결과를 나타내고 있다. 3 and 4 are electrophoresis photographs showing A. apis & A. flavus -LAMP results according to changes in primer concentration and dNTP concentration according to Example 3, respectively. In Figure 3, lane M is a 1 kbp ladder marker, lanes 1 to 5 are A. apis -LAMP results, respectively, the inner primer concentration / outer primer concentration 20pmole/5pmole, 40pmole/10pmole, 60pmole/15pmole, 80pmole/20pmole , When 100pmole/25pmole, lanes 6 to 10 are A. flavus- LAMP results, and when the inner primer concentration/outer primer concentration is 20pmole/5pmole, 40pmole/10pmole, 60pmole/15pmole, 80pmole/20pmole, 100pmole/25pmole, respectively, Lane N shows the results of the negative control. In addition, lane M in FIG. 4 is a 1 kbp ladder marker, lanes 1 to 5 are A. apis- LAMP results, respectively, when dNTP concentrations are 1.25mM, 2.5mM, 5mM, 7.5mM, 10.0mM, lane 6 To 10 are A. flavus -LAMP results, when 1.25mM, 2.5mM, 5mM, 7.5mM, and 10.0mM, lane N represents a negative control result.

도 3을 참조하면, 먼저, 각각의 내부 프라이머 농도 60~100pmole 및 외부 프라이머 농도 5~15pmole에서 양호한 증폭을 보인 것을 알 수 있고, 내부 프라이머가 40pmole이고 외부 프라이머가 10pmole일 때 부터 석고병 및 백묵병 유전자의 증폭을 가장 잘 확인할 수 있었다. 물론 레인 3~5 또한 증폭이 양호하였으나, 레인 2와의 증폭량에서 큰 차이를 보이지 않고 있기에 레인 2에 사용한 조성의 프라이머를 최적 프라이머 농도로 확인하였다.Referring to FIG. 3, first, it can be seen that good amplification was exhibited at each of the inner primer concentrations of 60 to 100 pmoles and the outer primer concentrations of 5 to 15 pmoles, and from when the inner primers were 40 pmoles and the outer primers were 10 pmoles, plaster and chalk bottles The amplification of the gene was best confirmed. Of course, lanes 3 to 5 also had good amplification, but since there was no significant difference in the amplification amount from lane 2, the primers of the composition used in lane 2 were confirmed as the optimal primer concentration.

다음으로, dNTP 농도 1.25~5mM에서 양호한 증폭을 보인 것을 알 수 있고, 1.25mM의 dNTP와 2.5mM의 dNTP에서 반응이 가장 잘 일어난 것을 확인할 수 있었다. dNTP 농도가 5mM을 초과하면 양쪽 모두 증폭이 일어나지 않았고, 가장 반응이 잘 일어난 농도는 2.5mM로 확인되었다.
Next, it can be seen that a good amplification was exhibited at a dNTP concentration of 1.25-5mM, and it was confirmed that the reaction occurred best in dNTP of 1.25mM and dNTP of 2.5mM. When the dNTP concentration exceeded 5 mM, amplification did not occur in both cases, and the concentration at which the reaction occurred most was 2.5 mM.

실시예Example 4: 최종 확립 조건 4: final establishment conditions

실시예 3에서 확인된 최적 반응액 조성을 기초로 하기 표 2에 제시된 조성으로 실험을 진행하였다. Bst DNA 중합효소는 80℃ 이상이 되면 불활성화되는 특징을 가지고 있어, 99℃에서 10분간 DNA를 해리시킨 뒤 즉시 4℃로 온도를 낮추고 1분 정치 후에 첨가하였으며, 이후 60분간 DNA 신장을 진행하였고, 80℃에서 10분간 정치해 Bst DNA 중합효소를 불활성화시킨 후 종료하였다. DNA 신장의 최적온도로 확인된 48℃ 구간에서 1시간 동안 등온조건하에서 진행하였으며, 각 LAMP 반응이 끝난 후 전기영동으로 확인한 결과 DNA가 성공적으로 증폭됨을 확인하였다.Based on the optimum reaction solution composition identified in Example 3, the experiment was conducted with the composition shown in Table 2 below. Bst DNA polymerase is characterized by being inactivated when it reaches 80℃ or higher. After dissociating DNA at 99℃ for 10 minutes, it was immediately lowered to 4℃ and added after standing for 1 minute, followed by DNA extension for 60 minutes. Then, the mixture was allowed to stand at 80° C. for 10 minutes to inactivate the Bst DNA polymerase and then terminated. It was carried out under isothermal conditions for 1 hour in the 48°C section, which was confirmed as the optimum temperature for DNA extension, and as a result of electrophoresis after each LAMP reaction, it was confirmed that DNA was amplified successfully.

Figure 112015023151956-pat00002
Figure 112015023151956-pat00002

이상에서 설명한 본 발명의 바람직한 실시예들은 기술적 과제를 해결하기 위해 개시된 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 사상 및 범위 안에서 다양한 수정, 변경, 부가 등이 가능할 것이며, 이러한 수정 변경 등은 이하의 특허청구범위에 속하는 것으로 보아야 할 것이다.
The preferred embodiments of the present invention described above are disclosed to solve the technical problem, and those of ordinary skill in the art to which the present invention pertains will be able to make various modifications, changes, additions, etc. within the spirit and scope of the present invention. , Such modifications and changes should be seen as falling within the scope of the following claims.

<110> Kyonggi University Industry & Academia Cooperation Foundation <120> METHOD FOR THE DETECTION OF FUNGAL DISEASE BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION <130> NP15-02013 <140> 10-2015-0032911 <141> 2015-03-10 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Outer Primer <400> 1 atcgggcggt gtttctatga tg 22 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Outer Primer <400> 2 ttaagcagac aaatcactcc 20 <210> 3 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Forward Inner Primer <400> 3 ggtgcccttc cgtcaatttc ttttcaaagt ttttgggttc tgggg 45 <210> 4 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Reverse Inner Primer <400> 4 ctcaacacgg ggaaactcac ttttccaaaa gatcaagaaa gagctctc 48 <110> Kyonggi University Industry & Academia Cooperation Foundation <120> METHOD FOR THE DETECTION OF FUNGAL DISEASE BY LOOP-MEDIATED ISOTHERMAL AMPLIFICATION <130> NP15-02013 <140> 10-2015-0032911 <141> 2015-03-10 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Outer Primer <400> 1 atcgggcggt gtttctatga tg 22 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Outer Primer <400> 2 ttaagcagac aaatcactcc 20 <210> 3 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Forward Inner Primer <400> 3 ggtgcccttc cgtcaatttc ttttcaaagt ttttgggttc tgggg 45 <210> 4 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Reverse Inner Primer <400> 4 ctcaacacgg ggaaactcac ttttccaaaa gatcaagaaa gagctctc 48

Claims (4)

서열번호 1 내지 4의 프라이머 세트를 포함하는 프라이머 조성물로 등온증폭반응을 수행하여 석고병(Stone brood disease) 또는 백묵병(Chalk brood disease)을 검출하는 방법.A method for detecting a Stone brood disease or Chalk brood disease by performing an isothermal amplification reaction with a primer composition comprising the primer set of SEQ ID NOS: 1 to 4. 제1항에 있어서,
상기 등온증폭반응은 46~54℃에서 수행되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the isothermal amplification reaction is performed at 46 to 54 占 폚.
제1항에 있어서,
상기 등온증폭반응은 내부 프라이머 농도 20~60pmole 및 외부 프라이머 농도 5~15pmole에서 수행되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the isothermal amplification reaction is performed at an internal primer concentration of 20 to 60 pmoles and an external primer concentration of 5 to 15 pmoles.
제1항에 있어서,
상기 등온증폭반응은 dNTP 농도 1.25~5mM에서 수행되는 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the isothermal amplification reaction is performed at a dNTP concentration of 1.25 to 5 mM.
KR1020150032911A 2015-03-10 2015-03-10 Method for the detection of fungal disease by loop-mediated isothermal amplification KR101552159B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150032911A KR101552159B1 (en) 2015-03-10 2015-03-10 Method for the detection of fungal disease by loop-mediated isothermal amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150032911A KR101552159B1 (en) 2015-03-10 2015-03-10 Method for the detection of fungal disease by loop-mediated isothermal amplification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130134609A Division KR20150052995A (en) 2013-11-07 2013-11-07 Method for the detection of fungal disease by loop-mediated isothermal amplification

Publications (2)

Publication Number Publication Date
KR20150053258A KR20150053258A (en) 2015-05-15
KR101552159B1 true KR101552159B1 (en) 2015-09-10

Family

ID=53389872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150032911A KR101552159B1 (en) 2015-03-10 2015-03-10 Method for the detection of fungal disease by loop-mediated isothermal amplification

Country Status (1)

Country Link
KR (1) KR101552159B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519017B2 (en) 2017-12-26 2022-12-06 Bioacts Corporation Kit for diagnosing infection with Methicillin-resistant Staphylococcus aureus (MRSA) by detecting magnesium ions

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102146359B1 (en) * 2017-09-08 2020-08-21 대한민국 A primer for the diagnosis of parasitic and bacterial diseases of bees, a method and kit for diagnosing parasitic and bacterial diseases of bees using the same
EP4053293A1 (en) * 2021-03-03 2022-09-07 midge medical GmbH Protected isothermal nucleic acid amplification (pina) methods for point-of-need diagnosis of emerging infectious diseases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011163425A1 (en) 2010-06-22 2011-12-29 University Of Hawaii Sequence specific real-time monitoring of loop-mediated isothermal amplification (lamp)
KR101308515B1 (en) 2012-03-23 2013-09-17 경북대학교 산학협력단 Primer set and method for detecting trichomonas vaginalis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011163425A1 (en) 2010-06-22 2011-12-29 University Of Hawaii Sequence specific real-time monitoring of loop-mediated isothermal amplification (lamp)
KR101308515B1 (en) 2012-03-23 2013-09-17 경북대학교 산학협력단 Primer set and method for detecting trichomonas vaginalis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11519017B2 (en) 2017-12-26 2022-12-06 Bioacts Corporation Kit for diagnosing infection with Methicillin-resistant Staphylococcus aureus (MRSA) by detecting magnesium ions

Also Published As

Publication number Publication date
KR20150053258A (en) 2015-05-15

Similar Documents

Publication Publication Date Title
Azmat et al. Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L.
KR101552159B1 (en) Method for the detection of fungal disease by loop-mediated isothermal amplification
PE20171797A1 (en) COMPOSITIONS OF CORN RICH IN LYSINE AND METHODS OF DETECTION OF THE SAME
Shao et al. An N-targeting real-time PCR strategy for the accurate detection of spring viremia of carp virus
CN105331743A (en) Kit for rapidly detecting various viruses in muskmelon by one step and rapid detection method adopting kit
CN102559928A (en) Specific primer group, kit comprising the primer group, use method and detection method
Al Rwahnih et al. Association of a circular DNA virus in grapevines affected by red blotch disease in California
Mahadev et al. PCR detection of banana bunchy top virus (BBTV) at tissue culture level for the production of virus-free planting materials
Shafei et al. Molecular epidemiology of Crimean-Congo hemorrhagic fever virus in ticks in northwest of Iran
CN109706252B (en) One-step dual-specificity SS-COI primer combination of Frankliniella occidentalis strain and application thereof
Ramesh et al. Molecular detection of Begomovirus (family: Geminiviridae) infecting Glycine max (L.) Merr. and associated weed Vigna trilobata
Noikong et al. Epidemiology and molecular genotyping of echinostome metacercariae in Filopaludina snails in Lamphun Province, Thailand
CN105969911A (en) RT-LAMP (reverse transcription-loop-mediated isothermal amplification) detection reagent kit and detection method for cucumber mosaic viruses
CN103773860B (en) Harmonia axyridis specific COI primer of harmonia axyridis, kit containing primer and detection method for harmonia axyridis
KR20150052995A (en) Method for the detection of fungal disease by loop-mediated isothermal amplification
Lee et al. A simple and sensitive gene-based diagnosis of aspergillus flavus by loop-mediated isothermal amplification in honeybee
CN110734985B (en) Method for identifying cotton aphidiidae and stipes equinus punctatus
CN102108415B (en) Method and kit for detecting reverse transcription-loop mediated isothermal amplification (RT-LAMP) of pike fry rhabdovirus (RFRV)
CN103820462A (en) Rhopalosiphum padi ACT1 reference gene partial sequence, cloning method and application
CN103409414B (en) Sugarcane genome endogenous reference gene acetolactate synthase gene PCR (polymerase chain reaction) primer sequences and amplification method
CN106011307A (en) Nucleic acid rapid detection method for H7 subtype avian influenza virus
KR101937390B1 (en) Primer set for detecting Peronospora destructor Berk., Diagnostic kit, and Detecting method using the same
Alam et al. Isolation, identification and molecular characterization of contagious ecthyma virus from goat and sheep
KR20170060700A (en) Method for the rapid detection of nosema disease by loop-mediated isothermal amplification
TWI488971B (en) Primer kit and method for detecting if cucurbitaceae plant is infected by zucchini yellow mosaic virus

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180904

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190806

Year of fee payment: 5