KR101490599B1 - Method for manufacturing amorphous silicon solar cell - Google Patents

Method for manufacturing amorphous silicon solar cell Download PDF

Info

Publication number
KR101490599B1
KR101490599B1 KR20130073327A KR20130073327A KR101490599B1 KR 101490599 B1 KR101490599 B1 KR 101490599B1 KR 20130073327 A KR20130073327 A KR 20130073327A KR 20130073327 A KR20130073327 A KR 20130073327A KR 101490599 B1 KR101490599 B1 KR 101490599B1
Authority
KR
South Korea
Prior art keywords
amorphous silicon
silicon layer
type
solar cell
layer
Prior art date
Application number
KR20130073327A
Other languages
Korean (ko)
Other versions
KR20150008946A (en
Inventor
김무진
김경보
이재륭
박영준
백제훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR20130073327A priority Critical patent/KR101490599B1/en
Publication of KR20150008946A publication Critical patent/KR20150008946A/en
Application granted granted Critical
Publication of KR101490599B1 publication Critical patent/KR101490599B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 비정질 실리콘 태양전지의 제조방법에 관한 것으로, 보다 구체적으로 본 발명은 광흡수층의 균일한 결정화가 가능하고, 양질의 결정립을 구현할 수 있어, 기존의 비정질 실리콘 태양전지에 비해 향상된 광특성을 가질 수 있다.The present invention relates to a method of manufacturing an amorphous silicon solar cell, and more particularly, to a method of manufacturing an amorphous silicon solar cell, in which a light absorption layer can be uniformly crystallized and high quality crystal grains can be realized, Lt; / RTI >

Description

비정질 실리콘 태양전지의 제조방법 {METHOD FOR MANUFACTURING AMORPHOUS SILICON SOLAR CELL}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of manufacturing an amorphous silicon solar cell,

본 발명은 비정질 실리콘 태양전지의 제조방법에 관한 것이다.
The present invention relates to a method of manufacturing an amorphous silicon solar cell.

실리콘 태양전지의 가장 기본적인 구조는 p-n 접합으로 구성된 다이오드 형태이나, 비정질 실리콘 박막의 경우 캐리어의 확산거리(diffusion length)가 결정질 실리콘 기판에 비해 매우 낮아 p-n 구조로 제조될 경우 빛에 의해 생성된 전자-정공쌍(electron-hole pairs)의 수집 효율이 낮다.
The most basic structure of a silicon solar cell is a diode composed of a pn junction, but in the case of an amorphous silicon thin film, the diffusion length of the carrier is much lower than that of a crystalline silicon substrate, The collection efficiency of electron-hole pairs is low.

이러한 문제를 해결하기 위한 하나의 대안으로서, 비정질 실리콘 태양전지는 도핑이 되지 않은 무첨가(intrinsic, i형) 비정질 실리콘 광흡수층을 p형 비정질 실리콘과 n형 비정질 실리콘층 중간에 삽입한 p-i-n 구조로 제조된다. 그러나, p-i-n 구조의 태양전지의 효율이 4~5% 정도로 여전히 poly-Si 태양전지나 CIGS에 비해 낮다.
As an alternative to solve this problem, an amorphous silicon solar cell is manufactured by a pin structure in which an intrinsic (i-type) amorphous silicon light absorbing layer not doped is inserted between a p-type amorphous silicon layer and an n-type amorphous silicon layer do. However, the efficiency of the pin-type solar cell is about 4-5%, which is still lower than that of the poly-Si solar cell or CIGS.

최근에는 광흡수층을 결정화 혹은 준결정화시킴으로써 기존의 비정질 실리콘 태양전지보다 높은 효율의 태양전지를 제조하기도 한다.In recent years, by crystallizing or quasicrystallizing the light absorbing layer, a solar cell having higher efficiency than conventional amorphous silicon solar cells has been produced.

비정질 실리콘을 결정화하는 방법은 여러 가지가 알려져 있으며, 가장 대표적인 방법으로 비정질 실리콘에 YAG 레이저, 특히 Nd:YAG 레이저의 레이저광선을 주사하는 방법을 사용하고 있다. 하지만, 이러한 레이저 주사방법은 결정화가 빠르지 못하고 균일하지 못한 단점이 있고, 이는 제조공정 및 박막 태양전지의 효율을 높이는데 걸림돌이 되고 있다. 따라서 신속하고 균일하게 결정화시키는 박막 태양전지 제조방법의 개발이 필요하다.
A variety of methods for crystallizing amorphous silicon have been known. As a typical method, a method of scanning a laser beam of a YAG laser, particularly an Nd: YAG laser, is used for amorphous silicon. However, such a laser scanning method has a disadvantage that the crystallization is not fast and is not uniform, which is a hindrance to the manufacturing process and the efficiency of the thin film solar cell. Therefore, it is necessary to develop a thin film solar cell manufacturing method which crystallizes quickly and uniformly.

본 발명의 일 측면은, 광흡수층으로 사용되는 비정질 실리콘의 결정화로부터 결함 농도를 효과적으로 낮춤으로써 고효율의 태양전지를 제조하는 방법을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a method for manufacturing a solar cell with high efficiency by effectively lowering the defect concentration from crystallization of amorphous silicon used as a light absorbing layer.

본 발명의 일 측면은, According to an aspect of the present invention,

금속 기판을 준비하는 단계;Preparing a metal substrate;

상기 금속 기판 상에 투명전극층을 형성하는 단계;Forming a transparent electrode layer on the metal substrate;

상기 투명전극층 상부에 비정질 실리콘층을 형성한 후 700℃ 이상에서 1 시간 이상, 질소분위기에서 열처리하여 상기 비정질 실리콘층을 결정화하는 단계; 및Crystallizing the amorphous silicon layer by forming an amorphous silicon layer on the transparent electrode layer and then heat-treating the amorphous silicon layer at 700 ° C or more for 1 hour or more in a nitrogen atmosphere; And

상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하고,And forming a rear electrode layer on the crystallized amorphous silicon layer,

상기 열처리 후 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)이 형성되는 비정질 실리콘 태양전지의 제조방법을 제공한다.
And a metal silicide is formed between the transparent electrode layer and the amorphous silicon layer after the heat treatment.

본 발명에 의하면, 고온 열처리로부터 광흡수층의 균일한 결정화가 가능하고, 양질의 결정립을 구현하여 태양전지의 성능을 개선할 수 있다.
According to the present invention, it is possible to uniformly crystallize the light absorbing layer from a high-temperature heat treatment, and to realize high quality crystal grains and improve the performance of the solar cell.

도 1a 내지 1c는 본 발명의 일 실시예에 따른, 열처리 전·후에 따른 비정질 실리콘의 결정화를 도식화하여 나타낸 것이다.FIGS. 1A to 1C are diagrammatic representations of crystallization of amorphous silicon before and after a heat treatment, according to an embodiment of the present invention.

이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명의 일 측면인 비정질 실리콘 태양전지를 제조하는 방법은, 금속 기판을 준비하는 단계; 상기 금속 기판 상에 투명전극층을 형성하는 단계; 상기 투명전극층 상부에 비정질 실리콘층을 형성한 후 700℃ 이상에서 1시간 이상 열처리하여 상기 비정질 실리콘층을 결정화하는 단계; 및 상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하여 이루어질 수 있다.
According to an aspect of the present invention, there is provided a method of manufacturing an amorphous silicon solar cell, comprising: preparing a metal substrate; Forming a transparent electrode layer on the metal substrate; Crystallizing the amorphous silicon layer by forming an amorphous silicon layer on the transparent electrode layer and then heat-treating the amorphous silicon layer at 700 ° C or more for 1 hour or more; And forming a rear electrode layer on the crystallized amorphous silicon layer.

본 발명에서 상기 금속 기판은 비정질 실리콘 태양전지에 사용될 수 있는 기판이면 그 종류를 특별히 제한하는 것은 아니나, 바람직한 예로는 스테인리스 스틸(STS)을 적용할 수 있다.
In the present invention, the metal substrate is not particularly limited as long as it is a substrate that can be used in an amorphous silicon solar cell, but a preferred example thereof is stainless steel (STS).

상기 금속 기판 상에 투명전극층을 형성한다.A transparent electrode layer is formed on the metal substrate.

통상, 투명전극층으로서 투명전도성 산화물(TCO; transparent conducting oxide)을 스퍼터링법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성하는데, 이때 투명전도성 산화물로는 인듐-주석 산화물(ITO; indium-tin oxide), ZnO:Al, ZnO-Al2O3 등과 같은 투명한 도전물질을 주로 사용한다.
Typically, a transparent conductive oxide (TCO) is formed as a transparent electrode layer by sputtering or MOCVD (Metal Organic Chemical Vapor Deposition). At this time, indium-tin oxide (ITO) tin oxide), ZnO: a transparent conductive material such as Al, ZnO-Al 2 O 3 is mainly used.

본 발명자들은 상술한 바와 같은 투명전도성 산화물로 투명전극층을 형성한 후 그 위에 비정질 실리콘층을 형성하여 고온 열처리하는 경우, ITO는 반사도가 저하되고, Al 원자는 상부의 비정질 실리콘층으로 이동하여 갈바닉(galvanic) 현상을 유발함과 동시에 효율의 저하를 야기하는 것을 확인하였다.
When a transparent electrode layer is formed of a transparent conductive oxide as described above and then an amorphous silicon layer is formed on the transparent electrode layer, the reflectivity of ITO decreases and the Al atoms move to the upper amorphous silicon layer, galvanic phenomenon and decrease the efficiency.

이에, 고온에서도 잘 견디는 물질로 투명전극층을 형성함이 바람직할 것인바, 본 발명자들은 고내열성이 우수한 몰리브덴(Mo)을 활용하여 Mo 전극층을 형성하였으며, 이로 인해 상기의 문제점을 해결할 수 있다.Accordingly, it is preferable to form a transparent electrode layer with a material that can withstand high temperatures. The inventors of the present invention have solved the above problems by using Mo having excellent heat resistance.

본 발명에서 상기 Mo 전극층은 순수 Mo 또는 텅스텐이 합금된 MoW일 수 있으며, 이러한 Mo 전극층은 스퍼터링법을 이용하여 형성할 수 있다.
In the present invention, the Mo electrode layer may be MoW alloyed with pure Mo or tungsten, and the Mo electrode layer may be formed by sputtering.

상기 Mo 전극층 상부에 비정질 실리콘층을 플라즈마화학기상증착(PECVD; plasma-enhanced chemical vapor deposition) 방법으로 형성할 수 있다.
An amorphous silicon layer may be formed on the Mo electrode layer by a plasma-enhanced chemical vapor deposition (PECVD) method.

비정질 실리콘으로는 a-Si:H로 표현되는 수소화된 비정질 실리콘을 이용할 수 있으며, i(intrinsic)형 비정질 실리콘은 불순물이 첨가되지 않은 상태를 의미하며, p(positive)형과 n(negative)형은 비정질 실리콘에 불순물을 첨가하여 도핑된 상태를 의미한다. 이중 p형 비정질 실리콘을 형성하기 위해서는 3가 원소인 붕소, 칼륨 등을 첨가하고, n형 비정질 실리콘을 형성하기 위해서는 5가 원소인 인, 바소, 안티몬 등을 첨가할 수 있다.
As the amorphous silicon, hydrogenated amorphous silicon represented by a-Si: H can be used. Intrinsic amorphous silicon means a state in which no impurity is added, and p (positive) and n (negative) Refers to a doped state in which an impurity is added to amorphous silicon. In order to form the p-type amorphous silicon, boron, potassium or the like as a trivalent element may be added. In order to form an n-type amorphous silicon, phosphorus, vanadium, antimony and the like which are pentavalent elements may be added.

본 발명에서 상기 Mo 전극층 상부에 형성되는 비정질 실리콘층은 n형, n-i형 및 p-i형 중에서 선택된 1종의 비정질 실리콘층인 것이 바람직하다.
In the present invention, the amorphous silicon layer formed on the Mo electrode layer is preferably an amorphous silicon layer selected from n-type, ni-type and pi-type.

상기한 비정질 실리콘층을 형성한 후 이를 질소분위기에서 고온 열처리하여 상기 비정질 실리콘층을 결정화하는 것이 바람직하다.
After forming the amorphous silicon layer, it is preferable to crystallize the amorphous silicon layer by performing a high-temperature heat treatment in a nitrogen atmosphere.

본 발명에서 비정질 실리콘층을 형성한 후 고온 열처리를 행하는 것은, 기존 p-i-n형 구조를 갖는 태양전지의 낮은 효율을 극복하기 위한 것으로서, 상기와 같이 비정질 실리콘층에 고온 열처리를 행하게 되면 상기 비정질 실리콘층의 막질이 다결정 실리콘(polycrystalline silicon)으로 변형됨에 따라 광특성이 개선되는 효과를 얻을 수 있다.
The high-temperature annealing after forming the amorphous silicon layer in the present invention is intended to overcome the low efficiency of the conventional solar cell having the pin-type structure. When the amorphous silicon layer is subjected to the high-temperature annealing as described above, As the film quality is changed into polycrystalline silicon, the optical characteristic can be improved.

상술한 바와 같이, 비정질 실리콘층의 막질을 변형시키기 위해서는 700℃ 이상의 온도에서 1시간 이상 열처리함이 바람직하다.As described above, in order to modify the film quality of the amorphous silicon layer, it is preferable to perform heat treatment at a temperature of 700 DEG C or more for 1 hour or more.

열처리 온도가 700℃ 미만이거나 열처리 시간이 1시간 미만으로 충분하지 못하며, 비정질 실리콘층이 다결정 실리콘으로 모두 변형되지 않고 일부가 비정질 실리콘으로 남아 광특성 개선 효과가 충분하지 못하다. 다만, 열처리 온도가 750℃를 초과하거나, 열처리 시간이 2시간을 초과하면 열처리 효과가 포화될 뿐만 아니라, 스틸 기판에서 Fe 원자가 상부 전자소자로 확산되기 때문에, 소자 특성에 영향을 미친다.
The annealing temperature is less than 700 ° C. or the annealing time is less than 1 hour. The amorphous silicon layer is not deformed into the polycrystalline silicon, and a part of the amorphous silicon remains as amorphous silicon. However, if the heat treatment temperature exceeds 750 ° C or the heat treatment time exceeds 2 hours, not only the heat treatment effect is saturated but also Fe atoms are diffused into the upper electronic device on the steel substrate, which affects the device characteristics.

상기 열처리 후 투명전극층과 상기한 비정질 실리콘층 사이에 금속 규화물(metal silicide)이 형성되는데, 본 발명의 경우 상기 금속 규화물을 형성할 수 있는 금속은 Mo이며, 형성된 금속 규화물은 Mo-Silicide이다 (도 1a 내지 1c 참조).After the heat treatment, a metal silicide is formed between the transparent electrode layer and the amorphous silicon layer. In the present invention, the metal capable of forming the metal suicide is Mo and the metal suicide formed is Mo-Silicide 1a to 1c).

상기 금속은 연속적이지 않은 형태로 분산되어 표면에 존재하며, 그 상부에 비정질 실리콘층을 형성한 후 고온 열처리를 행하여 결정화를 진행할 경우 Mo와 실리콘이 금속 규화물을 형성하여 계면 특성을 향상시키므로 서로 다른 이종 물질 사이에 발생하는 직렬 저항이 감소하게 되어, 전자소자 특성 향상에 기여한다.
When the amorphous silicon layer is formed on the surface of the amorphous silicon layer and the amorphous silicon layer is formed on the surface of the amorphous silicon layer, the molybdenum and silicon form a metal silicide to improve the interfacial characteristics when crystallization proceeds. The series resistance occurring between the materials decreases, contributing to the improvement of electronic device characteristics.

이와 같이 비정질 실리콘층의 결정화가 완료되면, 그 위에 후면전극층을 형성하기 전에, 다른 비정질 실리콘층을 더 형성하는 것이 바람직하다.When the crystallization of the amorphous silicon layer is completed in this manner, it is preferable to form another amorphous silicon layer before forming the rear electrode layer thereon.

이때, 상기 비정질 실리콘층이 n형인 경우에는 그 위에 i-p형 비정질 실리콘층을 더 형성하고, 상기 비정질 실리콘층이 n-i형인 경우에는 그 위에 p형 비정질 실리콘층을 더 형성하고, 상기 비정질 실리콘층이 p-i형인 경우에는 그 위에 n형 비정질 실리콘층을 더 포함하는 것이 바람직하다.
If the amorphous silicon layer is n-type, a p-type amorphous silicon layer is further formed on the amorphous silicon layer, and if the amorphous silicon layer is a n-type, a p-type amorphous silicon layer is formed thereon. It is preferable to further include an n-type amorphous silicon layer thereon.

상술한 바와 같이, 비정질 실리콘층의 형성이 완료되면, 그 위에 후면전극층을 형성할 수 있으며, 이때 후면전극층은 ITO 또는 Al 산화물로 이루어질 수 있다.As described above, when the formation of the amorphous silicon layer is completed, a rear electrode layer may be formed thereon, and the rear electrode layer may be made of ITO or Al oxide.

상기 후면전극층을 Al 산화물로 형성할 경우, ZnO:Al, ZnO-Al2O3 등과 같은 투명한 도전물질을 주로 사용할 수 있다.
When the rear electrode layer is formed of Al oxide, a transparent conductive material such as ZnO: Al, ZnO-Al 2 O 3 or the like may be mainly used.

본 발명에 따른 비정질 실리콘 태양전지는 기존의 비정질 실리콘 태양전지, 예컨대 기판 상에 주기적인 표면 요철을 형성한 후 비정질 실리콘층 형성시킨 태양전지나, p형과 n형 비정질 실리콘 사이에 i형 비정질 실리콘층을 갖는 p-i-n형 구조의 태양전지에 비해 우수한 광특성 효과를 가질 수 있다. 즉, 고온 열처리에 따른 비정질 실리콘층의 상변화에 의해 밴드갭(bandgap)이 낮아짐에 따라 높은 에너지의 빛을 흡수할 수 있어, 태양전지의 효율이 극대화될 수 있는 것이다.The amorphous silicon solar cell according to the present invention can be applied to a conventional amorphous silicon solar cell, for example, a solar cell in which an amorphous silicon layer is formed on a substrate after cyclic surface irregularities are formed on the substrate, or an amorphous silicon layer is formed between the p- It is possible to have an excellent optical property effect as compared with a solar cell having a pin-type structure. That is, as the bandgap decreases due to the phase change of the amorphous silicon layer due to the high-temperature heat treatment, the energy of the high energy can be absorbed and the efficiency of the solar cell can be maximized.

Claims (6)

금속 기판을 준비하는 단계;
상기 금속 기판 상에 투명전극층을 형성하는 단계;
상기 투명전극층 상부에 n형, n-i형 및 p-i형 중에서 선택된 1종의 비정질 실리콘층을 형성한 후 700℃~750℃에서 1 시간~2 시간, 질소분위기에서 열처리하여 상기 비정질 실리콘층을 결정화하는 단계; 및
상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하고,
상기 비정질 실리콘층이 n형인 경우 상기 열처리 후 i-p형 비정질 실리콘층을 형성시키는 단계를 더 포함하고, 상기 비정질 실리콘층이 n-i형인 경우 상기 열처리 후 p형 비정질 실리콘층을 형성시키는 단계를 더 포함하고, 상기 비정질 실리콘층이 p-i형인 경우 상기 열처리 후 n형 비정질 실리콘층을 형성시키는 단계를 더 포함하고,
상기 열처리 후 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)이 형성되는 비정질 실리콘 태양전지의 제조방법.
Preparing a metal substrate;
Forming a transparent electrode layer on the metal substrate;
Forming one amorphous silicon layer selected from the group consisting of n-type, ni-type and pi-type on the transparent electrode layer, and then heat-treating the amorphous silicon layer in a nitrogen atmosphere at 700 ° C to 750 ° C for 1 hour to 2 hours ; And
And forming a rear electrode layer on the crystallized amorphous silicon layer,
Type amorphous silicon layer after the annealing when the amorphous silicon layer is n-type, and forming a p-type amorphous silicon layer after the annealing when the amorphous silicon layer is ni-type, And forming the n-type amorphous silicon layer after the heat treatment when the amorphous silicon layer is of the pi type,
Wherein a metal silicide is formed between the transparent electrode layer and the amorphous silicon layer after the heat treatment.
제 1항에 있어서,
상기 투명전극층은 Mo 전극층인 것을 특징으로 하는 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the transparent electrode layer is a Mo electrode layer.
삭제delete 삭제delete 제 1항에 있어서,
상기 후면전극층은 ITO(indium-tin oxide) 또는 Al 산화물로 이루어지는 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the back electrode layer is made of ITO (indium-tin oxide) or an Al oxide.
제 1항에 있어서,
상기 금속규화물(metal silicide)은 Mo-Silicide인 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the metal silicide is Mo-Silicide.
KR20130073327A 2013-06-25 2013-06-25 Method for manufacturing amorphous silicon solar cell KR101490599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130073327A KR101490599B1 (en) 2013-06-25 2013-06-25 Method for manufacturing amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130073327A KR101490599B1 (en) 2013-06-25 2013-06-25 Method for manufacturing amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
KR20150008946A KR20150008946A (en) 2015-01-26
KR101490599B1 true KR101490599B1 (en) 2015-02-05

Family

ID=52572305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130073327A KR101490599B1 (en) 2013-06-25 2013-06-25 Method for manufacturing amorphous silicon solar cell

Country Status (1)

Country Link
KR (1) KR101490599B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119453A (en) 2016-04-19 2017-10-27 한국생산기술연구원 Dyes for High Efficient Dye-Sensitized Solar Cells, Preparation Method Thereof and Solar Cells comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890007438A (en) * 1987-10-02 1989-06-19 안시환 Amorphous Silicon Solar Cell
JP2624577B2 (en) * 1990-12-26 1997-06-25 キヤノン株式会社 Solar cell and method of manufacturing the same
KR20100022394A (en) * 2008-08-19 2010-03-02 주식회사 티지솔라 Solar cell module and method for fabricating the same
KR20100116833A (en) * 2009-04-23 2010-11-02 주식회사 티지솔라 Solar cell including metallic silicide layer and method for fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890007438A (en) * 1987-10-02 1989-06-19 안시환 Amorphous Silicon Solar Cell
JP2624577B2 (en) * 1990-12-26 1997-06-25 キヤノン株式会社 Solar cell and method of manufacturing the same
KR20100022394A (en) * 2008-08-19 2010-03-02 주식회사 티지솔라 Solar cell module and method for fabricating the same
KR20100116833A (en) * 2009-04-23 2010-11-02 주식회사 티지솔라 Solar cell including metallic silicide layer and method for fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170119453A (en) 2016-04-19 2017-10-27 한국생산기술연구원 Dyes for High Efficient Dye-Sensitized Solar Cells, Preparation Method Thereof and Solar Cells comprising the same

Also Published As

Publication number Publication date
KR20150008946A (en) 2015-01-26

Similar Documents

Publication Publication Date Title
EP1265297B1 (en) Method for the preparaton of an OPTICAL ENERGY TRANSDUCER
US8211739B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
US7915520B2 (en) Photoelectric conversion device and manufacturing method thereof
Mesquita et al. A review and analysis of technologies applied in PV modules
US20100224229A1 (en) Multi-junction semiconductor photovoltaic apparatus and methods
US20120291859A1 (en) Multi-Junction Semiconductor Photovoltaic Apparatus and Methods
CN102064216A (en) Novel crystalline silicon solar cell and manufacturing method thereof
EP2224491A2 (en) Solar cell and method of fabricating the same
JP2011501407A (en) Manufacturing method of solar cell
JP2004273886A (en) Crystalline thin film semiconductor device and photovoltaic device
Gessert et al. 1.19-cadmium telluride photovoltaic thin film: CdTe
US9705018B2 (en) Photoelectric conversion element, method for manufacturing photoelectric conversion element, and solar cell
KR100927428B1 (en) Solar cell and manufacturing method
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
Zaynabidinov et al. On the optical efficiency of silicon photoelectric converters of solar energy
KR101490599B1 (en) Method for manufacturing amorphous silicon solar cell
Aberle Progress in evaporated crystalline silicon thin-film solar cells on glass
CN103107227B (en) Amorphous silicon thin-film solar cell and preparation method thereof
JP4215694B2 (en) Photoelectric conversion device and manufacturing method thereof
KR20100116833A (en) Solar cell including metallic silicide layer and method for fabricating the same
KR101449181B1 (en) Method for manufacturing amorphous silicon solar cell using laser
WO2011102352A1 (en) Solar cell, and process for production of solar cell
TWI436493B (en) Solar cell with simple electrode design and manufacturing method thereof
JPH0794766A (en) Thin film polycrystalline silicon photoelectric converter and method of fabrication thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190130

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 6