JP2624577B2 - Solar cell and method of manufacturing the same - Google Patents

Solar cell and method of manufacturing the same

Info

Publication number
JP2624577B2
JP2624577B2 JP2413874A JP41387490A JP2624577B2 JP 2624577 B2 JP2624577 B2 JP 2624577B2 JP 2413874 A JP2413874 A JP 2413874A JP 41387490 A JP41387490 A JP 41387490A JP 2624577 B2 JP2624577 B2 JP 2624577B2
Authority
JP
Japan
Prior art keywords
layer
solar cell
polycrystalline silicon
polycrystalline
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2413874A
Other languages
Japanese (ja)
Other versions
JPH04225282A (en
Inventor
彰志 西田
隆夫 米原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2413874A priority Critical patent/JP2624577B2/en
Priority to DE4193392A priority patent/DE4193392C2/en
Priority to PCT/JP1991/001745 priority patent/WO1992012542A1/en
Priority to DE4193392T priority patent/DE4193392T1/de
Publication of JPH04225282A publication Critical patent/JPH04225282A/en
Priority to US08/190,584 priority patent/US5403771A/en
Application granted granted Critical
Publication of JP2624577B2 publication Critical patent/JP2624577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は太陽電池およびその製造
方法に関し、特にエネルギー変換効率が良好な太陽電池
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell and a method for manufacturing the same, and more particularly, to a solar cell having good energy conversion efficiency and a method for manufacturing the same.

【0002】[0002]

【従来の技術】各種機器において、駆動エネルギー源と
して太陽電池が利用されている。
2. Description of the Related Art In various devices, a solar cell is used as a driving energy source.

【0003】太陽電池は機能部分にpn接合を用いてお
り、該pn接合を構成する半導体としては一般にシリコ
ンが用いられている。光エネルギーを起電力に変換する
効率の点からは、単結晶シリコンを用いるのが好ましい
が、大面積化および低コスト化の点からはアモルファス
シリコンが有利とされている。
[0003] A solar cell uses a pn junction for a functional part, and silicon is generally used as a semiconductor constituting the pn junction. From the viewpoint of the efficiency of converting light energy into electromotive force, it is preferable to use single crystal silicon, but from the viewpoint of increasing the area and reducing the cost, amorphous silicon is advantageous.

【0004】近年においては、アモルファスシリコンな
みの低コストと単結晶シリコンなみの高エネルギー変換
効率とを得る目的で多結晶シリコンの使用が検討されて
いる。ところが、従来提案されている方法では塊状の多
結晶をスライスして板状体としこれを用いていたために
厚さを0.3mm 以下にすることは困難であり、従って光量
を十分に吸収するのに必要以上の厚さとなり、この点で
材料の有効利用が十分ではなかった。即ちコストを下げ
るためには十分な薄型化が必要である。
[0004] In recent years, the use of polycrystalline silicon has been studied for the purpose of obtaining low cost comparable to amorphous silicon and high energy conversion efficiency comparable to single crystal silicon. However, it is difficult to reduce the thickness to 0.3 mm or less in the conventionally proposed method since the bulk polycrystal is sliced into a plate-like body and used, and thus it is difficult to sufficiently absorb the light amount. The thickness was more than necessary, and in this respect, the effective utilization of the material was not sufficient. That is, it is necessary to reduce the thickness sufficiently in order to reduce the cost.

【0005】そこで、化学的気相成長法(CVD)等の
薄膜形成技術を用いて多結晶シリコンの薄膜を形成する
試みがなされているが、結晶粒径がせいぜい百分の数ミ
クロン程度にしかならず、塊状多結晶シリコンスライス
法の場合に比べてもエネルギー変換効率が低い。
Attempts have been made to form a polycrystalline silicon thin film by using a thin film forming technique such as chemical vapor deposition (CVD). However, the crystal grain size is only several hundredths of a micron at most. Also, the energy conversion efficiency is lower than that of the bulk polycrystalline silicon slicing method.

【0006】また、上記CVD法により形成した多結晶
シリコン薄膜にPなどの不純物原子をイオン打ち込みに
より導入して過飽和状態にした後高温でアニールするこ
とにより、結晶粒径を膜厚の10倍以上にも拡大させる
いわゆる異常粒成長技術が報告されている(Yasuo Wada
and Shigeru Nishimatsu ,Journal of Electrochemic
al Society,Solid State Science and Technology,12
5 (1978)1499)。しかしこの方法では導入する不純物
濃度が高すぎて光電流を発生させる活性層に用いること
が出来ない。
In addition, impurity atoms such as P are introduced into the polycrystalline silicon thin film formed by the above-mentioned CVD method by ion implantation to make the polycrystalline silicon thin film supersaturated, and then annealed at a high temperature so that the crystal grain size is 10 times or more the film thickness. A so-called abnormal grain growth technology has been reported (Yasuo Wada
and Shigeru Nishimatsu, Journal of Electrochemic
al Society, Solid State Science and Technology, 12
5 (1978) 1499). However, in this method, the impurity concentration to be introduced is too high and cannot be used for an active layer that generates a photocurrent.

【0007】さらに、多結晶シリコン薄膜にレーザ光を
照射し溶融再結晶化させて結晶粒径を大きくするという
試みもなされているが、低コスト化が十分でなく、また
安定した製造も困難である。
Further, attempts have been made to increase the crystal grain size by irradiating a polycrystalline silicon thin film with a laser beam to melt and recrystallize it. However, cost reduction is not sufficient, and stable production is difficult. is there.

【0008】このような事情はシリコンのみならず、化
合物半導体においても共通な問題となっている。
Such a situation is a common problem not only in silicon but also in compound semiconductors.

【0009】これに対し、特開昭63−182872号
公報に開示されている方法、すなわち、太陽電池の製造
方法において、基体表面上に該基体表面の材料よりも核
形成密度が十分に大きく且つ結晶成長後単結晶となる単
一の核だけが成長する程度に十分微細な異種材料(核形
成面を構成する)を設け、次いで堆積により該異種材料
に核を形成させ該核によって結晶を成長させる工程を含
んで上記基体表面上に第1の導電型の半導体の実質的単
結晶層を形成し、該単結晶層の上方に第2の導電型の半
導体の実質的単結晶層を形成することを特徴とする太陽
電池の製造方法により薄型で結晶粒径の十分大きい、良
好なエネルギー変換効率を有する太陽電池が得られるこ
とが示された。
On the other hand, in the method disclosed in JP-A-63-182872, that is, in the method of manufacturing a solar cell, the nucleation density on the surface of the substrate is sufficiently larger than that of the material on the surface of the substrate. A dissimilar material (constituting a nucleation surface) fine enough to grow only a single nucleus that becomes a single crystal after crystal growth is provided, and then a nucleus is formed on the dissimilar material by deposition, and the crystal is grown by the nucleus. Forming a substantially single crystal layer of a semiconductor of the first conductivity type on the surface of the substrate, and forming a substantially single crystal layer of a semiconductor of the second conductivity type above the single crystal layer. It was shown that the solar cell manufacturing method characterized in that a thin solar cell having a sufficiently large crystal grain size and good energy conversion efficiency can be obtained.

【0010】[0010]

【発明が解決しようとしている課題】上述の方法におい
て核形成面となる微細な異種材料から形成される核によ
って成長した単結晶体が互いに接する時に結晶粒界(以
下粒界と略記する)が形成される。
In the above-mentioned method, when single crystal bodies grown by nuclei formed of fine dissimilar materials serving as nucleation surfaces contact each other, crystal grain boundaries (hereinafter abbreviated as grain boundaries) are formed. Is done.

【0011】一般に、多結晶半導体では、様々な結晶方
位をもった多数の単結晶粒子同士が多数の粒界を形成し
ており、粒界には未結合手を持つ原子が有る。このため
に禁制帯中に欠陥準位が形成されている。半導体デバイ
スの特性は作製される半導体層の欠陥密度と密接に関係
しているが粒界には前述した様に欠陥準位が多数形成さ
れているとともに不純物等が析出しやすくなっているた
め、これらによりデバイス特性の低下をもたらしてしま
う。よって多結晶半導体では粒界の制御によりデバイス
特性が大きく左右されると考えられている。即ち、多結
晶を半導体層に用いた半導体デバイスの特性を向上させ
るには半導体層中に存在する粒界の量を低減させること
が効果的である。上述の方法は粒径を拡大させることで
粒界の量を減らすことを目的としている。しかしなが
ら、上述の方法ではコストの低減を目的として基体とし
て金属を用いた場合、この基体金属原子が成長中に結晶
の中や粒界に取り込まれてしまい、デバイス特性および
再現性に悪影響を及ぼしてしまうといった解決すべき課
題があった。
In general, in a polycrystalline semiconductor, a large number of single crystal grains having various crystal orientations form a large number of grain boundaries, and there are atoms having dangling bonds in the grain boundaries. For this reason, a defect level is formed in the forbidden band. The characteristics of the semiconductor device are closely related to the defect density of the semiconductor layer to be manufactured, but since a large number of defect levels are formed at the grain boundaries as described above, impurities and the like are easily precipitated, As a result, device characteristics are degraded. Therefore, in a polycrystalline semiconductor, it is considered that device characteristics are greatly affected by control of grain boundaries. That is, in order to improve the characteristics of a semiconductor device using polycrystalline semiconductor layers, it is effective to reduce the amount of grain boundaries existing in the semiconductor layers. The method described above aims at reducing the amount of grain boundaries by increasing the grain size. However, in the above-described method, when a metal is used as a substrate for the purpose of cost reduction, the metal atoms of the substrate are taken into crystals or grain boundaries during growth, which adversely affects device characteristics and reproducibility. There was a problem to be solved.

【0012】[0012]

【発明の目的】本発明は、上記従来技術の持つ課題を解
決し、粒径が大きくかつ良質な多結晶太陽電池およびそ
の製造方法を提供するものである。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a polycrystalline solar cell having a large grain size and good quality, and a method for manufacturing the same.

【0013】本発明の目的は金属基体を用い、しかも大
粒径の多結晶半導体層を成長させることにより安価な太
陽電池を提供することにある。また本発明の他の目的は
小粒径多結晶半導体層を種結晶としてその上に大粒径多
結晶半導体層を形成することにより、粒界での欠陥準位
密度を減らして、高品質な太陽電池を提供することにあ
る。
An object of the present invention is to provide an inexpensive solar cell using a metal substrate and growing a polycrystalline semiconductor layer having a large grain size. Another object of the present invention is to form a large-grained polycrystalline semiconductor layer on a small-grained polycrystalline semiconductor layer as a seed crystal, thereby reducing the density of defect states at grain boundaries and providing high-quality It is to provide a solar cell.

【0014】[0014]

【課題を解決するための手段】本発明は、上述の従来技
術における課題を解決し、上記の目的を達成すべく本発
明者らによる鋭意研究の結果完成に至ったものであり、
特性の良好な薄型多結晶太陽電池およびその製造方法に
係わるものである。
Means for Solving the Problems The present invention solves the above-mentioned problems in the prior art, and has been completed as a result of intensive studies by the present inventors to achieve the above objects.
The present invention relates to a thin polycrystalline solar cell having good characteristics and a method for manufacturing the same.

【0015】 すなわち、本発明の太陽電池は、金属基
体上に、少なくとも、金属−半導体中間層、第1の半導
体層、複数の開口部を有する絶縁層、該複数の開口部か
ら選択的にエピタキシャル成長した山形形状の結晶粒の
集合からなる第2の半導体層を、この積層順で有するこ
とを特徴とする太陽電池である。
That is, the solar cell of the present invention selectively epitaxially grows at least from the metal-semiconductor intermediate layer, the first semiconductor layer, the insulating layer having a plurality of openings, and the plurality of openings on the metal base. A solar cell characterized by having a second semiconductor layer composed of a set of formed chevron-shaped crystal grains in this stacking order.

【0016】また本発明の太陽電池の製造方法は、金属
基体上に多結晶半導体層を堆積させる工程と、前記多結
晶半導体層に高濃度の不純物原子を導入して過飽和状態
にする工程と、前記多結晶半導体層の表面に絶縁層を形
成する工程と、アニールすることにより前記多結晶半導
体層内に異常粒成長を生じさせかつ前記金属基体と多結
晶半導体層との間に金属−半導体の中間層を形成する工
程と、 前記絶縁層に微小の開口部を設けて多結晶半導体
表面を露出させる工程と、選択的エピタキシャル成長法
および横方向成長法により前記微小開口部から結晶成長
を行う工程と、を含むことを特徴とする太陽電池の製造
方法である。
Further, the method for manufacturing a solar cell according to the present invention includes a step of depositing a polycrystalline semiconductor layer on a metal substrate; a step of introducing a high concentration of impurity atoms into the polycrystalline semiconductor layer to make it supersaturated; Forming an insulating layer on the surface of the polycrystalline semiconductor layer, annealing to cause abnormal grain growth in the polycrystalline semiconductor layer, and a metal-semiconductor between the metal base and the polycrystalline semiconductor layer. Forming an intermediate layer, providing a minute opening in the insulating layer to expose the surface of the polycrystalline semiconductor, and performing crystal growth from the minute opening by selective epitaxial growth and lateral growth. And a method for manufacturing a solar cell.

【0017】なお、以下の説明においては、本発明に用
いる半導体材料として、シリコンを取り上げて説明する
が、本発明はシリコンに限定されるものではない。
In the following description, silicon will be described as a semiconductor material used in the present invention, but the present invention is not limited to silicon.

【0018】本発明の主要な技術は 図2,3に示さ
れるように金属基板201上に堆積された多結晶シリコ
ン202に対しPなどの不純物原子をイオン打ち込みま
たは熱拡散等により導入して過飽和状態にし、アニール
することでオーミックコンタクト層となる金属−シリコ
ンの中間層を形成するとともに、多結晶シリコン中の結
晶粒径を異常粒成長を行なわせて小粒径である第1の多
結晶シリコン層とすること(ただし図2においては結晶
粒界を省略している。)、 次に図4,5,6に示す
ように異常粒成長させた小粒径多結晶シリコン層の表面
に酸化膜(SiO2)などの絶縁層304を形成し、絶縁層
304の表面に周期的に微小な開口部を設けてシリコン
表面を露出し、それぞれ絶縁層304を非核形成面と
し、シリコン部を核形成面とすること、 これらの非
核形成面と核形成面とに対して選択的エピタキシャル成
長および横方向成長を行い、大きさ(粒径)の揃った単
結晶体を成長し大粒径である第2の多結晶シリコン薄膜
層を形成することである。
As shown in FIGS. 2 and 3, the main technique of the present invention is to supersaturate polycrystalline silicon 202 deposited on a metal substrate 201 by introducing impurity atoms such as P by ion implantation or thermal diffusion. A first polycrystalline silicon having a small grain size by forming an intermediate layer of metal-silicon which becomes an ohmic contact layer by annealing and forming an abnormal grain growth in the polycrystalline silicon. (However, crystal grain boundaries are omitted in FIG. 2.) Then, as shown in FIGS. 4, 5, and 6, an oxide film is formed on the surface of the small-grain polycrystalline silicon layer having abnormal grain growth. An insulating layer 304 of (SiO 2 ) or the like is formed, and a minute opening is periodically formed on the surface of the insulating layer 304 to expose the silicon surface. The insulating layer 304 is used as a non-nucleation surface, and the silicon portion is nucleated. surface Selective epitaxial growth and lateral growth are performed on the non-nucleation surface and the nucleation surface to grow a single crystal having a uniform size (grain size), thereby forming a second crystal having a large grain size. Forming a crystalline silicon thin film layer.

【0019】ここで選択的エピタキシャル成長法の一般
的な原理について簡単に説明する。選択的エピタキシャ
ル成長法とは、気相成長法を用いてエピタキシャル成長
を行う場合に、図7,8に示されるように、シリコンウ
エハ401上に形成された酸化膜などの絶縁層上では核
形成が起きないような条件で絶縁層402に設けられた
開口部403内の露出したシリコン表面を種結晶として
この開口部内のみでエピタキシャル成長を行う選択的結
晶成長法である。開口部403を埋めたエピタキシャル
層がさらに成長を続けた場合には結晶層は縦方向の成長
を続けながら絶縁層の表面に沿って横方向にも成長して
いく。これが横方向成長法(EpitaxialLateral Overgro
wth)と呼ばれるもので、この時の縦方向対横方向の成
長比やファセットの出現は一般に形成条件や絶縁層の厚
さに依存する。
Here, the general principle of the selective epitaxial growth method will be briefly described. In the selective epitaxial growth method, when epitaxial growth is performed using a vapor phase growth method, nucleation occurs on an insulating layer such as an oxide film formed on a silicon wafer 401 as shown in FIGS. This is a selective crystal growth method in which the exposed silicon surface in the opening 403 provided in the insulating layer 402 is used as a seed crystal under such conditions to perform epitaxial growth only in this opening. When the epitaxial layer filling the opening 403 continues to grow, the crystal layer grows in the horizontal direction along the surface of the insulating layer while continuing to grow in the vertical direction. This is the lateral growth method (EpitaxialLateral Overgro
The growth ratio in the vertical direction to the horizontal direction and the appearance of facets at this time generally depend on the forming conditions and the thickness of the insulating layer.

【0020】本発明者らは幾多の実験を重ねることによ
り、開口部の大きさを数μm以下の微小な領域とするこ
とにより、絶縁層の厚さに関係なく縦方向対横方向の成
長比がほぼ1で三次元的に絶縁層上で結晶成長していく
こと、明瞭なファセットが現れて山型の単結晶体404
が得られることを見い出した(図9,10)。
The present inventors have carried out a number of experiments to determine that the size of the opening is a small area of several μm or less, so that the growth ratio in the vertical direction to the horizontal direction is independent of the thickness of the insulating layer. Is approximately 1, and the crystal grows three-dimensionally on the insulating layer, a clear facet appears, and a mountain-shaped single crystal 404 is formed.
Was obtained (FIGS. 9 and 10).

【0021】また本発明者らはさらに実験を重ねること
により、シリコンウエハの代わりに多結晶シリコンを用
いても結晶粒径(平均結晶粒径)がある大きさ以上であ
れば上述と同様な方法により山型の単結晶体が得られる
ことを見い出した。
Further, the present inventors have conducted further experiments, and have found that even if polycrystalline silicon is used instead of a silicon wafer, the same method as described above can be used if the crystal grain size (average crystal grain size) is larger than a certain size. As a result, a mountain-shaped single crystal was obtained.

【0022】また本発明者らはさらに実験を行い、金属
基板上に堆積した第1の多結晶シリコン層の膜厚を適当
に選ぶことで第1の多結晶シリコン上に成長させた第2
の多結晶シリコン層に基板からの金属原子が混入するこ
とが阻止できること、アニールにより異常粒成長を行う
過程で同時に金属基板−第1の多結晶シリコン層界面で
シリサイド等の中間層が形成され良好なオーミック接触
が得られることおよび第1の多結晶シリコンとその上に
成長させた第2の多結晶との間に絶縁層が介在すること
により第1の多結晶シリコン中に高濃度にドーピングさ
れた不純物原子が成長している第2の多結晶層中への拡
散が抑えられることを見い出し、本発明の完成に至っ
た。以下に本発明者らの行った実験について詳述する。
The present inventors have further conducted experiments, and by appropriately selecting the film thickness of the first polycrystalline silicon layer deposited on the metal substrate, the second polycrystalline silicon layer grown on the first polycrystalline silicon has been selected.
That metal atoms from the substrate can be prevented from being mixed into the polycrystalline silicon layer, and an intermediate layer such as a silicide is formed at the interface between the metal substrate and the first polycrystalline silicon layer at the same time during the process of abnormal grain growth by annealing. High ohmic contact and high concentration of doping in the first polycrystalline silicon due to the presence of an insulating layer between the first polycrystalline silicon and the second polycrystalline grown thereon. It has been found that the diffusion of the impurity atoms into the growing second polycrystalline layer is suppressed, and the present invention has been completed. Hereinafter, an experiment performed by the present inventors will be described in detail.

【0023】(実験1) 選択結晶成長 図7に示すように、500μm厚の(100)シリコン
ウエハ401の表面に絶縁層402として熱酸化膜1000
Å形成し、フォトリソグラフィーを用いてエッチングを
行い、図11に示すような配置で一辺がaであるような
正方形の開口部403をb=50μmの間隔で設けた。
ここでaの値として1.2 μm、2μm、4μmの3種類
の開口部を設けた。次に図20に示すような通常の減圧
CVD装置(LPCVD 装置)を用いて選択的結晶成長を行
った。
(Experiment 1) Selective crystal growth As shown in FIG. 7, a thermal oxide film 1000 as an insulating layer 402 was formed on the surface of a (100) silicon wafer 401 having a thickness of 500 μm.
Å Formed and etched using photolithography, and square openings 403 each having a side of a in the arrangement shown in FIG. 11 were provided at intervals of b = 50 μm.
Here, three types of openings of 1.2 μm, 2 μm, and 4 μm were provided as the value of a. Next, selective crystal growth was performed using a normal low pressure CVD apparatus (LPCVD apparatus) as shown in FIG.

【0024】図20において、701はガス供給系、7
02はヒーター、703は石英反応管、704は基板、
705はサセプタである。原料ガスにはSiH2Cl2 を用
い、キャリアガスとしてH2 を、さらに絶縁層402の
酸化膜上での核の発生を抑制するためにHClを添加し
た。この時の成長条件を表1に示す。
In FIG. 20, reference numeral 701 denotes a gas supply system;
02 is a heater, 703 is a quartz reaction tube, 704 is a substrate,
705 is a susceptor. SiH 2 Cl 2 was used as a source gas, H 2 was added as a carrier gas, and HCl was added to suppress generation of nuclei on the oxide film of the insulating layer 402. Table 1 shows the growth conditions at this time.

【0025】表 1 成長終了後、ウエハ表面の様子を光学顕微鏡で観察した
ところ、図9あるいは図12に示すように、どのaの値
に対しても粒径が約20μmの山型ファセットを有する
単結晶体404が50μm間隔で格子点上に規則正しく
配列しており、図11で決められた開口部403のパタ
ーンに従って選択結晶成長が行われていることが確かめ
られた。このとき、開口部に対して成長した結晶が占め
る割合はどのaの値に対しても100%であった。ま
た、成長した単結晶体の中で表面のファセットがくずれ
ないで明確に出ているものの割合(ファセット率)はa
の値に依存し、表2に示すようにaが小さい程くずれて
いる割合は少ない。
Table 1 After the growth was completed, the state of the wafer surface was observed with an optical microscope. As shown in FIG. 9 or 12, a single crystal 404 having a mountain-shaped facet having a grain size of about 20 μm was obtained for any value of a. It was confirmed that the crystals were regularly arranged on the lattice points at intervals of 50 μm, and that the selective crystal growth was performed in accordance with the pattern of the opening 403 determined in FIG. At this time, the ratio of the crystal grown to the opening was 100% for any value of a. Also, the ratio (facet ratio) of the grown single crystal in which the facet on the surface clearly appears without being distorted is a
And as shown in Table 2, the smaller the value of a, the smaller the ratio of deviation.

【0026】表 2 得られた単結晶体は全て互いに方位が揃っており、基板
であるシリコンウエハの結晶方位を正確に受け継いでい
ることがわかった。
Table 2 It was found that all of the obtained single crystal bodies had the same orientation as each other, and correctly inherited the crystal orientation of the silicon wafer as the substrate.

【0027】(実験2) 金属基板上の多結晶シリコン
中の異常粒成長 基体として厚さ0.8mm のクロム基板上にタングステン
(W)を1000Å真空蒸着しその上に通常のLPCVD 装置に
よりSiH4を630℃で熱分解して0.4 μm多結晶シ
リコンを堆積させた。このときの多結晶シリコンの結晶
粒径はX線回折で調べたところ約80Åであった。
(Experiment 2) Abnormal grain growth in polycrystalline silicon on a metal substrate Tungsten (W) was vacuum-deposited on a 0.8 mm-thick chromium substrate as a substrate at 1000 ° C., and SiH 4 was deposited thereon by an ordinary LPCVD apparatus. Pyrolysis at 630 ° C. deposited 0.4 μm polycrystalline silicon. At this time, the crystal grain size of the polycrystalline silicon was about 80 ° as determined by X-ray diffraction.

【0028】次にこの多結晶シリコンの表面にイオン打
ち込みによりPを加速電圧50KV、ドーズ量3.2 ×1016
cm-2の条件で打ち込み不純物濃度を8×1020cm-3とし
た。
Next, P is accelerated by ion implantation into the surface of the polycrystalline silicon at an acceleration voltage of 50 KV and a dose of 3.2 × 10 16.
The implantation impurity concentration was set to 8 × 10 20 cm −3 under the condition of cm −2 .

【0029】このような金属基板上の多結晶シリコン膜
に対してアニール温度を変えたときの結晶粒径の変化を
調べた。なおアニール時間は3時間一定とした。
The change in crystal grain size when the annealing temperature was changed for such a polycrystalline silicon film on a metal substrate was examined. The annealing time was constant for 3 hours.

【0030】アニール後に高分解能走査型電子顕微鏡お
よびECC (Electron Channeling Contrast)法により多
結晶シリコン膜中の結晶粒径を調べたところ、図28に
示すようにアニール温度の増加とともに結晶粒径の大幅
な増大が見られ、1000℃で平均約3μmの結晶粒径が得
られた。さらにECP (Electron Channeling Pattern )
法で各々の結晶方位を調べたところ、主に(110)方
向に配向していることが分かった。
After the annealing, the crystal grain size in the polycrystalline silicon film was examined by a high-resolution scanning electron microscope and ECC (Electron Channeling Contrast) method. As shown in FIG. The average grain size at 1000 ° C. was about 3 μm. ECP (Electron Channeling Pattern)
Examination of each crystal orientation by the method revealed that the orientation was mainly in the (110) direction.

【0031】また、アニール後の金属基板/多結晶シリ
コン界面付近の組成分析を行なったところ、界面ではW
とSiが反応してシリサイドが形成されていることが分
かった。このときのシリサイドの組成は大部分がWSi2
あった。
Further, when a composition analysis near the metal substrate / polycrystalline silicon interface after annealing was performed, W
And Si reacted to form silicide. The composition of the silicide at this time was mostly WSi 2 .

【0032】(実験3) 金属基板/多結晶シリコン層
上への選択的結晶成長 金属基板上に、実験2と同様な方法で多結晶シリコン層
を形成し、その多結晶シリコン層を用いて選択的結晶成
長の実験を行なった。
(Experiment 3) Selective crystal growth on metal substrate / polycrystalline silicon layer A polycrystalline silicon layer is formed on a metal substrate in the same manner as in Experiment 2, and the polycrystalline silicon layer is used for selection. An experimental experiment on crystal growth was performed.

【0033】形成した第1の多結晶シリコン層の表面に
実験1と同様の方法で絶縁層としての熱酸化膜を約1000
Å形成し、フォトリソグラフィーを用いてエッチングを
行い、一辺がa=1.2 μmであるような正方形の開口部
をb=50μmの間隔で格子点状に設け、第1の多結晶
シリコンの表面を露出させた。
On the surface of the first polycrystalline silicon layer thus formed, a thermal oxide film as an insulating
Å Formed and etched using photolithography, providing square openings with a side of a = 1.2 μm in lattice points at b = 50 μm intervals to expose the surface of the first polycrystalline silicon I let it.

【0034】次いで、図20に示す様な通常のLPCVD 装
置を用いて表1に示す成長条件で選択的結晶成長を行な
った。成長終了後、第1の多結晶シリコン層/酸化膜表
面の様子を光学顕微鏡で観察したところ、実験1と同様
に粒径が約20μmの山型ファセットを有する単結晶体
あるいは一部多結晶体が50μm間隔で格子点上に規則
正しく配列している様子が見られ、選択的結晶成長が行
なわれていることが確認された。このとき、開口部に対
して成長した結晶が占める割合は100%であった。ま
た、成長で得られた全結晶中に対して単結晶が占める割
合は約89%であった。
Next, selective crystal growth was carried out under the growth conditions shown in Table 1 using an ordinary LPCVD apparatus as shown in FIG. After completion of the growth, the state of the surface of the first polycrystalline silicon layer / oxide film was observed with an optical microscope. As in Experiment 1, a single crystal or a partial polycrystal having a mountain-shaped facet having a grain size of about 20 μm was obtained. Were regularly arranged on lattice points at intervals of 50 μm, and it was confirmed that selective crystal growth was performed. At this time, the ratio of the grown crystal to the opening was 100%. The ratio of the single crystal to all the crystals obtained by the growth was about 89%.

【0035】得られた単結晶体について微小X線回折に
より配向の様子を調べたところ、ほとんど(110)方
向に配向していた。これは各単結晶体は開口部を通して
それぞれの種結晶である第1の多結晶シリコン層の結晶
粒の方位を正確に受け継いでおり、これらの結晶粒の方
位は実験3で示したように主に(110)であるためで
ある。
When the state of orientation of the obtained single crystal was examined by micro X-ray diffraction, it was almost oriented in the (110) direction. This is because each single crystal body accurately inherits the orientation of the crystal grains of the first polycrystalline silicon layer, which is the seed crystal, through the opening, and the orientation of these crystal grains is mainly as shown in Experiment 3. This is because (110).

【0036】(実験4) 連続膜の形成 実験3に引き続いて、さらに成長時間を90minと長
くして選択的結晶成長を行なった。成長終了後実験3と
同様に多結晶シリコン層/酸化膜表面を光学顕微鏡で観
察したところ、結晶体は隣接するもの同士が完全に接触
しており、基板上方から見てほぼマス目状に整然と並ん
だ単結晶体あるいは一部多結晶体の集合からなる第1の
多結晶層の結晶より大粒径(約50μm)の第2の多結
晶層(連続膜)が得られていることが確かめられた。こ
のときの連続膜の高さは酸化膜上から約40μmであっ
た。
(Experiment 4) Formation of Continuous Film Subsequent to Experiment 3, the growth time was further increased to 90 minutes to perform selective crystal growth. After the growth was completed, the surface of the polycrystalline silicon layer / oxide film was observed with an optical microscope in the same manner as in Experiment 3, and the adjacent crystals were completely in contact with each other. It is confirmed that a second polycrystalline layer (continuous film) having a larger grain size (about 50 μm) than the crystal of the first polycrystalline layer, which is composed of a set of aligned single crystals or a part of polycrystals, is obtained. Was done. At this time, the height of the continuous film was about 40 μm from above the oxide film.

【0037】また、連続膜形成後に膜の表面を研磨によ
り酸化層から数μmのところまで削り、その後2次質量
イオン分析により表面から酸化層までのPの濃度プロフ
ァイルを測定し、高濃度にドープされた多結晶シリコン
層からの不純物原子の成長結晶層への拡散の様子を調べ
た。
After the continuous film was formed, the surface of the film was polished to a depth of several μm from the oxide layer, and then the concentration profile of P from the surface to the oxide layer was measured by secondary mass ion analysis. The state of diffusion of impurity atoms from the polycrystalline silicon layer into the grown crystal layer was examined.

【0038】その結果、酸化層が介在するためにPは第
2の多結晶層へはほとんど拡散しておらず、遷移領域は
わずか2000Å程度であった。さらに、基板側からの金属
原子の成長層への混入についてもドープされた第1の多
結晶シリコン層が間に有るために第2の多結晶シリコン
層内では金属原子は検出されなかった。
As a result, P was hardly diffused into the second polycrystalline layer due to the interposition of the oxide layer, and the transition region was only about 2000 °. Furthermore, regarding the incorporation of metal atoms into the growth layer from the substrate side, no metal atoms were detected in the second polycrystalline silicon layer because the doped first polycrystalline silicon layer was present therebetween.

【0039】(実験5) 太陽電池の形成 実験4で得られた大粒径である第2の多結晶シリコンの
表面にイオン打ち込みによりBを20KeV,1×1015cm-2
条件で打ち込み、800℃,30minでアニールして
+ 層を形成した。このようにして作製したp+ /大粒
径である第2の多結晶シリコン/SiO2 /小粒径であ
る第1の多結晶シリコン(n+ )/Cr構造の太陽電池
についてAM1.5 (100mW/cm2)光照射下での
I−V特性について測定を行ったところ、セル面積0.16
cm2 で開放電圧0.40V、短絡光電流25mA/cm
2 、曲線因子0.68となり、変換効率6.8 %を得た。この
ように、金属基板上に形成した大粒径である第2の多結
晶シリコン薄膜を用いて良好な太陽電池が形成可能であ
ることが示された。
(Experiment 5) Formation of Solar Cell B was implanted into the surface of the second polycrystalline silicon having a large grain size obtained in Experiment 4 by ion implantation under the conditions of 20 KeV and 1 × 10 15 cm −2 . Annealing was performed at 800 ° C. for 30 minutes to form ap + layer. The solar cell having the structure of p + / second polycrystalline silicon having a large particle diameter / SiO 2 / first polycrystalline silicon (n + ) having a small particle diameter / Cr structure manufactured in this manner has AM1.5 ( 100 mW / cm 2 ) When the IV characteristics under light irradiation were measured, the cell area was 0.16.
cm 2 in the open-circuit voltage 0.40V, short-circuit photoelectric current 25mA / cm
2. The fill factor was 0.68, and a conversion efficiency of 6.8% was obtained. Thus, it was shown that a good solar cell can be formed using the second polycrystalline silicon thin film having a large grain size formed on a metal substrate.

【0040】以上述べた実験結果に基づいて完成に至っ
た本発明は前述した様に、金属基板上に光電流を発生す
る第2の多結晶シリコン層と該金属基板との電気的接触
を保つ第1の多結晶シリコン層とを備え、該第2のシリ
コン層と該第1のシリコン層との間には絶縁層を、かつ
該金属基板と小粒シリコン層との間には金属−シリコン
の中間層を有することを特徴とするシリコン多結晶太陽
電池およびその製造方法に係わるものである。
As described above, the present invention, which has been completed based on the experimental results described above, maintains electrical contact between the second polycrystalline silicon layer that generates a photocurrent on the metal substrate and the metal substrate. A first polycrystalline silicon layer, an insulating layer between the second silicon layer and the first silicon layer, and a metal-silicon layer between the metal substrate and the small silicon layer. The present invention relates to a polycrystalline silicon solar cell having an intermediate layer and a method for manufacturing the same.

【0041】図1に本発明の太陽電池の構成について示
す。金属基板101上に金属−シリコン中間層102、
高濃度にドープされた小粒径である第1の多結晶シリコ
ン層(n+ またはp+ 層)103、絶縁層104、第1
の多結晶シリコン層の結晶粒径より大粒径である第2の
多結晶シリコン層105が積層されており、第2の多結
晶シリコン層105の表面にはp+ またはn+ 層106
が形成されている。
FIG. 1 shows the structure of the solar cell of the present invention. A metal-silicon intermediate layer 102 on a metal substrate 101,
A first polycrystalline silicon layer (n.sup. + Or p.sup. + Layer) 103 having a small grain size doped at a high concentration, an insulating layer 104,
A second polycrystalline silicon layer 105 having a grain size larger than the crystal grain size of the polycrystalline silicon layer is stacked, and a p + or n + layer 106 is formed on the surface of the second polycrystalline silicon layer 105.
Are formed.

【0042】p+ またはn+ 層106の上には反射防止
膜を兼ねた透明電極107と集電電極108が備えられ
ている。本発明の太陽電池に使用される金属基板材料と
しては導電性が良好でシリコンとシリサイド等の化合物
を形成する任意の金属が用いられ、代表的なものとして
W,Mo,Cr等が挙げられる。もちろん、それ以外で
あっても表面に上述の性質を有する金属が付着している
ものであれば何でもよく、従って金属以外の安価な基板
も使用可能である。小粒径である第1の多結晶シリコン
層103の粒径としては絶縁層104に設けられる微小
開口部の寸法(a=1〜5μm)との兼ね合いから1〜
20μmとするのが適当であり、1.5 〜10μmとする
のが好ましい。絶縁層104の厚さについては特に規定
はないが、200Å〜1μmの範囲とするのが適当であ
る。また大粒径である第2の多結晶シリコン層105の
粒径および膜厚については太陽電池の特性上の要求とプ
ロセスの制約から、それぞれ20〜500μmが適当で
あり、好ましくはそれぞれ30〜500μmが望まし
い。尚ここでいう大粒径、小粒径の結晶とは第1の多結
晶層と第2の多結晶層とを比較した結晶粒の大きさのこ
とを示している。また、p+ またはn+ 層106の厚さ
としては導入される不純物の量にもよるが0.05〜1μm
の範囲とするのが適当であり、好ましくは0.1 〜0.5 μ
mとするのが望ましい。
On the p + or n + layer 106, a transparent electrode 107 also serving as an antireflection film and a current collecting electrode 108 are provided. As the metal substrate material used in the solar cell of the present invention, any metal having good conductivity and forming a compound such as silicon and silicide is used, and typical examples thereof include W, Mo, and Cr. Of course, any other material may be used as long as the metal having the above-mentioned properties is adhered to the surface, and an inexpensive substrate other than the metal can be used. The first polycrystalline silicon layer 103 having a small particle diameter has a particle diameter of 1 to 5 in consideration of the size (a = 1 to 5 μm) of the minute opening provided in the insulating layer 104.
The thickness is suitably 20 μm, and preferably 1.5 to 10 μm. Although there is no particular limitation on the thickness of the insulating layer 104, it is appropriate that the thickness be in the range of 200 to 1 μm. The diameter and thickness of the second polycrystalline silicon layer 105 having a large grain size are preferably 20 to 500 μm, and more preferably 30 to 500 μm, respectively, from the requirements on the characteristics of the solar cell and the process restrictions. Is desirable. Here, the crystals having a large grain size and a small grain size refer to the size of crystal grains obtained by comparing the first polycrystalline layer and the second polycrystalline layer. The thickness of the p + or n + layer 106 is 0.05 to 1 μm depending on the amount of impurities to be introduced.
And preferably 0.1 to 0.5 μm.
m is desirable.

【0043】次に図1に示す本発明の太陽電池の製造方
法について図21〜図27の製造工程図のプロセスに従
って述べる。まず、金属基板801上にLPCVD 装置等で
多結晶シリコン層802(但し図中では粒界を略して示
している。)を堆積させる。このとき堆積時にドーピン
グするか、または堆積後にイオン打ち込みあるいは熱拡
散により高濃度の不純物原子(例えばn型ならばP,P
型ならばB)を導入して過飽和状態にする(図21)。
Next, a method of manufacturing the solar cell of the present invention shown in FIG. 1 will be described with reference to the manufacturing process diagrams shown in FIGS. First, a polycrystalline silicon layer 802 (a grain boundary is omitted in the drawing) is deposited on a metal substrate 801 by an LPCVD apparatus or the like. At this time, doping is performed at the time of deposition, or high concentration of impurity atoms (for example, P, P for n-type) by ion implantation or thermal diffusion after deposition.
If it is a mold, B) is introduced to bring it into a supersaturated state (FIG. 21).

【0044】次に第1の多結晶シリコン層802の表面
に絶縁層(例えば熱酸化あるいは常圧CVD法による酸
化膜)803を形成する(図22)。800〜1100℃で
アニールして多結晶シリコン層802内に異常粒成長を
生じさせ第1の多結晶シリコン層802とし、また金属
基板801と第1の多結晶シリコン層802との間に金
属−シリコンの中間層(シリサイドあるいは化合物)8
04を形成する(図23)。絶縁層803に周期的に微
小の開口部805を設けて第1の多結晶シリコン層表面
を露出させ(図24)、選択的エピタキシャル成長法お
よび横方向成長法により微小開口部805から結晶成長
を行って大粒径シリコンを成長させ連続膜である第2の
多結晶シリコン層806を得る(図25)。イオン打ち
込み、あるいは不純物拡散等により成長結晶表面にp+
またはn+ 層807を形成し(図26)、最後に透明導
電膜808/集電電極809を設ける(図27)。
Next, an insulating layer (for example, an oxide film formed by thermal oxidation or normal pressure CVD) 803 is formed on the surface of the first polycrystalline silicon layer 802 (FIG. 22). Annealing is performed at 800 to 1100 ° C. to cause abnormal grain growth in the polycrystalline silicon layer 802 to form a first polycrystalline silicon layer 802, and a metal layer between the metal substrate 801 and the first polycrystalline silicon layer 802. Silicon intermediate layer (silicide or compound) 8
04 is formed (FIG. 23). Small openings 805 are periodically provided in the insulating layer 803 to expose the surface of the first polycrystalline silicon layer (FIG. 24), and crystal growth is performed from the small openings 805 by selective epitaxial growth and lateral growth. To grow a large grain size silicon to obtain a second polycrystalline silicon layer 806 as a continuous film (FIG. 25). P + is added to the grown crystal surface by ion implantation or impurity diffusion.
Alternatively, an n + layer 807 is formed (FIG. 26), and finally a transparent conductive film 808 / current collecting electrode 809 is provided (FIG. 27).

【0045】金属基板上に多結晶シリコンを堆積させる
方法としては、LPCVD 法、プラズマCVD法、蒸着法、
スパッタ法等何でもよいが一般的にはLPCVD 法が用いら
れる。第1の多結晶シリコン層の厚さは、成長させる異
常粒の大きさや基板からの金属原子の拡散の抑制等の要
因によって決められるが、概ね0.1 〜1.0 μmの範囲が
適当である。
As a method of depositing polycrystalline silicon on a metal substrate, LPCVD, plasma CVD, vapor deposition,
Any method such as a sputtering method may be used, but an LPCVD method is generally used. The thickness of the first polycrystalline silicon layer is determined by factors such as the size of the abnormal grains to be grown and suppression of diffusion of metal atoms from the substrate, but is preferably in the range of about 0.1 to 1.0 μm.

【0046】また、基板上に形成する多結晶シリコンは
これに替えてアモルファスシリコン(a−Si)、微結
晶シリコン(μc−Si)等の非晶質相を含むシリコン
層を用いてもよく、この層に不純物を導入して過飽和状
態とすることにより同様に異常粒を成長させ第1の多結
晶シリコン層とすることができる。
In place of the polycrystalline silicon formed on the substrate, a silicon layer containing an amorphous phase such as amorphous silicon (a-Si) or microcrystalline silicon (μc-Si) may be used. By introducing impurities into this layer to bring it into a supersaturated state, abnormal grains can be similarly grown to form a first polycrystalline silicon layer.

【0047】また上記の第1の多結晶シリコンまたはa
−Si,μc−Si等のシリコンに対して異常粒成長を
行なわせる目的で導入される不純物としてはn型では
P,As,Sn等が、p型ではB,Al等が選ばれる。
導入される不純物量としては所望の異常粒の大きさおよ
びアニール処理条件によって適宜決められるが概ね4×
1020cm-3以上である。
The first polycrystalline silicon or a
As impurities introduced for the purpose of causing abnormal grain growth to silicon such as -Si, μc-Si, etc., P, As, Sn, etc. are selected for n-type and B, Al, etc. are selected for p-type.
The amount of impurities to be introduced is appropriately determined depending on the desired size of abnormal grains and annealing conditions, but is generally about 4 ×.
10 20 cm -3 or more.

【0048】金属基板と多結晶シリコン層との間のオー
ミックコンタクトを形成する金属−シリコンの中間層を
形成するためのアニール温度は、異常粒を形成するため
のアニール温度よりも低いため、前述したように異常粒
を形成するためのアニールと同時に形成することによっ
て工程の簡略化が図れるが別の工程として行ってもよい
ことは言うまでもない。
Since the annealing temperature for forming the metal-silicon intermediate layer for forming an ohmic contact between the metal substrate and the polycrystalline silicon layer is lower than the annealing temperature for forming abnormal grains, the above-described process is performed. As described above, the process can be simplified by performing the annealing at the same time as the annealing for forming the abnormal grains. However, it goes without saying that the process may be performed as another process.

【0049】本発明の太陽電池において、多結晶シリコ
ンまたはa−Si,μc−Si等のシリコン層の上に形
成される絶縁層としては、選択結晶成長中に核発生を抑
制する点からその表面での核形成密度がシリコンのそれ
に比べてかなり小さいような材質が用いられる。例え
ば、SiO2,Si3N4 等が代表的なものとして使用される。
本発明において上述の異常粒成長させた多結晶シリコン
を種結晶として大粒径シリコン層を成長させる目的で用
いられる選択的結晶成長を行なう手法としてはLPCVD
法、プラズマCVD法、光CVD法等があるが一般的に
はLPCVD 法が用いられる。
In the solar cell of the present invention, the insulating layer formed on the polycrystalline silicon or the silicon layer of a-Si, μc-Si or the like is formed on the surface thereof in order to suppress nucleation during selective crystal growth. A material whose nucleation density is much smaller than that of silicon is used. For example, SiO 2 , Si 3 N 4 and the like are typically used.
In the present invention, LPCVD is used as a selective crystal growth technique used for growing a large grain silicon layer using the above-described abnormal grain grown polycrystalline silicon as a seed crystal.
, A plasma CVD method, a photo CVD method and the like, but an LPCVD method is generally used.

【0050】本発明に使用される選択的結晶成長用の原
料ガスとしてはSiH2Cl2 ,SiCl4 ,SiHCl3,SiH4,Si2H
6 ,SiH2F2,Si2F6 等のシラン類およびハロゲン化シラ
ン類が代表的なものとして挙げられる。またキャリアガ
スとして、あるいは結晶成長を促進させる還元雰囲気を
得る目的で前記の原料ガスに加えてH2 が添加される。
前記原料ガスと水素との導入量の割合は形成方法および
原料ガスの種類や絶縁層の材質、さらに形成条件により
適宜所望に従って決められるが、好ましくは1:10以
上、1:1000以下が適当であり、より好ましくは
1:20以上、1:800以下とするのが望ましい。
The source gas for selective crystal growth used in the present invention is SiH 2 Cl 2 , SiCl 4 , SiHCl 3 , SiH 4 , Si 2 H
6 , silanes such as SiH 2 F 2 and Si 2 F 6 and halogenated silanes are typical examples. H 2 is added as a carrier gas or in addition to the above-mentioned source gas for the purpose of obtaining a reducing atmosphere for promoting crystal growth.
The ratio of the introduction amount of the source gas and hydrogen is appropriately determined as desired depending on the forming method, the type of the source gas, the material of the insulating layer, and the formation conditions, but is preferably 1:10 or more and 1: 1000 or less. Yes, more preferably 1:20 or more and 1: 800 or less.

【0051】本発明において、絶縁層上での核の発生を
抑制する目的でHClが用いられるが、原料ガスに対す
るHClの添加量は形成方法および原料ガスの種類や絶
縁層の材質、さらに形成条件により適宜所望に従って決
められるが、概ね1:0.1 以上、1:100以下が適当
であり、より好ましくは1:0.2 以上、1:80以下と
されるのが望ましい。
In the present invention, HCl is used for the purpose of suppressing generation of nuclei on the insulating layer. The amount of HCl added to the source gas depends on the forming method, the type of the source gas, the material of the insulating layer, and the forming conditions. Is appropriately determined as desired, but it is generally appropriate that the ratio be 1: 0.1 or more and 1: 100 or less, more preferably 1: 0.2 or more and 1:80 or less.

【0052】本発明において選択的結晶成長が行われる
温度および圧力としては、形成方法および使用する原料
ガスの種類、原料ガスとH2 およびHClとの流量比等
の形成条件によって異なるが、温度については例えば通
常のLPCVD 法では概ね600℃以上1250℃以下が適当で
あり、より好ましくは650℃以上1200℃以下に制御さ
れるのが望ましい。またプラズマCVD法等の低温プロ
セスでは概ね200℃以上600℃以下が適当であり、
より好ましくは200℃以上500℃以下に制御される
のが望ましい。
The temperature and pressure at which the selective crystal growth is carried out in the present invention vary depending on the forming method, the kind of the raw material gas used, the flow rate ratio between the raw material gas and H 2 and HCl, and the like. For example, in a normal LPCVD method, it is appropriate that the temperature is suitably about 600 ° C. or more and 1250 ° C. or less, more preferably, 650 ° C. or more and 1200 ° C. or less. In a low-temperature process such as a plasma CVD method, a temperature of approximately 200 ° C. to 600 ° C. is appropriate.
More preferably, the temperature is controlled to be 200 ° C. or more and 500 ° C. or less.

【0053】同様に圧力については概ね10-2Torr〜76
0Torrが適当であり、より好ましくは10-1Torr〜760
Torrの範囲が望ましい。
Similarly, the pressure is about 10 -2 Torr to 76
0 Torr is appropriate, and more preferably 10 -1 Torr to 760.
A Torr range is desirable.

【0054】選択的結晶成長法としてプラズマCVD法
等の低温プロセスを用いる場合には基板に付与される熱
エネルギー以外に原料ガスの分解または基板表面での結
晶成長促進の目的で補助エネルギーが付与される。例え
ばプラズマCVD法の場合には一般に高周波エネルギー
が用いられ、光CVD法の場合には紫外光エネルギーが
用いられる。補助エネルギーの強度としては形成方法お
よび形成条件によって異なるが、高周波エネルギーにつ
いては高周波放電パワー20〜100W、紫外光エネル
ギーにおいてはエネルギー密度20〜500mW/cm2
いった値が適当であり、より好ましくは高周波放電パワ
ー30〜100W、紫外光エネルギー密度20〜400
mW/cm2 とするのが望ましい。
When a low-temperature process such as a plasma CVD method is used as the selective crystal growth method, auxiliary energy is applied for the purpose of decomposing a source gas or promoting crystal growth on the substrate surface, in addition to the thermal energy applied to the substrate. You. For example, high frequency energy is generally used in the case of the plasma CVD method, and ultraviolet light energy is used in the case of the optical CVD method. Although the intensity of the auxiliary energy varies depending on the forming method and the forming conditions, the high-frequency energy is suitably a high-frequency discharge power of 20 to 100 W, and the ultraviolet light energy is preferably an energy density of 20 to 500 mW / cm 2 , more preferably Discharge power 30 to 100 W, ultraviolet energy density 20 to 400
Desirably, it is set to mW / cm 2 .

【0055】また本発明の方法により形成される多結晶
薄膜は結晶成長中、あるいは成長後に不純物元素でドー
ピングして接合を形成することが可能である。使用する
不純物元素としては、p型不純物として、周期律表第II
I 族Aの元素、例えばB,Al,Ga,In等が好適な
ものとして挙げられ、n型不純物としては、周期律表第
V族Aの元素、例えばP,As,Sb,Bi等が好適な
ものとして挙げられるが、特にB,Ga,P,Sb等が
最適である。ドーピングされる不純物の量は、所望され
る電気的特性に応じて適宜決定される。
Further, the polycrystalline thin film formed by the method of the present invention can form a junction by doping with an impurity element during or after crystal growth. The impurity element to be used is a p-type impurity,
Suitable elements include Group I elements such as B, Al, Ga, and In. Examples of the n-type impurities include Group V elements such as P, As, Sb, and Bi. In particular, B, Ga, P, Sb, etc. are most suitable. The amount of the impurity to be doped is appropriately determined according to the desired electrical characteristics.

【0056】かかる不純物元素を成分として含む物質
(不純物導入用物質)としては、常温常圧でガス状態で
あるか、または適宜の気化装置で容易に気化し得る化合
物を選択するのが好ましい。この様な化合物としては、
PH3 ,P2H4,PF3 ,PF5 ,PCl3,AsH3,AsF3,AsF5,As
Cl3 ,SbH3,SbF5,BF3 ,BCl3,BBr3,B2H6,B4H10
B5H9,B5H11 ,B6H10 ,B6H12 ,AlCl3 等を挙げること
ができる。不純物元素を含む化合物は、1種用いても2
種以上併用してもよい。
As a substance containing such an impurity element as a component (impurity introduction substance), it is preferable to select a compound which is in a gaseous state at normal temperature and normal pressure or a compound which can be easily vaporized by an appropriate vaporizer. Such compounds include:
PH 3, P 2 H 4, PF 3, PF 5, PCl 3, AsH 3, AsF 3, AsF 5, As
Cl 3, SbH 3, SbF 5 , BF 3, BCl 3, BBr 3, B 2 H 6, B 4 H 10,
B 5 H 9, B 5 H 11, B 6 H 10, B 6 H 12, AlCl 3 and the like. Even if one kind of compound containing an impurity element is used,
More than one species may be used in combination.

【0057】本発明の太陽電池の製造法に用いられる選
択的結晶成長法を行う際に絶縁層に設けられる開口部の
形状については特に規定はないが、正方形、円などが代
表的なものとして挙げられる。開口部の大きさとして
は、成長する山型単結晶体のファセットは実験1で示し
たように開口部が大きくなるにつれて崩れていく、すな
わち結晶性が悪くなる傾向があり、ファセットの崩れを
抑えるために数μm以下とするのが望ましい。現実的に
はフォトリソグラフィーのパターン精度に依るため、形
状が正方形とした場合に、aは1μm以上5μm以下が
適当となる。また、開口部の設けられる間隔bとして
は、成長させる種結晶の大きさを考慮して10μm以上
500μm以内とするのが適当である。
The shape of the opening provided in the insulating layer when performing the selective crystal growth method used in the method of manufacturing the solar cell of the present invention is not particularly limited, but a square, a circle, and the like are typical. No. Regarding the size of the opening, the facet of the growing mountain-shaped single crystal body collapses as the opening increases as shown in Experiment 1, that is, the crystallinity tends to deteriorate, and the collapse of the facet is suppressed. Therefore, it is desirable that the thickness be several μm or less. Actually, since it depends on the pattern accuracy of photolithography, when the shape is a square, a is appropriately 1 μm or more and 5 μm or less. Further, it is appropriate that the interval b at which the openings are provided is set to 10 μm or more and 500 μm or less in consideration of the size of the seed crystal to be grown.

【0058】また本発明の太陽電池の型については特に
限定はなく、前述の実験例や後述の実施例で示すよう
に、ショットキー型、MlS型、pn接合型、pin接
合型、ヘテロ接合型、タンデム型等あらゆる構造につい
て適用できる。
The type of the solar cell of the present invention is not particularly limited. As shown in the above-mentioned experimental examples and examples described later, Schottky type, Mls type, pn junction type, pin junction type, hetero junction type , Tandem type, etc.

【0059】[0059]

【実施例】以下、本発明を実施して所望の太陽電池を形
成するところをより詳細に説明するが、本発明はこれら
の実施例に何ら限定されるものではない。
Hereinafter, the formation of a desired solar cell by carrying out the present invention will be described in more detail, but the present invention is not limited to these examples.

【0060】(実施例1)前述したように、実験2〜5
と同様にして図1に示したような金属基板上の大粒径多
結晶シリコンpin型太陽電池を作製した。図21〜図
27にその作製プロセスを示す。基体としての金属基板
には厚さ0.9mm のMo板を用いた。この上に図20に示
すLPCVD 装置を用いてSiH4を630℃で熱分解して0.4
μm多結晶シリコンを堆積させた。
Example 1 As described above, Experiments 2 to 5
A large grain polycrystalline silicon pin type solar cell on a metal substrate as shown in FIG. 21 to 27 show the manufacturing process. An Mo plate having a thickness of 0.9 mm was used as a metal substrate as a base. Then, SiH 4 was thermally decomposed at 630 ° C. using an LPCVD apparatus shown in FIG.
μm polycrystalline silicon was deposited.

【0061】次にこの多結晶シリコンの表面にリンガラ
スを堆積させて不純物拡散を行なった。リンガラスの堆
積条件を表3に示す。リンガラス堆積直後に温度を95
0℃のままにしてN2 雰囲気中で5分間ドライブした。
このとき多結晶シリコン中に導入されたPの量は約6×
1020cm-3であった。
Next, phosphorus glass was deposited on the surface of the polycrystalline silicon to diffuse impurities. Table 3 shows the deposition conditions of the phosphorus glass. Immediately after deposition of phosphorus glass,
The apparatus was driven in an N 2 atmosphere for 5 minutes while being kept at 0 ° C.
At this time, the amount of P introduced into the polycrystalline silicon is about 6 ×
It was 10 20 cm -3 .

【0062】不純物拡散が終了した後にHF:H2O =1 :
10のHF水溶液でリンガラスを除去し、熱酸化により多結
晶シリコンの表面にSiO2層を1000Å形成した。次に1000
℃4時間の条件でアニール処理を行い、異常粒成長をさ
せた。これにより結晶粒径は約3μmである第1の多結
晶シリコン層を得た。
After the impurity diffusion is completed, HF: H 2 O = 1:
Phosphorus glass was removed with a 10 HF aqueous solution, and a SiO 2 layer was formed on the surface of the polycrystalline silicon by thermal oxidation to a thickness of 1000Å. Then 1000
Annealing was performed at 4 ° C. for 4 hours to cause abnormal grain growth. Thereby, a first polycrystalline silicon layer having a crystal grain size of about 3 μm was obtained.

【0063】表 3 また金属/多結晶シリコン層の界面ではMoSi2 が形成さ
れていることが同一条件で作製した別のサンプルから確
認された。
Table 3 In addition, it was confirmed from another sample manufactured under the same conditions that MoSi 2 was formed at the interface between the metal and the polycrystalline silicon layer.

【0064】SiO2層に開口部をa=2μm、b=50μ
mの間隔で周期的に設け、図20のLPCVD 装置により表
4の連続条件で選択結晶成長を行い大粒径である第2の
多結晶シリコンからなる連続薄膜を得た。このとき得ら
れたシリコン薄膜の粒径と膜厚はともに約50μmであ
った。
In the SiO 2 layer, openings are a = 2 μm, b = 50 μm
Then, selective crystal growth was performed under the continuous conditions shown in Table 4 by the LPCVD apparatus shown in FIG. 20 to obtain a continuous thin film made of second polycrystalline silicon having a large grain size. The particle size and thickness of the silicon thin film obtained at this time were both about 50 μm.

【0065】この大粒径である第2の多結晶シリコン層
の表面にイオン打ち込みによりBを20KeV ,1×1015cm
-2の条件で打ち込み、表 4 800 ℃,30min でアニールしてp+ 層を形成した。最
後にEB(Electron Beam ) 蒸着によりITO透明導電膜
/集電電極(Cr/Ag/Cr)をp+ 層上に形成した。
B is applied to the surface of the second polycrystalline silicon layer having a large grain size by ion implantation to make B 20 KeV, 1 × 10 15 cm.
Driving -2 of conditions, Table 4 Annealing was performed at 800 ° C. for 30 minutes to form ap + layer. Finally, an ITO transparent conductive film / collecting electrode (Cr / Ag / Cr) was formed on the p + layer by EB (Electron Beam) evaporation.

【0066】このようにして得られたp+ /大粒径多結
晶シリコン/SiO2/n+ 小粒径多結晶シリコン/Cr構
造の太陽電池についてAM1.5 (100mW /cm2 )光照射下
でのI−V特性について測定したところ、セル面積0.25
cm2で開放電圧0.42V 、短絡電流26mA/cm2 、曲線因子
0.66となり、エネルギー変換効率7.2 %を得た。
The thus obtained solar cell having a p + / large grain size polycrystalline silicon / SiO 2 / n + small grain size polycrystalline silicon / Cr structure was irradiated with AM1.5 (100 mW / cm 2 ) light. Was measured for IV characteristics at a cell area of 0.25
Open voltage 0.42V in cm 2 , short circuit current 26mA / cm 2 , fill factor
It was 0.66, and the energy conversion efficiency was 7.2%.

【0067】このような特性は再現性良く得られ、小粒
径多結晶シリコン層を用いないで直接金属基板上に大粒
径多結晶シリコンを成長させた太陽電池に比べて特性の
バラツキは大幅に改善された。表5に小粒径多結晶シリ
コン層の有無による特性のバラツキの様子を示す。
Such characteristics can be obtained with good reproducibility, and the variation in characteristics is large as compared with a solar cell in which large-grain polycrystalline silicon is grown directly on a metal substrate without using a small-grain polycrystalline silicon layer. Was improved. Table 5 shows how the characteristics vary depending on the presence or absence of the small grain size polycrystalline silicon layer.

【0068】表 5 このように金属基板上に成長させた大粒径シリコン層を
用いて良好な特性を示す多結晶太陽電池が作製出来た。
Table 5 Thus, a polycrystalline solar cell exhibiting good characteristics was produced using the large grain silicon layer grown on the metal substrate.

【0069】(実施例2)実施例1と同様にしてアモル
ファスシリコンカーバイト/多結晶シリコンヘテロ型太
陽電池を作製した。金属基板にはCrを用い、その上に
プラズマCVD法でSiH4+AsH3の分解により微結晶を含
む第1のシリコン層を0.4 μm堆積した。このときのド
ーピング量はAsH3/SiH4=1.6 ×10-2(流量比)とし
た。
Example 2 An amorphous silicon carbide / polycrystalline silicon hetero-type solar cell was produced in the same manner as in Example 1. Cr was used as a metal substrate, and a first silicon layer containing microcrystals was deposited thereon by plasma CVD to a thickness of 0.4 μm by decomposition of SiH 4 + AsH 3 . The doping amount at this time was AsH 3 / SiH 4 = 1.6 × 10 -2 (flow rate ratio).

【0070】常圧CVD法によりシリコン層の上にSiO2
膜を500Å堆積させ、開口部は大きさをa=1.2 μ
m、b=50μmの間隔で設けた。LPCVD 法により表6
の条件で選択結晶成長を行い、大粒径である第2のシリ
コン層を形成した。図13〜図19に作製したヘテロ型
太陽電池のプロセスを示す。ただし602においては結
晶粒界を省略している。実施例1で示した図21〜図2
7の場合とほとんど同じであるが、図17においてp+
層807の代わりにp型アモルファスシリコンカーバイ
ト607が多結晶シリコン上に形成される。
An SiO 2 layer was formed on the silicon layer by a normal pressure CVD method.
A film is deposited at 500 °, and the opening has a size of a = 1.2 μm.
m and b were provided at intervals of 50 μm. Table 6 by LPCVD method
Selective crystal growth was performed under the conditions described above to form a second silicon layer having a large grain size. 13 to 19 show processes of the manufactured hetero solar cell. However, in 602, crystal grain boundaries are omitted. 21 and 2 shown in the first embodiment.
7, but p + in FIG.
Instead of the layer 807, a p-type amorphous silicon carbide 607 is formed on the polycrystalline silicon.

【0071】表 6 p型アモルファスシリコンカーバイト層607は通常の
プラズマCVD装置により、表6に示す条件で多結晶シ
リコン表面上に100Å堆積させた。この時のアモルフ
ァスシリコンカーバイト膜の暗導電率は〜10-2S・cm-1
であり、CとSiの膜中の組成比は2:3であった。
Table 6 The p-type amorphous silicon carbide layer 607 was deposited on the surface of the polycrystalline silicon at 100 ° by a usual plasma CVD apparatus under the conditions shown in Table 6. At this time, the dark conductivity of the amorphous silicon carbide film is about 10 −2 S · cm −1.
And the composition ratio of C and Si in the film was 2: 3.

【0072】また、透明導電膜608としてはITOを
約1000Å電子ビーム蒸着して形成した。
Further, the transparent conductive film 608 was formed by electron beam evaporation of ITO at about 1000 °.

【0073】このようにして得られたアモルファスシリ
コンカーバイト/多結晶シリコンヘテロ型太陽電池のA
M1.5 光照射下でのI−V特性の測定を行ったところ
(セル面積0.16cm2 )、開放電圧0.49V 、短絡光電流2
1.5mA/cm2 、曲線因子0.55となり、変換効率5.8 %と
いう高い値が得られた。これは従来のスライスした多結
晶基板を用いたアモルファスシリコンカーバイト/多結
晶シリコンヘテロ型太陽電池に比べて遜色のない結果と
なっている。
A of the amorphous silicon carbide / polycrystalline silicon hetero solar cell thus obtained
M1.5 Measurement of IV characteristics under light irradiation (cell area 0.16 cm 2 ), open-circuit voltage 0.49 V, short-circuit photocurrent 2
1.5 mA / cm 2 and a fill factor of 0.55 were obtained, and a high value of 5.8% in conversion efficiency was obtained. This is comparable to a conventional amorphous silicon carbide / polycrystalline silicon hetero-type solar cell using a sliced polycrystalline substrate.

【0074】(実施例3)実施例1と同様にして図1に
示すようなpin型多結晶太陽電池を作製した。前述し
たようにMo基板上に多結晶シリコンを堆積させ、表面
にリンガラスを析出させて不純物拡散を行なった。HF
水溶液でリンガラスを除去した後にSiO2に替えて通常の
LPCVD 装置で多結晶シリコンの表面にSi3N4 を1000Å堆
積し、1050℃,3時間の条件でアニール処理を行い、異
常粒成長をさせた。この様にして結晶粒径は約3.2 μm
の第1の多結晶シリコン層を得た。
Example 3 A pin-type polycrystalline solar cell as shown in FIG. 1 was produced in the same manner as in Example 1. As described above, polycrystalline silicon was deposited on the Mo substrate, and phosphorus glass was deposited on the surface to diffuse impurities. HF
After removing phosphorus glass with aqueous solution, replace with SiO 2
1000 L of Si 3 N 4 was deposited on the surface of polycrystalline silicon using an LPCVD apparatus, and annealed at 1050 ° C. for 3 hours to grow abnormal grains. In this way, the grain size is about 3.2 μm
Of the first polycrystalline silicon layer was obtained.

【0075】Si3N4 層に開口部をa=1.2 μmとし、b
=100 μmの間隔で周期的に設け、図20のLPCVD 装置
により表7の連続成長条件で選択的結晶成長を行い大粒
径である第2の多結晶シリコンからなる連続薄膜を得
た。
The opening is made a = 1.2 μm in the Si 3 N 4 layer, and b
= 100 μm periodically, and selective crystal growth was performed by the LPCVD apparatus of FIG. 20 under the continuous growth conditions shown in Table 7, to obtain a continuous thin film made of second polycrystalline silicon having a large grain size.

【0076】表 7 このとき表7の条件において選択的結晶成長中に微量の
不純物を混入させてドーピングを行なった。不純物とし
てPH3 を用い、原料ガスSiH2Cl2 に対してPH3 /SiH2Cl
2 =2 ×10-6とした。また得られたシリコン薄膜の粒径
と膜厚はともに約90μmであった。
Table 7 At this time, doping was performed by mixing a small amount of impurities during the selective crystal growth under the conditions shown in Table 7. PH 3 was used as an impurity, and PH 3 / SiH 2 Cl was used for the raw material gas SiH 2 Cl 2 .
2 = 2 × 10 −6 . The particle diameter and thickness of the obtained silicon thin film were both about 90 μm.

【0077】p+ 層を形成するためにAlを大粒径シリ
コンの表面に真空蒸着してRTA (Rapid Thermal Anneal
ing )処理を行なった。蒸着したAlの膜厚は600Å
であり、RTA 処理の条件は800℃、15秒で行なっ
た。
In order to form ap + layer, Al is vacuum-deposited on the surface of silicon having a large particle diameter, and RTA (Rapid Thermal Anneal).
ing) Processing was performed. The thickness of the deposited Al is 600Å
The RTA treatment was performed at 800 ° C. for 15 seconds.

【0078】最後に反射防止膜を兼ねた透明導電膜ITO
を約1000Å電子ビーム蒸着して形成し、さらにその上に
集電電極としてCrを1μm真空蒸着した。
Finally, a transparent conductive film ITO also serving as an anti-reflection film
Was formed by electron beam evaporation at about 1000 °, and Cr was vacuum-deposited thereon as a current collecting electrode to a thickness of 1 μm.

【0079】このようにして作製したpin型多結晶太
陽電池AM1.5 光照射下でのI−V特性を調べたとこ
ろ、セル面積0.16cm2 で開放電圧0.47V 、短絡光電流28
mA/cm2 曲線因子0.67となり、8.8 %という高い変換効
率が得られた。
When the IV characteristics of the pin type polycrystalline solar cell AM1.5 thus manufactured under light irradiation were examined, an open circuit voltage of 0.47 V, a short-circuit photocurrent of 28 and a cell area of 0.16 cm 2 were obtained.
The mA / cm 2 fill factor was 0.67, and a high conversion efficiency of 8.8% was obtained.

【0080】(実施例4)実施例1〜3と同様にして図
1に示すようなnip型多結晶太陽電池を作製した。Cr
基板上に図20に示すLPCVD 装置を用いてSiH4を630
℃で熱分解して0.4 μm多結晶シリコンを堆積させた。
この多結晶シリコンの表面にBを打ち込みエネルギー20
KeV 、ドーズ量 2×1016cm-2の条件でイオン打ち込みを
行い、不純物濃度を5 ×1020cm-3とした。常圧CVD装
置によりSiO2膜を800 Å堆積させ、1000℃、5時間のア
ニール条件で多結晶シリコン中の異常粒成長をさせた。
そして第1の多結晶シリコン層を形成した。この後、Si
O2層に開口部をa=1.2 μm、b=50μmの間隔で周
期的に設け、LPCVD 法により表4の条件で選択結晶成長
を行い、大粒径である第2の多結晶シリコンからなる薄
膜層を得た。大粒径多結晶シリコン層の表面にイオン打
ち込みでPを50KeV 、1×1015cm-2の条件で打ち込み、
800℃, 30minでアニールしてn+ 層を形成した。最
後に実施例4と同様にしてITO/集電電極を形成して
太陽電池の作製を完了した。このようにして作製したn
ip型多結晶太陽電池のAM1.5 光照射下でのI−V特性
を調べたところ、セル面積0.16cm2 で開放電圧0.46V 、
短絡光電流26mA/cm2、曲線因子0.69となり、変換効率
8.3 %を得た。以上述べたように、本発明によれば、小
粒径多結晶シリコン層を種結晶としてその上に大粒径多
結晶シリコン層を形成することにより金属基板上に高品
質な多結晶シリコン層が形成できることから、量産性の
ある安価な太陽電池が製造されることが示された。
Example 4 A nip-type polycrystalline solar cell as shown in FIG. 1 was produced in the same manner as in Examples 1-3. Cr
630 of SiH 4 was formed on the substrate by using the LPCVD apparatus shown in FIG.
Pyrolysis at ℃ deposited 0.4 μm polycrystalline silicon.
B is implanted on the surface of this polycrystalline silicon and the energy is 20
Ion implantation was performed under the conditions of KeV and a dose of 2 × 10 16 cm −2 , and the impurity concentration was set to 5 × 10 20 cm −3 . An SiO 2 film was deposited at 800 ° C. by a normal pressure CVD apparatus, and abnormal grains were grown in polycrystalline silicon under an annealing condition of 1000 ° C. for 5 hours.
Then, a first polycrystalline silicon layer was formed. After this, Si
Openings are periodically provided at intervals of a = 1.2 μm and b = 50 μm in the O 2 layer, and selective crystal growth is performed by the LPCVD method under the conditions shown in Table 4, and is made of second polycrystalline silicon having a large grain size. A thin film layer was obtained. The P in ion implantation on the surface of the large-grain polycrystalline silicon layer implanted with 50KeV, 1 × 10 15 cm- 2 conditions,
Annealing was performed at 800 ° C. for 30 minutes to form an n + layer. Finally, an ITO / collecting electrode was formed in the same manner as in Example 4 to complete the manufacture of the solar cell. N produced in this way
When the IV characteristics of the ip-type polycrystalline solar cell under AM1.5 light irradiation were examined, the open area voltage was 0.46 V, the cell area was 0.16 cm 2 ,
Short-circuit photocurrent 26 mA / cm 2 , fill factor 0.69, conversion efficiency
8.3% was obtained. As described above, according to the present invention, a high-quality polysilicon layer is formed on a metal substrate by forming a large-grain polysilicon layer on a small-grain polysilicon layer as a seed crystal. Since it can be formed, it was shown that an inexpensive solar cell with mass productivity can be manufactured.

【0081】[0081]

【発明の効果】以上述べてきたように、本発明によれ
ば、特性の良好な多結晶太陽電池を金属基板上に形成す
ることが可能となった。これにより、量産性のある安価
で良質の太陽電池を市場に提供することができるように
なった。
As described above, according to the present invention, a polycrystalline solar cell having good characteristics can be formed on a metal substrate. This has made it possible to provide mass-produced inexpensive and high-quality solar cells to the market.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法により作製したpin型太陽電池
の断面図である。
FIG. 1 is a cross-sectional view of a pin solar cell manufactured by a method of the present invention.

【図2】異常粒成長について説明した図である。FIG. 2 is a diagram illustrating abnormal grain growth.

【図3】異常粒成長について説明した図である。FIG. 3 is a diagram illustrating abnormal grain growth.

【図4】異常成長させた多結晶シリコンを種結晶として
選択的結晶成長法により大粒径多結晶シリコンを成長さ
せている様子を示した図である。
FIG. 4 is a diagram showing a state in which large-grain-size polycrystalline silicon is grown by a selective crystal growth method using polycrystalline silicon that has been abnormally grown as a seed crystal.

【図5】異常成長させた多結晶シリコンを種結晶として
選択的結晶成長法により大粒径多結晶シリコンを成長さ
せている様子を示した図である。
FIG. 5 is a diagram showing a state in which large grain polycrystalline silicon is grown by a selective crystal growth method using abnormally grown polycrystalline silicon as a seed crystal.

【図6】異常成長させた多結晶シリコンを種結晶として
選択的結晶成長法により大粒径多結晶シリコンを成長さ
せている様子を示した図である。
FIG. 6 is a diagram showing a state in which large grain polycrystalline silicon is grown by a selective crystal growth method using polycrystalline silicon that has been abnormally grown as a seed crystal.

【図7】選択的結晶成長法について説明した図である。FIG. 7 is a diagram illustrating a selective crystal growth method.

【図8】選択的結晶成長法について説明した図である。FIG. 8 is a diagram illustrating a selective crystal growth method.

【図9】選択的結晶成長法について説明した図である。FIG. 9 is a diagram illustrating a selective crystal growth method.

【図10】選択的結晶成長法について説明した図であ
る。
FIG. 10 is a diagram illustrating a selective crystal growth method.

【図11】選択的結晶成長法において山型結晶が三次元
的に成長していく過程を説明した図である。
FIG. 11 is a diagram illustrating a process in which a mountain-shaped crystal grows three-dimensionally in a selective crystal growth method.

【図12】選択的結晶成長法において山型結晶が三次元
的に成長していく過程を説明した図である。
FIG. 12 is a diagram illustrating a process in which a mountain-shaped crystal grows three-dimensionally in a selective crystal growth method.

【図13】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 13 is a view showing a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図14】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 14 is a diagram showing a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図15】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 15 is a view showing a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図16】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 16 is a view showing a process of manufacturing a hetero-type solar cell manufactured by the method of the present invention.

【図17】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 17 is a diagram showing a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図18】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 18 is a diagram illustrating a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図19】本発明の方法により作製したヘテロ型太陽電
池の製造工程を示した図である。
FIG. 19 is a diagram showing a manufacturing process of a hetero solar cell manufactured by the method of the present invention.

【図20】本発明の太陽電池の製造過程において使用し
たLPCVD 装置の概略図である。
FIG. 20 is a schematic view of an LPCVD apparatus used in the manufacturing process of the solar cell of the present invention.

【図21】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 21 is a diagram illustrating a manufacturing process of the pin solar cell of FIG.

【図22】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 22 is a diagram illustrating a manufacturing process of the pin solar cell of FIG.

【図23】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 23 is a view illustrating a manufacturing process of the pin solar cell of FIG. 1;

【図24】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 24 is a view illustrating a manufacturing process of the pin solar cell of FIG. 1;

【図25】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 25 is a diagram illustrating a manufacturing process of the pin solar cell of FIG. 1;

【図26】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 26 is a diagram illustrating a manufacturing process of the pin solar cell of FIG. 1;

【図27】図1のpin型太陽電池の製造工程を説明し
た図である。
FIG. 27 is a view illustrating a manufacturing process of the pin solar cell of FIG. 1;

【図28】不純物ドープした多結晶シリコン膜において
アニール温度を変えたときの結晶粒径の変化を示す特性
図である。
FIG. 28 is a characteristic diagram showing a change in crystal grain size when an annealing temperature is changed in an impurity-doped polycrystalline silicon film.

【符号の説明】[Explanation of symbols]

101 金属基板、201 金属基板、301 金属基
板、601 金属基板、801 金属基板、103 多
結晶シリコン層、202 多結晶シリコン層、303
多結晶シリコン層、602 多結晶シリコン層、802
多結晶シリコン層、102 金属−シリコン中間層、
203 金属−シリコン中間層、302 金属−シリコ
ン中間層、604 金属−シリコン中間層、804 金
属−シリコン中間層、104 絶縁層、304 絶縁
層、402 絶縁層、603 絶縁層、803絶縁層、
105 シリコン結晶体、305 シリコン結晶体、4
04 シリコン結晶体、606 シリコン結晶体、80
6 シリコン結晶体、106 p+ 層またはn+ 層、8
07 p+ 層またはn+ 層、607 p型アモルファス
シリコンカーバイト、107 透明導電層、608 透
明導電層、808 透明導電層、108 集電電極、6
09 集電電極、809 集電電極、403 開口部、
605 開口部、805 開口部、701 ガス供給
系、702 ヒーター、703 石英反応管、704
基板、705 サセプタ。
101 metal substrate, 201 metal substrate, 301 metal substrate, 601 metal substrate, 801 metal substrate, 103 polycrystalline silicon layer, 202 polycrystalline silicon layer, 303
Polycrystalline silicon layer, 602 Polycrystalline silicon layer, 802
Polycrystalline silicon layer, 102 metal-silicon intermediate layer,
203 metal-silicon intermediate layer, 302 metal-silicon intermediate layer, 604 metal-silicon intermediate layer, 804 metal-silicon intermediate layer, 104 insulating layer, 304 insulating layer, 402 insulating layer, 603 insulating layer, 803 insulating layer,
105 silicon crystal, 305 silicon crystal, 4
04 silicon crystal, 606 silicon crystal, 80
6 silicon crystal, 106 p + layer or n + layer, 8
07 p + layer or n + layer, 607 p-type amorphous silicon carbide, 107 transparent conductive layer, 608 transparent conductive layer, 808 transparent conductive layer, 108 current collecting electrode, 6
09 collecting electrode, 809 collecting electrode, 403 opening,
605 opening, 805 opening, 701 gas supply system, 702 heater, 703 quartz reaction tube, 704
Substrate, 705 susceptor.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属基体上に、少なくとも、金属−半導
体中間層、第1の半導体層、複数の開口部を有する絶縁
層、該複数の開口部から選択的にエピタキシャル成長し
た山形形状の結晶粒の集合からなる第2の半導体層を、
この積層順で有することを特徴とする太陽電池。
At least a metal-semiconductor intermediate layer, a first semiconductor layer, an insulating layer having a plurality of openings, and mountain-shaped crystal grains selectively epitaxially grown from the plurality of openings on a metal base. A second semiconductor layer consisting of an assembly,
A solar cell characterized by having the layers in this stacking order.
【請求項2】 前記山形形状の結晶粒の平均粒径が20
乃至500μmであることを特徴とする請求項1記載の
太陽電池。
2. The chevron-shaped crystal grains having an average grain size of 20
The solar cell according to claim 1, wherein the thickness is from 500 to 500 µm.
【請求項3】 前記第1の半導体層の結晶の平均粒径が
1乃至20μmであることを特徴とする請求項1記載の
太陽電池。
3. The solar cell according to claim 1, wherein said first semiconductor layer has an average crystal grain size of 1 to 20 μm.
【請求項4】 前記第1の半導体層が4×1020cm-3
以上の不純物原子を含むことを特徴とする請求項1記載
の太陽電池。
4. The method according to claim 1, wherein the first semiconductor layer has a size of 4 × 10 20 cm −3.
The solar cell according to claim 1, comprising the above impurity atoms.
【請求項5】 前記開口部の大きさは1乃至5μmであ
ることを特徴とする請求項1記載の太陽電池。
5. The solar cell according to claim 1, wherein the size of the opening is 1 to 5 μm.
【請求項6】 前記開口部の間隔は10乃至500μm
であることを特徴とする請求項1記載の太陽電池。
6. The distance between the openings is 10 to 500 μm.
The solar cell according to claim 1, wherein
【請求項7】 金属基体上に多結晶半導体層を堆積させ
る工程と、 前記多結晶半導体層に高濃度の不純物原子を導入する工
程と、 前記多結晶半導体層の表面に絶縁層を形成する工程と、 アニールすることにより前記多結晶半導体層内に異常粒
成長を生じさせかつ前記金属基体と多結晶半導体層との
間に金属−半導体の中間層を形成する工程と、 前記絶縁層に周期的に微小な開口部を設けて多結晶半導
体表面を露出させる工程と、 選択的エピタキシャル成長および横方向成長により前記
微小開口部から結晶成長を行う工程と、 を含むことを特徴とする太陽電池の製造方法。
7. A step of depositing a polycrystalline semiconductor layer on a metal substrate; a step of introducing high-concentration impurity atoms into the polycrystalline semiconductor layer; and a step of forming an insulating layer on a surface of the polycrystalline semiconductor layer. A step of causing abnormal grain growth in the polycrystalline semiconductor layer by annealing and forming a metal-semiconductor intermediate layer between the metal substrate and the polycrystalline semiconductor layer; Forming a micro-opening on the surface to expose the polycrystalline semiconductor surface; and performing crystal growth from the micro-opening by selective epitaxial growth and lateral growth. .
【請求項8】 前記多結晶半導体は多結晶シリコンであ
って、前記不純物原子はP,As,Sn,B,Alの中
から一つ選ばれる請求項7記載の太陽電池の製造方法。
8. The method according to claim 7, wherein the polycrystalline semiconductor is polycrystalline silicon, and the impurity atom is selected from one of P, As, Sn, B, and Al.
【請求項9】 前記選択的エピタキシャル成長は熱CV
D法により行なわれる請求項7または請求項8記載の太
陽電池の製造方法。
9. The method of claim 1, wherein the selective epitaxial growth is performed by thermal CV.
The method for manufacturing a solar cell according to claim 7, wherein the method is performed by Method D.
JP2413874A 1990-12-26 1990-12-26 Solar cell and method of manufacturing the same Expired - Fee Related JP2624577B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2413874A JP2624577B2 (en) 1990-12-26 1990-12-26 Solar cell and method of manufacturing the same
DE4193392A DE4193392C2 (en) 1990-12-26 1991-12-20 Method of manufacturing a solar cell using an epitaxial growth method
PCT/JP1991/001745 WO1992012542A1 (en) 1990-12-26 1991-12-20 Method for manufacturing solar cell by selective epitaxial growth
DE4193392T DE4193392T1 (en) 1990-12-26 1991-12-20
US08/190,584 US5403771A (en) 1990-12-26 1994-02-02 Process for producing a solar cell by means of epitaxial growth process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2413874A JP2624577B2 (en) 1990-12-26 1990-12-26 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04225282A JPH04225282A (en) 1992-08-14
JP2624577B2 true JP2624577B2 (en) 1997-06-25

Family

ID=18522429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2413874A Expired - Fee Related JP2624577B2 (en) 1990-12-26 1990-12-26 Solar cell and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP2624577B2 (en)
DE (2) DE4193392T1 (en)
WO (1) WO1992012542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490599B1 (en) * 2013-06-25 2015-02-05 주식회사 포스코 Method for manufacturing amorphous silicon solar cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452448B1 (en) * 2001-09-28 2004-10-08 준 신 이 Solar cell having cerium-dioxide layer on a substrate and a method for fabricating said solar cell
JP2004296598A (en) * 2003-03-26 2004-10-21 Canon Inc Solar cell
JP4764469B2 (en) 2008-10-31 2011-09-07 三菱重工業株式会社 Photoelectric conversion device and method of manufacturing photoelectric conversion device
CN102449775B (en) * 2009-06-05 2014-07-02 独立行政法人产业技术综合研究所 Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
KR101912674B1 (en) * 2011-01-21 2018-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Hydrogen generating element, hydrogen generation device, power generation device, and driving device
KR102526398B1 (en) * 2016-01-12 2023-04-27 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Solar cell and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828173A (en) * 1971-08-13 1973-04-13
JPS5319190B2 (en) * 1972-06-07 1978-06-19
CA1337170C (en) * 1986-03-31 1995-10-03 Jinsho Matsuyama Method for forming crystalline deposited film
JP2596547B2 (en) * 1987-01-26 1997-04-02 キヤノン株式会社 Solar cell and method of manufacturing the same
JPH04151878A (en) * 1990-10-15 1992-05-25 Sanyo Electric Co Ltd Manufacture of photovoltaic element
JP2858920B2 (en) * 1990-06-22 1999-02-17 三洋電機株式会社 Method for manufacturing photovoltaic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490599B1 (en) * 2013-06-25 2015-02-05 주식회사 포스코 Method for manufacturing amorphous silicon solar cell

Also Published As

Publication number Publication date
WO1992012542A1 (en) 1992-07-23
JPH04225282A (en) 1992-08-14
DE4193392C2 (en) 2003-05-08
DE4193392T1 (en) 1992-12-10

Similar Documents

Publication Publication Date Title
US5403771A (en) Process for producing a solar cell by means of epitaxial growth process
JP2721271B2 (en) Solar cell manufacturing method
JP2740337B2 (en) Photovoltaic element
US5700333A (en) Thin-film photoelectric conversion device and a method of manufacturing the same
US5403751A (en) Process for producing a thin silicon solar cell
KR100965778B1 (en) Polycrystalline Silicon Solar Cell Having High Efficiency
EP0949685A2 (en) Semiconductor element and its manufacturing method
WO2010151478A1 (en) Method of making a semiconductor optical detector structure
US20060213550A1 (en) Thin-film photoelectric conversion device and a method of manufacturing the same
JPH04245683A (en) Manufacture of solar cell
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JP2624577B2 (en) Solar cell and method of manufacturing the same
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
US5279686A (en) Solar cell and method for producing the same
US4703336A (en) Photodetection and current control devices
JPH0823114A (en) Solar cell
JP3102772B2 (en) Method for producing silicon-based semiconductor thin film
JPH05235386A (en) Solar cell and its manufacture
JP2640389B2 (en) Solar cell manufacturing method
JPH07297428A (en) Thin film solar battery and its manufacture
JP3067821B2 (en) Solar cell and method of manufacturing the same
JP2802180B2 (en) Solar cell manufacturing method
JPH11266030A (en) Semiconductor element and its manufacture
JP2833924B2 (en) Crystal solar cell and method of manufacturing the same
JP2675174B2 (en) Solar cell manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees