KR101449181B1 - Method for manufacturing amorphous silicon solar cell using laser - Google Patents

Method for manufacturing amorphous silicon solar cell using laser Download PDF

Info

Publication number
KR101449181B1
KR101449181B1 KR1020120150513A KR20120150513A KR101449181B1 KR 101449181 B1 KR101449181 B1 KR 101449181B1 KR 1020120150513 A KR1020120150513 A KR 1020120150513A KR 20120150513 A KR20120150513 A KR 20120150513A KR 101449181 B1 KR101449181 B1 KR 101449181B1
Authority
KR
South Korea
Prior art keywords
amorphous silicon
silicon layer
layer
forming
electrode layer
Prior art date
Application number
KR1020120150513A
Other languages
Korean (ko)
Other versions
KR20140081980A (en
Inventor
김경보
김종상
박영준
이재륭
백제훈
김무진
윤현주
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120150513A priority Critical patent/KR101449181B1/en
Publication of KR20140081980A publication Critical patent/KR20140081980A/en
Application granted granted Critical
Publication of KR101449181B1 publication Critical patent/KR101449181B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)

Abstract

투명기판 위에 투명전극층을 형성하는 단계, 상기 투명전극층의 상부에 비정질 실리콘층을 형성하는 단계, 상기 비정질 실리콘층 위로 레이저 빔을 조사하여 상기 비정질 실리콘층을 결정화하는 단계, 및 상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하며, 상기 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)을 형성할 수 있는 금속을 아일랜드 형태로 형성하는 단계를 더 포함하는, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법이 제공된다.
본 발명에 의하면, 균일하고도 신속한 광흡수층의 결정화가 가능하여 공정시간을 단축할 수 있고, 양질의 결정립을 구현하여 태양전지의 성능을 개선할 수 있다.
Forming a transparent electrode layer on a transparent substrate; forming an amorphous silicon layer on the transparent electrode layer; irradiating a laser beam onto the amorphous silicon layer to crystallize the amorphous silicon layer; And forming a rear electrode layer on the transparent electrode layer and the amorphous silicon layer to form a metal capable of forming a metal silicide between the transparent electrode layer and the amorphous silicon layer, A method of manufacturing a silicon solar cell is provided.
According to the present invention, it is possible to uniformly and rapidly crystallize the light absorbing layer, thereby shortening the processing time and improving the performance of the solar cell by realizing high quality crystal grains.

Description

레이저를 이용한 비정질 실리콘 태양전지의 제조방법{METHOD FOR MANUFACTURING AMORPHOUS SILICON SOLAR CELL USING LASER}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing an amorphous silicon solar cell using a laser,

본 발명은 레이저를 이용한 비정질 실리콘 태양전지의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an amorphous silicon solar cell using a laser.

실리콘 태양전지의 가장 기본적인 구조는 p-n 접합으로 구성된 다이오드 형태이나, 비정질 실리콘 박막의 경우 캐리어의 확산거리 (diffusion length)가 결정질 실리콘 기판에 비해 매우 낮아 p-n 구조로 제조될 경우 빛에 의해 생성된 전자-정공쌍(electron-hole pairs)의 수집 효율이 낮다.
The most basic structure of a silicon solar cell is a diode composed of a pn junction, but in the case of an amorphous silicon thin film, the diffusion length of the carrier is much lower than that of a crystalline silicon substrate, The collection efficiency of electron-hole pairs is low.

이러한 문제를 해결하기 위한 하나의 대안으로서, 비정질 실리콘 태양전지는 도핑이 되지 않은 무첨가(intrinsic, i형) 비정질 실리콘 광흡수층을 p형 비정질 실리콘과 n형 비정질 실리콘층 중간에 삽입한 p-i-n 구조로 제조된다.
As an alternative to solve this problem, an amorphous silicon solar cell is manufactured by a pin structure in which an intrinsic (i-type) amorphous silicon light absorbing layer not doped is inserted between a p-type amorphous silicon layer and an n-type amorphous silicon layer do.

또 다른 대안으로서, 최근에는 광흡수층을 결정화 혹은 준결정화시킴으로써 기존의 비정질 실리콘 태양전지보다 높은 효율의 태양전지를 제조하기도 한다.As another alternative, recently, a solar cell having higher efficiency than a conventional amorphous silicon solar cell is produced by crystallizing or quasicrystallizing the light absorbing layer.

비정질 실리콘을 결정화하는 방법은 여러 가지가 알려져 있으며, 가장 대표적인 방법으로 비정질 실리콘에 YAG 레이저, 특히 Nd:YAG 레이저의 레이저광선을 주사하는 방법을 사용하고 있다. 하지만, 종래의 일반적인 레이저 주사방법으로는 결정화가 빠르지 못하고 균일하지 못한 단점이 있었고, 이는 제조공정 및 박막 태양전지의 효율을 높이는 데 걸림돌이 되고 있다. 따라서 신속하고 균일하게 결정화시키는 박막 태양전지 제조방법의 개발이 필요하다.A variety of methods for crystallizing amorphous silicon have been known. As a typical method, a method of scanning a laser beam of a YAG laser, particularly an Nd: YAG laser, is used for amorphous silicon. However, the conventional laser scanning method has a disadvantage that crystallization is not fast and is not uniform, which is a stumbling block to increase the efficiency of the manufacturing process and the thin film solar cell. Therefore, it is necessary to develop a thin film solar cell manufacturing method which crystallizes quickly and uniformly.

본 발명의 일 측면은 광흡수층으로 사용되는 비정질 실리콘의 결정화를 촉진하여 단순히 레이저를 적용하는 경우보다 고효율의 태양전지를 제조하는 방법을 제시하고자 한다.
One aspect of the present invention is to propose a method of manufacturing a solar cell with higher efficiency than the case of simply applying a laser by promoting crystallization of amorphous silicon used as a light absorption layer.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 투명기판 위에 투명전극층을 형성하는 단계, 상기 투명전극층의 상부에 비정질 실리콘층을 형성하는 단계, 상기 비정질 실리콘층 위로 레이저 빔을 조사하여 상기 비정질 실리콘층을 결정화하는 단계, 및 상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하며, 상기 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)을 형성할 수 있는 금속을 아일랜드 형태로 형성하는 단계를 더 포함하는, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a transparent electrode layer on a transparent substrate; forming an amorphous silicon layer on the transparent electrode layer; irradiating the amorphous silicon layer with a laser beam The method of claim 1, further comprising: crystallizing the amorphous silicon layer; and forming a rear electrode layer on the crystallized amorphous silicon layer, wherein the amorphous silicon layer comprises a metal capable of forming a metal silicide between the transparent electrode layer and the amorphous silicon layer Forming an amorphous silicon solar cell in an island shape.

본 발명의 일 측면에 따르면, 균일하고도 신속한 광흡수층의 결정화가 가능하여 공정시간을 단축할 수 있고, 양질의 결정립을 구현하여 태양전지의 성능을 개선할 수 있다.According to one aspect of the present invention, it is possible to crystallize a light absorbing layer uniformly and quickly, shortening the processing time, and realizing high-quality crystal grains, thereby improving the performance of the solar cell.

도 1은 본 발명의 일 실시예에 따른, 광흡수층의 결정화에 레이저 장치를 적용하는 모식도이다.
도 2는 본 발명의 제조방법에 의하여 제조된 태양전지의 구성도의 일례이다.
FIG. 1 is a schematic diagram of applying a laser device to crystallization of a light absorbing layer, according to an embodiment of the present invention.
2 is an example of a constitutional view of a solar cell manufactured by the manufacturing method of the present invention.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 레이저를 이용한 비정질 실리콘 태양전지의 제조방법에 대하여 구체적으로 설명하도록 한다.
Hereinafter, a method for fabricating an amorphous silicon solar cell using the laser of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention.

본 발명에서 제조하고자 하는 태양전지의 일례는 도 2에 도시한 바와 같이, 투명기판(21) 위에 투명전극층(22), 비정질 실리콘층(23, 24, 25) 및 후면전극층(26)으로 이루어진다.
As shown in FIG. 2, an example of a solar cell to be manufactured in the present invention comprises a transparent electrode layer 22, amorphous silicon layers 23, 24 and 25, and a rear electrode layer 26 on a transparent substrate 21.

상기 태양전지를 제조하기 위하여 필요한 투명기판은 유리기판을 사용할 수 있으며, 유리로서는 예를 들면 석영 유리, 붕규산 유리, 소다 유리, 납 유리, 란탄계 유리 등을 사용할 수 있다. 우선, 전처리로서 뒤에 형성될 투명전극층과의 접합력을 증대시키기 위하여 투명 기판의 표면에 잔존하는 여러 불순물들을 제거할 수도 있다.The transparent substrate necessary for manufacturing the solar cell may be a glass substrate. Examples of the glass include quartz glass, borosilicate glass, soda glass, lead glass, and lanthanum glass. First, as a pretreatment, various impurities remaining on the surface of the transparent substrate may be removed in order to increase the bonding strength with the transparent electrode layer to be formed later.

상기 투명기판 상에 투명전극층을 형성한다. 상기 투명전극층으로서 투명전도성 산화물(TCO; transparent conducting oxide)을 스퍼터링법 또는 MOCVD(Metal Organic Chemical Vapor Deposition)법 등을 이용하여 형성할 수 있다. 이때 투명전도성 산화물로는 인듐-주석 산화물(ITO; indium-tin oxide), 불소-도핑된 주석 산화물(FTO; fluorine-doped tin oxide), ZnO, ZnO:B, ZnO:Al, SnO2, ZnO-Ga, ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 등과 같은 투명한 도전물질을 사용할 수도 있다. 태양광이 투명기판 쪽에서 입사되므로 투명기판과 투명전극층은 투명도가 높은 것이 좋다.
A transparent electrode layer is formed on the transparent substrate. As the transparent electrode layer, a transparent conducting oxide (TCO) can be formed by a sputtering method, a metal organic chemical vapor deposition (MOCVD) method, or the like. As the transparent conductive oxide, indium-tin oxide (ITO), fluorine-doped tin oxide (FTO), ZnO, ZnO: B, ZnO: Al, SnO 2 , ZnO- A transparent conductive material such as Ga, ZnO-Ga 2 O 3 , ZnO-Al 2 O 3 , SnO 2 -Sb 2 O 3 and the like may be used. Since the sunlight is incident on the transparent substrate side, it is preferable that the transparent substrate and the transparent electrode layer have high transparency.

상기 투명전극층의 상부에 비정질 실리콘층을 플라스마화학기상증착(PECVD; plasma-enhanced chemical vapor deposition) 방법으로 형성할 수 있다. 상기 비정질 실리콘층은 불순물의 농도, 종류가 다른 반도체 박막을 적어도 2층 이상 포함하며, pn, pin, ip, in 등의 반도체 접합의 구조를 가질 수 있다. An amorphous silicon layer may be formed on the transparent electrode layer by a plasma-enhanced chemical vapor deposition (PECVD) method. The amorphous silicon layer includes at least two or more semiconductor thin films having different concentrations and types of impurities, and may have a semiconductor junction structure such as pn, pin, ip, and in.

비정질 실리콘으로는 a-Si:H로 표현되는 수소화된 비정질 실리콘을 이용할 수 있다. i형(intrinsic) 비정질 실리콘은 불순물이 첨가되지 않은 상태를 의미하며, p형(positive)과 n형(negative)은 비정질 실리콘에 불순물을 첨가하여 도핑된 상태를 뜻한다. p형 비정질 실리콘을 형성하기 위해서는 3가 원소인 붕소, 칼륨 등을 첨가하고, n형 비정질 실리콘을 형성하기 위해서는 5가 원소인 인, 비소, 안티몬 등을 첨가할 수 있다.
As the amorphous silicon, hydrogenated amorphous silicon represented by a-Si: H can be used. i-type (intrinsic) Amorphous silicon means that no impurity is added, and p-type and n-type means doped state by adding impurities to amorphous silicon. In order to form the p-type amorphous silicon, trivalent elements such as boron and potassium are added, and in order to form the n-type amorphous silicon, phosphorus such as phosphorus, arsenic and antimony can be added.

다만, 상기 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)을 형성할 수 있는 금속을 아일랜드 형태로 형성할 수 있는데, 예를 들어, Ni의 경우 DC 스퍼터링을 사용하여 미량 증착하게 되면 전면이 증착되지 아니하고 미량의 Ni이 아이랜드 형태로 성장한다.
However, a metal capable of forming a metal silicide between the transparent electrode layer and the amorphous silicon layer may be formed in an island shape. For example, in the case of Ni, when a minute deposition is performed using DC sputtering, And a trace amount of Ni grows in the form of iridium.

이러한 금속규화물(metal silicide)를 형성할 수 있는 금속에는 Al, Mo, Ni, Cu 중 1종 이상이 포함될 수 있다. 이러한 금속은 연속적이지 않은 형태로 분산되어 표면에 존재하며, 그 상부에 비정질 실리콘층을 형성한 후 레이저 빔을 조사하여 결정화를 진행할 경우 Al, Mo, Ni, Cu 등의 금속과 실리콘이 금속 규화물을 형성하여 이에 의해 결정화가 촉진될 수 있다. 금속 규화물은 실리콘이 레이저에 의해 결정화 시에 씨드(seed) 역할을 하여 보다 쉽게 양질의 결정립을 구현할 수 있도록 돕는다. 이러한 금속의 표면 농도는 1011~1015 atoms/cm2인 것이 바람직하다. 농도가 너무 작으면 결정화 촉진효과가 저해되고, 너무 크면 오히려 불순물로 작용하여 태양전지의 효율을 저하시키기 때문이다.
The metal capable of forming such a metal silicide may include at least one of Al, Mo, Ni, and Cu. When the amorphous silicon layer is formed on the surface of the amorphous silicon layer, the metal such as Al, Mo, Ni, Cu, and silicon is converted into a metal silicide Whereby crystallization can be promoted. The metal silicide serves as a seed when the silicon is crystallized by the laser, thereby facilitating the formation of high quality grains more easily. The surface concentration of such a metal is preferably from 10 11 to 10 15 atoms / cm 2 . If the concentration is too small, the effect of promoting crystallization is impaired. If the concentration is too large, it acts as an impurity to lower the efficiency of the solar cell.

본 발명에서는 비정질 실리콘 표면에 직접 레이저를 조사하므로 비정질 실리콘 막이 흡수할 수 있는 모든 레이저를 사용 가능하다. 레이저의 파장 범위는 300~800nm 영역을 사용가능하며, UV 및 단파장 영역을 사용시 흡수율을 높임으로써 막 전체를 결정화시킬 수 있다. 레이저 빔을 조사하기 위해 사용하는 레이저기기로, Nd:YAG 레이저(1064 ㎚) 보다도 파이버레이저(fiber laser, 1064㎚)를 사용한다. 파이버레이저는 유지 및 보수에 들어가는 비용이 적기 때문에, 실제 양산라인에서 사용하기에 적합하다.
In the present invention, since the laser is directly irradiated to the amorphous silicon surface, all lasers capable of absorbing the amorphous silicon film can be used. The wavelength range of the laser is 300 ~ 800nm, and when the UV and short wavelength regions are used, the entire film can be crystallized by increasing the absorptivity. A laser device used for irradiating a laser beam is a fiber laser (1064 nm) rather than an Nd: YAG laser (1064 nm). Fiber lasers are suitable for use in actual production lines because of the low cost of maintenance and repair.

상기 레이저 빔(11)을 조사하는 방식은 SLS(Sequential Lateral Solidification) 방식으로서 일부 비정질 실리콘을 먼저 결정화하고 나서, 상기 레이저 빔을 상기 결정화된 부분과 중첩되도록 하면서 레이저를 복수회 조사하여 상기 비정질 실리콘(16)을 다결정 실리콘(15)으로 결정화하는 방식으로 수행될 수도 있다. 레이저에서 발진하는 에너지는 제한적이므로 최대 빔길이를 가지면서도 최대 빔폭을 가지는 라인빔을 통해 기판 전면적을 결정화할 수 있는데, 이때 빔의 중첩을 통해 균일한 결정화도를 유지하고 용융 및 재결정화를 통해 결함 빈도를 감소시켜 결정립의 크기가 0.1㎛ 이상으로 결정성이 우수한 박막을 제조할 수 있다. 중첩의 정도는 조건에 따라 다르며 20~97.5%로 다양하게 제어할 수 있다. 도 1에 도시한 바와 같이 마스크(12)를 사용하는 방법과 마스크 없이 라인빔을 사용하는 방법이 있을 수 있다.
The method of irradiating the laser beam 11 is a sequential lateral solidification (SLS) method in which a part of amorphous silicon is crystallized first, and a laser beam is irradiated a plurality of times while the laser beam is superimposed on the crystallized part, 16 may be crystallized into the polycrystalline silicon 15. Since the energy generated by the laser is limited, the entire surface of the substrate can be crystallized through the line beam having the maximum beam length and the maximum beam width. In this case, uniformity of crystallinity is maintained through the overlap of the beams, And a thin film having a grain size of 0.1 mu m or more and excellent in crystallinity can be produced. The degree of overlap varies depending on the condition and can be varied from 20 to 97.5%. There may be a method of using the mask 12 and a method of using a line beam without a mask as shown in Fig.

또한, 상기 레이저 빔을 조사할 경우의 분위기로서도, 헬륨, 아르곤 등의 불활성 가스, 또는 이들에 수소 등의 환원성 가스를 혼입한 것을 사용하는 것이 바람직하다.
In addition, as the atmosphere for irradiating the laser beam, it is preferable to use an inert gas such as helium or argon or a mixed gas of them with a reducing gas such as hydrogen.

상기 레이저 빔은 에너지 밀도가 라인빔의 경우 300~600 mJ/㎠, SLS(Sequential Lateral Solidification)의 경우 700~1200 mJ/㎠이며, 라인빔의 경우 길이가 450~730mm이고 폭이 0.1~1mm인 면적을 가지는 것을 사용하는 것이 바람직하다. 이러한 영역에서 비정질 실리콘이 다결정 실리콘화되어 가장 좋은 결정립이 형성되기 때문이다.The laser beam has an energy density of 300 to 600 mJ / cm 2 for a line beam and 700 to 1200 mJ / cm 2 for a sequential lateral solidification (SLS). The line beam has a length of 450 to 730 mm and a width of 0.1 to 1 mm It is preferable to use one having an area. In this region, amorphous silicon is polycrystallized silicon and the best crystal grains are formed.

또한, 기판의 온도를 500~1500℃로 유지하는 것이 좋은데, 일반적으로 온도를 높이면, 결정화되는 시간을 지연시킬 수 있으므로 결정립을 키우게 되어 막의 질을 향상시킬 수 있다.
In addition, it is preferable to maintain the temperature of the substrate at 500 to 1500 ° C. Generally, if the temperature is increased, the crystallization time can be delayed, so that crystal grains can be increased and the quality of the film can be improved.

이와 같이 결정화가 완료되면, 상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성한다. 후면전극층은 투명해야 할 필요가 없으며, 투과된 태양광을 반사할 수 있는 금속 재질의 후면전극층을 형성한다.When the crystallization is completed, a rear electrode layer is formed on the crystallized amorphous silicon layer. The back electrode layer does not need to be transparent and forms a metallic rear electrode layer capable of reflecting transmitted sunlight.

상기 후면전극층은 Ag, Al, Ag+Al, Ag+Mg, Ag+Mn, Ag+Sb, Ag+Zn, Ag+Mo, Ag+Ni, Ag+Cu, Ag+Al+Zn 등과 같은 금속을 스크린인쇄법, 잉크젯 인쇄법, 그라비아 인쇄법 또는 미세접촉 인쇄법(microcontact printing)을 이용하여 형성할 수 있다.
The rear electrode layer may include a metal such as Ag, Al, Ag + Al, Ag + Mg, Ag + Mn, Ag + Sb, Ag + Zn, Ag + Mo, Ag + Ni, Ag + Cu, Ag + Printing, inkjet printing, gravure printing, or microcontact printing.

또한, 상기 후면전극층을 형성하기 전에 투명도전층을 추가로 형성할 수도 있다. 상기 투명도전층은 ZnO, ZnO:B, ZnO:Al, ZnO:H, Ag와 같은 투명한 도전물질을 스퍼터링법 또는 MOCVD법 등을 이용하여 형성할 수 있다. 상기 투명도전층은 생략하는 것도 가능하지만, 태양전지의 효율증진을 위해서는 상기 투명도전층을 형성하는 것이 바람직하다. 즉, 상기 투명도전층을 형성하게 되면 상기 광흡수층을 투과한 태양광이 투명도전층을 통과하면서 산란을 통해 다양한 각으로 진행하게 되어, 상기 후면전극층에서 반사되어 상기 광흡수층으로 재입사되는 광의 비율이 증가될 수 있기 때문이다.In addition, a transparent conductive layer may be further formed before forming the rear electrode layer. The transparent conductive layer may be formed of a transparent conductive material such as ZnO, ZnO: B, ZnO: Al, ZnO: H, or Ag by sputtering or MOCVD. Although the transparent conductive layer may be omitted, it is preferable to form the transparent conductive layer in order to improve the efficiency of the solar cell. That is, when the transparent conductive layer is formed, sunlight transmitted through the light absorbing layer passes through the transparent conductive layer and diffuses at various angles through scattering, so that the ratio of light reflected by the rear electrode layer and re- It can be.

11: 레이저 빔 12: 마스크
13: 프로젝션 렌즈 14: 기재
15: p-Si(다결정 실리콘) 16: a-Si(비정질 실리콘)
21: 투명기판 22: 투명전극층
23: p형 비정질 실리콘층 24: i형 비정질 실리콘층
25: n형 비정질 실리콘층 26: 후면전극층
11: laser beam 12: mask
13: projection lens 14: substrate
15: p-Si (polycrystalline silicon) 16: a-Si (amorphous silicon)
21: transparent substrate 22: transparent electrode layer
23: p-type amorphous silicon layer 24: i-type amorphous silicon layer
25: n-type amorphous silicon layer 26: rear electrode layer

Claims (7)

투명기판 위에 투명전극층을 형성하는 단계;
상기 투명전극층의 상부에 비정질 실리콘층을 형성하는 단계;
상기 비정질 실리콘층 위로 에너지 밀도가 라인빔의 경우 300~600 mJ/㎠, SLS(Sequential Lateral Solidification)의 경우 700~1200 mJ/㎠인 레이저 빔을 조사하여 상기 비정질 실리콘층을 결정화하는 단계; 및
상기 결정화된 비정질 실리콘층 상부에 후면전극층을 형성하는 단계를 포함하며,
상기 투명전극층과 상기 비정질 실리콘층 사이에 금속규화물(metal silicide)을 형성할 수 있는 금속을 아일랜드 형태로 형성하는 단계를 더 포함하는,
레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
Forming a transparent electrode layer on the transparent substrate;
Forming an amorphous silicon layer on the transparent electrode layer;
Crystallizing the amorphous silicon layer by irradiating a laser beam having an energy density of 300 to 600 mJ / cm 2 in the case of a line beam and 700 to 1200 mJ / cm 2 in the case of a sequential lateral solidification (SLS) on the amorphous silicon layer; And
And forming a rear electrode layer on the crystallized amorphous silicon layer,
And forming a metal capable of forming a metal silicide between the transparent electrode layer and the amorphous silicon layer in an island shape.
(Method for fabricating amorphous silicon solar cell using laser).
제 1항에 있어서,
상기 비정질 실리콘층은 p형 비정질 실리콘층, n형 비정질 실리콘층 및 i형 비정질 실리콘층 중 2종 이상을 포함하는 것인, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the amorphous silicon layer comprises at least two of a p-type amorphous silicon layer, an n-type amorphous silicon layer and an i-type amorphous silicon layer.
제 1항에 있어서,
상기 레이저 빔 조사는 일부 비정질 실리콘을 먼저 결정화하고 나서, 상기 레이저 빔을 상기 결정화된 부분과 중첩되도록 하면서 레이저를 복수회 조사하여 상기 비정질 실리콘을 다결정 실리콘층으로 결정화하는 방식으로 수행되는 것인, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the laser beam irradiation is performed by a method of crystallizing a part of the amorphous silicon first and then crystallizing the amorphous silicon into a polycrystalline silicon layer by irradiating the laser a plurality of times while overlapping the laser beam with the crystallized part, A method of manufacturing an amorphous silicon solar cell using the method.
삭제delete 제 1항에 있어서,
상기 라인빔 레이저 빔은 길이가 450~730mm이고 폭이 0.1~1mm인 면적을 가지는 것인, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the line beam laser beam has an area of 450 to 730 mm in length and 0.1 to 1 mm in width.
제 1항에 있어서,
상기 금속규화물(metal silicide)를 형성할 수 있는 금속은 Al, Mo, Ni, Cu 중 1종 이상인 것인, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the metal capable of forming the metal silicide is one or more of Al, Mo, Ni, and Cu.
제 1항에 있어서,
상기 금속규화물(metal silicide)를 형성할 수 있는 금속의 표면농도는 1011~1015 atoms/cm2인 것인, 레이저를 이용한 비정질 실리콘 태양전지의 제조방법.
The method according to claim 1,
Wherein the surface concentration of the metal capable of forming the metal silicide is 10 11 to 10 15 atoms / cm 2 .
KR1020120150513A 2012-12-21 2012-12-21 Method for manufacturing amorphous silicon solar cell using laser KR101449181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120150513A KR101449181B1 (en) 2012-12-21 2012-12-21 Method for manufacturing amorphous silicon solar cell using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120150513A KR101449181B1 (en) 2012-12-21 2012-12-21 Method for manufacturing amorphous silicon solar cell using laser

Publications (2)

Publication Number Publication Date
KR20140081980A KR20140081980A (en) 2014-07-02
KR101449181B1 true KR101449181B1 (en) 2014-10-10

Family

ID=51732995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120150513A KR101449181B1 (en) 2012-12-21 2012-12-21 Method for manufacturing amorphous silicon solar cell using laser

Country Status (1)

Country Link
KR (1) KR101449181B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927627A (en) * 1995-07-12 1997-01-28 Kanegafuchi Chem Ind Co Ltd Thin film solar cell and manufacture thereof
JP2004342909A (en) * 2003-05-16 2004-12-02 Hitachi Cable Ltd Method of manufacturing crystal silicon-based thin film solar cell and solar cell formed using the same
KR100972780B1 (en) * 2008-02-28 2010-07-29 주식회사 티지솔라 Solar Cell And Method For Manufacturing The Same
KR101013432B1 (en) * 2008-09-03 2011-02-14 성균관대학교산학협력단 Method for manufacturing thin film solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927627A (en) * 1995-07-12 1997-01-28 Kanegafuchi Chem Ind Co Ltd Thin film solar cell and manufacture thereof
JP2004342909A (en) * 2003-05-16 2004-12-02 Hitachi Cable Ltd Method of manufacturing crystal silicon-based thin film solar cell and solar cell formed using the same
KR100972780B1 (en) * 2008-02-28 2010-07-29 주식회사 티지솔라 Solar Cell And Method For Manufacturing The Same
KR101013432B1 (en) * 2008-09-03 2011-02-14 성균관대학교산학협력단 Method for manufacturing thin film solar cell

Also Published As

Publication number Publication date
KR20140081980A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP6847179B2 (en) Crystallization for semiconductor applications
US20080295882A1 (en) Photovoltaic device and method of manufacturing photovoltaic devices
KR100768414B1 (en) Optical energy transducer
US20100224229A1 (en) Multi-junction semiconductor photovoltaic apparatus and methods
US5162239A (en) Laser crystallized cladding layers for improved amorphous silicon light-emitting diodes and radiation sensors
US20120291859A1 (en) Multi-Junction Semiconductor Photovoltaic Apparatus and Methods
US8551802B2 (en) Laser annealing for thin film solar cells
KR20180076197A (en) Solar cell and method for manufacturing the same
CN102934240B (en) For the manufacture of the modification method of photovoltaic cell comprising tco layer
Gessert et al. 1.19-cadmium telluride photovoltaic thin film: CdTe
US8088641B2 (en) Process for producing photovoltaic device
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
KR101449181B1 (en) Method for manufacturing amorphous silicon solar cell using laser
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
KR101490599B1 (en) Method for manufacturing amorphous silicon solar cell
KR20110057844A (en) Stacked solar cell including micro particle
US20190181291A1 (en) Solar cell and method for manufacturing same
US20110083724A1 (en) Monolithic Integration of Photovoltaic Cells
KR101013432B1 (en) Method for manufacturing thin film solar cell
US20120000529A1 (en) Method and system for forming a photovoltaic cell and a photovoltaic cell
KR20120040434A (en) Manufacturing device for crystallization silicon and method for manufacturing the solar cell using the same
KR20100116833A (en) Solar cell including metallic silicide layer and method for fabricating the same
KR101002700B1 (en) Solar Cell and Method For Fabricating The Same
JP2000357808A (en) Silicon thin-film photoelectric conversion device and its manufacture
JPH0794766A (en) Thin film polycrystalline silicon photoelectric converter and method of fabrication thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6