KR101427241B1 - 유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자 - Google Patents

유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자 Download PDF

Info

Publication number
KR101427241B1
KR101427241B1 KR1020110116795A KR20110116795A KR101427241B1 KR 101427241 B1 KR101427241 B1 KR 101427241B1 KR 1020110116795 A KR1020110116795 A KR 1020110116795A KR 20110116795 A KR20110116795 A KR 20110116795A KR 101427241 B1 KR101427241 B1 KR 101427241B1
Authority
KR
South Korea
Prior art keywords
mmol
organic
light emitting
binaphthyl
reaction
Prior art date
Application number
KR1020110116795A
Other languages
English (en)
Other versions
KR20130051582A (ko
Inventor
이민선
오천림
김영성
문봉석
소인영
Original Assignee
주식회사 삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 삼양사 filed Critical 주식회사 삼양사
Priority to KR1020110116795A priority Critical patent/KR101427241B1/ko
Priority to TW101141871A priority patent/TW201323379A/zh
Priority to PCT/KR2012/009470 priority patent/WO2013070026A1/en
Publication of KR20130051582A publication Critical patent/KR20130051582A/ko
Application granted granted Critical
Publication of KR101427241B1 publication Critical patent/KR101427241B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기 소자에 관한 것이다.
[화학식 1]
Figure 112011088731744-pat00048

상기 식에서, Ar₁과 Ar₂ 및 R₁과 R₂는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 페닐, 나프탈렌, 안트라센, 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.

Description

유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자 {1,1'-binaphthyl-4,4'-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them}
본 발명은 휴대폰, 네비게이션 및 텔레비전 등의 디스플레이 광원으로 사용되는 바이나프틸 아민 유도체에 관한 것으로, 더욱 구체적으로는, 유기 전기 발광 소자의 발광체로써 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체에 관한 것이다.
일반적으로 OLED는 음극과 양극 사이에 유기물 층으로 구성되어 있다. 소자의 구성을 전체적으로 보면 투명 ITO 양극, 정공주입층 (HIL), 정공전달층 (HTL), 발광층 (EL), 정공저지층 (HBL), 전자전달층 (ETL), 전자주입층 (EIL) LiAl 등의 음극으로 형성하며, 필요에 따라 유기물 층의 1~2 개를 생략하는 경우도 있다. 구성된 양 전극 사이에 전계가 인가되면 음극 측으로부터 전자가 주입되고 양극 측으로부터 정공이 주입된다. 또한, 이 전자가 발광층에 정공과 재결합하여 여기상태를 생성하고, 여기상태가 기저상태로 되돌아갈 때에 에너지를 빛으로서 방출한다.
Figure 112011088731744-pat00001
이러한 발광 재료는 크게 형광과 인광으로 나뉘며, 발광층 형성 방법은 형광 호스트(순수 유기물)에 인광(유기금속)을 도핑하는 방법과 형광 호스트에 형광 도판트(질소 등을 포함하는 유기물)를 도핑하는 방법 및 발광체에 도판트(DCM, Rubrene, DCJTB 등)를 이용하여 장파장을 구현하는 방법 등이 있다. 현재 이 분야 연구자들은 이러한 도핑을 통해 발광 파장, 효율, 구동전압, 수명 등을 개선하려는 노력을 하고 있다.
발광 재료들로는 OLED 소자에서 높은 청색 발광효율을 나타낸 대칭/비대칭 및 호스트(Host)/도판트(Dopant)가 있다.
일반적으로 발광층 형성용 재료들은 벤젠, 나프탈렌, 플로렌, 스파이로플로렌, 안트라센, 파이렌, 카바졸 등의 중심체와 페닐, 바이페닐, 나프탈렌, 헤테로사이클 등의 리간드 그리고 오르소, 메타, 파라 등의 결합 위치 및 아민, 시안, 불소, 메틸, 트리메틸 등이 치환된 구조들을 갖는다.
현재 디스플레이의 화면이 대형화 방향으로 진행되면서 OLED의 경우 더 섬세하며, 더 선명한 색들의 재료들이 요구되고 있다. 그 중 당면한 문제 및 해결해야할 재료는 청색이며, 현재의 하늘색 (sky blue)에서 청색 (blue) 및 진청색 (deep blue) 방향으로 고성능의 발광 재료들이 요구되고 있다. 또한 발광파장의 색좌표 이외에, 소자의 낮은 구동전압에서 높은 발광효율 및 재료의 화학 구조적 열안정성이 높은 유리전이온도 등을 요구한다.
OLED 분야에서 바이나프탈렌 구조로써 하기와 같은 화합물이 선행문헌에 개시되어 있다. 구체적으로, Mol. Cryst. Liq. Cryst., Vol. 531: pp. 55/[355]64=[364], DNBN (청색 발광 호스트)과 SPIE (P198~208)에서 발표한 TPBND (HTL) 및 Adv. Funct. Mater. 2010, 20, 24482458의 BN1 (청색발광 도판트와 HTL)이 있고, 일본등록특허 제4215837호, 한국특허출원 제2006-0080471호, 제2008-0040498호가 있다.
Figure 112011088731744-pat00002
본 발명은 화학적 구조의 열적 안정성 면에서 우수한 특성을 나타내는, 유기전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체를 제공하고자 한다.
또한 본 발명은 유기전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 제조방법을 제공하고자 한다.
또한 본 발명은 상기 1,1'-바이나프틸-4,4'-디아민 유도체를 유기전기 소장의 발광체로 사용한 유기전자소자를 제공하고자 한다.
본 발명의 발명자는 DNBN(4,4'-(Dinaphthalen-2-yl)-1,1'-binaphthyl)과 BN1(4,4'-(1,1'-binaphthyl-4,4'-diyl)bis(N,N-diphenylaniline)) 물질과는 다른 1,1'-바이나프틸의 4,4' 위치에 두 개의 아민이 직접 결합한 구조이면서도 선행문헌의 정공물질(정공 전달 물질 또는 정공 주입물질)인 TPBND(3,3'-dimethyl-N4,N4,N4',N4'-tetraphenyl-1,1'-binaphthyl-4,4'-diamine), 한국특허출원 제2006-0080471호, 제2008-0040498 및 일본등록특허 제4215837호에 개시된 화합물과는 다르게 발광체로 사용될 수 있는 물질을 개발하고자 하여, 유기전기소자 발광체로 사용할 수 있는 하기 화학식 1로 표시되는 화합물을 제공하게 되었다.
본 발명의 일 측면은 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체를 제공한다.
[화학식 1]
Figure 112011088731744-pat00003
상기 식에서, Ar₁과 Ar₂ 및 R₁, R2는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 페닐, 나프탈렌, 안트라센, 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.
본 발명의 일 측면에 따른 일 구체예에서, R₁은 탄소수 6∼30의 치환되거나 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기는 하기 표 1에 기재된 화합물 중의 하나이다.
[표 1]
Figure 112011088731744-pat00004
Figure 112011088731744-pat00005
Figure 112011088731744-pat00006
본 발명의 다른 일 측면은 상기 화학식 1의 화합물의 제조 방법으로써, 하기 화학식 (A)로 표시되는 화합물을 이용하여 탄소-탄소 결합반응을 시켜 하기 화학식(B)로 표시되는 화합물을 합성하는 단계; 및 상기 화학식 (B)로부터 아미네이션 반응을 시켜 하기 반응식 1의 화학식 1로 표시되는 화합물을 제조하는 단계를 포함하는 하기 화학식 1의 화합물의 제조방법을 제공한다.
[화학식 A]
Figure 112011088731744-pat00007
[화학식 B]
Figure 112011088731744-pat00008
[반응식 1]
Figure 112011088731744-pat00009
본 발명의 다른 일 측면은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 전자 소자를 제공한다.
본 발명에 따른 1,1'-바이나프틸-4,4'-디아민 유도체를 발광체로 이용한 OLED 소자는 청색 발광이 얻어지며, 발광 효율과 수명이 높다. 따라서, 실용성이 높은 OLED로서 매우 산업적으로 유용하다. 본 발명의 OLED는 평면 패널 디스플레이, 평면 발광체, 조명용 면발광 OLED의 발광체, 플렉시블 발광체, 복사기, 프린터, LCD 백라이트 또는 계량기류 등의 광원, 디스플레이판, 표식등 등에 적합하게 이용할 수 있다.
도 1은 간략한 OLED 구성을 보여준다.
도 2는 OLED의 다층구조를 보여준다.
도 3은 정공저지층이 없는 다층구조를 보여준다.
도 4는 중간체 [1]의 NMR을 보여준다.
도 5는 본 발명의 화합물의 DSC 데이타를 보여주는 것으로써, 5(a)는 A-1, 5(b)는 A-2, 5(c)는 A-5, 5(d)는 A-7의 DSC를 보여준다.
이하 본 발명을 보다 상세하게 설명한다. 하기의 구체적 설명은 본 발명의 일례를 들어 설명하는 것이므로 본 발명이 이에 한정되지 않는다.
본 발명의 일 측면에 따라 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체가 제공된다.
[화학식 1]
Figure 112011088731744-pat00010
상기 식에서, Ar₁과 Ar₂ 및 R₁과 R₂는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 페닐, 나프탈렌, 안트라센, 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.
본 발명의 일 측면에 따른 일 구체예에 따르면, 유기 전기 소자의 발광체로 사용되는 상기 화학식 1에서 R₁은 하기 표 1에 기재된 화합물 중에서 선택된다.
[표 1]
Figure 112011088731744-pat00011
Figure 112011088731744-pat00012
Figure 112011088731744-pat00013

본 발명의 다른 일 측면은 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체 화합물의 제조 방법으로써, 하기 화학식 (A)로 표시되는 화합물을 이용하여 탄소-탄소 결합반응을 시켜 하기 화학식(B)로 표시되는 화합물을 합성하는 단계; 및 상기 화학식 (B)로부터 아미네이션 반응을 시켜 하기 반응식 1의 화학식 1로 표시되는 화합물을 제조하는 단계를 포함하는 하기 화학식 1의 화합물의 제조 방법을 제공한다.
[화학식 A]
Figure 112011088731744-pat00014
[화학식 B]
Figure 112011088731744-pat00015
[반응식 1]
Figure 112011088731744-pat00016
상기 식에서, Ar₁과 Ar₂ 및 R₁과 R₂는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 페닐, 나프탈렌, 안트라센, 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.
본 발명의 일 측면에 따른 일 구체예에 따르면, R₁은 탄소수 6∼30의 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기는 상기 표 1에 기재된 화합물 중의 하나이다.
상기 제조 단계를 각 단계별로 구체화하면 다음과 같은 시약을 사용할 수 있으나 이에 한정되는 것은 아니다.
[반응식 1]
Figure 112011088731744-pat00017
상기 화학식 B의 제조는 다음과 같다.
반응기에 N-페닐-1-나프틸아민[화학식 A]를 질소기류 하에서 CH2Cl2에 용해시킨 후, TiCl4를 적가한 다음, 반응물에 포화탄산칼륨수용액를 넣고 교반 후, CH2Cl2로 추출하고, 얻어진 유기층을 MgSO4로 건조한 다음, 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하여 갈색 고체화합물 화학식 B를 얻는다.
이후 화학식 B를 이용하여 화학식 1을 제조하는 방법은 다음과 같다.
X-Ar₁-[R1]n 과 X-Ar₂-[R2]m 이 다른 경우, 화학식 B와 화학식 1 생성에 필요한 할로겐 (X = Br, I, Cl)이 포함된 화합물 X-Ar₁-[R1]n 을 각각 반응기에 넣고 용매로 녹인 다음, 여기에 Pd2(dba)3, Na(t-Bu)O, (t-Bu)3PHBF4을 각각 첨가 후, 가열 교반한다. 그리고 반응 종료 후 CH2Cl2 등으로 추출하여, 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거한 후, 실리카 겔 크로마토그래피를 이용하여 정제한 화학식 1의 반쪽 화합물을 얻은 다음, 같은 방법으로 X-Ar₂-[R2]m를 이용하여 화학식 1을 얻는다. 그리고 X-Ar₁-[R1]n 과 X-Ar₂-[R2]m 이 같은 경우도 위와 같은 방법으로 화학식 1을 얻는다.
상기 반응에 사용되는 시약이나 반응 용매는 특별히 이에 한정되는 것은 아니다.
본 발명의 유기전자소자는 전술한 화합물들을 이용하여 발광체를 형성하는 것을 제외하고는, 통상의 유기전자소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 발명의 일 측면은 상기 화학식 1의 화합물을 발광체로 사용하는 유기 전자 소자를 제공한다.
본 발명의 일 측면에 따른 구체예로써, 상기 유기전자소자는 유기발광소자 (OLED), 유기태양전지 (OSC), 전자종이 (e-Paper), 유기감광체(OPC) 및 유기트랜지스터 (OTFT)로 이루어진 군으로부터 선택된다.
유기발광소자는 도 1과 도 2에서와 같이 제 1 전극의 양극과 제 2 전극의 음극 및 이 사이에 배치된 유기물층을 포함하는 구조로 이루어질 수 있으며, 본 발명에 따른 화합물은 발광체로써 사용될 수 있다.
예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공전달층, 발광층, 정공저지층 및 전자전달층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다.
상기 유기물층은 정공주입층, 정공전달층, 발광층, 정공저지층 및 전자전달층 등을 포함하는 다층 구조일 수도 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 티타늄 산화물 (TiO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiAl 및 LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 또한 양극과의 표면 접착력이 좋으며, 양극의 표면 거칠기를 완화해줄 수 있는 평탄화 능력이 있는 물질이 바람직하다. 그리고 발광층의 밴드갭보다 큰 HOMO와 LUMO(lowest unoccupied molecular orbital) 값을 갖는 물질이 바람직하다.
또한 화학 구조적으로 열적 안정성이 높은 물질이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포르피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 발광층의 밴드갭보다 큰 HOMO와 LUMO 값을 갖는 물질이 적합하다. 또한 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있다.
통상적으로 정공물질은 디아민 구조로 이루어진 TPD(N,N'-bis (3-methylphenyl)-N,N'-bis(phenyl)-benzidine), NPB(N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine), b-NPB(N,N'-bis(naphthalen-2-yl)-N,N'-bis(phenyl)-benzidine), PAPB(N,N'-bis(phenanthren-9-yl)-N,N'-bis(phenyl)-benzidine), a-TNB(N,N,N',N'-tetra-naphthalen-2-yl-benzidine), a,b-TNB(N,N'-di(naphthalenyl)-N,N'-di(naphthalen-2-yl)-benzidine)가 주로 사용되며, 안트라센 또는 바이안트라센의 N-디아릴 구조인 TPA(9,10-bis[phenyl(m-tolyl)-amino]anthracene), TTPA(9,10-bis[N,N-di-(p-tolyl)-amino]anthracene), BA-NPB (N10,N10'-dipheny l-N10,N10'-dinaphtha lenyl-9,9'-bianthracene-10,10'-diamine), BA-TAD (N10,N10,N10',N10'-tetra-phenyl-9,9'-bianthracene-10,10'-diamine), BA-TTB[N10,N10,N10',N10'-tetra-tolyl-9,9'-bianthracene-10,10'-diamine]는 녹색 도판트로 사용된다. 또한 일본등록특허 제4215837호의 MT-01, MT-02, MT-03 발광파장은 각각 441nm, 439mm, 436nm를 나타냄으로 너무 단파장이다. 청색 발광에서 요구되는 450~460nm 발광파장을 맞추려면, 본 발명의 화학식 1의 Ar₁, Ar₂와 R₁과 R₂를 이용하여 발광파장과 발광효율을 맞춰 주어야한다.
정공저지층 물질로는 발광의 HOMO 값보다 큰 물질이 적합하다. 또한, 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. 구체적인 예로 TPBi(2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))와 BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)가 주로 이용되며, CBP(4,4'-bis(carbazol-9-yl)biphenyl)와 PBD(2-(4-biphenyl)-5-(4-tert -butylphenyl)-1,3,4-oxadiazole) 및 PTCBI(Bisbenzimidazo[2,1-a:1',2-b']anthra[2,1,9-def:6,5,10-d'e'f']diisoguinoline-10,21-dione), BPhen (4,7-diphenyl-1,10-phenanthroline) 등이 사용될 수 있으며, 이들에만 한정되는 것은 아니다.
전자전달 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 또한 화학 구조적으로 열적 안정성이 높은 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
발광 물질로는 정공전달층과 전자전달층으로부터 정공과 전자를 각각 전달받아 결합시켜 가시광선 영역의 빛을 낼 수 있는 물질로서, 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 청색 계열의 ADN (9,10-di(naphth-2-yl)anthracene) 또는 MADN(2-methyl-9,10-bis (naphthalen-2-yl)anthracene) 및 DPVBi(4,4'-bis(2,2'-diphenilvinil) -1,1'-biphenil), BAlq (Bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato)aluminium)등과 녹색 계열의 Alq3 및 기타의 안트라센, 파이렌, 플루오렌, 스파이(spiro)로 플루오렌, 카르바졸, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열로 표시되는 화합물 및 고분자성의 폴리(p-페닐렌비닐렌), 폴리스파이로, 폴리플루오렌 등이 알려져 있지만 그 효율성에 있어서 만족스럽지 못한 실정이다.
청색발광 물질의 필요조건은 첫째, 발광파장으로 445~470nm여야 한다. 발광파장이 너무 단파장이면 밴드갭 (Eg)가 커지고, 따라서 구동전압이 증가하거나, 많은 층을 쌓아야한다는 단점이 발생한다. 둘째, 발광효율이다. 현재 요구되는 수준은 6~7 cd/A 이상이며, 발광효율 측정은 소자(device)의 제작 방법에 따라 차이가 있으므로 우선적으로 표준물질을 비교대상으로 하여 그 성능을 갈음한다. 셋째, 열안정성을 필요로 하며, 유리전이온도 (Tg)가 120℃ 이상이어야 한다. Tg는 화합물 구조의 열안정성과 관련이 있으므로 수명과 연관이 있다. 넷째, 긴 수명을 필요로 하며, 수명은 구동전압, 순도, 열안정성 등의 복합적인 요소에 의해 영향을 받으며, 주로는 소자 구성과 화합물구조 및 순도에서 영향을 받는다. 다섯째, HOMO 값이 5.7 ~ 6.0eV이고, 밴드갭 (Eg)는 2.9eV 이상이어야 한다. 만약 HOMO 값이 6.0eV 이상이 되면 정공전달층 (HTL; 5.6 ~ 5.7 eV) 값과의 차가 커져서 구동전압이 증가한다.
본 발명의 발명자들은 종래 안트라센 또는 바이안트라센의 N-디아릴 구조 (TPD, TPA, TTPA, BA-NPB, BA-TAD, BA-TTB)가 녹색 파장을 나타내는 문제점과 JP 4215837의 MT-01, MT-02, MT-03이 너무 단파장을 나타내는 문제점을 해결하고자, 본 발명의 화학식 1과 같은 화합물들을 합성한 후, 9,10-di-(2-나프틸) 안트라센 (ADN)을 대조 물질로 하여 발광효율과 발광파장 등을 비교하였다. 실험 결과, 본 발명의 화합물이 우수한 발광효율과 요구되는 발광파장을 가짐을 확인할 수 있었다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 본 발명에 따른 화합물은 유기태양전지, 조명용 OLED, 플렉시블 OLED, 유기감광체, 유기트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
중간체 [1] : N4,N4'-디페닐-1,1'-바이나프틸-4,4'-디아민의 제조 [A-01]
Figure 112011088731744-pat00018

(1) N-페닐-1-나프틸아민(5 mmol)를 질소기류 하에서 디클로로메탄에 용해시킨 후 용액의 온도를 -5 ℃로 유지시킨 후 TiCl4( TiCl4/CH2Cl2 1:1 용액, 1.7 mmol)을 5분 동안 적가하고, -5 ℃에서 1시간 동안 반응 후 0 ℃에서 8시간 반응시켰다.
(2) 포화탄산칼륨수용액(10 mL)를 넣고 0 ℃에서 30분 교반 후 CH2Cl2 (2 × 15 mL)로 추출하고 얻어진 유기층을 MgSO4(Magnesium sulfate anhydride)로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하여 갈색 고체화합물을 59% 수율로 얻었으며, NMR 데이터는 도 4에 나타내었다.
하기 화합물은 하기 합성예 1 내지 15로부터 얻어진 화합물을 표시한 것이다.
Figure 112011088731744-pat00019
합성예 1: A-1의 제조
Figure 112011088731744-pat00020

4-브로모-1,2-디아이오도벤젠의 제조
(1) 2구 반응기에 H2SO4 55ml넣은 후 온도를 0℃를 유지시킨 후, 0℃에서 NaNO2 7.95g을 넣고 교반 하였다. 온도를 서서히 올려 70℃에서 20분간 녹이고 상온으로 냉각시켰다.
(2) 2구 반응기에 AcOH 75ml 넣은 후, 4-브로모벤젠-1,2-디아미노 9.35g을 천천히 넣어 녹였다.
(3) AcOH에 녹인 4-브로모벤젠-1,2-디아미노를 0℃에서 NaNO2/H2SO4에 천천히 적가 시켰다.
(4) 2구 반응기에 H2O 300ml에 KI 19g 녹인 후 60℃에서 교반 시켰다.
KI Solution에 전 단계 혼합물을 천천히 적가시켰다. 완료 후, 15분 후 NaOH 수용액 (130g/250ml)을 조금씩 적가시켰다.
(5) 반응 완료 후, 냉각시킨 후 CH2Cl2 300ml를 넣고 교반 시켰다. CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제 하였다. 하얀 결정을 40% 수율로 얻었다.
4-브로모-1,2-디페닐벤젠의 제조
(1) 3구 반응기에 4-브로모-1,2-디페닐벤젠(4.2mmol) 페닐보론산(9.1mmol), Pd(PPh3)4(0.21mmol)를 넣은 후 질소 기류 하에 THF 5ml를 넣어 용해시켰다.
(2) 반응물에 2M K2CO3를 천천히 첨가한 후, 110℃에서 반응을 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 60% 수율로 0.72g을 얻었다.
A-1의 제조
(1) A-01 중간체(1.145 mmol)와 4-브로모-1,2-디페닐벤젠 (2.519mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 55 % 수율로 0.56 g 생성물을 얻었으며, 도 5 (a)에 DSC 데이터를 나타내었다. MS[M+H]+ = 893.1
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.114 (t, 2H), 7.583-7.537 (m, 6H), 7.506-7.480 (m, 7H), 7.411-7.383 (m, 8H), 7.315-7.259 (m, 14H), 7.211-7.171 (m, 8H), 7.083 (m, 1H), 6.997-6.976 (m, 2H)
합성예 2: A-2 제조
Figure 112011088731744-pat00021

A-02의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 3-브로모비페닐(1.2595mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g(7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 70℃에서 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 45 % 수율로 0.34g 생성물을 얻었다.
A-2의 제조
(1) 3구 반응기에 A-02 중간체(1.145 mmol)와 4-브로모-1,2-디페닐벤젠 (1.2595mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 70 % 수율로 0.65g 생성물을 얻었으며, 도 5 (b)의 DSC 데이터를 나타내었다. MS[M+H]+ = 817.0
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.12-8.10 (d, 2H), 7.58-7.549 (t, 6H), 7.541-7.52 (d, 2H), 7.503-7.487 (d, 6H), 7.431-7.392 (t, 6H), 7.371-7.347 (d, 4H), 7.330-7.309 (m, 8H), 7.214-7.174 (t, 8H), 7.029-6.993 (t, 2H)
합성예 3: A-3 제조
Figure 112011088731744-pat00022
A-03의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 9-브로모펜안트렌(1.2595mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 70℃에서 6시간 동안 가열 교반하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 45 % 수율로 0.34g 생성물을 얻었다. MS[M+H]+ = 841.1
A-3의 제조
(1) 3구 반응기에 A-03 중간체(1.145 mmol)와 4-브로모-1,2-디페닐벤젠 (1.2595mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 72 % 수율로 0.69g 생성물을 얻었다.
합성예 4: A-4 제조
Figure 112011088731744-pat00023
1-(4-브로모페닐)나프탈렌의 제조
(1) 3구 반응기에 1,4-디브로모벤젠 (21.2mmol), 나프탈렌-1-보론산 (31.8mmol), Pd(PPh3)4(1.06mmol)을 넣은 후 질소 기류 하에 THF 50ml를 넣어 용해시켰다.
(2) 반응물에 2M K2CO3를 천천히 첨가한 후, 70℃에서 반응을 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 60% 수율로 3.6g을 얻었다.
A-4의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 1-(4-브로모페닐) 나프탈렌 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g(7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 72 % 수율로 0.69g 생성물을 얻었다. MS[M+H]+ = 841.1
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.192 (d, 2H), 8.052 (d, 2H), 7.907 (d, 2H), 7.844 (d, 2H), 7.615-7.557 (m, 6H), 7.518-7.441 (m, 10H), 7.405-7.384 (m, 6H), 7.337-7.315 (m, 8H), 7.233 (m, 4H), 7.029 (t, 2H)
합성예 5: A-5 제조
Figure 112011088731744-pat00024
(1) 3구 반응기에 A-02 중간체(1.145 mmol)와 1-(4-브로모페닐) 나프탈렌 (1.2595mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 65 % 수율로 0.65g 생성물을 얻었으며, 도 5 (c)의 DSC 데이터를 나타내었다. MS[M+H]+ = 791.0
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.184 (d, 1H), 8.134 (d, 1H), 8.051 (d, 1H), 7.910 (d, 1H), 7.842 (d, 1H), 7.583 (m, 3H), 7.515-7.379 (m, 18H), 7.330-7.268 (m, 8H), 7.204 (m, 5H), 7.086 (d, 1H), 7.020-6.999 (dd, 2H)
합성예 6: A-6 제조
Figure 112011088731744-pat00025
1-(3-브로모페닐)나프탈렌의 제조
(1) 3구 반응기에 1,3-디브로모벤젠(21.2mmol), 나프탈렌-1-보론산 (31.8mmol), Pd(PPh3)4(1.06mmol)을 넣은 후 질소 기류 하에 THF 50ml를 넣어 용해시켰다.
(2) 반응물에 2M K2CO3를 천천히 첨가한 후, 70℃에서 반응을 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 60% 수율로 3.6g을 얻었다.
A-6의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 1-(3-브로모페닐) 나프탈렌 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 70 % 수율로 0.67g 생성물을 얻었다. MS[M+H]+ = 841.1
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.160 (d, 2H), 7.852 (dd, 4H), 7.666 (d, 2H), 7.472 (m, 6H), 7.431-7.382 (m, 10H), 7.281 (m, 8H), 7.241-7.153 (m, 8H), 7.111 (d, 2H), 6.999 (t, 2H)
합성예 7: A-7 제조
Figure 112011088731744-pat00026
(1) 3구 반응기에 A-02 중간체(1.145 mmol)와 1-(3-브로모페닐) 나프탈렌 (1.2595mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 75 % 수율로 0.68g 생성물을 얻었으며, 도 5 (d)의 DSC 데이터를 나타내었다. MS[M+H]+ = 791.0
1H-NMR(CDCl3, 400NMR) δ (ppm) 8.172-8.094 (dd, 2H), 7.851-7.791 (dd, 2H), 7.495 (m, 9H), 7.387 (m, 10H), 7.331-7.259 (m, 9H), 7.197 (m, 6H), 7.112-7.060 (dd, 2H), 6.995 (t, 2H)
합성예 8: A-8
Figure 112011088731744-pat00027
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 3,5-디(4-메틸페닐) 브로모벤젠 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g(7.902mmol), (t-Bu)3PHBF4 0.031g(0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 65 % 수율로 0.7g 생성물을 얻었다. MS[M+H]+ = 949.2
합성예 9: A-9 제조
Figure 112011088731744-pat00028
9-(4-브로모페닐)-9H-카바졸의 제조
(1) 3구 반응기에 1,4-디브로모벤젠(21.2mmol), 9H-카바졸(31.8mmol)을 넣고 Pd2(dba)3(0.9752 mmol), Na(t-Bu)O (73.14mmol), (t-Bu)3PHBF4 (0.9752 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔100ml를 넣어 용해시킨 후, 70℃에서 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 45 % 수율로 3g 생성물을 얻었다.
A-9의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 9-(4-브로모페닐)-9H- 카바졸 (2.519mmol)을 넣고 Pd2(dba)3 0.096g(0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 60 % 수율로 0.63g 생성물을 얻었다. MS[M+H]+ = 919.1
합성예 10: A-10 제조
Figure 112011088731744-pat00029
9-(4-브로모페닐)펜안트렌의 제조
(1) 3구 반응기에 9-브로모펜안트렌(21.2mmol), 4-브로모페닐보론산 (31.8mmol), Pd(PPh3)4(1.06mmol)을 넣은 후 질소 기류 하에 THF 50ml를 넣어 용해시켰다.
(2) 반응물에 2M K2CO3를 천천히 첨가한 후, 70℃에서 반응을 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 70% 수율로 5g을 얻었다.
A-10의 제조
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 9-(4-브로모페닐) 펜안트렌 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 75 % 수율로 0.8g 생성물을 얻었다. MS[M+H]+ = 941.2
합성예 11: A-11 제조
Figure 112011088731744-pat00030
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 9-(4-브로모페닐)안트라센 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 73 % 수율로 0.78g 생성물을 얻었다. MS[M+H]+ = 941.2
합성예 12: A-12 제조
Figure 112011088731744-pat00031
4’-브로모-1,1’-바이나프틸의 제조
(1) 3구 반응기에 1,4-디브로모나프탈렌(21.2mmol), 나프탈렌-1-보론산 31.8mmol, Pd(PPh3)4 1.06mmol을 넣은 후 질소 기류 하에 THF 50ml를 넣어 용해시켰다.
(2) 반응물에 2M K2CO3를 천천히 첨가한 후, 70℃에서 반응을 6시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 55% 수율로 3.88g을 얻었다.
A-12
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 4’-브로모-1,1’-바이나프틸 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 67 % 수율로 0.72g 생성물을 얻었다. MS[M+H]+ = 941.2
합성예 13: A-13 제조
Figure 112011088731744-pat00032
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 4-브로모-1,3’-바이나프틸 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 75 % 수율로 0.8g 생성물을 얻었다. MS[M+H]+ = 941.2
합성예 14: A-14 제조
Figure 112011088731744-pat00033
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 2-브로모-7- (나프탈렌-1-일)펜안트렌(2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 73 % 수율로 0.87g 생성물을 얻었다. MS[M+H]+ = 1041.3
합성예 15: A-15 제조
Figure 112011088731744-pat00034
(1) 3구 반응기에 A-01 중간체(1.145 mmol)와 1-브로모-6- (나프탈렌-1-yl)파이렌 (2.519mmol)을 넣고 Pd2(dba)3 0.096g (0.1053 mmol), Na(t-Bu)O 0.759g (7.902mmol), (t-Bu)3PHBF4 0.031g (0.1053 mmol)을 각각 첨가 후 질소 기류 하에 톨루엔 20ml를 넣어 용해시킨 후, 120℃에서 12시간 동안 가열 교반 하였다.
(2) 반응 종료 후 냉각시킨 후, CH2Cl2로 추출하고 얻어진 유기층을 MgSO4로 건조하고 감압 하에 수분을 제거하여 실리카 겔 크로마토그래피를 이용하여 정제하였다. 70 % 수율로 0.87g 생성물을 얻었다. MS[M+H]+ = 1089.3
<유기발광소자>
Figure 112011088731744-pat00035

비교예 및 실시예의 정공전달층으로 NPB(N,N'-bis(naphthalen-1-yl)-N,N' -bis(phenyl)-benzidine) 또는 JP4215837, 발광물질로는 ADN(9,10-di (naphth-2-yl)anthracene) 호스트 단독 또는 ADN 호스트 및 도판트 합성예 A-1 내지 A-15 중 하나를 사용하였으며, 정공저지층 TPBi(2,2',2" -(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole))와 전자전달층 Alq3 (Tris(8-hydroxy-quinolinato)aluminium)와 LiF(Lithium fluoride)를 사용하였다.
비교예 1 : ITO / NPB / ADN / TPBi / Alq3 / LiF / Al
ITO(indium tin oxde)가 1500 Å의 두께로 박막 코팅된 유리 기판을 피셔사의 세제를 녹인 2차 증류수에 넣고 초음파로 세척하였다. ITO를 30 분간 세척한 후 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후, 플라즈마 세정기로 이송시켰다. 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 이송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공층으로 NPB 700Å 진공증착한 후, 발광층으로 상기 안트라센 계열의 ADN 화합물을 300Å의 두께로 진공 증착하였으며, 정공저지층으로 TPBi 화합물을 200Å의 두께로 진공증착 하였으며, 전자전달층으로 Alq3 화합물을 400Å의 두께로 진공증착 한 후, 순차적으로 LiF 5Å과 Al(알루미늄) 1000Å 증착하여 음극을 형성하였다. 상기의 과정에서 유기물의 증착속도는 1 Å/sec를 유지하였고, 리튬플루오라이드는 0.2 Å/sec, 알루미늄은 3~7Å/sec의 증착속도를 유지하였다.
상기에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타내었다.
비교예 2 : ITO / JP4215837 / ADN / TPBi / Alq3 / LiF / Al
정공전달물질로 NPB 대신으로 JP4215837을 700Å 진공 증착하여, OLED 소자를 제작한 것을 제외하고는 비교예 1과 같은 조건에서 실험을 수행하였다.
실시예 1: ITO / NPB / ADN : A-1 / TPBi / Alq3 / LiF / Al
상기 비교예 1과 동일한 방법으로 합성예 1에서 제조한 A-1 화합물을 발광층의 ADN에 0.5% 도핑하여 OLED를 제작하였다.
실시예 2 내지 15.
상기 실시예 1의 A-1 대신 A-2 내지 A-15 화합물을 사용한 것을 제외하고는 실시예 1과 동일하게 OLED를 제작하여, 전기적 발광 특성을 표 2에 나타내었다.
상기에서 제조한 비교예 1, 2와 실시예 1 내지 15의 유기전기 발광소자를 이용하여 특성평가를 실시하였으며, 그 결과를 표 2에 나타내었다. 여기서 전류밀도의 단위는 mA/cm2, 색좌표의 단위는 CIE 1931 (x, y), 효율은 휘도와 전류밀도를 이용하여 계산하였으며 단위는 cd/A 이고, 수명은 1000nit에서 단위는 hrs이다.
[표 2]
Figure 112011088731744-pat00036
상기 표 2의 결과로부터 확인할 수 있는 바와 같이 본 발명에 따른 화학식 1로 표시되는 화합물 구조는 발광체로써 OLED 박막층 형성에 이용 가능하며, 청색과 하늘색 및 녹색파장 영역에서 발광하며, 색좌표와 발광 효율 및 수명 특성이 향상됨을 확인할 수 있었다.
특히 본 발명에 따른 화학식 1의 R2로써 페닐기, 나프탈렌기, 안트라센기, 펜안트라센기 또는 파이렌기 유도체를 사용한 실시예는 비교예의 안트라센 화합물 (ADN)에 비하여, ADN에 화학식 1의 화합물을 도핑함으로써 다양한 파장의 색좌표와 발광효율 및 향상된 수명특성을 보여주고 있음을 확인할 수 있었다.

Claims (6)

  1. 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체:
    [화학식 1]
    Figure 112014055320554-pat00037

    상기 식에서, Ar₁과 Ar₂ 및 R₁과 R₂는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.
  2. 제 1항에 있어서, 상기 R₁은 하기 표 1에 기재된 화합물 중에서 선택되는 것을 특징으로 하는 1,1'-바이나프틸-4,4'-디아민 유도체.

    [표 1]

    Figure 112011088731744-pat00039

    Figure 112011088731744-pat00040
  3. 유기 전기 소자의 발광체로 사용되는 하기 화학식 1로 표시되는 1,1'-바이나프틸-4,4'-디아민 유도체 화합물의 제조 방법으로써,
    하기 화학식 (A)로 표시되는 화합물을 이용하여 탄소-탄소 결합반응을 시켜 하기 화학식(B)로 표시되는 화합물을 합성하는 단계; 및
    상기 화학식 (B)로부터 아미네이션 반응을 시켜 하기 반응식 1의 화학식 1로 표시되는 화합물을 제조하는 단계를 포함하는 하기 화학식 1의 화합물의 제조 방법.

    [화학식 1]

    Figure 112014055320554-pat00041

    상기 식에서, Ar₁과 Ar₂ 및 R₁과 R₂는 각각 독립적으로 동일 또는 상이하며, Ar₁과 Ar₂은 펜안트라센 또는 파이렌, R₁은 탄소수 6∼30의 치환 또는 비치환된 아릴기 또는 치환되거나 비치환된 탄소수 5∼30의 헤테로아릴기, R₂는 페닐, 톨루엔, 나프탈렌, 안트라센, 펜안트라센, 파이렌기, 또는 카바졸이다. n 및 m은 0 내지 3의 정수이다.

    [화학식 A]
    Figure 112014055320554-pat00042


    [화학식 B]
    Figure 112014055320554-pat00043


    [반응식 1]
    Figure 112014055320554-pat00044
  4. 제 3항에 있어서, 상기 R₁은 하기 표 1에 기재된 화합물 중에서 선택되는 것을 특징으로 하는 1,1'-바이나프틸-4,4'-디아민 유도체 화합물의 제조 방법.
    [표 1]
    Figure 112011088731744-pat00045

    Figure 112011088731744-pat00046

    Figure 112011088731744-pat00047

  5. 제 1 또는 제 2항에 기재된 화학식 1의 화합물을 발광체로 사용하는 유기 전자 소자.
  6. 제 5항에 있어서, 상기 유기전자소자는 유기발광소자 (OLED), 유기태양전지 (OSC), 전자종이 (e-Paper), 유기감광체(OPC) 및 유기트랜지스터 (OTFT)로 이루어진 군으로부터 선택되는 것을 특징으로 하는 유기전자소자.
KR1020110116795A 2011-11-10 2011-11-10 유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자 KR101427241B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110116795A KR101427241B1 (ko) 2011-11-10 2011-11-10 유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자
TW101141871A TW201323379A (zh) 2011-11-10 2012-11-09 用於有機電致發光裝置之發光之1,1’-雙萘基-4,4’-二胺衍生物及使用該衍生物之有機電致發光裝置
PCT/KR2012/009470 WO2013070026A1 (en) 2011-11-10 2012-11-09 1,1'-binaphthyl-4,4'-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110116795A KR101427241B1 (ko) 2011-11-10 2011-11-10 유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자

Publications (2)

Publication Number Publication Date
KR20130051582A KR20130051582A (ko) 2013-05-21
KR101427241B1 true KR101427241B1 (ko) 2014-08-18

Family

ID=48290317

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110116795A KR101427241B1 (ko) 2011-11-10 2011-11-10 유기 전기 소자의 발광체로 사용되는 1,1'-바이나프틸-4,4'-디아민 유도체 및 이를 이용한 유기 전기발광 소자

Country Status (3)

Country Link
KR (1) KR101427241B1 (ko)
TW (1) TW201323379A (ko)
WO (1) WO2013070026A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3168887A4 (en) * 2014-07-09 2018-03-14 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
CN105622568B (zh) * 2014-10-31 2018-10-16 上海和辉光电有限公司 一种有机化合物及其合成方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264890B2 (en) * 1998-12-25 2007-09-04 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2882403B1 (ja) * 1997-11-20 1999-04-12 日本電気株式会社 有機エレクトロルミネッセンス素子用材料及びこれを用いた有機エレクトロルミネッセンス素子
JP4832017B2 (ja) * 2005-04-25 2011-12-07 ケミプロ化成株式会社 ビナフチル誘導体、それよりなるホスト材料、ホール輸送材料およびそれを用いた有機el素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264890B2 (en) * 1998-12-25 2007-09-04 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter

Also Published As

Publication number Publication date
TW201323379A (zh) 2013-06-16
WO2013070026A1 (en) 2013-05-16
KR20130051582A (ko) 2013-05-21

Similar Documents

Publication Publication Date Title
JP7119270B2 (ja) 有機電気素子用化合物、これを用いた有機電気素子及びその電子装置
KR101497124B1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
KR101497120B1 (ko) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
US9079920B2 (en) Compound containing 5-membered heterocycles, organic light-emitting device using same, and terminal comprising the latter
KR100867526B1 (ko) 신규한 디아민 유도체, 이의 제조방법 및 이를 이용한유기전자소자
KR101694492B1 (ko) 아민 화합물 및 이를 이용한 유기전계 발광소자
KR100893044B1 (ko) 안트라센 유도체, 이를 이용한 유기 전자 소자 및 이 유기전자 소자를 포함하는 전자 장치
US8173273B2 (en) Anthracene derivatives, method for preparation thereof, and organic electronic device using the same
KR101720079B1 (ko) 퀴녹살린 유도체 화합물 및 이를 이용한 유기전계 발광소자
KR20130121597A (ko) 트리페닐아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
US7385095B2 (en) Indene derivatives and organic light emitting diode using the same
KR101694496B1 (ko) 다이벤조사이오펜 유도체 화합물 및 이를 이용한 유기전계 발광소자
KR20130121516A (ko) 신규한 아릴아민을 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR20120043878A (ko) 유기 전기 발광 소자용 유기 화합물 및 이를 이용한 유기 전기발광 소자
KR101779915B1 (ko) 축합 아릴아민계 화합물 및 이를 포함하는 유기전계발광소자
KR101311840B1 (ko) 신규한 3차 아릴 아민 및 이를 포함한 유기전계 발광소자
JP7362941B2 (ja) 新規なホウ素化合物及びこれを含む有機発光素子
KR20130120855A (ko) 티오펜를 사용한 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR101379765B1 (ko) 메타-치환된 페닐기를 포함하는 비대칭 아릴 아민 구조의 청색 발광 물질 및 이를 이용한 유기전계 발광소자
KR101427241B1 (ko) 유기 전기 소자의 발광체로 사용되는 1,1&#39;-바이나프틸-4,4&#39;-디아민 유도체 및 이를 이용한 유기 전기발광 소자
KR20130086757A (ko) 아민계 정공 수송 물질 및 이를 포함한 유기 전계 발광 소자
KR102283490B1 (ko) 유기 전기 발광 소자용 발광 재료, 이를 이용한 유기 전기 발광 소자 및 유기 전기 발광 소자용 재료
KR100754474B1 (ko) 안트라센계 유기 발광 화합물 및 이를 포함하는 유기 발광다이오드
KR20140021809A (ko) 방향족 화합물 유도체 및 이를 이용한 유기전계 발광소자
KR101472057B1 (ko) 비대칭형 안트라센 유도체, 그의 제조방법 및 그 유도체를 포함하는 유기전자소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20170605

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180605

Year of fee payment: 5