KR101419159B1 - 분할 링 냉각 구조 및 가스 터빈 - Google Patents

분할 링 냉각 구조 및 가스 터빈 Download PDF

Info

Publication number
KR101419159B1
KR101419159B1 KR1020127022440A KR20127022440A KR101419159B1 KR 101419159 B1 KR101419159 B1 KR 101419159B1 KR 1020127022440 A KR1020127022440 A KR 1020127022440A KR 20127022440 A KR20127022440 A KR 20127022440A KR 101419159 B1 KR101419159 B1 KR 101419159B1
Authority
KR
South Korea
Prior art keywords
cooling
opening
openings
combustion gas
divided body
Prior art date
Application number
KR1020127022440A
Other languages
English (en)
Other versions
KR20120120951A (ko
Inventor
히데미찌 고야부
사또시 하다
준이찌로 마사다
게이조 츠까고시
Original Assignee
미츠비시 쥬고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미츠비시 쥬고교 가부시키가이샤 filed Critical 미츠비시 쥬고교 가부시키가이샤
Publication of KR20120120951A publication Critical patent/KR20120120951A/ko
Application granted granted Critical
Publication of KR101419159B1 publication Critical patent/KR101419159B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid

Abstract

가스 터빈의 분할 링을 냉각하는 분할 링 냉각 구조에 있어서, 분할 링의 분할체는 냉각 공기를 분출하는 작은 구멍을 구비한 충돌판과, 상기 충돌판과 상기 분할체의 본체로 둘러싸인 냉각 공간과, 측단부를 따라 회전축의 축 방향에 배치되고, 상기 냉각 공간으로부터 냉각 공기를 수용하는 제1 캐비티와, 일단부가 상기 제1 캐비티에 연통하고, 타단부가 상기 측단부에 배열된 개구로부터 연소 가스 중에 냉각 공기를 분출하는 제1 냉각 유로로 구성되고, 상기 제1 냉각 유로의 개구는 연소 가스의 흐름 방향의 상류측에서는 하류측의 개구보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 연소 가스의 흐름 방향의 하류측에서는 상류측의 개구보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있다.

Description

분할 링 냉각 구조 및 가스 터빈 {SPLIT-RING COOLING STRUCTURE AND GAS TURBINE}
본 발명은, 가스 터빈에 적용되는 분할 링 냉각 구조 및 가스 터빈에 관한 것이다.
종래, 발전 등에 사용되는 가스 터빈은, 터빈부를 고온 고압의 연소 가스가 통과하므로, 안정된 운전을 계속하기 위해서는 분할 링 등의 냉각이 중요해진다. 특히, 최근은 가스 터빈의 열 효율의 향상을 위해, 연소 가스의 고온화가 한층 더 진행되고 있어, 냉각 능력의 강화가 더욱 필요해지고 있다.
도 10은, 종래의 가스 터빈의 전체 구성도를 도시한다. 가스 터빈(1)은 연소용 공기를 압축하는 압축기(2)와, 압축기(2)로부터 보내져 온 압축 공기에 연료(FL)를 분사해서 연소시켜, 연소 가스를 발생시키는 연소기(3)와, 이 연소기(3)의 연소 가스의 흐름 방향의 하류측에 설치되고, 연소기(3)를 나온 연소 가스에 의해 구동되는 터빈부(4)와, 발전기(6)와, 압축기(2)와 터빈부(4)와 발전기(6)를 일체로 체결하는 회전축(5)으로 구성되어 있다.
도 11은, 가스 터빈의 터빈부(4)에 관한 내부 구조를 도시한 단면도다.
가스 터빈은 연소기(3)에서 발생시킨 연소 가스(FG)를 터빈 정익(7) 및 터빈 동익(8)에 공급하고, 터빈 동익(8)을 회전축(5) 주위로 회전시켜, 회전 에너지를 전력으로 변환하고 있다. 터빈 정익(7) 및 터빈 동익(8)은, 연소 가스의 흐름 방향(도 11의 지면 상에서 좌측으로부터 우측 방향)의 상류측에서 하류측을 향해 교대로 배치되어 있다. 또한, 터빈 동익(8)은 회전축(5)의 둘레 방향으로 복수 배치되어, 회전축(5)과 일체가 되어 회전하고 있다.
도 12는 종래의 분할 링의 주요부 단면도다. 분할 링(60)은 회전축(5)의 둘레 방향에 링 형상으로 배치된 복수의 분할체(61)로 형성되고, 전체적으로 회전축(5)을 중심으로 한 링 형상체를 형성하고 있다. 분할체(61)는 훅(62) 및 열 차단 링(66)을 거쳐 차실(67)에 지지되어 있다. 또한, 열 차단 링(66)으로부터 지지되는 충돌판(64)은, 복수의 작은 구멍(65)을 구비하고, 차실(67)로 공급된 냉각 공기(CA)가 작은 구멍(65)으로부터 하방으로 분출하여, 분할체(61)의 본체 상면을 인핀지먼트(Inpingement) 냉각한다. 또 분할체(61)에는, 회전축(5)의 축 방향에 복수의 냉각 유로(63)가 설치되고, 냉각 공기가 분할체(61)의 본체 내를 축 방향으로 흘러, 분할체(61)를 대류 냉각하고 있다. 또한, 터빈 동익(8)의 외주측에는 분할 링(60)이 회전축(5)을 중심으로 링 형상으로 배치되고, 분할 링(60)과 터빈 동익(8)의 선단부와의 사이에는, 상호 간섭을 피하기 위해, 일정한 간극이 마련되어 있다. 또한, 연소 가스의 흐름 방향의 하류측에 있는 분할체(61)의 하류측 단부면(69)은, 회전하는 터빈 동익(8)의 후방 모서리 단부(TE)로부터 연소 가스의 흐름 방향의 하류측에 위치하고 있다.
도 13은, 도 12에 도시한 분할 링(60)의 사시도다. 본 예에서는, 분할체(61)의 회전축(5)의 축 방향(도 13의 지면 상에서 좌측 하부에서 우측 상부의 방향)을 따른 측단부(70)에 개구(33)가 배열되어 있다. 분할체(61)의 본체를 인핀지먼트 냉각한 후의 냉각 공기는, 측단부(70)에 설치된 냉각 유로(도시하지 않음)에 공급되어, 개구(33)로부터 연소 가스 중에 분출할 때, 측단부(70)를 대류 냉각하고 있다.
분할 링(60)을 냉각하기 위해, 예를 들어 압축기(2)의 추기 공기 일부의 냉각 공기가, 차실(67)의 공급 구멍으로부터 분할 링(60)의 각 분할체(61)에 공급된다. 냉각 공기는 충돌판(64)에 개방하는 작은 구멍(65)을 거쳐 충돌판(64)과 분할체(61)로 둘러싸인 냉각 공간(71)에 분출하여, 분할체(61)의 본체 상면(냉각 공간에 접하는 면)을 인핀지먼트 냉각한다. 인핀지먼트 냉각 후의 냉각 공기는, 냉각 유로(63)를 경유해서 분할체(61)의 연소 가스의 흐름 방향의 하류측 단부면으로부터 연소 가스 중에 분출하고, 냉각 공기에 의해 분할체(61)의 본체가 대류 냉각된다. 또한, 측단부(70)를 따라 배치된 개구(33)로부터 연소 가스 중에 냉각 공기의 일부를 배출함으로써, 분할체(61)의 측단부(70)가 대류 냉각된다.
특허 문헌 1에는, 전술한 분할 링 냉각 구조의 일례가 게시되어 있다.
일본 특허 출원 공개 제2004-100682호 공보
터빈부에 있어서, 터빈 정익 및 터빈 동익의 외주를 통과하는 연소 가스는, 연소 가스가 보유하는 열 에너지를 회전 에너지로 변환하면서, 연소 가스의 흐름 방향의 상류측에서 하류측을 향해 흐르는 과정에서, 점차 압력이 저하된다.
한편, 특허 문헌 1에 게시되는 발명에서는, 분할체의 측단부는 측단부를 따라 연소 가스의 흐름 방향이 상류측에서 하류측에 걸쳐 냉각 구멍을 배치하고, 냉각 구멍으로부터 인핀지먼트 냉각 후의 냉각 공기를 분출함으로써, 측단부를 대류 냉각하고 있다. 냉각 구멍은, 통상 동일한 구멍 지름 및 구멍 피치로 배열되어 있다. 연소 가스의 압력 저하와 함께, 연소 가스의 압력과 냉각 공간 내의 공기 압력의 차압은 하류측일수록 커진다. 따라서, 냉각 구멍으로부터 분출하는 냉각 공기는, 하류측에서는 냉각에 필요한 공기량 이상이 흘러, 냉각 공기량의 손실을 초래한다고 하는 문제점이 있었다.
본 발명은, 상술한 문제점에 비추어 이루어진 것으로, 분할 링의 측단부를 냉각하는 냉각 공기량의 저감을 도모하고, 분할 링 전체의 냉각 공기량의 적정화와 가스 터빈의 열 효율의 향상을 목적으로 한 분할 링 냉각 구조 및 가스 터빈을 제공하는 것을 목적으로 하고 있다.
본 발명은, 상기 문제점을 해결하기 위해, 하기의 수단을 채용했다.
즉, 본 발명의 분할 링 냉각 구조는 둘레 방향에 배치되어 링 형상을 이루는 복수의 분할체로 형성되고, 분할체의 내주면이 터빈 동익의 선단부로부터 일정한 거리를 유지하도록 해서 차실 내에 배치되는 가스 터빈의 분할 링을 냉각하는 분할 링 냉각 구조에 있어서, 분할체는 차실의 외부로부터 공급된 냉각 공기를 분출시켜, 분할체의 본체를 인핀지먼트 냉각하는 작은 구멍을 구비한 충돌판과, 충돌판과 분할체의 본체로 둘러싸인 냉각 공간과, 분할체의 회전축의 축 방향을 따른 측단부 중, 적어도 한쪽의 측단부를 따라 회전축의 축 방향에 배치되고, 냉각 공간으로부터 인핀지먼트 냉각 후의 냉각 공기를 수용하는 제1 캐비티와, 일단부가 제1 캐비티에 연통하고, 타단부가 측단부에 배열된 개구로부터 연소 가스 중에 냉각 공기를 분출하는 제1 냉각 유로로 구성되고, 제1 냉각 유로의 개구는 연소 가스의 흐름 방향의 상류측에서는 하류측의 개구보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 연소 가스의 흐름 방향의 하류측에서는 상류측의 개구보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있는 것을 특징으로 한다.
본 발명에 따르면, 분할체의 측단부에 배열된 제1 냉각 유로의 개구는, 연소 가스의 흐름 방향의 상류측에서 배열 피치가 작거나 또는 개구 면적이 커지도록 배열되고, 하류측에서 배열 피치가 크거나 또는 개구 면적이 작아지도록 배열되어 있으므로, 분할체의 측단부의 하류측으로부터 연소 가스 중에 분출하는 냉각 공기량이 저감되어, 측단부를 냉각하는 냉각 공기량이 적정화된다. 또한, 냉각 공기량의 저감에 의해, 가스 터빈의 열 효율이 향상된다.
본 발명에 있어서의 제1 냉각 유로의 개구는, 적어도 회전축의 회전 방향의 전방측 측단부에 배치되어 있는 것이 바람직하다.
본 발명에 따르면, 측단부는 회전 방향의 후방측보다 전방측에서 열 부하가 높으므로, 측단부의 손상을 방지할 수 있다.
본 발명에 있어서의 제1 냉각 유로의 개구는, 제1 냉각 유로의 개구가 연소 가스의 흐름 방향의 상류측에서 하류측을 향해 2개의 영역으로 나뉘고, 상류측의 제1 영역에서는 하류측의 제2 영역보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 하류측의 제2 영역에서는 상기 제1 영역보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있는 것이 바람직하다.
본 발명에 따르면, 제2 영역에서는 제1 영역에 비교해서 연소 가스의 압력 저하가 현저하고, 제2 영역의 개구로부터 연소 가스 중에 분출하는 냉각 공기량이 제한되어, 제2 영역의 냉각 공기량이 저감되므로, 분할체 전체의 냉각 공기량이 저감된다.
본 발명에 있어서의 제1 냉각 유로의 개구는, 제2 영역이 개시하는 상류측의 위치가 시점인 것이 바람직하다.
본 발명에 있어서의 제1 냉각 유로의 개구는, 연소 가스의 흐름 방향의 상류측에서 하류측을 향해 3개의 영역으로 나뉘어, 가장 상류측의 제1 영역에서는 다른 영역보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 가장 하류측의 제3 영역에서는 다른 영역보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되고, 제1 영역과 제3 영역 사이에 끼인 제2 영역에서는 상류측에서 하류측을 향해 개구의 배열 피치가 차례로 커지도록 또는 개구의 개구 면적이 차례로 작아지도록 배열되어 있는 것이 바람직하다.
본 발명에 따르면, 제1 냉각 유로의 개구를 상류측에서 하류측을 향해 3개의 영역으로 나누고, 각 영역의 개구의 배열 피치를 상류측에서 하류측을 향해 커지도록 또는 개구의 개구 면적이 작아지도록 선정하고, 특히 압력 저하가 심한 제2 영역에 있어서, 상류측에서 하류측을 향해 개구의 배열 피치를 차례로 크거나 또는 개구의 개구 면적을 차례로 작게 했으므로, 제2 영역의 냉각 공기량의 적정화가 도모되어, 분할체 전체의 냉각 공기량이 저감된다.
본 발명에 있어서의 제1 냉각 유로의 개구는, 제2 영역이 개시하는 상류측의 위치가 시점이며, 제3 영역이 개시하는 상류측의 위치가 종점인 것이 바람직하다.
상기 시점은, 연소 가스의 흐름 방향에서 가장 하류측의 제1 시점으로부터 가장 상류측의 제2 시점 사이에서 변화되는 것이 바람직하다.
본 발명에 따르면, 연소 가스압의 급격한 저하가 시작되는 위치가, 날개 형상에 의해 제1 시점과 제2 시점 사이에서 변화되므로, 그 사이에서 시점 위치를 선정하여, 개구의 피치 또는 개구 면적을 바꿈으로써, 날개 형상에 맞춘 적정한 냉각 공기량을 선정할 수 있다.
본 발명의 분할체는 분할체의 연소 가스의 흐름 방향의 상류측 단부이며 회전축의 축 방향에 직교하도록 배치된 제2 캐비티와, 회전축의 축 방향에 설치되어 냉각 공간으로부터 제2 캐비티에 연통하는 제2 냉각 유로와, 회전축의 축 방향에 설치되어 제2 캐비티로부터 분할체의 하류측 단부에 있어서 연소 가스 중에 개방하는 제3 냉각 유로를 구비하는 것이 바람직하다.
본 발명에 따르면, 분할체 본체 및 상류측 단부를 냉각하는 냉각 공기량이 저감되어, 분할체 전체의 냉각 공기량의 저감을 도모할 수 있다.
본 발명은, 제2 냉각 유로 및 제3 냉각 유로가 제2 캐비티를 거쳐 회전축의 축 방향으로 되접히는 구조를 구비하고 있는 것이 바람직하다.
본 발명에 따르면, 회전축의 축 방향의 냉각 유로가 되접힘 구조를 구비함으로써 냉각 유로가 직렬로 접속되므로, 분할체 본체의 연소 가스의 흐름 방향의 냉각 유로의 길이가 최장이 되어, 본체의 냉각 공기량의 저감이 도모된다.
본 발명은, 전술한 분할 링 냉각 구조를 구비한 가스 터빈인 것이 바람직하다.
본 발명에 따르면, 분할 링의 냉각 공기량의 적정화가 도모되므로, 가스 터빈의 열 효율이 향상된다.
전술한 본 발명에 따르면, 분할 링 본체의 측단부를 냉각하는 냉각 공기량이 저감되어, 분할 링 전체의 냉각 공기량의 적정화가 도모되는 동시에 가스 터빈 전체의 열 효율이 향상된다.
도 1은 제1 실시예의 분할 링의 주요부 단면도를 도시한 도면이다.
도 2는 제1 실시예에 나타내는 분할체의 평면 단면도를 도시한 도면이다.
도 3은 도 2에 도시한 분할체의 종단면도(단면 A-A)를 도시한 도면이다.
도 4는 도 2에 도시한 분할체의 종단면도(단면 B-B)를 도시한 도면이다.
도 5a는 터빈 동익의 날개 프로파일을 도시한 도면이다.
도 5b는 연소 가스의 압력 분포 및 냉각 공기측의 열 전달율의 분포와 축 방향의 길이(L)의 관계를 도시한 도면이다.
도 5c는 분할체의 측단부의 개구 배치를 도시한 도면이다.
도 6a는 제1 실시예에 관계되는 측단부의 개구 배치의 제1 변형예를 도시한 도면이다.
도 6b는 제1 실시예에 관계되는 측단부의 개구 배치의 제2 변형예를 도시한 도면이다.
도 7a는 제2 실시예에 관계되는 연소 가스의 압력 분포 및 냉각 공기측의 열 전달율의 분포와 축 방향의 길이(L)의 관계를 도시한 도면이다.
도 7b는 제2 실시예에 관계되는 측단부의 개구 배치를 도시한 도면이다.
도 7c는 제2 실시예에 관계되는 측단부의 개구 배치의 제3 변형예를 도시한 도면이다.
도 7d는 제2 실시예에 관계되는 측단부의 개구 배치의 제4 변형예를 도시한 도면이다.
도 8은 제3 실시예의 분할체의 평면 단면도를 도시한 도면이다.
도 9는 제4 실시예의 분할체의 평면 단면도를 도시한 도면이다.
도 10은 가스 터빈의 전체 구성을 도시한 도면이다.
도 11은 터빈부의 내부 구조를 도시한 도면이다.
도 12는 종래예에 나타내는 분할 링의 주요부 단면도를 도시한 도면이다.
도 13은 종래예에 나타내는 분할 링의 사시도를 도시한 도면이다.
본 발명에 관한 분할 링 냉각 구조 및 가스 터빈에 대해서, 그 실시예를 도 1 내지 도 10을 기초로 하여 이하에 설명한다.
(제1 실시예)
제1 실시예에 대해서, 도 1 내지 도 6b 및 도 10, 도 11을 기초로 하여 이하에 설명한다.
터빈부는, 종래 기술의 도 11 및 도 12에서 설명한 내용과 동일한 구성이므로, 상세한 설명은 생략한다. 공통되는 부품 명칭 및 부호는, 동일한 명칭 및 부호를 사용한다.
도 1은, 가스 터빈의 분할 링의 주요부 단면을 도시하고 있다.
분할 링(10)은 차실(67)에 지지된 터빈부(4)의 구성 부재이며, 회전축(5)의 둘레 방향에 배치되어 링 형상을 이루는 복수의 분할체(11)로 형성된다. 분할체(11)는 배경 기술에서 설명한 바와 같이, 분할체(11)의 본체 내주면(12b)과 터빈 동익(8)의 선단부(8a) 사이에 일정한 간극이 확보되도록 배치되어 있다. 분할체(11)는, 예를 들어 내열성 니켈 합금 등으로 형성되어 있다.
분할체(11)는 본체(바닥판)(12)와, 훅(13)과, 충돌판(14)이, 주요한 구성 요소다. 분할체(11)는 연소 가스(FG)의 흐름 방향의 상류측(이하「상류측」이라고 부름) 및 연소 가스의 흐름 방향의 하류측(이하「하류측」이라고 부름)에 설치된 훅(13)을 거쳐 열 차단 링(34)에 부착되어, 열 차단 링(34)을 거쳐 차실(67)에 지지되어 있다. 분할체(11)는 본체(12)와, 충돌판(14)과, 상류측 및 하류측에 배치된 훅과, 회전축(5)의 축 방향을 따라서 설치된 측단부(18, 19)(도 4 참조)를 구비한다. 냉각 공간(35)은 분할체(11) 내에 형성되어, 분할체(11)의 본체(12) 및 충돌판(14)에 끼인 공간이며, 분할체 본체(12)의 상면(12a) 측에 접하는 공간이다.
냉각 공간(35)의 상부는 충돌판(14)으로 구획되고, 충돌판(14)에는 냉각 공기(CA)가 통과하는 다수의 작은 구멍(15)이 마련되어 있다. 충돌판(14)의 상방에는, 차실(67) 내의 냉각 공기가 공급 구멍(68)을 거쳐 도입되는 수용 공간(36)이 배치되어 있다. 수용 공간(36) 내에 공급된 냉각 공기는, 전체가 대략 동일한 압력으로 균압화된 상태에서 작은 구멍(15)으로부터 냉각 공간(35) 내로 분출하고, 분할체(11)의 본체(12)의 상면(12a)을 인핀지먼트 냉각한다.
도 2는 차실(67)측으로부터 회전축(5)의 중심 방향을 본 경우의 분할체(11)의 평면 단면도다. 도 2를 참조하여, 분할체(11)의 측단부(18, 19)의 냉각 구조를 설명한다.
분할체(11)의 회전축(5)의 회전 방향 R의 전방측(이하「전방측」이라고 부름)의 측단부(18)에는, 냉각 공간(35)으로부터 연결로(22)를 거쳐 전방측 단부 캐비티(20)(제1 캐비티)에 접속하여, 전방측 단부 캐비티(20)로부터 연소 가스(FG) 중에 연통하는 전방측 단부 냉각 유로(21)(제1 냉각 유로)가 배치되어 있다. 전방측 단부 냉각 유로(21)는, 회전축(5)의 축 방향에 대략 직교하는 방향에 배치되어 있지만, 하류측을 향해 기울기를 구비한 경사 유로라도 좋다.
또한, 전방측 단부 냉각 유로(21)는 전방측의 측단부(18)에 설치하는 것이 바람직하다. 측단부 단부면(18a)에 설치되어, 냉각 공기가 연소 가스 중에 분출하는 개구(33)는, 복수의 원형 형상의 개구를 구비하고, 동일 구멍 지름으로 하고 있다. 또한, 개구(33)의 배열 피치는 상류측[상류측의 상류측 단부(16)측]에서 작고, 하류측[하류측의 하류측 단부(17)측]에서 크게 하고 있다. 도 3에 도시한 바와 같이, 측단부 단부면(18a)에 배치된 개구(33)는 상류측의 제1 영역(Z1)에서는 개구(33)의 배열 피치는 작고, 하류측의 제2 영역(Z2)에서는 개구(33)의 배열 피치를 크게 하고 있다. 개구(33)의 배치와 연소 가스압의 관계 및 영역[제1 영역(Z1), 제2 영역(Z2)]의 의의는 후술한다.
도 2에 도시한 바와 같이, 분할체(11)의 회전 방향의 후방측(이하「후방측」이라고 부름)의 측단부(19)도, 측단부(18)와 같은 냉각 구조를 구비해도 좋다. 즉, 측단부(19)에는 전방측 단부 냉각 유로(21)와 마찬가지의 구성을 갖는 후방측 단부 냉각 유로(27)(제4 냉각 유로)가, 상류측에서 하류측에 걸쳐 배치되어 있다. 후방측 단부 냉각 유로(27)는 일단부가 냉각 공간에 연통하고, 타단부는 측단부 단부면(19a)의 개구(33)로부터 연소 가스 중에 개방하고 있다. 또한, 후방측 단부 냉각 유로(27)의 측단부 단부면(19a)에 마련하는 개구(33)의 구멍 지름 및 배열 피치는, 전방측의 측단부(18)의 개구(33)와 마찬가지의 구성이다.
또한, 도 2에 도시한 바와 같이, 측단부(19)에는 회전축(5)의 축 방향에 설치되고, 냉각 공간(35)을 사이에 두고 측단부(19)의 상류측 단부(16) 및 하류측 단부(17)에, 후방측 단부 캐비티(26)(제3 캐비티)를 마련하고, 후방측 단부 캐비티(26)의 한쪽이 냉각 공간(35)에 연통하고, 다른 쪽이 연소 가스 중에 개방하는 후방측 단부 냉각 유로(27)에 접속해도 좋다. 이 경우, 냉각 공기는 냉각 공간(35)으로부터 후방측 단부 캐비티(26)를 거쳐 후방측 단부 냉각 유로(27)에 공급되고, 개구(33)로부터 연소 가스 중에 배출된다.
가스 터빈의 운전 조건에 따라서는, 전술한 분할체(11)의 후방측의 측단부(19)에 있어서의 후방측 단부 냉각 유로(27)를 마련하지 않고, 후방측의 측단부(19)의 대류 냉각을 생략해도 좋다. 이 경우, 인접하는 분할체(11)의 측단부(18)에 마련한 개구(33)[측단부(18)의 개구(33)와 동일한 기능을 구비한 전방측 단부 냉각 유로(21)의 냉각 구멍]로부터 분출하는 냉각 공기에 의해, 후방측의 측단부(19)의 외면을 필름 냉각하여, 측단부(19)의 손상을 방지할 수 있다.
다음에, 분할체(11)의 본체(12)의 냉각 구조를 이하에 설명한다.
도 2에 도시한 바와 같이, 분할체(11)에는 상류측의 상류측 단부(16)이며, 회전축(5)의 축 방향에 거의 직교하는 방향에 상류측 단부 캐비티(23)(제2 캐비티)가 배치되어 있다. 또한, 냉각 공간(35)과 상류측 단부 캐비티(23)를 연결하는 상류측 단부 냉각 유로(24)(제2 냉각 유로)가 회전축(5)의 축 방향에 설치되고, 상류측 단부 캐비티(23)로부터 하류측의 하류측 단부면(17a)에 개방하는 본체 냉각 유로(25)(제3 냉각 유로)가, 분할체(11)의 본체(12)를 회전축(5)의 축 방향으로 관통하도록 배치되어 있다. 상류측 단부 캐비티(23)는 상류측 단부 냉각 유로(24)와 본체 냉각 유로(25)를 서로 연통하는 매니폴드의 역할을 하고 있다.
도 3은, 회전축(5)을 포함하는 평면으로 자른 전방측의 측단부(18)의 단면도(도 2의 단면 A-A)를 도시한다. 개구(33)의 배치는, 도 2에서 설명한 개구(33)의 배열 피치와 같으며, 제1 영역(Z1)에서는 영역(Z2)보다 개구(33)의 배열 피치가 작고, 제2 영역(Z2)에서는 제1 영역(Z1)보다 개구(33)의 배열 피치를 크게 하고 있다. 또한, 각 영역에 나타내는 개구(33)의 수는 일례이며, 이 수에 한정되지 않는다.
도 4는, 회전축(5)을 포함하는 평면으로 자른 분할체(11)의 본체(12)의 냉각 구조를 나타내는 종단면도(도 2의 단면 B-B)이다. 분할체(11)의 상류측 단부(16)에는, 냉각 공간(35)과 상류측 단부 캐비티(23)를 접속하는 상류측 단부 냉각 유로(24)가 배치되고, 상류측 단부 캐비티(23)와 하류측 단부면(17a)을 접속하는 본체 냉각 유로(25)가, 상류측 단부 냉각 유로(24)의 하방측(분할체의 지름 방향의 내측)에 배치되어 있다.
전술한 상류측 단부 냉각 유로(24) 및 본체 냉각 유로(25)의 구성에 의해, 상류측 단부 냉각 유로(24)는 상류측 단부 캐비티(23)에서 되접어, 본체 냉각 유로(25)에 접속하는 되접힘 구조를 구비하고 있으므로, 회전축(5)의 축 방향에 대하여, 냉각 유로 길이가 긴 냉각 유로가 형성된다. 즉, 상류측 단부 냉각 유로(24)는 분할체(11)의 상류측 단부(16)의 상면(12a) 측에 가까운 분할체(11) 내에 배치되어 있다. 한편, 본체 냉각 유로(25)는 상류측 단부 냉각 유로(24)보다 분할체(11)의 본체(12) 하면(12b)에 가까운 측에 배치되고, 상류측 단부 캐비티(23)에서 되접어 하류측 단부면까지 연장 설치되어, 하류측 단부면의 개구에서 연소 가스 중에 분출하고 있다. 그 결과, 본 실시예의 냉각 유로는 회전축(5)의 축 방향에 있어서, 종래예와 비교하여, 보다 긴 유로 길이를 형성할 수 있어, 분할체(11)의 냉각 성능이 향상된다.
다음에, 본 실시예에 있어서의 터빈 동익(8)의 날개 프로파일과 연소 가스의 압력 분포의 관계를, 도 5a 내지 도 5c에 의해 설명한다. 도 5a는, 터빈 동익(8)의 익렬의 일부의 평면도를 도시한다. 도 5b는, 터빈 동익(8)의 선단부 근방의 연소 가스 흐름의 압력 분포를 도시한다. 도 5c는, 터빈 동익(8)의 회전축의 축 방향에 직교하는 방향에서, 회전축(5)의 회전 방향의 전방측으로부터 본 분할체(11)의 측면도를 도시한다.
통상, 연소 가스의 압력은 터빈 동익(8)에 대한 일량이 되므로, 터빈 동익(8) 전방 모서리 단부(LE)로부터 후방 모서리 단부(TE)에 걸쳐, 연소 가스의 흐름을 따라 점차 압력이 저하된다. 즉, 터빈 동익(8)의 날개 간의 연소 가스 유로로 유입한 연소 가스는, 날개 간의 유로 단면적이 전방 모서리측에서 후방 모서리측을 향해 점차 작아져, 연소 가스류가 가속된다. 또 터빈 동익(8)에 의해 연소 가스의 흐름 방향이 바뀌게 되어, 터빈 동익(8)을 회전하여, 연소 가스의 압력이 일량으로 변환되고, 연소 가스의 압력(정압) 및 온도가 저하된다.
도 5a에 도시한 터빈 동익(8)의 날개 프로파일에 있어서, 전방 모서리 단부(LE)를 원점 X0으로 하여, 배면측의 날개 프로파일을 따라 전방 모서리 단부(LE)로부터 후방 모서리 단부(TE)에 걸쳐 좌표축(X)을 설정한다. 좌표축(X)에 있어서의 X축 상의 임의의 점 Xi에 있어서, 인접하는 동익의 복면측(腹側) 날개면을 향해 법선을 세우고, 법선과 인접하는 동익의 복면측 날개 프로파일의 교점을 Yi라 한다. 법선 Xi-Yi는, 날개 간 길이 Si에 상당한다.
날개 간 길이 Si는, 전방 모서리 단부로부터 후방 모서리 단부에 걸쳐 점차 작아져, X축 상의 점 Xs와 인접하는 동익의 후방 모서리 단부(TE)의 점 Ys를 잇는 날개 간 길이 Ss가, 최단 길이가 된다. 최단의 날개 간 길이 Ss를 스로트 길이라 부르고, 날개 간 길이 Ss를 형성하는 법선 Xs-Ys를 스로트라고 부른다. 날개 간 길이 Si에 있어서의 날개 간 유로의 단면적은, 점 Xs-Ys를 잇는 법선의 위치에서 최소 단면적이 된다. 즉, 연소 가스가 스로트를 통과할 때, 연소 가스의 가스 유속이 가장 빨라진다. 또한, 터빈 동익(8)의 최대 날개 두께를 나타내는 X축 상의 점을 Xm이라 하고, 점 Xm으로부터 인접하는 터빈 동익(8)의 복면측 날개면을 향해 법선을 세우고, 법선과 인접하는 동익의 복면측 날개 프로파일의 교점을 Ym이라 하면, 법선 Xm-Ym은 터빈 동익(8)의 최대 날개 두께에 대응하는 날개 간 길이 Sm을 나타내고 있다.
연소 가스로부터 받는 분할 링(11)의 분할체 본체(12)의 내주면(12b)의 압력(정압)은, 회전축(5)의 회전에 수반하여 규칙적으로 변동한다. 즉, 터빈 동익(8)의 선단부가 분할체(11)의 개구(33)를 구비한 측단부(18) 근방을 통과할 때, 복면측 날개면이 통과하는 경우는 압력이 높아지고, 배면측 날개면이 통과하는 경우는 압력이 낮아진다. 따라서, 복면측 날개면이 통과할 경우의 압력과 배면측 날개면이 통과하는 경우의 압력의 평균값을 취하고, 이 값을 측단부(18) 근방이 압력으로서 근사할 수 있다. 즉, 날개 간 유로의 중앙선(CL)을 따른 압력은, 전술한 복면측 날개면의 압력과 배면측 날개면의 압력의 평균값이라 생각되므로, 분할체 본체(12)의 측단부(18) 근방의 압력은 날개 간 유로의 중앙선을 따른 압력으로서 근사할 수 있다. 이 사고 방식에 의거하여, 분할체(11)의 측단부 단부면(18a)의 개구(33) 근방의 압력 분포를 도 5b에 도시하고 있다. 여기서, 날개 간 유로의 중앙선이라 함은, 날개 간 길이 Si의 중간점 Ci를 잇는 선을 의미한다.
날개 간 유로의 중앙선(CL)과 법선 Xi-Yi가 교차하는 위치를 점 Ci라고 하고, 중앙선 상의 X축의 원점 Xo에 대응하는 위치를 전방 모서리점 Co, 최대 날개 두께를 나타내는 X축 상의 점 Xm에 있어서의 법선 Xm-Ym과 중앙선이 교차하는 위치를 최대 날개 두께 점 Cm, 중앙선과 스로트가 교차하는 위치를 스로트점 Cs, X축 상의 후방 모서리 단부에 대응하는 위치를 후방 모서리점 Ce라고 하면, 중앙선(CL)은 점 Co, Cm, Cs, Ce를 잇는 곡선으로 표시할 수 있다. 또, 중앙선을 상류측 및 하류측으로 더욱 연장시켜, 상류측 단부면(16a)과 중앙선과의 교차하는 점을 상류점 Cf라 하고, 하류측 단부면(17a)과 중앙선과의 교차하는 점을 하류점 Cd라 하면, 중앙선 Cf-Co 및 중앙선 Cd-Ce는 중앙선 Co-Ce의 전방 모서리점 Co 또는 후방 모서리점 Ce에 있어서의 각각의 접선에 근사할 수 있다. 즉, 상류점 Cf와 하류점 Cd 사이의 중앙선은, 날개 간 길이의 중간점을 잇는 중앙선과 직선 형상의 선 Cf-Co 및 선 Cd-Ce로 형성된다.
다음에, 도 5b를 사용하여, 연소 가스의 압력 분포를 설명하고, 아울러 냉각 공기측의 열 전달율의 분포를 설명한다. 도 5b에 있어서, 횡축은 분할체(11)의 회전축(5)의 축 방향의 길이(L)를 나타낸다. 또한, 횡축에서는 연소 가스의 상류점 Cf[상류측 단부면(16a)]로부터 하류점 Cd[하류측 단부면(17a)]까지를 표시하고 있다. 각 점 Cf, Co, Cm, Cs, Ce, Cd의 회전축(5)의 축 방향의 위치 관계는, 도 5a 및 도 5c에 나타내는 위치에 대응시키고 있다. 종축은 분할체(11) 내의 냉각 공기(CA) 및 분할체(11)의 내주면을 흐르는 연소 가스의 압력 P(정압)를 나타낸다. 분할체(11)의 냉각 공간(35)의 냉각 공기의 압력 P1은 2점 쇄선으로 나타내고, 연소 가스 흐름의 중앙선을 따른 연소 가스압 P2는 실선으로 나타낸다. 또 냉각 공간(35)의 냉각 공기압 P1과 분할체(11)의 측단부(18)에 마련한 개구 근방의 연소 가스압 P2의 차압은 DP1로 나타낸다. 냉각 공간(35) 내의 냉각 공기의 압력 P1은, 유로 길이에 관계없이, 대략 일정한 압력이다. 또한, 상류점 Cf[상류측 단부면(16a)]와 스로트점 Cs 사이를 제1 영역(Z1)으로 나타내고, 스로트점 Cs와 하류점 Cd[하류측 단부면(17a)] 사이를 제2 영역(Z2)으로 나타내고 있다.
도 5b에 있어서, 제1 영역(Z1) 중 상류점 Cf로부터 전방 모서리점 Co까지의 사이에서는, 연소 가스압 P2는 저하되지 않는다. 연소 가스가 날개 간 유로로 유입하는 전방 모서리점 Co로부터 최대 날개 두께 점 Cm까지의 사이에서는, 하류측을 향해 유로 단면적이 점차 좁혀지게 되므로, 그 사이의 연소 가스 유속은 완만하게 증가하고, 연소 가스압 P2는 점차 저하된다. 또한, 최대 날개 두께 점 Cm으로부터 스로트점 Cs까지의 사이는, 날개 간의 유로 단면적이 더욱 좁아져, 연소 가스압 P1의 저하가 커진다.
한편, 제2 영역(Z2)에 있어서의 연소 가스압 P2는, 스로트점 Cs로부터 하류측에 있어서 급격하게 저하되어, 차압 DP1이 급증한다. 제2 영역(Z2)은, 스로트 위치에 대하여 하류측의 바로 근처에 있어서, 제1 영역(Z1)에 비교해서 차압 DP1의 변화가 크다. 스로트점 Cs의 전후에서, 차압 DP1이 급격하게 변화되므로, 스로트점 Cs는 압력의 변곡점을 나타낸다.
다음에, 분할체(11)의 냉각 유로 내를 흐르는 냉각 공기의 열 전달율의 분포를 설명한다.
도 5b에 있어서, 냉각 공기측의 열 전달율 α는, 점선으로 나타내고 있다. 종축은 열 전달율 α를 나타내고, 횡축은 회전축(5)의 축 방향의 길이(L)를 나타낸다. 제1 영역(Z1) 중 상류점 Cf로부터 전방 모서리점 Co까지의 사이에서는, 냉각 공기압과 연소 가스압과의 차압 DP1이 대부분 변화되지 않으므로, 냉각 공기측의 열 전달율 α는 일정해진다. 연소 가스가 날개 간 유로로 유입하는 전방 모서리점 Co로부터 스로트점 Cs까지의 사이에서는, 차압 DP1이 증가하여, 냉각 공기측의 열 전달율 α도 하류측을 향해 점차 커지고, 스로트점 Cs 근방에서 최대가 된다. 스로트점 Cs로부터 하류측에서는, 대략 냉각 공기측의 열 전달율 α는 최대값에서 일정해진다.
도 5c는, 도 5a 및 도 5b에 대응하는 분할체(11)의 전방측의 측단부(18)의 개구(33)의 배치를 나타내고 있다. 중앙선 상의 스로트점 Cs에 대응하는 측단부(18)에 배치된 개구(33)[회전축(5)에 직교하는 방향으로부터 본 경우, 스로트점에 일치 또는 가장 가까운 개구]의 위치를 시점(SP)[제1 시점(SP1)]으로 하면, 시점(SP)을 경계로 하여 상류측의 개구(33)의 배열 피치보다 하류측의 개구(33)의 배열 피치를 크게 하고 있다. 즉, 시점(SP)은, 시점(SP)의 전후에서 연소 가스압이 급격하게 변화되고, 또한 냉각 공기측의 열 전달율이 최대값이 되어, 개구(33)의 피치가 급격하게 변하는 변곡점을 의미한다. 또한, 측단부(18)의 개구 형상은 원 형상으로 설명했지만, 타원 형상이라도 좋고, 직사각형 형상이라도 좋고, 슬릿 형상의 긴 구멍 형상이라도 좋다. 개구(33) 1개당의 개구 면적은, 모두 동일하다.
본 실시예에 따르면, 분할체(11)의 상류측 개구(33)의 배열 피치보다 하류측 개구(33)의 배열 피치를 크게 하여, 하류측 개구(33)로부터 분출하는 냉각 공기량을 억제하고 있으므로, 측단부(18) 전체의 냉각 공기량을 줄일 수 있다.
또한, 도 2, 도 4에 도시한 바와 같이, 본 발명은 상류측 단부 캐비티(23)와 상류측 단부 냉각 유로(24)와 본체 냉각 유로(25)의 조합으로 이루어지는 냉각 유로가 되접힘 구조를 구비하고, 각 유로가 시리즈로 연결된 냉각 구조를 구비하고 있으므로, 냉각 공간 내의 공기압과 하류측 단부면으로부터 배출되는 연소 가스압의 차압이 가장 커진다. 최대 차압을 이용할 수 있으므로, 분할체(11)의 본체(12)의 냉각 성능상 가장 효율이 좋다. 즉, 도 5b에 도시한 바와 같이, 날개면을 흐르는 연소 가스의 압력은, 하류측 단부면 근방에서 가장 낮아진다. 따라서, 냉각 공간(35)의 냉각 공기가, 상류측 단부 냉각 유로(24)를 흘러서 상류측 단부(16)의 상부를 대류 냉각하고, 상류측 단부 캐비티(23)에서 되접어, 본체 냉각 유로(25)에서 분할체(11)의 본체(12)를 대류 냉각하여, 하류측 단부면으로부터 연소 가스 중에 분출하고 있다. 이로 인해, 냉각 공기압과 연소 가스압의 최대 차압을 최대한으로 이용하여, 냉각 공기를 회전시켜 사용하고 있으므로, 종래보다도 분할체(11)의 본체(12)의 냉각 공기량을 줄일 수 있다.
도 5c에 도시한 제1 실시예의 측단부(18)의 개구 배치의 변형예를, 제1 변형예로서 도 6a 및 제2 변형예로서 도 6b에 도시한다. 제1 변형예에 나타내는 개구(33)는, 시점(SP)[제1 시점(SP1)]보다 상류측은 직사각형 형상의 개구(33)로 하고, 시점(SP)보다 하류측은 상류측의 직사각형 형상의 개구(33)보다 단면적이 작은 원 형상의 개구(33)로 하고 있다. 제2 변형예는, 직사각형 형상의 개구(33)로 하여, 시점(SP)[제1 시점(SP1)]보다 하류측의 개구(33)는 상류측의 개구(33)보다 단면적을 작게 하고 있다. 제1 변형예 및 제2 변형예에 나타내는 개구(33)의 배열 피치는 모두 동일하게 하고, 시점(SP)[제1 시점(SP1)] 근방에서 개구 면적을 바꾼 예다. 본 변형예도, 연소 가스의 급격한 압력 저하와 함께 개구(33)의 개구 면적을 작게 해서 냉각 공기량의 저감을 도모하고 있으므로, 제1 실시예와 같은 효과가 얻어진다.
(제2 실시예)
제2 실시예에 대해서, 도 7a 및 도 7b를 참조해서 설명한다. 도 7a는 본 실시예에 관계되는 연소 가스의 압력 분포와 분할체의 회전축(5)의 축 방향의 길이(L)의 관계를 나타내고, 도 7b는 분할체(11)의 측단부(18)의 개구(33)의 배치를 나타낸다.
터빈 동익(8)의 형상에 의해, 날개 간 유로를 흐르는 연소 가스의 압력이, 제1 실시예보다 상류측에 있어서 급격하게 저하되는 경우가 있다. 즉, 제1 실시예에서는, 연소 가스압이 급격하게 저하되는 위치가 스로트점 Cs에 있지만, 본 실시예에서는 연소 가스압이 급격하게 저하되는 위치가 가장 상류측으로 돌아간 경우를 상정하여, 최대 날개 두께 점 Cm에 있는 경우를 나타내고 있다.
도 7a는, 본 실시예에 관계되는 연소 가스압 P3 및 냉각 공기측의 열 전달율 α의 변화와 분할체(11)의 회전축(5)의 축 방향 길이(L)의 관계를 나타내는 것이며, 연소 가스압 P3과 냉각 공간(35)의 냉각 공기압 P1의 차압을 DP2로 나타낸다. 또한, 최대 날개 두께 점 Cm을 경계로 하여 상류측을 제1 영역(Z1)으로 나타내고, 하류측을 제2 영역(Z2)으로 나타낸다. 제1 실시예와 마찬가지로, 냉각 공기압 P1은 2점 쇄선으로 나타내고, 연소 가스압 P3은 실선으로 나타내고, 냉각 공기측의 열 전달율 α는 점선으로 나타낸다. 도 7b는, 도 7a에 대응하는 본 실시예에 있어서의 측단부(18)의 개구(33)의 배열을 나타낸다. 또한, 최대 날개 두께 점 Cm에 대응하는 분할체의 측단부(18)의 개구 위치를 시점(SP)[제2 시점(SP2)]으로서 표시하고 있다. 본 실시예의 측단부(18)의 개구(33)는, 각 개구의 개구 면적은 동일하지만, 시점(SP)[제2 시점(SP2)]보다 상류측에 배치된 개구(33)의 배열 피치보다, 시점(SP)의 하류측에 배치된 개구(33)의 배열 피치를 크게 하고 있다. 또한, 도 7b에 도시한 개구 형상은, 원형 구멍으로 표시하고 있지만, 직사각형 형상이라도 좋고, 타원 형상, 슬릿 형상의 긴 구멍 형상이라도 좋다.
본 실시예에 따르면, 최대 날개 두께 점 Cm으로부터 연소 가스압이 급격하게 저하되는 경우라도, 시점(SP)으로부터 개구(33)의 배열 피치를 바꿈으로써, 제2 영역(Z2)에 있어서의 연소 가스압 P3의 차압 DP2의 급증에 대하여, 개구(33)로부터 연소 가스 중에 배출되는 냉각 공기량을 교축할 수 있어, 측단부(18)의 냉각 공기량의 저감이 도모된다. 또한, 본 실시예에서는 최대 날개 두께 점 Cm에서 냉각 공기측의 열 전달율이 최대가 되어, 그 점으로부터 하류측에서는 열 전달율은 일정해진다. 즉, 제2 영역(Z2)의 전 범위에 있어서, 냉각 공기측의 열 전달율이 최대가 되므로, 측단부(18)의 개구(33)의 배열 피치를 제1 영역보다 크게 하여, 제2 영역의 냉각 공기량을 교축할 수 있다.
또한, 전술한 제1 실시예의 시점(SP1)은 스로트점 Cs에 대응하고, 본 실시예의 시점(SP2)은 최대 날개 두께 점 Cm에 대응하고 있다. 전술한 바와 같이, 연소 가스압 및 냉각 공기의 열 전달율이 급격하게 변화되는 위치를 나타내는 시점(SP)은, 가스 터빈 동익(8)의 형상에 의해, 스로트점 Cs와 최대 날개 두께 점 Cm 사이에서 변동한다.
제2 실시예에 대하여 다시 개구(33)의 배치를 바꾼 예를, 도 7c(제3 변형예) 및 도 7d(제4 변형예)에 도시한다. 연소 가스압 및 냉각 공기의 열 전달율의 변화는, 제2 실시예의 도 7a에 도시한 연소 가스압 및 열 전달율로 바뀌지 않는다. 본 변형예에서는, 제2 실시예에 대하여, 측단부(18)의 개구(33)를 3개의 영역으로 나누고 있다. 즉, 가장 상류측의 영역을 제1 영역(Z1), 가장 하류측의 영역을 제3 영역(Z3)으로 하고, 중간에 끼인 영역을 제2 영역(Z2)으로 하고 있다.
전술한 바와 같이, 날개 형상에 의해, 연소 가스압 P3의 급격한 저하가 발생하는 점(시점)의 위치는, 최대 날개 두께 점 Cm과 스로트점 Cs 사이에서 변동할 가능성이 있다. 또한, 냉각 공기측의 열 전달율이 최대가 되는 점은, 연소 가스압의 급격한 변화를 발생하는 점에 대응하고 있다. 그 위치보다 연소 가스의 흐름 방향의 하류측에서는, 냉각 공기측의 열 전달율은 일정해진다. 이러한 연소 가스의 압력 변화 및 냉각 공기측의 열 전달율의 변화에 대응시켜, 개구(33)의 배치를 선정하는 것이 바람직하다.
도 7c에 도시한 제3 변형예에서는, 제2 실시예에 있어서의 제2 영역(Z2)을 2개의 영역으로 나누고, 최대 날개 두께 점 Cm과 스로트점 Cs 사이를 제2 영역(Z2)으로 하고, 스로트점 Cs와 하류측 단부면(17a)(하류점 Cd) 사이를 제3 영역(Z3)으로 하고 있다. 제1 영역(Z1)에 있어서의 개구(33)의 배열은 제1 실시예 및 제2 실시예와 같지만, 제2 영역(Z2)에서는 상류측에서 하류측을 향해 배열 피치를 점차 커지도록 설정하고, 제3 영역(Z3)에서는 다른 영역보다 큰 배열 피치로, 또한 동일한 배열 피치로 배치하고 있다. 또, 제2 영역(Z2)이 개시하는 상류측의 최대 날개 두께 점 Cm에 대응하는 개구(33)의 위치를 시점(SP)[제2 시점(SP2)]으로 하고, 제3 영역(Z3)이 개시하는 상류측의 후방 모서리점 Ce에 상당하는 개구(33)의 위치를 종점(EP)으로 하고 있다.
도 7d는, 직사각 형상의 개구(33)를 예로 들어, 연소 가스압의 변화에 대응시켜 개구(33)의 개구 면적을 바꾼 제4 변형예를 나타낸다. 제1 영역(Z1), 제2 영역(Z2), 제3 영역(Z3)의 구분은, 제3 변형예와 같다. 제1 영역(Z1)의 개구(33)의 개구 면적은 다른 영역보다 큰 면적으로 하고, 제2 영역(Z2)에서는 상류측에서 하류측을 향해 직사각 형상의 개구(33)의 개구 면적을 점감하고, 제3 영역(Z3)에서는 다른 영역보다 개구(33)의 개구 면적을 작게 하고 있다. 개구(33)의 형상은, 타원 형상이라도 좋고, 슬릿 형상의 긴 구멍 형상이라도 좋다. 시점(SP)[제2 시점(SP2)] 및 종점(EP)의 선정은, 제3 실시예와 같다.
또한, 종점(EP)의 위치의 상류측에서는 압력의 저하가 심하지만, 종점 위치의 하류측에서는 연소 가스압의 변화가 거의 없다. 즉, 종점(EP)은 시점(SP)과 마찬가지로, 연소 가스압의 변곡점을 의미한다. 종점 전후의 압력 변화에 맞추어, 종점의 상류측에서는 하류측을 향해 개구 피치를 점차 크거나 또는 개구 면적을 점감시키고 있지만, 종점의 하류측에서는 개구 피치 또는 개구 면적이 일정해지도록 선정하고 있다.
본 변형예의 구성에 따르면, 제2 실시예와 비교하여, 제2 영역(Z2)에 있어서 급격한 압력 저하와 함께 개구(33)의 배열 피치를 하류측을 향해 점차 크거나 또는 개구 면적을 점차 작아지도록 설정하고 있으므로, 개구(33)로부터 배출되는 냉각 공기량이 연소 가스압의 저하와 함께 교축되어, 제2 실시예보다 냉각 공기량의 삭감, 적정화가 한층 더 도모된다.
(제3 실시예)
제3 실시예에 대해서, 도 8을 참조해서 이하에 설명한다.
본 실시예는, 제1 실시예와 마찬가지로, 측단부(18, 19)에는 각각 전방측 단부 냉각 유로(21) 및 후방측 단부 냉각 유로(27)가 설치되고, 측단부 단부면(18a, 19a)에는 각 냉각 유로를 거쳐 연소 가스 중에 개방하는 개구(33)가 배열되어 있다.  또한, 분할체 본체(12)를 냉각하기 위해, 상류측 단부(16)에는 상류측 단부 냉각 유로(28)(제5 냉각 유로)가 설치되고, 하류측 단부(17)에는 하류측 단부 냉각 유로(29)(제6 냉각 유로)가 설치된다. 측단부(18, 19)에 설치하는 개구(33)의 배치는, 제1 실시예, 제2 실시예 및 제1 변형예 내지 제4 변형예에 나타내는 개구의 배치를 적용할 수 있다.
전방측의 측단부(18)에는, 회전축의 축 방향에 전방측 단부 캐비티(20)가 설치되고, 전방측 단부 캐비티 중 한쪽은 연결로(22)를 거쳐 냉각 공간(35)에 연통하고, 다른 쪽은 전방측 단부 냉각 유로(21)에 접속하고 있다. 전방측 단부 냉각 유로(21)의 말단부는, 개구(33)로부터 연소 가스 중에 개방하고 있다. 한편, 후방측 측단부(19)의 하류측 단부(17)에는, 회전축(5)의 축 방향에 후방측 단부 캐비티(26)가 설치되고, 후방측 단부 캐비티(26) 중 한쪽은 냉각 공간(35)에 연통하고, 다른 쪽은 후방측 단부 냉각 유로(27)에 접속하고 있다. 또한, 후방측 단부 냉각 유로(27)의 말단부는, 개구(33)를 거쳐 연소 가스 중에 개방하고 있다.
상류측 단부(16)에는, 일단부가 냉각 공간(35)에 연통하고, 타단부는 상류측 단부면(16a)으로부터 연소 가스의 흐름 방향의 상류측에 개방하는 상류측 단부 냉각 유로(28)가 설치되어 있다. 또한, 하류측 단부(17)에는, 일단부가 냉각 공간(35)에 연통하고, 타단부가 하류측 단부면(17a)으로부터 연소 가스의 흐름 방향의 하류측에 개방하는 하류측 단부 냉각 유로(29)가 설치되어 있다.
본 실시예에 있어서의 분할체(11)의 냉각 방법을 이하에 설명한다.
차실(67) 측으로부터의 냉각 공기의 공급 방법은, 제1 실시예와 같으며, 충돌판(14)의 작은 구멍(도시하지 않음)을 거쳐 분할체 본체(12)의 상면을 인핀지먼트 냉각한다. 또한, 인핀지먼트 냉각 후의 냉각 공기는 상류측 단부(16)에 설치된 상류측 단부 냉각 유로(28)를 거쳐 연소 가스의 흐름 방향의 상류측으로 분출할 때, 상류측 단부(16)를 대류 냉각한다. 또한, 하류측 단부(17)에 설치된 하류측 단부 냉각 유로(29)를 거쳐 연소 가스 중에 분출할 때, 하류측 단부(17)가 대류 냉각된다. 또한, 인핀지먼트 냉각 후의 냉각 공기의 일부는, 측단부(18, 19)의 전방측 단부 냉각 유로(21) 및 후방측 단부 냉각 유로(27)를 거쳐 개구(33)로부터 연소 가스 중에 분출할 때, 측단부(18, 19)를 대류 냉각하고 있다.
본 실시예에서도, 제1 실시예, 제2 실시예 및 제1 변형예 내지 제4 변형예와 같은 측단부(18, 19)의 개구 배치를 적용할 수 있으므로, 측단부(18, 19)의 냉각 공기량의 저감이 도모된다. 또한, 상류측 단부(16)와 하류측 단부(17)는, 상류측 단부 냉각 유로(28) 및 하류측 단부 냉각 유로(29)에 의해 대류 냉각되므로, 분할체(11) 전체의 냉각 성능이 향상되어, 가스 터빈의 냉각 효율이 개선된다.
(제4 실시예)
제4 실시예에 대해서, 도 9를 참조해서 이하에 설명한다.
본 실시예는, 제1 실시예와 마찬가지로, 측단부(18, 19)에는 전방측 단부 냉각 유로(21) 및 후방측 단부 냉각 유로(27)를 거쳐 연소 가스 중에 개방하는 개구(33)가 배치되어 있다. 냉각 구멍의 배치는, 제1 실시예, 제2 실시예 및 제1 변형예 내지 제4 변형예와 같은 배치를 적용할 수 있다.
또한, 측단부(18, 19)에는 회전축(5)의 축 방향을 따라서 전방측 단부 캐비티(31)(제5 캐비티) 및 후방측 단부 캐비티(32)(제6 캐비티)가 배치되고, 그 상류측은 회전축(5)에 직교하는 방향에 배치된 상류측 단부 캐비티(30)(제4 캐비티)에 연통하고 있다. 또한, 상류측 단부 캐비티(30)는 캐비티의 중앙 부근에서 입구 구멍(37)을 거쳐 냉각 공간(35)에 연통하고 있다. 또한, 하류측 단부(17)에는 회전축(5)의 축 방향으로 관통하는 하류측 단부 냉각 유로(29)가 배치되어 있다. 하류측 단부 냉각 유로(29)는, 제2 실시예의 하류측 단부의 냉각 유로와 마찬가지로, 일단부가 냉각 공간(35)에 연통하고, 타단부는 하류측 단부면(17a)으로부터 연소 가스 중에 개방하고 있다.
본 실시예의 냉각 구조에서는, 인핀지먼트 냉각 후의 냉각 공기는 하류측 단부(17)에 설치된 하류측 단부 냉각 유로(29)로부터 개구를 거쳐 연소 가스 중에 분출할 때, 하류측 단부(17)를 대류 냉각한다. 또한, 인핀지먼트 냉각 후의 냉각 공기(CA)의 일부는 입구 구멍을 거쳐 상류측 단부 캐비티(30)로 흘러, 상류측 단부 캐비티(30)를 흘러내릴 때, 상류측 단부(16)를 대류 냉각한다. 또한, 상류측 단부 캐비티(30)의 냉각 공기는, 전방측 단부 캐비티(31) 및 후방측 단부 캐비티(32)에 공급되고, 냉각 공기가 전방측 단부 캐비티(31) 및 후방측 단부 캐비티(32)를 흘러내릴 때, 측단부(18, 19)를 대류 냉각한다. 또한, 전방측 단부 캐비티(31) 및 후방측 단부 캐비티(32)로부터 전방측 단부 냉각 유로(21) 및 후방측 단부 냉각 유로(27)를 경유해서 개구(33)로부터 연소 가스 중에 분출할 때, 측단부(18, 19)를 다시 대류 냉각하고 있다.
본 실시예에 있어서도, 제1 실시예, 제2 실시예 및 제1 변형예 내지 제4 변형예와 마찬가지로, 측단부(18, 19)의 개구(33) 배치를 적용할 수 있으므로, 연소 가스 흐름을 따른 연소 가스압의 저하에 대하여, 개구 피치를 바꿈으로써, 측단부(18, 19)의 냉각 공기량의 저감이 도모된다. 또한, 상류측 단부(16)에 캐비티를 마련하고, 상류측 단부(16)를 냉각 공기로 대류 냉각하고 있으므로, 상류측 단부(16)의 냉각 능력이 강화되어, 분할체(11) 전체의 효율적인 냉각과 냉각 공기량의 적정화가 도모된다.
또한, 본 발명은, 전술한 실시예에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위에서의 변형, 개량 등은 본 발명의 범위에 포함된다.
본 발명의 분할 링 냉각 구조에 따르면, 분할 링 본체의 측단부를 냉각하는 냉각 공기량이 저감되어, 분할 링 전체의 냉각 공기량의 적정화가 도모되는 동시에 가스 터빈 전체의 열 효율이 향상된다.
1 : 가스 터빈
5 : 회전축
8 : 터빈 동익
10, 60 : 분할 링
11, 61 : 분할체
12 : 본체
14, 64 : 충돌판
15, 65 : 작은 구멍
16 : 상류측 단부
17 : 하류측 단부
18, 19 : 측단부
20, 31 : 전방측 단부 캐비티(제1 캐비티, 제5 캐비티)
21 : 전방측 단부 냉각 유로(제1 냉각 유로)
23, 30 : 상류측 단부 캐비티(제2 캐비티, 제4 캐비티)
24 : 상류측 단부 냉각 유로(제2 냉각 유로)
25 : 본체 냉각 유로(제3 냉각 유로)
35, 71 : 냉각 공간
67 : 차실
Z1 : 제1 영역
Z2 : 제2 영역
Z3 : 제3 영역
SP : 시점
SP1 : 제1 시점
SP2 : 제2 시점
EP : 종점
CA : 냉각 공기
FG : 연소 가스

Claims (17)

  1. 둘레 방향에 배치되어 링 형상을 이루는 복수의 분할체로 형성되고, 상기 분할체의 내주면이 터빈 동익의 선단부로부터 일정한 거리를 유지하도록 하여 차실 내에 배치되는 가스 터빈의 분할 링을 냉각하는 분할 링 냉각 구조에 있어서,
    상기 분할체는, 상기 차실의 외부로부터 공급된 냉각 공기를 분출시켜, 상기 분할체의 본체를 인핀지먼트 냉각하는 작은 구멍을 구비한 충돌판과,
    상기 충돌판과 상기 분할체의 본체로 둘러싸인 냉각 공간과,
    상기 분할체의 회전축의 축 방향을 따른 측단부 중, 적어도 한쪽의 측단부를 따라 회전축의 축 방향에 배치되고, 상기 냉각 공간으로부터 인핀지먼트 냉각 후의 냉각 공기를 수용하는 제1 캐비티와,
    일단부가 상기 제1 캐비티에 연통하고, 타단부가 상기 측단부에 배열된 개구로부터 연소 가스 중에 냉각 공기를 분출하는 제1 냉각 유로로 구성되고,
    상기 제1 냉각 유로의 개구는, 연소 가스의 흐름 방향의 상류측에서는 하류측의 개구보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 연소 가스의 흐름 방향의 하류측에서는 상류측의 개구보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있고,
    상기 제1 냉각 유로의 개구는 연소 가스의 흐름 방향의 상류측에서 하류측을 향해 2개의 영역으로 나뉘고, 상류측의 제1 영역에서는 하류측의 제2 영역보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 하류측의 제2 영역에서는 상기 제1 영역보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있는, 분할 링 냉각 구조.
  2. 제1항에 있어서, 상기 제1 냉각 유로의 개구는, 적어도 회전축의 회전 방향의 전방측의 상기 측단부에 배치되어 있는 것을 특징으로 하는, 분할 링 냉각 구조.
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 상기 제2 영역이 개시하는 상류측의 위치가 시점인 것을 특징으로 하는, 분할 링 냉각 구조.
  6. 삭제
  7. 둘레 방향에 배치되어 링 형상을 이루는 복수의 분할체로 형성되고, 상기 분할체의 내주면이 터빈 동익의 선단부로부터 일정한 거리를 유지하도록 하여 차실 내에 배치되는 가스 터빈의 분할 링을 냉각하는 분할 링 냉각 구조에 있어서,
    상기 분할체는, 상기 차실의 외부로부터 공급된 냉각 공기를 분출시켜, 상기 분할체의 본체를 인핀지먼트 냉각하는 작은 구멍을 구비한 충돌판과,
    상기 충돌판과 상기 분할체의 본체로 둘러싸인 냉각 공간과,
    상기 분할체의 회전축의 축 방향을 따른 측단부 중, 적어도 한쪽의 측단부를 따라 회전축의 축 방향에 배치되고, 상기 냉각 공간으로부터 인핀지먼트 냉각 후의 냉각 공기를 수용하는 제1 캐비티와,
    일단부가 상기 제1 캐비티에 연통하고, 타단부가 상기 측단부에 배열된 개구로부터 연소 가스 중에 냉각 공기를 분출하는 제1 냉각 유로로 구성되고,
    상기 제1 냉각 유로의 개구는, 연소 가스의 흐름 방향의 상류측에서는 하류측의 개구보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 연소 가스의 흐름 방향의 하류측에서는 상류측의 개구보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되어 있고,
    상기 제1 냉각 유로의 개구는 연소 가스의 흐름 방향의 상류측에서 하류측을 향해 3개의 영역으로 나뉘고, 가장 상류측의 제1 영역에서는 다른 영역보다 개구의 배열 피치가 작거나 또는 개구의 개구 면적이 커지도록 배열되고, 가장 하류측의 제3 영역에서는 다른 영역보다 개구의 배열 피치가 크거나 또는 개구의 개구 면적이 작아지도록 배열되고, 상기 제1 영역과 상기 제3 영역 사이에 끼인 제2 영역에서는 상류측에서 하류측을 향해 개구의 배열 피치가 차례로 커지도록 또는 개구의 개구 면적이 차례로 작아지도록 배열되어 있는 것을 특징으로 하는, 분할 링 냉각 구조.
  8. 삭제
  9. 제7항에 있어서, 상기 제2 영역이 개시하는 상류측의 위치가 시점이며, 상기 제3 영역이 개시하는 상류측의 위치가 종점인 것을 특징으로 하는, 분할 링 냉각 구조.
  10. 삭제
  11. 제5항에 있어서, 상기 시점은 연소 가스의 흐름 방향에서 가장 하류측의 제1 시점으로부터 가장 상류측의 제2 시점 사이에서 변화되는 것을 특징으로 하는, 분할 링 냉각 구조.
  12. 제1항에 있어서, 상기 분할체는, 분할체의 연소 가스의 흐름 방향의 상류측 단부이며 상기 회전축의 축 방향에 직교하도록 배치된 제2 캐비티와,
    회전축의 축 방향에 설치되어 상기 냉각 공간으로부터 상기 제2 캐비티에 연통하는 제2 냉각 유로와,
    회전축의 축 방향에 설치되어 상기 제2 캐비티로부터 상기 분할체의 하류측 단부에 있어서 연소 가스 중에 개방하는 제3 냉각 유로를 구비하는 것을 특징으로 하는, 분할 링 냉각 구조.
  13. 제12항에 있어서, 상기 제2 냉각 유로 및 상기 제3 냉각 유로는, 상기 제2 캐비티를 거쳐 회전축의 축 방향으로 되접히는 구조를 구비하고 있는 것을 특징으로 하는, 분할 링 냉각 구조.
  14. 제1항, 제2항, 제5항, 제7항, 제9항 및 제11항 내지 제13항 중 어느 한 항에 기재된 분할 링 냉각 구조를 구비한, 가스 터빈.
  15. 제7항에 있어서, 상기 제1 냉각 유로의 개구는, 적어도 회전축의 회전 방향의 전방측의 상기 측단부에 배치되어 있는 것을 특징으로 하는, 분할 링 냉각 구조.
  16. 제7항에 있어서, 상기 분할체는, 분할체의 연소 가스의 흐름 방향의 상류측 단부이며 상기 회전축의 축 방향에 직교하도록 배치된 제2 캐비티와,
    회전축의 축 방향에 설치되어 상기 냉각 공간으로부터 상기 제2 캐비티에 연통하는 제2 냉각 유로와,
    회전축의 축 방향에 설치되어 상기 제2 캐비티로부터 상기 분할체의 하류측 단부에 있어서 연소 가스 중에 개방하는 제3 냉각 유로를 구비하는 것을 특징으로 하는, 분할 링 냉각 구조.
  17. 제15항 및 제16항 중 어느 한 항에 기재된 분할 링 냉각 구조를 구비한, 가스 터빈.
KR1020127022440A 2010-04-20 2010-04-20 분할 링 냉각 구조 및 가스 터빈 KR101419159B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002835 WO2011132217A1 (ja) 2010-04-20 2010-04-20 分割環冷却構造およびガスタービン

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020137033927A Division KR20140015564A (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조

Publications (2)

Publication Number Publication Date
KR20120120951A KR20120120951A (ko) 2012-11-02
KR101419159B1 true KR101419159B1 (ko) 2014-08-13

Family

ID=44833786

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020137033927A KR20140015564A (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조
KR1020127022440A KR101419159B1 (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조 및 가스 터빈
KR1020167005813A KR101722894B1 (ko) 2010-04-20 2010-04-20 가스 터빈 분할 링의 분할체
KR1020157004624A KR101670618B1 (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020137033927A KR20140015564A (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020167005813A KR101722894B1 (ko) 2010-04-20 2010-04-20 가스 터빈 분할 링의 분할체
KR1020157004624A KR101670618B1 (ko) 2010-04-20 2010-04-20 분할 링 냉각 구조

Country Status (5)

Country Link
EP (1) EP2562358B1 (ko)
JP (1) JP5683573B2 (ko)
KR (4) KR20140015564A (ko)
CN (1) CN102782257B (ko)
WO (1) WO2011132217A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518235B2 (ja) * 2013-05-10 2014-06-11 三菱重工業株式会社 分割環冷却構造およびガスタービン
WO2015038256A1 (en) * 2013-09-10 2015-03-19 United Technologies Corporation Edge cooling for combustor panels
JP6466647B2 (ja) * 2014-03-27 2019-02-06 三菱日立パワーシステムズ株式会社 ガスタービンの分割環の冷却構造及びこれを有するガスタービン
WO2016152573A1 (ja) * 2015-03-26 2016-09-29 三菱日立パワーシステムズ株式会社 翼、及びこれを備えているガスタービン
JP6540357B2 (ja) * 2015-08-11 2019-07-10 三菱日立パワーシステムズ株式会社 静翼、及びこれを備えているガスタービン
JP6746486B2 (ja) 2016-12-14 2020-08-26 三菱日立パワーシステムズ株式会社 分割環及びガスタービン
JP6775428B2 (ja) * 2017-01-12 2020-10-28 三菱パワー株式会社 分割環表面側部材、分割環支持側部材、分割環、静止側部材ユニット及び方法
JP6925862B2 (ja) * 2017-05-16 2021-08-25 三菱パワー株式会社 ガスタービン、及び翼環部の製造方法
JP6308710B1 (ja) * 2017-10-23 2018-04-11 三菱日立パワーシステムズ株式会社 ガスタービン静翼、及びこれを備えているガスタービン
JP6726776B2 (ja) * 2019-01-10 2020-07-22 三菱日立パワーシステムズ株式会社 ガスタービンの分割環の冷却構造及びこれを有するガスタービン
KR20230081266A (ko) * 2021-11-30 2023-06-07 두산에너빌리티 주식회사 링세그먼트 및 이를 포함하는 터빈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294104A (ja) * 1998-04-15 1999-10-26 Hitachi Ltd ガスタービン設備
JP2004100682A (ja) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd ガスタービンの分割環
JP2004534178A (ja) * 2001-07-13 2004-11-11 シーメンス アクチエンゲゼルシヤフト ターボ機械および燃焼タービンのための冷却可能なセグメント
JP2005155626A (ja) 2003-11-24 2005-06-16 General Electric Co <Ge> タービンシュラウドの非対称冷却要素

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584651A (en) * 1994-10-31 1996-12-17 General Electric Company Cooled shroud
JP2961091B2 (ja) * 1997-07-08 1999-10-12 三菱重工業株式会社 ガスタービン分割環冷却穴構造
US6126389A (en) * 1998-09-02 2000-10-03 General Electric Co. Impingement cooling for the shroud of a gas turbine
JP3825279B2 (ja) * 2001-06-04 2006-09-27 三菱重工業株式会社 ガスタービン
FR2857406B1 (fr) * 2003-07-10 2005-09-30 Snecma Moteurs Refroidissement des anneaux de turbine
US7306424B2 (en) * 2004-12-29 2007-12-11 United Technologies Corporation Blade outer seal with micro axial flow cooling system
US7284954B2 (en) * 2005-02-17 2007-10-23 Parker David G Shroud block with enhanced cooling
EP1746254B1 (en) * 2005-07-19 2016-03-23 Pratt & Whitney Canada Corp. Apparatus and method for cooling a turbine shroud segment and vane outer shroud
JP5173621B2 (ja) * 2008-06-18 2013-04-03 三菱重工業株式会社 分割環冷却構造
JP2010065634A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd ガスタービンの高温部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294104A (ja) * 1998-04-15 1999-10-26 Hitachi Ltd ガスタービン設備
JP2004534178A (ja) * 2001-07-13 2004-11-11 シーメンス アクチエンゲゼルシヤフト ターボ機械および燃焼タービンのための冷却可能なセグメント
JP2004100682A (ja) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd ガスタービンの分割環
JP2005155626A (ja) 2003-11-24 2005-06-16 General Electric Co <Ge> タービンシュラウドの非対称冷却要素

Also Published As

Publication number Publication date
EP2562358A4 (en) 2014-07-23
KR20150038256A (ko) 2015-04-08
KR20120120951A (ko) 2012-11-02
CN102782257B (zh) 2015-04-01
WO2011132217A1 (ja) 2011-10-27
JPWO2011132217A1 (ja) 2013-07-18
CN102782257A (zh) 2012-11-14
KR20160031053A (ko) 2016-03-21
JP5683573B2 (ja) 2015-03-11
EP2562358B1 (en) 2017-01-11
KR101722894B1 (ko) 2017-04-05
KR101670618B1 (ko) 2016-10-28
KR20140015564A (ko) 2014-02-06
EP2562358A1 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
KR101419159B1 (ko) 분할 링 냉각 구조 및 가스 터빈
US8550778B2 (en) Cooling system of ring segment and gas turbine
KR101366908B1 (ko) 분할환 냉각 구조 및 가스 터빈
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
JP5599624B2 (ja) タービン・ブレード冷却
US9206697B2 (en) Aerofoil cooling
US7661930B2 (en) Central cooling circuit for a moving blade of a turbomachine
US8668453B2 (en) Cooling system having reduced mass pin fins for components in a gas turbine engine
US5498133A (en) Pressure regulated film cooling
US7690892B1 (en) Turbine airfoil with multiple impingement cooling circuit
JP4719122B2 (ja) 逆冷却タービンノズル
US7160084B2 (en) Blade of a turbine
US20130315710A1 (en) Gas turbine engine components with cooling hole trenches
JP2004308658A (ja) エーロフォイルの冷却方法とその装置
JP2014528538A (ja) ガスタービンロータブレードを冷却する方法及び装置
CN107131006B (zh) 涡轮叶片
JP5675081B2 (ja) 翼体及びこの翼体を備えたガスタービン
JP5518235B2 (ja) 分割環冷却構造およびガスタービン
US10900361B2 (en) Turbine airfoil with biased trailing edge cooling arrangement

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190618

Year of fee payment: 6